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∗Université de Lorraine, CNRS,

Inria, LORIA

F-54000 Nancy, France

†Quandela
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Abstract—We introduce the first complete equational theory
for quantum circuits. More precisely, we introduce a set of
circuit equations that we prove to be sound and complete: two
circuits represent the same unitary map if and only if they can
be transformed one into the other using the equations. The proof
is based on the properties of multi-controlled gates – that are
defined using elementary gates – together with an encoding of
quantum circuits into linear optical circuits, which have been

proved to have a complete axiomatisation.

I. INTRODUCTION

Quantum computation is the art of manipulating the states

of objects governed by the laws of quantum physics in order

to perform computation. The standard model for quantum

computation is the quantum co-processor model: an auxiliary

device, hosting a quantum memory. This coprocessor is then

interfaced with a classical computer: the classical computer

sends the co-processor a series of instructions to update

the state of the memory. The standard formalism for these

instructions is the circuit model [1]. Akin to boolean circuits,

in quantum circuits wires represent quantum bits and boxes

elementary operations – quantum gates. The mathematical

model is however very different: quantum bits (qubits) cor-

respond to vectors in a 2-dimensional Hilbert space, gates to

unitary maps and parallel composition to the tensor product –

the Kronecker product.

Quantum circuits currently form the de facto standard

for representing low-level, logical operations on a quantum

memory. They are used for everything: resource estimation

[2], optimization [3]–[8], satisfaction of hardware constraints

[9], [10], etc.

However, as ubiquitous to quantum computing as they are,

the graphical language of quantum circuits has never been

fully formalized. In particular, a complete equational theory

has been a longstanding open problem for 30 years [11].

It would make it possible to directly prove properties such

as circuit equivalence without having to rely on ad-hoc set

of equations. So far, complete equational theories were only

known for non-universal fragments, such as circuits acting on

at most two qubits [12], [13], the stabilizer fragment [14], [15],

the CNot-dihedral fragment [16], or fragments of reversible

circuits [17]–[19].

Interestingly enough, other diagrammatic languages for

quantum computation have been developed on sound foun-

dations: it is reasonable to think that this could help in

developing a complete equational theory for circuits. Arguably

the strongest candidate has been the ZX-calculus [20], [21],1

equipped with complete equational theories [24]–[28]. The

ZX-calculus shares the same underlying mathematical repre-

sentation for states: wires corresponds to Hilbert spaces and

parallel composition to the tensor operation. Nonetheless, the

completeness of the ZX-calculus does not lead a priori to a

complete equational theory for quantum circuits. The reason

lies in the expressiveness of the ZX-calculus and the non-

unitarity of some of its generators. Any quantum circuit can

be straightforwardly seen as a ZX-diagram. On the other hand,

a ZX-diagram does not necessarily represent a unitary map,

and even when it does, extracting a corresponding quantum

circuit is known to be a hard task in general [4], [29].

Another example of a quantum language with a complete

equational theory is the LOv-calculus, a language for linear

optical quantum circuits for which a simple complete equa-

tional theory has recently been introduced [30]. While both

linear optical and regular quantum circuits are universal for

unitary transformations, they do not share the same structure.

1or its variants like ZH [22] and ZW [23], sharing several similar properties.
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In particular, if the parallel composition of quantum circuits

corresponds to the tensor product, for linear optical circuits it

stands for the direct sum.

In this paper, we introduce the first complete equational

theory for quantum circuits, by first closing the gap between

regular and linear optical quantum circuits. Despite the seem-

ingly incompatible approaches to parallel composition, our

completeness result derives from the completeness result for

linear optical circuits. Indeed, unlike ZX-generators, linear

optical components are unitary, making it possible write a

translation in both directions.

The complete equational theory for quantum circuits is

derived from the completeness of the LOv-calculus as follows:

equipped with maps for encoding (from quantum circuits

to linear optical circuits) and decoding (from linear optical

circuits to quantum circuits), one can roughly speaking prove

completeness for quantum circuits as long as its equational

theory is powerful enough to derive a finite number of equa-

tions, those corresponding to the decoding of the equations of

the complete equational theory for linear optical circuits.

Due to the difference in its interpretation in both kinds

of circuits, the parallel composition is not preserved by the

encoding nor the decoding maps. The translations are actually

based on a sequentialisation of circuits, since the translation

of a local gate (acting on at most two wires) is translated as a

piece of circuit acting potentially on all wires. Technically, it

forces to work with a raw version of circuits, as a circuit may

lead to a priori distinct translations depending on the choice

of the sequentialisation. Moreover, a single linear optical gate

like a phase shifter (which consists in applying a phase on a

particular basis state) is decoded as a piece of circuits that can

be interpreted as a multi-controlled gate acting on all qubits.

As we choose to stick with the usual generators of quantum

circuits acting on at most two qubits, multi-controlled gates

are inductively defined and we introduce an equational theory

powerful enough to prove the basic algebra of multi-controlled

gates, necessary to finalise the proof of completeness.

