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S1 3D reconstruction from 2D images
Intensity and phase images allow to generate a scalar electromagnetic field at the imaging

plane Iz0 = A2
0 exp(i φz0). Because the system is illuminated by a coherent source, the

electromagnetic field can be propagated to different planes by a factor of exp(i kz ∆z), where
kz is the wave vector in axial direction, ∆z is the distance to the imaging plane.

Finally, intensity and phase image at different planes are determined by the convolution of
electromagnetic field and the back focal plane images HBLP , represented as Ewald’s sphere
[1, 2].

E(∆z) = I(∆z) ∗ HBLP (∆z) = [I0 exp(i kz ∆z)] ∗ HBLP (∆z)
⇒ E(∆z) = F−1 [F (I0 exp(i kz ∆z)) · F (HBLP (∆z))]
⇒ A(∆z) = ||E(∆z)|| and φ(∆z) = ∠E(∆z).
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S2 Explicit expression of Rytov intensity
While a light beam I0 = A2

0 exp(iφ0) passes through a medium (in our case, the solution of
NP), the background electromagnetic field is:

Ibkg = A2
0 exp

[
i

(
φ0 + 2π

λ
(nm + i n′

m)
∫

dz
)]

(S1)

, where nm + i n′
m the medium complex refractive index.

If a NP is present along the optical path and the diffraction is neglected, the electromagnetic
field is affected by the complex refractive index n + i n′ of the NP and can be written as:

I = A0 exp
[
i

(
φ0 + 2π

λ
(n + i n′)

∫
dz

)]
. (S2)

Our detection method represents the ratio between the light passed through the NP and the
background which is expressed from the equation (S2) and (S1):

t = I

Ibkg

= exp
(

−2π

λ
(n′ − n′

m)
∫

dz
)

︸ ︷︷ ︸√
T : transmissivity

exp

i
2π

λ
(n − nm)

∫
dz︸ ︷︷ ︸

∆ℓ : optical path difference (OPD)

 . (S3)

Images of INT and OPD are therefore expressed :
INT image : T =

∥∥∥∥ I

I ′

∥∥∥∥ = exp
(
−2π

λ
(n′ − n′

m)
∫

dz
)

OPD image: ∆ℓ = (n − nm)
∫

dz
. (S4)

In this paper, we use a complex observable, called Rytov’s field, to combine the intensity I
and the optical path difference ∆ℓ :

ERytov = iλnm

π

[
ln

√
T + i

2π

λ
∆ℓ

]
. (S5)

Various researches reported that the surface integration of phase image enables the charac-
terization of samples [3, 4]. Here, we also introduce a surface integration of Rytov field (SIR),
which is expressed below by using (S4) :

SIR =
∫∫

ERytov dx dy =
∑
X

∑
Y

iλnm

π
δ2

px

[
ln

√
T + i

2π

λ
∆ℓ

]

=
∑
X

∑
Y

iλnm

π
δ2

px

[
−π

λ
(n′ − n′

m)
∫

dz + i
2π

λ
(n − nm)

∫
dz

]

=


∑
X

∑
Y

−2nm δ2
px (n − nm)

∫
dz︸ ︷︷ ︸

Re(SIR)

 + i


∑
X

∑
Y

−nm δ2
px (n′ − n′

m)
∫

dz︸ ︷︷ ︸
Im(SIR)

 . (S6)
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Here δpx is the pixel size at object plane. The sum of all the pixel ∑
X

∑
Y δ2

px

∫
dz can be

converted to the volume integration
∫∫∫

dx dy dz = γ · Vobj, which is proportional to the NP’s
volume by a factor γ. Theoretically, a whole–surface integration represent a factor γ = 1, but
in practice, our surface integration is realized within the first bright ring of image. The
coefficient γ = 0.77 is determined by using Product-Of-Convolution simulation [5, 6], in order
to maximize the signal to noise ratio.

Consequently, SIR intensity (real and imaginary part) is related to the complex refractive
indices of particle and medium, as well as the NP volume. Each of these properties can be
extracted if others are known.

