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Abstract 

Unknown particle screening -including virus and nanoparticles- are keys in medicine, industry 

and also in water pollutant determination. Here we introduce RYtov MIcroscopy for 

Nanoparticles Identification (RYMINI), a staining-free, non-invasive and non-destructive 

optical approach that is merging holographic label-free 3D tracking with high-sensitivity 

quantitative phase imaging into a compact optical setup. Dedicated to the identification and 

then characterization of single nano-object in solution, it is compatible with highly demanding 

environments, such as level 3 biological laboratories, with high resilience to external source 

of mechanical and optical noise. Metrological characterization has been performed at the level 

of each single particle on both absorbing and transparent particles as well as on immature and 

infectious HIV, SARS-CoV-2 and extracellular vesicles in solution. We demonstrate the 

capability of RYMINI to determine the nature, concentration, size, complex refractive index 

and mass of each single particle without knowledge or model of the particles’ response. The 

system surpasses 90% accuracy for automatic identification between 

dielectric/metallic/biological nanoparticles and about 80% for intraclass chemical 
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determination of metallic and dielectric. It falls down to 50-70% for type determination inside 

the biological nanoparticle’s class.  

 

1. Introduction 

Having access to metrological parameters on individual nanoparticles is key to characterize 

the production for food, industry and biomedicine 
[1–3]

 and to identify relevant differences of 

nature between particles.
[4]

 In this quest, some measurements could unlock unprecedented 

comprehension on each individual particles including the molecular content and the density of 

matter which involve a knowledge on both dimension and weight of each particle in their 

native environment. Ensemble measurement using dynamic light scattering (DLS) have been 

proposed 
[5,6]

 to have access to the size of particles –even polydisperse solution- but the 

intrinsic lack of specificity in the measured signals make this method challenging when 

nanoparticles with identical size distribution but different nature are in solution (e.g. empty 

and full extracellular vesicles). 

At the single particle level, different techniques have been proposed to label-free measure the 

particle size. Based on angular distribution of light scattering and/or single-particle tracking 

(SPT) 
[7–21]

 they can furthermore extract a signal related to the particle refractive index 

mismatch with the solvent. A priori knowledge about the particle light/matter interaction is 

then required to sort the particles making these methods very challenging when applied 

simultaneously to both absorbing and transparent nano-objects. 

Moreover, when working with nanometer-size bio-objects such as vesicles or viruses, having 

access to the particle refractive index is not enough to perform acute biological interpretations. 

At microscopic scale, it has been demonstrated in the 1950’s 
[22]

 that light-matter interaction 

can be converted into mass measurement for biological samples. This approach has been 

widely applied on optically resolved samples including eukaryotic cells 
[23,24]

 and bacteria.
[25]

 

Different methods of NP and virus mass measurement are introduced by using interferometric 

light scattering microscopy,
[26,27]

 electron microscopy,
[28,29]

 mass spectroscopy,
[30,31]

 

nanometer-scale pores.
[32]

 However, these methods are only applicable either as destructive 

method, or for fix particles, or require the presence and the non-destructive interaction of the 

nanoobject with a lipid bilayer. Miniaturized microfluidic based optical detection and 

characterization of specific viruses have already been demonstrated
[33,34]

. These methods are 

compatible with biosafety cabinet but they require specific antibody binding, and thus a 

knowledge on the targeted nano-object.  

 

In this paper, we introduce RYtov MIcroscopy for Nanoparticles Identification (RYMINI) 

as a novel tool to identify in solution each nanoparticle via machine learning allowing us to 

retrieve its size, concentration, optical attenuation on any type of particles without any 

possible bias. To do so, we have merged the capability of holography for (i) imaging in a 

single 2D image large 3D volume and for (ii) numerical refocusing of each freely diffusing 

particle,
[35,36]

 with the high-stability, compactness and sensitivity of self-reference 

interferometry.
[37,38]

 This grants an access to the size d of each particle (via SPT analysis), its 

type, and then its complex refractive index          (and so its electric susceptibility 
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       , or its mass). Moreover, the imaging volume is precisely determined a posteriori: 

a key element to measure particle concentrations in a single-shot acquisition. Our approach is 

less sensitive in term of detection of small particles than other state-of-the-art 

demonstrations.
[11,13,14,17,18]

 However, our aim is to develop a compact setup which is fully-

compatible with acquisitions in small and demanding environments including biosafety 

cabinets in highly confined laboratories. This means the capability to work under 

uncontrollable and non optical-friendly conditions (vibration, external light background, …) 

without compromising the results.  