The paper is structured as follows. We first introduce a

set of structural relations for quantum circuits generated by

the standard elementary gates: Hadamard, Phase-rotations, and

CNot. We define multi-controlled gates using these elementary

gates, and show that the basic algebra of multi-controlled

gates can be derived from the structural relations. In addition

to the structural equations, we introduce Euler-angle-based

equations. We then proceed to the proof of completeness,

based on a back-and-forth translation from quantum circuits

to linear optical circuits.

II. QUANTUM CIRCUITS

In quantum computation, circuits —such as quantum cir-

cuits or optical quantum circuits— are graphical descriptions

of quantum processes. Akin to (conventional) boolean circuits,

circuits in quantum computations are built from wires (ori-

ented from left to right), representing the flow of information,

and gates, representing operations to update the state of

the system. Every circuit comes with a set of input wires

(incoming the circuit from the left) and a set of output wires

(exiting the circuit on the right).

A. Graphical languages

To provide a formal definition of circuits, we first use the

notion of raw circuits.2 Given a set of generators, one can

generate a raw circuit by means of iterative sequential (◦) and

parallel (⊗) compositions. For instance, given the elementary

gates H and P (π/4) (with one input and one output) and

(with two inputs and two outputs), one can construct the raw

circuit ◦ (( H ⊗ P (π/4) ) ◦ ). Notice that a sequential

composition C′ ◦C requires that the number of outputs of C
matches the number of inputs of C′. This raw circuit can be

depicted by gluing the generators together and using boxes to

witness how the generators have been composed:

H

P (π/4)

To avoid the use of boxes and recover the intuitive notion

of circuits, we formally define circuits as a prop [32], which

consists in considering the raw circuits up to the rules given

in Figure 1. More precisely, a prop generated by a set G of

elementary gates is the collection of raw circuits generated by

G ∪ { , , }3 quotiented by the equations of Figure 1.

The use of the prop formalism guarantees that circuits can

be depicted graphically without ambiguity. Circuits are thus

defined up to deformations, as for instance:

P (π/4)

P (π/4)

H =

P (π/4)

P (π/4)H

.

B. Quantum circuits: Syntax and semantics

We consider quantum circuits defined on the following

standard set of generators: Hadamard, Control-Not, and Phase-

gates together with global phases.

Definition 1. Let QC be the prop generated by H , , and

for any ϕ ∈ R, P (ϕ) and ϕ .

The gates H and P (ϕ) have one input and one output,

while has two and ϕ zero. A quantum circuit C with n

inputs and n outputs is called a n-qubit circuit. Given an n-

qubit circuit C, the corresponding unitary map JCK is acting

on the Hilbert space C{0,1}n

= span(|x〉 , x ∈ {0, 1}n):4

Definition 2 (Semantics). For any n-qubit quantum circuit C,

let JCK : C{0,1}n

→ C{0,1}n

be the linear map inductively

defined as follows: JC2 ◦ C1K = JC2K ◦ JC1K, JC1 ⊗ C3K =
JC1K ⊗ JC3K, and ∀x, y ∈ {0, 1}, ∀ϕ ∈ R,

J H K = |x〉 7→ 1√
2
(|0〉+ (−1)x |1〉),

2Raw terms are for instance similarly used [31] as an intermediate step in
the defintion of prop.

3 denotes the identity, the swap and the empty circuit.
4We use the standard Dirac notations.
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idk ◦ C ≡ C ≡ C ◦ idk

C ≡ C ≡ C

(t1)

(C3 ◦ C2) ◦ C1 ≡ C3 ◦ (C2 ◦ C1)

C1 C2 C3 ≡ C1 C2 C3

(t2)

⊗ C ≡ C ≡ C ⊗

C
≡ C ≡

C

(t3)

σk ◦ (C ⊗ ) ≡ ( ⊗ C) ◦ σk

C
≡

C

(t4)

(C1 ⊗ C2)⊗ C3 ≡ C1 ⊗ (C2 ⊗ C3)

C1

C2

C3

≡

C1

C2

C3

(t5)

(C2 ◦ C1)⊗ (C4 ◦ C3) ≡ (C2 ⊗ C4) ◦ (C1 ⊗ C3)

C1 C2

C3 C4

≡
C1 C2

C3 C4

(t6)

◦ ≡ ⊗

≡

(t7)

where id0 = and idk+1 = idk ⊗ , and σ0 := , σk+1 := ( ⊗ idk) ◦ ( ⊗ σk).

Fig. 1: Definition of ≡ for raw circuits (either raw quantum circuits or raw optical circuits).

Z := P (π) (1)

X := H HZ (2)

RX(θ) := H HP (θ)

-θ/2
(3)

··· ··· := ··· ··· (4)

··· ··· := ··· ··· (5)

Fig. 2: Usual abbreviations of quantum circuits.

q
P (ϕ)

y
= |x〉 7→ eixϕ |x〉 ,

J K = |x〉 7→ |x〉 ,r z
= |x, y〉 7→ |x, x⊕ y〉 ,

J K = |x, y〉 7→ |y, x〉 ,

J ϕ K = 1 7→ eiϕ,

J K = 1 7→ 1.