• Determination of NP mass
When there is no resonance emerging from the shape and size of the particle (such as for

dielectric particles), the bulk material refractive index is a precise approximation to describe
the NP refractive index. We can therefore derived the NP mass from:

SIR = −2nm

∫∫
∆ℓ · dx dy + i

(
−nm (n′ − n′

m)
∫∫

dx dy
∫

dz
)

= −2nm (n − nm)
∫∫∫

dx dy dz + i
(

−nm (n′ − n′
m)

∫∫∫
dx dy dz

)

= −2nm (n − nm)
ρobj

γ ρobj Vobj︸ ︷︷ ︸
m : NP mass

+ i

−nm (n′ − n′
m)

ρobj

γ ρobj Vobj︸ ︷︷ ︸
m : NP mass

 . (S7)

From (S6) and (S7), our values of Re(SIR) and Im(SIR) are both proportional to the NP
mass.

m = − ρobj

2 γ nm (n − nm)︸ ︷︷ ︸
βSIR

· Re(SIR) = −βSIR · Re(SIR), (S8)

m = − ρobj

γ nm (n′ − n′
m)︸ ︷︷ ︸

β′
SIR

· Im(SIR) = −β′
SIR · Im(SIR). (S9)

In our case, the dielectric particles and the solution are mostly transparent (n′ ≈ 0 and
n′

m ≈ 0). Therefore, the calculation of mass is carried out by the real part of SIR.

• Determination of complex refractive index
For metal NP, refractive index can be drastically changed from their bulk value due to surface

plasmon effect. For homogeneous spherical particles, we can calculate NP mass, knowing the
density and NP size d, SIR intensity enables a method of complex refractive index determination.

Equations (S8) and (S9) are re-written allowing to derive the refractive index.

n = nm + ρobj

2 γ nm

· Re(SIR)
m

= nm + 3 Re(SIR)
γ nm π d3 , (S10)

n′ = n′
m + ρobj

γ nm

· Im(SIR)
m

= n′
m + 6 Im(SIR)

γ nm π d3 . (S11)
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S3 System metrology

S3.1 Illumination characteristics
A white-light supercontinuum laser (ElectroVIS, Leukos, France) illuminates the sample. Its

full spectrum is shown in Figure S1a. The illumination is filtered in order to agree certain
criteria. The (spatial and temporal) coherence must be high enough so that the numerical
propagation is still valid, but also low enough to limit the emergence of speckle pattern.
- The illumination is filtered by a bandpass filter (Thorlabs FBH450-10, 450nm, FWHM =
10nm).
- Numerical aperture (NA) of the illumination is NAill = 0.024, measured at back focal plane.
It is about 2% of the collection NA (NAcoll = 1.3).
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Figure S1: Characteristics of system.(a) Full spectrum of supercontinuum laser. (b)
Example for localization precision of SARS-COV-2 in Z-direction. (c, d) Histogram of INT (c)
and OPD (d) of an image. (e, f) Standard deviation of INT and OPD for all the acquisition
without any sample (e) and with a sample of pure water (f).

S3.2 Localization precision
Here, we discuss about our localization precision of moving nanoparticles. To consider the

worst and honest scenario, the localization precision of SARS-CoV-2 nanoparticles acquired
under a biosafety cabinet is measured. The linear fit of the graph of mean squared
displacement as function of time lags allows to estimate NP size as well as localization
precision. Its slope is proportional to the diffusion coefficient, while its intercept is equal to
4σ2, where σ the localization precision [7]. The intercept is visualized as the ordinate at the
origin, as show in Figure S1b.
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In the case of SARS-CoV-2 virus, the localization precision is determined as about 30nm
on XY-direction and about 100nm on Z-direction. The XY localization precision is
below the statistical displacement of the virus within the exposure time (root mean square
displacement of 90-nm in each direction during texpo = 0.9 ms).