 

Therefore, we use lateral shearing interferometer
[37–39]

  which allows stability enhancement 

and compacity (no reference arm) with respect to holography. Besides, it allows to work in a 

coherence regime where the volume reconstruction stays accurate over large defocus while 

decreasing the amount of speckle noise. The use of a fast camera (acquisition frequency of 

400Hz) is also an advantage to limit vibration issues and follow small particles. This 

combined strategy makes possible imaging in demanding environments while keeping 

sensitive and quantitative measurements. It unlocks the capability to detect, identify and 

characterize nano-objects, even dangerous for human or environment such as emerging virus 

or pollutant.  

 

2. Results - Discussion 

 

2.1. Principle 

The core idea of our method is to simultaneously measure the size, and the optical intensity 

and phase response of each nano-object. These three independent measurements grant signal 

specificity to identify each nanoparticle and determine key metrological information. To do so, 

we image freely diffusing nanoparticles (in Brownian motion) in their native solution with an 

optical microscope. The illumination has a controlled spatial and temporal coherence (super-

continuum laser, see methods) and each particle –even far from the imaging plane- forms an 

image on the sensor (Fig 1.a). By using a sensor sensitive to both the phase   and the 

intensity   of the light,
[37–39]

 it is possible for weakly scattering imaged volume to compute a 

numerical 3D stack from a single 2D hologram (see S1 and Movie S1), the only requirement 

being to know the illumination wavelength λ and the microscope parameters (pixel size in the 

object space and numerical aperture). More complex propagation algorithms (based on 

transport-of-intensity equation) could be envisioned for highly scattering medium.
[40]

 A large 

full well capacity camera coupled with short exposition time (<1ms) have been used to remain 

almost insensitive to ambient light that cannot be avoided in some conditions such as highly 

confined laboratories (L3 in the case of this study). Figure 1.b gives on overview of the image 

processing and information harvesting, which will be discussed separately in the following 

subheadings.  
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Figure 1: Principle of experiment. (A) Experimental holographic setup. (B) Analysis 

workflow. From one intensity/phase image couple acquired in single shot, a 3D image stack is 

computationally generated. The Rytov field intensity is calculated to unlock each particle 

localization in 3D through. By repeating the procedure at different time points, single particle 

tracking and signal averaging can be performed to identify and characterize each particle in 

the solution. DAI stands for Dynamic Average Image (enhancement of the image SNR by 

temporal averaging of refocused images).  

 

 

2.2. Dynamic Average Imaging 

Successive temporal holograms are then recorded and both the 3D position over time and the 

intensity and phase images at focus of each particle at each time point are extracted. Though 

the particles are moving, their images can be numerically refocused and remains static over 

time at their focal planes. Hence, each particle image can be averaged through time to obtain a 

maximized signal-to-noise ratio (SNR) intensity and phase image of each freely diffusing 

particles extracted (see Movie S1). We call this approach Dynamic Average Imaging (DAI). 
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After DAI, the SNR of both intensity and phase images increases, theoretically by the factor 

of   , with N is the number of tracking frames which largely improve the characterization of 

particles.  

 

2.3. Rytov field for universal localization and quantitative measurements  

Variation of intensity and phase images of a particle at different planes depends on particle’s 

nature. Figure 2 shows the simulated images, by Product-of-Convolution,
[41,42]

 of three 

different nanoparticles in the focal plane: polystyrene (PS), gold (Au) and silver (Ag). At the 

working wavelength (i.e. λ=450 nm), the difference of refractive index between these 

particles and the medium (water) are respectively:
[43,44]

               ;      

             and                   . Thus, their optical response shows 3 different 

behaviors: PS particle is a dielectric (all information in the phase image), Au is absorbing (all 

information in the intensity image) and Ag is in-between (information in both intensity and 

phase images). In order to remain independent in our localization method from the nature of 

the particle (i.e. dielectric, absorbing or in-between), we have merged the intensity I and the 

phase signal φ inside a novel observable, called Rytov intensity: 

               
 

  
      

 
 
     

 
      

 

            (1) 

with        the Rytov field (generalized from the polarizability tensor
[45]

), and    the 

surrounding medium refractive index (see S2 for more details). Although obtained with a 

label-free technique, the Rytov intensity image looks very similar from a fluorescence image, 

in which Rytov intensity reach its maximum when the particle is at the imaging plane, 

independently from the nature of the imaged particle. Regular and robust localization 

algorithm can therefore be applied to super-localize in 3D the particle (Gaussian fitting, see 

methods) without requiring a priori knowledge about the particle’s nature. The localization 

precision is far beyond the microscope resolution (e.g. λ/10 for SARS-CoV-2 virus) within 

imaging volume of typically 30-pL (~28×28×30 µm
3
) for dielectric particles (see S3 for 

complete characterization).  
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Figure 2: Rytov intensity as universal signal for different optical responses. Simulated 

images of different particles at focus (considering the bulk refractive index). From top to 

bottom, 100-nm Au NP, 60-nm Ag NP and 200-nm PS NP. From left to right, phase, intensity 

and Rytov intensity images. NP sizes are chosen so that their Rytov intensity is comparable.  