S3.3 Phase and Intensity signal-to-noise ratio

An acquisition of 282 images without any object was collected. The acquired images contains
the intrinsic noise of the setup. The histograms of intensity (INT) and optical path difference
(OPD) exhibits the spatial measurement precision (Fig. S1c and S1d). Figure S1e shows the
standard deviation of all the images in the acquisition. The measurement precision is defined
as the median value :

σINT,s = 0.04% and σOPD,s = 0.026 nm = 26 pm ≈ λ

20000 .

In our case, because the experiment is carried out in solution, the measurement precision is
evaluated by imaging a sample of ultra-pure water. Figure S1f shows the measurement precision
of all the image. The measurement precision is defined as the median value :

σINT,s = 0.07% and σOPD,s = 0.050 nm = 50 pm ≈ λ

10000 .

The difference between these two noise evaluation is attributed to the fluctuation of solution.
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S4 Rytov analysis and Polarizability analysis
In the study of Khadir et al. [8], both intensity and phase images are used in order to derive

the polarizability of the particle. Their equation is based on the expression of electromagnetic
field, i.e. an exponentiation of phase shift. In this case, the real and imaginary part of refractive
index contributed in the expressions of both real and imaginary part of polarizability, as shown
in the following equation (from [8]).

Re(α) = λ0 n

π

∫∫ √
(T (x, y)) sin(k0 δℓ(x, y)) dx dy

Im(α) = λ0 n

π

∫∫ [
1 −

√
(T (x, y)) cos(k0 δℓ(x, y))

]
dx dy
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Figure S2: Comparison between our Rytov analysis (blue points and lines) and Polarizability
analysis in the previous study of Khadir et al. (orange points and lines). Scatter graph of
real and imaginary part(of Rytov field and polarizability respectively) (a)for 200-nm PS and
(b) for 100-nm Au. (c) Variation of the imaginary part (of Rytov field and polarizability
respectively) in function of NP size of PS NP. (d) Variation of the imaginary part (of Rytov
field and polarizability respectively) in function of NP size of PS NP.

Comparing to their method, our Rytov intensity uses a logarithm of the electromagnetic
field. It gives a better orthogonality between the real and imaginary part when computed to

7



extract the complex refractive index : the real (imaginary, respectively) part of Rytov field is
proportional to the real (imaginary, respectively) of refractive index.

Figure S2 confirms our statement. Figure S2a describes the experimental results of 200-nm
PS NP in both methods. For the convenience of comparison, the sign of Rytov field real part
has been changed, since its value is negative, by our definition, in the equation S5. We remark
that in water, for PS NP, the imaginary part of refractive index difference is is negligible when
compared to the real part [9] since PS particles are dielectric objects.. As a result, in our
Rytov analysis, the imaginary part is almost vanished, and the information can be derived
from the real part. On the other hand, the imaginary part of polarizability is still important,
and the retrieval of information must be done using both real and imaginary part. The same
feature is obtained in the case of 100-nm Au NP, but for the real part (Fig S2b).

Using a simulation approach for PS NP, the variations of Rytov field and polarizability in
function of NP size are represented in Fig. S2c and S2d. Although the imaginary part of
polarizability varies exponentially with NP size, the imaginary part of Rytov field remains
approximately to 0 for all simulated NP size (from 50 nm to 300 nm). Ratio between imaginary
and real part indicates the portion of information in the imaginary part. For 300-nm PS, it is
about 20% for the polarizability, and is negligible for the Rytov field (about 0.3%). Moreover,
the amount of crosstalk in the polarizability imaginary part depends on the particle size and it
is thus non-trivial to retrieve the actual refractive index as compared to our Rytov approach.
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S5 Size evaluation from tracking
Even following a random motion in the solution, NP movement obeys a statistical law, where

its average displacement depends on the NP size. Therefore, the nanoparticle tracking analysis
(NTA) enables NP size evaluation.

If the tracking is carried out in Nd dimensions, and it consists of N positions which is separated
by a stable time lag of ∆t, the mean square displacement (MSD) is expressed as :

< ∆r2 >=

N∑
i=1

(ri+1 − ri)2

N
= 2 Nd D ∆t (S12)

, where ri and ri+1 are the NP positions in two consecutive images. The diffusion coefficient
D is described by the Stokes - Einstein equation allowing the NP size evaluation:

D = kBT

3π η dNP

= < ∆r2 >

2 Nd ∆t
⇔ dNP = kBT

3π η
· 2 Nd ∆t

< ∆r2 >
(S13)

, where, kB is the Boltzmann constant, T the temperature, and η the dynamic viscosity of
the solution.

This method of NP size evaluation is slowly converging when increasing the number of
position along the trace (logarithmic convergence) [10]. In our experiment, the tracking is
carried out mostly around 20-50 positions, specially for the biological sample which interacts
weakly with light (Fig S3). Therefore, the size determination presents an important error
which lower other physical measurement precision.

(a) (b) (c)

(d) (e) (f)

Figure S3: Distribution of tracking length for different samples. (a) 100-nm PS, (b)
200-nm PS, (c) 100-nm Au, (d) HIV-1 WT, (e) SARS-CoV-2, (f) Extracellular vesicles.
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In order to improve the size determination, each NP’s size is evaluated by taking into account
the tracks of other NPs with a weighting coefficient. We use our unique technique to establish
this weight coefficient as the correlation of between two Rytov DAI images, as introduced in
our recent paper [11].

The movement of ith NP is split equally by parity into two tracks. The difference between
two respective calculated DAI images infers the intrinsic error σ2

i of the NP’s tracking, expressed
by the signal variance. Between ith and kth NPs, their interrelated error σ2

i,k is defined by the
same methods, but using two DAI images. The fraction σ2

i,k/σ2
i carries the difference between

two NPs : it increases when the similarity increases, and tends to 1 if the two particles are
identical. Size of ith NP is determined by a linear fit between MSD and time lags of all the NPs
with the weight coefficient of (σ2

i /σ2
i,k)nw . The exponent nw is chosen experimentally so that it

is neither too important to homogenize different NPs, nor too weak to effectively narrow down
the measurement.

In order to determine the optimal exponent, simulated study is carried out for a batch
of 100-nm PS NPs, each NP tracks (200 positions) are generated numerically satisfying the
stochastic law. We define the relative size error as the absolute difference between measured
size versus real size, normalized by real size. For the classical NTA, the relative size error is
≈ 12%. At the optimal exponent nw = 1.125 for weighted NTA, the relative size error is about
3%, proving a 4-fold gain in size precision, as illustrated in Figure S4a.

Figure S4b shows the difference between the size evaluation of monodisperse 100-nm PS,
with and without the weighting process. The standard deviation of measurement is reduced (by
a factor of 2), whereas the average value remains almost constant.
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Figure S4: Size evaluation from tracking. (a) Simulation of Rytov-based weighted
nanoparticle tracking a nalysis for solution of 100-nm PS NP. Relative size error is reduced
from 12% (in case of classical NTA) to 3% (at the optimal exponent). (b) Size determination
of a monodisperse 100-nm PS, with and without weighting fit.
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S6 Depth of Field of different particles
Depth of Field of View (FoV) is estimated from the number of detected particles while varying

the volume of numerical propagation. The number of detected particles should be stable after
reaching a certain threshold, linked to the particle signal to noise ratio on the phase and intensity
images. This is where we define the depth of FoV. Particle number is statistically increasing
when the propagation is carried beyond this threshold. It may be explained by the introduction
of artifacts or image border’s effect. An example of 100-nm PS solution is illustrated in Figure
S5a. Multiple images are taken into accounts, and its average number of particles is shown as
red line, approving the estimation of depth of FoV of about 25-µm.
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Figure S5: (a) Analysis of the depth of FoV of 100nm PS. (b) Depth of FoV in function of
Rytov amplitude for various particles (color-coded nature of particle, cf main text).