 

 

Noteworthy, the surface integration of Rytov field (SIR) over the whole particle image gives 

access to the optical volume difference of the particle compared to the medium: 

  

                   

   

  
    

 
        

     

 
       

   

 

                                  
       

                               
       

                  

where,    is the particle volume,          is the complex refractive index of the medium, 

  the working wavelength. From the equation (2), we notice that the real (and imaginary, 

respectively) part of SIR depends on the real (and imaginary, respectively) part of refractive 

index and the volume of particles. Therefore, SIR values associated with the NP size (via 

single particle tracking) can be used to identify the nature of each particle.  

Moreover, in order to handle intensity and phase measurements, Rytov field introduces less 

crosstalk between absorbing and refractive effects than conventional electromagnetic field 
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calculation proposed in previous NP characterizations
[45]

 (see S4). This method is thus more 

direct for particle nature determination and refractive index retrieval. 

 

2.4. Size characterization from Brownian motion and Rytov field 

Since the nanoparticles are diffusing following a Brownian motion, according to the Stokes-

Einstein law,
[46]

 the particle hydrodynamic diameter dh can be obtained via: 

        
   

    
        (3) 

with d  the particle diameter, δ  the hydrodynamic layer thickness around the particle which 

depends on the particle and medium nature,     the Boltzmann constant, T  the fluid 

temperature, η the viscosity of the fluid and D the diffusion coefficient. The classical way to 

measure D is to compute the mean squared displacement (MSD) of each nanoparticle 

trajectory.  In addition to a possible more precise MSD evaluation as compared to 2D 

localization,
[47]

 the 3D tracking -granted with our holographic method- is more efficient to 

handle trajectory superposition. The tracking has been performed at high frame rate (400Hz) 

to ensure accurate evaluation of diffusion coefficient via MSD and minimize the environment 

vibration influence. To increase the precision of the size evaluation from MSD, we have used 

a unique characteristic of our method: the signature of the Rytov field for a given particle 

nature and size which allows us to perform correlation between particles which exhibit the 

similar Rytov field (see S5). Moreover, our approach unlocks concentration determination 

without a priori knowledge on the particle type: the measurement volume where particles are 

detected is obtained through the numerical propagation and is automatically adjusted by the 

signal-to-noise ratio of the detected particles for each type of particles (see S6). This allows 

unbiased particle concentration measurements by counting the number of detections in this 

tunable reconstruction volume. 

 

2.5. Automatized single particle identification and characterization  

We have developed an architecture based on Vision Transformer,
[48,49]

 adapted to the complex 

electromagnetic field,
[50]

  for automatized particle classification. To identify each particle, the 

algorithm uses as input parameter the complex Rytov field, normalized by the particle volume, 

to obtain signals proportional to the complex refractive index. The complex normalized image 

used for the classification is expressed as: 

            
 

          

    .    (4) 

The architecture scheme is presented in Fig.3.a and detailed in methods and S7. 
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Figure 3: Machine Learning process. (A) Schema of Vision Transformer classification 

algorithm. (B) Confusion matrix of machine learning result for 3 main categories (dielectric, 

metal and biological samples). (C) Same as (b) with full particle nature classification 

 

The particle classification capability of our algorithm can be assessed with the normalized 

confusion matrix (Figure 3.b,c). The algorithm precision is >92% to classify a particle either 

as dielectric, metallic or biological particle (Figure 3.b). More precision on the chemical and 

biological nature of the particle can also be obtained (Figure 3.c). In this paper, the chemical 

distinction inside dielectric (PS, SiO2 and Diamond), or metallic (Au, Ag) classes reaches at 

least 79% with an average of 88%. For biological objects, different virus-like-particle (VLP), 

infectious virus (HIV-1, and SARS-CoV-2) with various subtype and extracellular vesicles 

(EVs) distinction is considered. Their nature is determined with an accuracy up to 75% for 

VLPs, and about 50% for others. The confusion between HIV-1 wt and HIV-1 ΔEnv (two 

different subtypes, see discussion) is comprehensible and predictable since HIV-1 ΔEnv 

contains multiple level of maturation of HIV-1, even a proportion of matured HIV-1 (similar 

to HIV-1 wt).
[51]

 Extracellular vesicles are also classified with moderate certainty, as expected 

for such heterogeneous class. 

Interestingly, our deep learning algorithm gives comparable results regardless the number of 

training classes (comparison of Fig 3.c and Fig S5b-c), which is not usually the case with 

other classification methods such as regular k-means clustering. It suggests that the 
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complexity and generalization capabilities of our classification method is sufficient to handle 

all classes at the same time. 

After identification of the particle nature, it is possible to extract more physical, chemical and 

biological information with limited bias. For example, for NPs, its refractive index       

   can be retrieved from the SIR value of equation (2): 

                 
 

      
    

 

 
                                     

where,    the susceptibility of NP. The single particle tracking gives access to the 

hydrodynamic diameter. With the knowledge on the hydrodynamic layer thickness for the 

identified particle nature in the medium, the particle volume is then extracted from the core 

diameter. 

Additionally, previous studies stated that the dry mass of biological materials is proportional 

to the optical volume difference.
[22–24]

 However, because the refractive index of virus is 

mostly higher than that of eukaryotic cell, the coefficient might be different from the literature 

review, and is discussed in S8. Hence, SIR analysis for viral particles allows to derive their 

dry mass. 

 

2.6. Nanoparticle concentration measurement 

3D volume of the field of view accessible with this method grants access in a single-shot to 

the concentration of the particles, independently with the particle nature. As explained before, 

the holographic imaging volume is fixed by the particle signal to noise ratio itself (see S6). In 

Fig.4.a, single shot particle concentrations have been determined over an imaging volume of 

20-pL (28×28×25-µm
3
). Starting from an initial 100-nm PS solution of concentration of 

       particles/mL (determined with a commercial Videodrop, Myriade, France), different 

dilutions (from 1:20 to 1:1000) were prepared and analyzed. Concentration measurements are 

obtained via counting the number of NP traces obtained in single time sequence acquisition 

(~300 images acquired at 400-Hz) and are in good agreement with the theoretical values, 

estimated from dilution proportions.  We can extract concentration down to 1×10
8
 

particles/mL, or ≈0.16-pM (about 1 particle per holographic volume) with a precision of 

0.7×10
8
 particles/mL (0.12-pM). On the opposite, the maximal concentration can reach up to 

10
11

 particles/ml without changing our localization algorithm based on 3D projection volume 

into a single 2D image for particle pre-localization.   

 

2.7. Identification and characterization of monodisperse nanoparticle solutions 

Using RYMINI, we have studied monodisperse solutions containing dielectric (polystyrene, 

silica, diamond) or plasmonic (gold, silver) particles. In fig.4.b-c, a solution of 100-nm 

polystyrene (PS) nanoparticles has been imaged and both the complex refractive index of each 

particle and its size are presented. The hydrodynamic diameter is measured to be d = 105 ± 13 

nm which agrees with the information provided by the manufacturer, in which the average 

core size is 102 ± 3 nm, with a dispersion of 7.6 nm.  

PS nanoparticles with size ranging from 60-nm to 200-nm have been studied with the same 

approach (Fig 4.d-f and Movie S2). We obtain a stability in the measured values for the 
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refractive index considering a hydrodynamic layer thickness of 10-nm, which agrees with the 

literature review (from 7-12nm
[52,53]

). The complex refractive index has been measured 

         
      
      

           
      
      

  in agreement with the PS bulk refractive index at 

        [43]
                         , confirming no plasmonic effect on these 

particles. In addition, silica (SiO2) and diamond di-electric nanoparticles as well as metallic 

gold (Au) and silver (Ag) nanoparticles were studied in Fig.4.g-i and Movie S3, and their 

statistics are summarized in the Table 1. 

 

 
Figure 4: Quantification of individual NP in solution. (A) Single-shot concentration 

measurement (Cexp) of 100-nm PS solutions -made from dilutions of an initial solution- 

compared to the theoretical concentrations (Cth). Error bars represent the standard deviation of 

measurement. (B, C) Analysis of solution of 100-nm PS reveals size, complex refractive 

index. It is illustrated either in 3D (b) or in 2D graph (c). (D, E, F) Studies of different-sized 

PS nanoparticles with measured values for hydrodynamic size, real and imaginary refractive 

indices. (G, H, I) Measurements for different types of nanoparticles: dielectric (PS, Silica, 

Diamond) and metal NP (Au, Ag). Their responses are separated in the optical properties and 

size space, explaining the capability of machine learning segmentation.  