Figure S5b shows depth of FoV for different types of particles in function of their Rytov
intensities. Its linearity grants access to the depth of FoV without any a priori knowledge of
particle, since Rytov intensities can easily be determined from acquired images.
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S7 Deep Learning training procedure
For the training, data cleaning has been performed based on 2 criteria: the quality of

particle tracking and image averaging. For the monodisperse solution, we defined a confident
interval as 3 times the standard deviation. If the NP size is determined outside this interval,
the particle is considered as an outlier and is removed from the training data set. Moreover, as
border effects are perturbing image averaging, particles located close to the edges of the
holographic volume are also removed from the training set. A process of data augmentation is
applied in order to increase the model stability and to avoid the over-fitting bias for a class
containing numerous individual NPs as compared to some others [12, 13]. In total, the data
set is composed of 2145 NPs after cleaning and data augmentation (195 per class). Thanks to
the radial symmetries and the absence of shift problems, our neural network had less
difficulties to learn with a small data set. We increase its performance by adding a bagging
method, 80 models are trained with 80 sub-dataset (random sampling with replacement) in
order to reduce full dataset variability bias.

Figure S6a illustrates the average loss function (cross-entropy) evolution versus epochs. The
evolution indicates that our training procedure does not present over- or under-fitting.

In the main text, the confusion matrices are shown for all the classes or just for the 3 main
categories (dielectric, metallic or biological nanoparticle). The gain in reducing the number of
class is negligible. Indeed, reducing the number of class -by pooling in one class all the biological
objects on the one hand (Fig S6b) or the inert particles on the other hand (Fig S6c)- does not
lead to a significant improvement of classification quality. Of course, in the each pooled class
the precision is increasing in absolute since all the error in classification between particles within
the pooled class is not anymore a mis-classification.
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Figure S6: (a) Loss function evolution for training data and test data. (b, c) Confusion matrix
for two training model which identifies more precisely either dielectric and metal particle (b),
or biological particles (c).
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S8 Coefficient for the dry mass determination of virus
It was shown that the integration of optical path difference is proportional to the dry mass

of cells [3, 4].∫∫
∆ℓ · dx dy = α · m : where α = 0.18 µm3 pg−1 for most of the eukaryotic cells

This expression is equivalent to our Re(SIR), except the coefficient is actually changed by
a factor of 2 nm (see equation (S6)). On the other hand, the coefficient α = 0.18 µm3/pg (or
equivalent to βSIR = 2.08 pg · µm−3) is incorrect to estimate the virus mass, because of the
difference of refractive index between virus and eukaryotic cells. Indeed, the refractive index of
a eukaryotic cell is basically the same with the cytosol (ncyto = 1.360−1.390 [14]), which consist
of the majority of the cell. However, the proportion of genetic material is more important in the
case of virus. Indeed, the refractive index of viruses are mostly between 1.4 − 1.6 [15], inducing
a smaller coefficient βSIR which is proportional to (n − nm) (see equation S6). Therefore, the
estimation of refractive index for each virus has an important influence for the determination
of its dry mass. We introduce our method to estimate the refractive index of virus from its size
: a first approach bases on the Maxwell-Garnett effective refractive index, and then a second
approach bases on a direct logarithmic fitting of literature values.

In the first approach (Maxwell-Garnett), virus spikes (glycoproteins and envelope proteins)
are not taken into account for the estimation of virus’s refractive index for two reasons. First,
the literature usually measures virus size by electronic microscope, therefore the indicated size
is mostly the virus capsid. Second, even though the spikes contribute to hydrodynamics size,
their dry volume proportion are small, especially for large viruses. Hence, their contribution in
refractive index can be neglected to determine our first naive refractive index versus size law.