  



  

 

11 

 

 

Particles 

nature 

Number of 

particles 

Hydrodynamic Size 

(nm) 

Refractive 

index n 

Absorption 

coefficient k 

PS 

123     
    
    

      
      
      

       
      
      

 

170     
    
    

      
      
      

      
      
      

 

221      
    
    

      
      
      

       
      
      

 

228      
     
     

      
      
      

      
      
      

 

181      
     
     

      
      
      

      
      
      

 

SiO2 

105      
     
     

      
      
      

      
      
      

 

393      
     
     

      
      
      

      
      
      

 

Diamond 208     
    
    

      
      
      

       
      
      

 

Au 

201     
     
    

      
      
      

      
      
      

 

194      
     
    

      
      
      

      
      
      

 

Ag 191      
     
     

      
      
      

      
      
      

 

 

Table 1: Number of analyzed particles, Size, real, imaginary refractive index and electric 

susceptibility of various nano-particles. 

 

For plasmonic particles, the light-matter interaction is very dependent with both the particle 

size and the working wavelength.
[45]

 The complex refractive index of 60-nm and 100-nm Au 

NP and 100-nm Ag NP have been studied and, according to Mie theory,
[54]

 their plasmon 

resonance wavelength are respectively 530-nm, 570-nm and 480-nm. The module of the 

complex refractive index is maximized when the wavelength is approaching the resonance 

and at the opposite is close to the refractive index of the bulk material when far from 

resonance. As an example, the refractive index of bulk gold and silver are tabulated 
[44]

 at 

                          and                           and the measured 

refractive index for 100-nm Au and Ag NP are 

      
        

      
      

           
      
      

 , closer to the bulk values far from resonance 

as compared to       
        

      
      

           
      
      

  closer to the NP plasmon 

resonance.  
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2.8. Characterization of polydisperse nanoparticle solutions 

A polydisperse mixture of 200-nm PS and 100-nm Au NPs is prepared in order to 

demonstrate the discrimination of nanoparticle’s nature by SIR analysis. These particles are 

chosen so that it is nearly impossible to identify each particle nature from its scattering 

intensity only, the values being almost similar at the working wavelength (fig.5.a and Movie 

S4). However, figure 5.a,b shows the graph of SIR analysis for the mixture in which two 

clusters can be segmented, not only by their size thank to tracking but also by their real and 

imaginary SIR value. 

The machine learning classification determined that the particles in the mixture are mostly PS 

and Au (as shown in figure 5.c-d) as expected. Their concentrations are measured at 5.8±0.8 × 

10
8
 and 2.7±0.5 × 10

8
 particles/mL respectively, in good agreement with the estimated values 

from manufacturer concentration and our dilution (5.0 and 3.8 × 10
8
 particles/mL 

respectively). The other types of particles (SiO2, Diamond, Ag) identified by the automatized 

algorithm correspond to classification errors (5%), and we may conclude that our machine 

learning process achieves about 95% identification accuracy in this two particle-type mixture.  

 

 
Figure 5: Analysis of polydisperse solution of 200-nm PS and 100-nm Au NP. (A, B) 

Graphs of analyzed particles show two possible clusters which are presented in the solution. 

(C, D) Automatized identification by machine learning. 
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2.9. Virus identification and characterization at the single particle level 

We next challenged the RYMINI method to analyze biological nanoparticles in solutions: (i) 

artificial HIV-1 virus-like-particles (HIV-1 VLP) and VLP enriched in viral RNA (HIV-1 

VLP+RNA), (ii) infectious HIV-1 particles (HIV-1 Wt) and HIV-1 pseudo-particles deprived 

of the surface Envelope Glycoproteins (HIV-1 ∆Env), (iii) infectious SARS-CoV-2, and (iv) 

extracellular vesicles (EV) excreted in cell culture (Fig.6.a). While EVs and VLP can be 

handled and measured without biohazard, measurements of infectious class 3 viruses such as 

HIV-1 and SARS-CoV-2 have to be performed in confined biological environments. The 

acquisitions of infectious samples were thus performed inside a biosafety cabinet of a 

confined level 3 biological laboratory (CEMIPAI, Montpellier, France) as shown in Fig.6.e 

(laser-beam safety panels have been removed to take the picture). 