We consider that the virus capsid (refractive index nvi and volume Vvi) consist of two main
parts : biological material (nG and VG) and inside medium (ni and Vi). Given the outside
medium can be -optical speaking- considered as pure water, the effective refractive index of the
virus ñvi is:

ñ2
vi = n2

vi − n2
m

n2
vi + 2 n2

m

= n2
G − n2

m

n2
G + 2 n2

m︸ ︷︷ ︸
ñ2

G

VG

Vvi

+ n2
i − n2

m

n2
i + 2 n2

m︸ ︷︷ ︸
ñ2

i

(
1 − VG

Vvi

)
, (S14)

where ñG and ñi effective refractive index of the biological material and the inside medium
respectively. Assuming at the first order that the volume of biological material is similar for all
the virus, the equation (S14) can be written as :

VG = Vvi · ñ2
vi − ñ2

i

ñ2
G − ñ2

i

= cte ⇐⇒
(
ñ2

vi − ñ2
i

)
Vvi = cte = A ⇐⇒ ñ2

vi = ñ2
i + A

Vvi

. (S15)

The effective refractive index of virus is therefore proportional to 1/Vvi. Using the measured
values of refractive index of various virus and extracellular vesicles [15, 16], the linear regression
coefficients are determined as A = 2.196 × 10−5 µm3 and ñ2

i = 0.031 (graph shown is Fig S7).
The refractive index of virus capsid having diameter of D can be deduced:

nvi = nm

√√√√2 ñ2
vi + 1

1 − ñ2
vi

where ñ2
vi = 6 A

π D3 + ñ2
i . (S16)
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Figure S7: Relation between the effective refractive index and the volume of virus. Data using
the information of several virus from [15, 16]

Finally, for a virus capsid having diameter of D (or virus’ hydrodynamics size of D + ℓh), its
mass is determined by :

m = 1
2 nm α

ncyto − nm

nvi − nm

· Re(SIR) (S17)

, where α = 0.18 µm3/pg ≈ 3×10−7µm3/MDa is the coefficient mentioned above for eukaryotic
cells.
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Figure S8: (a) Effective refractive index in function the reciprocal of virus volume. The red
dash line illustrates the fitting equation in our model. Smaller virus (poliovirus) does not follow
the hypothesis . (b) Refractive index in function of logarithm of the reciprocal of virus volume.
The dash lines illustrate the linear fit : red one is for all the virus and plasma EVs, blue one is
for virus only.

However, the strong hypothesis of similar biological material volume for all the virus used
to make a first order development from the Maxwell-Garnett calculation reaches its limits for
smaller than 100-nm viruses (like poliovirus having diameter of 60-nm, refractive index of 1.535
[17] or a priori SARS-CoV-2). Indeed, fig. S8a we see a clear logarithmic dependency of the
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effective refractive index (confirmed for the real refractive index in fig. S8b) with the reciprocal
of virus volume. We deduce a second order law to directly fit the refractive index of biological
nanoparticles as a function of its diameter d (in µm):

nvi = 1.337 + 0.0465 × log10

( 6
π d3

)
(S18)

The difference in dry mass determination is shown in the following table.

Dry Mass (MDa)

Maxwell-Garnett calculation Logarithm fitting

HIV-1 VLP 57+15
−17 52+13

−15

HIV-1 VLP + RNA 131+54
−32 111+46

−27

HIV-1 wt 108+40
−29 92+34

−24

HIV-1 ∆Env 68+24
−27 64+22

−16

SARS-CoV-2 18+6
−7 31+10

−13

Extracellular vesicles 262+130
−114 227+112

−98

We remark that the values are slightly different within the confident range for all the biological
samples, except for SARS-CoV-2. It may be explained by its small size which is not suitable
for our simple model of Maxwell-Garnett approximation, with a non-negligeable contribution
from the protein spikes. Therefore, in the paper, we exhibit the results from logarithmic fit to
better take into account the whole particle composition.
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S9 Comparison of estimated dry mass of virus
In the main text, we have discussed the determination of dry mass of virus from the

measurement of Rytov field. In order to verify the experimental value, we compare it to the
dry mass estimated from the virus molecular compositions.