For biological samples, we have considered as pertinent to measure the size and mass (in Da) 

of each particle. The results for VLP, viruses and EVs are illustrated in Fig.6.b-d and reported 

in Table 2. HIV-1 VLP-GAG size analysis first validated the capabilities of our method, with 

a measured mean hydrodynamic diameter of    
   
   

-nm, which is the expected size of 

GAG-VLPs produced in higher eukaryotic cells.
[51,55]

 HIV-1 VLP-GAG particles enriched in 

viral RNA (HIV-1 VLP+RNA) showed an increased size of    
   
   

-nm, which correlates 

with the size modulation of viral RNA on VLP assembly.
[56]

 When moving to native, wt-

infectious HIV-1 particles, the measured diameter (    
   
   

-nm) was higher to that 

previously reported by CryoEM (      -nm).
[57]

 This is consistent since the particle size 

determined by EM are restricted to the outside of the lipid bilayer, therefore omitting the outer 

shell of the heavily glycosylated Gp160
Env

, which should strongly participate in the 

hydrodynamic radius measured here.  This was indeed confirmed by the measured size of 

HIV-1 ΔEnv lacking the surface Env trimers (   
   
   

-nm). SARS-CoV-2 size was found 

around     
    
    

-nm, which is consistent with sizes reported so far by CryoEM (91 ± 11-nm) 

[58]
 and AFM (89 ± 19-nm).

[59]
 Finally, samples of extracellular vesicles showed a broader size 

range (   
   
   

 nm), as expected from these heterogeneous family of biological particles.
[60]

  

 

To convert each particle signal into mass, we used a   coefficient which only depends on the 

particle size at the first order (see S8). This simple assumption may lead to errors -especially 

for small and empty particles such as some extracellular vesicules- evaluated to be at 

maximum 200% for the determined mass (corresponding to 0.1 error in the refractive index 

value, see S9). 

 

For HIV-1 wt, the dry mass, that we measured with optical signal ( 

  
   
   

 MDa), is in good agreement with the dry mass estimated from the molecular 

composition analysis (90-102 MDa, see S9). For SARS-CoV-2, our dry mass determination is 

much lighter than the estimated value (31 MDa compared to 100 MDa). This disagreement 
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between two measurements may be attributed to the lack of information on SARS-CoV-2 

composition and/or our hypothesis on the refractive index of SARS-CoV-2. Indeed, (i) from 

molecular composition, SARS-CoV-2 is found as heavy as HIV-1, eventhough it is 7 times 

smaller in volume; (ii) the refractive index law (see S8) has been determined from viruses and 

EVs that differ quite a lot in terms of structure when compared to SARS-CoV-2. Since SARS-

CoV-2 is recently appeared in virology, further studies, including its refractive index, must be 

useful to improve the precision of dry mass determination . 

 

Mass variations between all these biological nanoparticles correlate with their variations in 

size and content, with VLP-GAG + RNA > HIV-1 wt > HIV-1 ΔEnv > VLP Gag > SARS-

CoV-2. EVs can content various biological material such as proteins and nucleic acids and 

showed an important heterogeneity in mass accordingly. Interestingly, molecular mass 

densities (in Da/nm
3
) confirmed that VLP-GAG and the EVs are less packed, while SARS-

CoV-2 shows a slightly higher density. It suggests that SARS-CoV-2 packs its genome to 

form a denser supercoiled structure, as mentioned in previous studies.
[58,61–63]

 The dry mass 

density is found in between 0.05 to 0.14 g/mL. Supposing that the density of EVs and virus 

equals to the dry mass density plus the water density, our value agrees with the literature 

reviews.
[64]

 Altogether, these results demonstrate that the RYMINI is a powerful method to 

assess virus size, mass and densities; and can be used in high confinement laboratory for 

infectious virus analysis. However, is important to remember that the mass is measured from 

an empiric law linking the virus refractive index with its size only, which is source of error. 
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Figure 6: Quantification of biophysical parameters of virus and organic nano-objects. 

(A) Scheme of the different virus and virus-like-particles (VLP) analyzed in the experiment. 

(B, C, D) Characterization of biological samples: size, molecular dry mass (MDa) and 

molecular mass density (Da· nm
-3

). (E) Picture of the actual RYMINI microscope siting in a 

biosafety cabinet in a L3 laboratory (laser safety protections removed to make the picture). 