Virus HIV-1
HIV-1 composition can found in the literature [18, 19] as: 2 single-stranded RNA (≈10

kilobases each), ∼1200 copies of p55 Gag (55 kDa each, the capsid shell being assembled from
∼1200 copies of Cap24), ∼60 copies of p160 Gag-Pol (160 kDa each) and 6 to 20 Gp160Env

trimers (220 kDa each monomer, taking into account ∼25 glycosylation sites of ∼2.5 kDa
each) . This provides 6.6 MDa (RNA) + 66 MDa (structural proteins) + 10 to 16 MDa
(enzymes) + 4 to 13 MDa for Env. The molecular mass of a particle should lie within a range
of 90 to 102 MDa without including its lipid membrane, small accessory proteins (Vpr, Vif)
and cellular components (tRNA) which are negligible in the total mass. This is in excellent
agreement with our measurement (≈ 92 MDa).

Virus SARS-CoV-2
For SARS-CoV-2, the literature remains incomplete, making mass estimation highly

hypothetical with current knowledge. In addition, the content of viral particles appears highly
variable, with particles more or less rich in N, M and S. A ‘typical’ viral particle would contain
RNA genomes of 30-kilobases (∼10MDa) bound to 700-1000 N protein units (50kDa each),
1000 M protein dimers (25kDa each) and 25 to 100 S proteins (76kDa) [20, 21]. A very rough
estimate would give a molecular weight of between 72MDa and 93MDa, beyond our
measurements (≈ 31 MDa).

This difference could have multiple reasons. First, it may be explained by the presence of a
mixture of more or less filled viral particles, more or less decorated with Spikes. Importantly,
measurements on HIV-1 and derivatives were carried out on particles purified by calibrated
methods, enabling most of the EVs to be removed. This was not the case with SARS-CoV-2,
whose purification at high concentration and separation from EVs are not established yet.
Thus, the SARS-CoV-2 samples used here were issued from cell supernatant and highly
enriched in EVs, which could have influenced our results.

Second, our method of dry mass determination bases on a hypothesis that the virus is
transparent (without any light absorption). However, it may not be the case for SARS-CoV-2.
We observe a slight absorption via the analysis of intensity and phase images. Moreover, our
model for the estimation of virus refractive index is simple and naive, based on the hypothesis
that all the virus have comparable structure. Indeed, due to the lack of researches on virus
refractive index, we fit our model with several points. Since SARS-CoV-2 has a highly dense
structure (almost the same mass of HIV-1, but 7 times smaller in volume), our model may
over-estimate its refractive index, provoking to the under-estimation of its dry mass.
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Extracellular vesicles
In this publication, we calculate the extracellular vesicles (EVs) dry mass considering the

law determined with viruses, linking the particle refractive index with its size. However, it is
not an accurate assumption since EVs are mainly hollow compared to viruses. The refractive
index of EVs might be quite independent to its size with a value close to the cytoplasma
refractive index and not the value of up to 1.50 for the small size when considering or law.

If the sample can be identified as EVs (by a priori knowledge or by machine learning), we
can applied the coefficient equivalent to that of cell (2.08 pg · µm−3). That modifies the EVs
dry mass to 433+214

−188 MDa, about 200% error compared to the value of 227+112
−98 MDa in the main

text.

17



References
[1] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, Marker-free

phase nanoscopy, Nature Photonics 7, 113–117 (2013).

[2] P. Bon, S. Aknoun, S. Monneret, B. Wattellier, Enhanced 3D spatial resolution in quantitative phase
microscopy using spatially incoherent illumination, Opt. Express 22, 8654 (2014).

[3] R. Barer, Interference microscopy and mass determination, Nature 169, 366 (1952).

[4] S. Aknoun, J. Savatier, P. Bon, F. Galland, L. Abdeladim, B. F. Wattellier, S. Monneret, Living cell dry
mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an
accuracy and sensitivity discussion, J Biomed Opt. 20, 126009 (2015).

[5] H. Sierra, C. A. DiMarzio, D. H. Brooks, Modeling phase microscopy of transparent three-dimensional
objects: a product-of-convolutions approach, JOSA A 26, 1268 (2009).

[6] P. Bon, B. Wattellier, S. Monneret, Modeling quantitative phase image formation under tilted illuminations,
Opt. Lett. 37, 1718 (2012).

[7] X. Michalet, Mean square displacement analysis of single-particle trajectories with localization error:
Brownian motion in an isotropic medium, Physical Review E 82, 041914 (2010).

[8] S. Khadir, D. Andrén, P. C. Chaumet, S. Monneret, N. Bonod, M. Käll, A. Sentenac, G. Baffou, Full optical
characterization of single nanoparticles using quantitative phase imaging, Optica 7, 243 (2020).

[9] X. Zhang, J. Qiu, X. Li, J. Zhao, L. Liu, Complex refractive indices measurements of polymers in visible
and near-infrared bands, Appl. Opt. 59, 2337 (2020).

[10] H. Qian, M. Sheetz, E. Elson, Single particle tracking. analysis of diffusion and flow in two-dimensional
systems, Biophysical Journal 60, 910 (1991).

[11] M.-C. Nguyen, P. Bon, Optical signal-based improvement of individual nanoparticle tracking analysis,
Measurement Science and Technology 35, 015202 (2024).

[12] A. Mikołajczyk, M. Grochowski, 2018 International Interdisciplinary PhD Workshop (IIPhDW) (2018), pp.
117–122.

[13] X. Li, W. Zhang, Q. Ding, Cross-domain fault diagnosis of rolling element bearings using deep generative
neural networks, IEEE Transactions on Industrial Electronics 66, 5525 (2019).

[14] W. Choi, C. Fang-Yen, K. Badizadegan, N. L. Seungeun Oh, R. R. Dasari, M. S. Feld, Tomographic phase
microscopy, Nature Methods 4, 717 (2007).

[15] Y. Pang, H. Song, W. Cheng, Using optical trap to measure the refractive index of a single animal virus in
culture fluid with high precision, Biomed. Opt. Express 7, 1672 (2016).

[16] A. I. Konokhova, M. A. Yurkin, A. E. Moskalensky, A. V. Chernyshev, V. P. Maltsev, E. D. Chikova,
G. A. Tsvetovskaya, Light-scattering flow cytometry for identification and characterization of blood
microparticles, Journal of Biomedical Optics 17, 057006 (2012).

[17] R. L. Steere, F. L. Schaffer, The structure of crystals of purified mahoney poliovirus, Biochimica et
Biophysica Acta 28, 241 (1958).

[18] J. R. Perilla, K. Schulten, Physical properties of the HIV-1 capsid from all-atom molecular dynamics
simulations, Nature Communications 8 (2017).

[19] E. O. Freed, HIV-1 assembly, release and maturation, Nature Reviews Microbiology 13 (2015).

[20] W. Pezeshkian, F. Grünewald, O. Narykov, S. Lu, V. Arkhipova, A. Solodovnikov, T. A. Wassenaar, S. J.
Marrink, D. Korkin, Molecular architecture and dynamics of sars-cov-2 envelope by integrative modeling,
Structure 31, 492 (2023).

[21] B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Connelly, B. Droese, J. P. Klaus,
S. Makino, S. G. Sawicki, S. G. Siddell, D. G. Stamou, I. A. Wilson, P. Kuhn, M. J. Buchmeier, A
structural analysis of m protein in coronavirus assembly and morphology, Journal of Structural Biology
174, 11 (2011).

18


	3D reconstruction from 2D images
	Explicit expression of Rytov intensity
	System metrology
	Illumination characteristics
	Localization precision
	Phase and Intensity signal-to-noise ratio

	Rytov analysis and Polarizability analysis
	Size evaluation from tracking
	Depth of Field of different particles
	Deep Learning training procedure
	Coefficient for the dry mass determination of virus
	Comparison of estimated dry mass of virus