Box plots represent: <5%; 25%; 50%; 75%; 95%> 
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Particule 

nature 

Number of 

particles 

Hydrodynamic 

Size (nm) 

Dry Mass 

(MDa) 

Dry mass 

Density 

(Da.nm
-3

) 

Dry mass 

Density 

(g/mL) 

HIV-1 VLP 90    
   
   

   
   
   

     
     
     

      
      
      

 

HIV-1 VLP 

+ RNA 

162    
   
   

    
   
   

     
     
     

      
      
      

 

HIV-1 wt 337    
   
   

   
   
   

     
     
     

      
      
      

 

HIV-1 ΔEnv 147    
   
   

   
   
   

     
     
     

      
      
      

 

SARS-CoV-

2 

88     
    
    

   
   
   

     
     
     

      
      
      

 

Extracellular 

Vesicle  

357    
   
   

    
    
   

     
     
     

      
      
      

 

 

Table 2: Size, number of analyzed particles, Mass and density of various biological nano-

objects 
 

3. Conclusion 

 

Our full optical RYMINI method unlocks identification and metrological characterization of 

nanoparticle solution at the single particle level without requiring a priori information on the 

sample nature. It grants access to the type of each detected particle as well as single-shot 

concentration, size, complex refractive index and mass (in gram and Dalton). For biological 

samples, the mass may carry errors due to some incomplete kwowledge about the refractive 

index of the smallest virus. We have demonstrated its capability in monodisperse and 

polydisperse solutions of metallic and dielectric NP. The sample preparation as well as the 

acquisition are straightforward since large volumetric imaging is obtained in a single-shot 

manner with the RYMINI technique. To probe sub-pM concentration solutions, it requires 

less than one second and 10µL of solution, depending only on the imaging chamber volume. 

Our current sensitivity is compatible with identification and complete characterization of NP 

as small as 40-nm for metallic particles and 60-nm for dielectric particles (PS). The detection 

sensitivity could be pushed further by a change in the illumination scheme at the price of 

reducing the accessible imaging volume, or by attenuating the non-scattered light 
[65]

 but at 

the price of higher sensitivity to mechanical vibration and external light background, possibly 

problematic in demanding environment such as biosafety cabinet. Moreover, the label-free 

intrinsic signature of each particle can be used to quantify the homogeneity of particles in a 

non-invasive and biosafety-secured manner. The deployment of machine learning tools 

unlocks automatized identification of each detected particles. We believe that this method 

could be part of a system for routine pollution level or biological risk determination, NP 

metrology during production as well as fundamental viral studies. 
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4. Experimental Section and Methods 

 
Optical setup. The setup is based on a homemade microscope using a quadriwave 

lateral shearing interferometer 
[37,39]

 to measure the phase and the intensity of the beam. The sample is 

illuminated by a supercontinuum fiber laser (Leukos, France) filtered by a short-pass 700-nm dichroic 

and a        nm optical filter (Thorlabs). A Köhler illumination has been made using one 

achromatic lens (75-mm, Thorlabs) and one aspherical lens (50-mm, Thorlabs). The image is formed 

with an oil-immersion objective Nikon Plan Fluor 100x NA 1.30 and a 400-mm achromat lens for the 

tube lens (Thorlabs). The total microscope magnification has been measured to be 205x, using a 

resolution test target (R3L1S4P, Thorlabs). The interferometer is composed of a Modified Hartmann 

Mask,
[66]

 a relay lens and a 2Me
-
 full-well capacity CMOS camera (Q-2HFW-hm, Adimec). The 

system is built on 40x30-cm breadboard and has a total height of 50-cm to be easily handled and 

introduced in biosafety cabinet. 

Sample preparation. Perforated parafilm on a type 1.5 round coverslip plays the role of a 10µL 

imaging chamber.  The parafilm is first heated up to 80°C so that it is slightly melted and sealed to the 

glass slide. After adding the solution, the chamber is closed by a second glass slide avoiding possible 

evaporation or leaks during handling.  

Virus preparation. For HIV-1 and EVs production, 12.5 million of Human embryonic kidney cells 

(293THEK cell) were seeded in 10 ml of DMEM growth media 1 day before transfection. At 50-70% 

confluence, cells were transfected with calcium phosphate precipitate method, with 8 µg total quantity 

of plasmid for either pcDNA3.1 (Mock), pHIV-1Gag
[67]

, pHIV-Psi-viralRNA 
[68,69]

, pHIV-1(NL43) 

and pHIV-1GagΔEnv
[51]

. Cell culture supernatant containing viral particles was collected 48 hours 

post transfection. Supernatant was filtred through 0.45 µm and then purified by ultracentrifugation on 

cushion of 25% sucrose - TNE buffer (10 mM Tris-HCl [pH 7.4], 100 mM NaCl, 1 mM EDTA) at 

100000g, for 1 hour 30 minutes at 4°C, in SW32Ti Beckman Coulter rotor. Dry pellet was 

resuspended in TNE buffer at 4°C overnight.  

For SARS-CoV-2 particle production, the strain BetaCoV/France/IDF0372/2020, was supplied by the 

National Reference Center for Respiratory Viruses hosted by Institut Pasteur (Paris, France) and 

headed by Pr. Sylvie van der Werf. The human sample from which strain 

BetaCoV/France/IDF0372/2020 was isolated has been provided by Dr. X. Lescure and Pr. Y. 

Yazdanpanah from the Bichat Hospital, Paris, France. Moreover, the BetaCoV/France/IDF0372/2020 

strain was supplied through the European Virus Archive goes Global (EVAg) platform, a project that 

has received funding from the European Union's Horizon 2020 research and innovation program under 

the grant agreement No 653316.  COV-2 Virus was propagated in VeroE6 cells with DMEM 

containing 2.5% FBS at 37°C with 5% CO2 and harvested 72 hours post inoculation. Virus stocks 

were stored at -80°C and tittered using plaque assays as previously described
[59]

 and provided by 

CEMIPAI facility. 

 

Data acquisition and analysis. A home-made program based on LabVIEW has been developed for 

both acquisition and processing. Between 200-300 frames per sample where acquired at 400-Hz with 

about 1.0 ms integration time (total acquisition time of  ≈700-ms) before being analyzed for single 

particle tracking. The analysis algorithm is performed offline with following the workflow: (i) to 

calculate the phase and intensity from each interferogram (raw camera image), including a flattening 

procedure (polynomial fit) of both intensity and phase maps to have an intensity centrered at 1 and a 
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phase centered at 0; (ii) to generate a 3D stack from each intensity/phase couple using numerical 

propagation; (iii) to compute the Rytov intensity of each image in each stack; (iv) to pre-detect each 

particle on a maximum intensity projection along the propagation axis of the Rytov intensity stack; (v) 

to 3D superlocalize on the Rytov intensity stack each particle from its pre-detection using 3D 

Gaussian fitting; (vi) to extract a sub-pixel register at-the-focus intensity/phase image for each particle 

using the measured 3D position; (vii) to compute the DAI from the registered images and the particle 

size using the MSD from the temporal particle trace. Traces shorter than 20 images where deleted 

from the analyzed data to ensure a proper size measurement and DAI. 

All statistics in the text and tables are in median and 25/75% percentile values.  

The characteristics of the analysis computer is listed: AMD Ryzen 7 3800X 8-Core Processor, RAM 

32Gb, graphic card NVIDIA GeForce RTX 2080Ti. It takes about 6 s/image to generated from the 

phase and intensity images (358×358 pixels) the full 3D volume and Z-axis maximum projection (2D 

image  3D volume image  Z-axis maximum projection). The 3D numerical propagation is carried 

out for -15µm to + 15µm with step of 0.1µm (i.e. 301 planes). This was not parallelized on GPU and 

SoA 3D reconstruction as been demontstrated in a few ms (e.g. create 512×512×8 holographic volume 

in 10 ms
[70]

). We thus expect the 3D reconstruction time to be reduced down to 50-100 ms  ( ~100-fold 

faster). 

The single particle tracking step is longer (multi-particle 3D tracking from Rytov image  create DAI 

images of each particle). In average, it takes about 5 second per particle per image. By moving to a 

GPU parallelized algorithm, it should allow to perform a whole reconstruction in about 1 minute for 

30 particles in the field of view.  

NP solution preparation. Multiple monodisperse solutions have been used in the experiment: regular 

polystyrene of 60, 80, 100 and 150-nm (Thermofisher), and calibration standard polystyrene of 100 

and 200 nm (3K/4K Series Particle Counter Standards, Thermofisher Duke Standards), silica (Sigma 

Aldrich), Gold NP (Sigma Aldrich), Silver NP (Alfa Aesar), Diamond (Sigma Aldrich). When 

required, dilutions were performed with de-ionized water (18 MΩ m
-1

). 

Machine Learning architecture and hyper-parameters. Our Vision Transformer architecture, 

implemented with Adam optimizer, is composed of 3 different parts: the first one encodes the input 

images as patches; the second part allows to extract features using the scaled dot product attention; and 

the third part is a classic multi-layer perceptron to label each individual. The learning rate is initially 

set at 0.003 and evolved, following a triangular learning rate policy,
[71]

 with bound reduced by a factor 

of 0.85 after each 3 training epochs, in order to improve the training convergence. The model was 

trained during 30 epochs with a batch size of 20 Rytov images of 50×50 pixels and a cross-entropy 

loss function. 
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