Remark 3. Although the definition of J.K relies on the in-

ductive structure of raw quantum circuits, it is well-defined

on quantum circuits as for any raw quantum circuits C,C′,
whenever C ≡ C′ we have JCK = JC′K.

Proposition 4 (Universality [33]). For any n-qubit unitary

map U acting on C{0,1}n

, there exists an n-qubit circuit C
such that JCK = U .

We use standard shortcuts in the description of quantum cir-

cuits, given in Figure 2. In textual description, we sometimes

use CNot, s(ϕ), X , P (ϕ), etc to denote respectively , ϕ ,

X , P (ϕ) , etc. Moreover, when the parameters (e.g. ϕ)

are not specific values they can take arbitrary ones. We write

RX(θ) for the so-called X-rotation [34], whereas the standard

phase gate P (ϕ) is a Z-rotation only up to a global phase. As

a consequence, they have a slightly different behaviour: P is

2π-periodic: JP (2π)K = I , whereas RX is 4π-periodic, and

we instead have JRX(2π)K = −I .

C. Structural equations

We introduce a set QC0 of structural equations on quantum

circuits in Figure 3. These equations are structural in the

sense that the transformations on the parameters are only

based on the fact that R is an additive group. In particular,

these equations are valid for any reasonable5 restriction on

the angles.

We write QC0 ⊢ C1 = C2 when C1 can be transformed

into C2 using the equations of Figure 3.6

Proposition 5. The structural equations of Figure 3 are sound,

i.e. if QC0 ⊢ C1 = C2 then JC1K = JC2K.

5I.e. which forms an additive group and contains π/2.
6More formally, QC0 ⊢ · = · is defined as the smallest congruence which

satisfies equations of Figures 1 and 3.
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H H = (a)

0 = 2π = (b)

ϕ1 + ϕ2 = ϕ1 ϕ2 (c)

P (0) = (d)

= (e)

X
=

XX
(f)

= (g)

= (h)

P (θ)
=

P (θ)
(i)

= (j)

P (ϕ1) P (ϕ2) = P (ϕ1+ϕ2) (k)

P (ϕ)X X = P (−ϕ)
ϕ

(l)
H H

=
P (π2 ) P (−π

2 )

P (π2 )
(m)

RX(θ)

RX(-θ)

HH

RX(θ′)

RX(θ′)
=

RX(θ)

RX(-θ)

H H

RX(θ′)

RX(θ′)
(n)

RX(θ)

RX(-θ)

H

RX(θ)

RX(-θ)

H RX(-θ′)

RX(-θ′)

H

RX(θ′)

RX(θ′)

H

=

RX(θ)

RX(-θ)

H

RX(θ)

RX(-θ)

HRX(-θ′)

RX(-θ′)

H

RX(θ′)

RX(θ′)

H

(o)

Fig. 3: Axioms of QC0: Structural equations on quantum circuits. The equations are defined for any ϕ, ϕ1, ϕ2, θ, θ
′ ∈ R.

Proof. By inspection of the equations of Figure 3.

Equations (a) to (l) are fairly standard in quantum comput-

ing. Equation (m), which is used for instance in [35], describes

two equivalent ways to define a controlled-Z gate. Notice that

this equation cannot be derived from the other axioms as it

is the only equation on 2 qubits which does not preserve the

parity of the number of CNots plus the number of swaps.

Equations (n) and (o) are more involved and account for

some specific commutation properties of controlled gates (see

Proposition 16 and Proposition 17).

The axioms of QC0, i.e. the equations given in Figure 3,

are sufficient to derive standard elementary circuit identities

like those given in Figure 4.

One can also prove that some particular circuits, called

phase-gadgets [36], can be flipped vertically:

QC0 ⊢
P (ϕ)

=
P (ϕ)

(6)

QC0 ⊢
RX(θ)

=
RX(θ)

(7)

The derivations are given in Appendix B-A. Combining

Equation (6) and Equation (i), one can easily prove the

following equation, used for instance in [8] in the context of

circuit optimisation:

QC0 ⊢
P (ϕ′)P (ϕ)

=
P (ϕ′) P (ϕ)

Notice that when ϕ = −ϕ′ = α/2 the above circuits are

two equivalent standard implementations of a controlled-phase

gate of angle α. We show in the next section how the basic

algebra of (multi-) controlled gates can be derived.

D. Controlled gates

Multi-controlled gates are useful to describe more elaborate

quantum circuits. We use the notations “λ” and “Λ” for

controls. Given a 1-qubit gate G, λ1G is a 2-qubit positively

controlled gate: if the control qubit (the top one) is in state

|1〉 (resp. |0〉) then G (resp. the identity) is applied on the

target qubit (the bottom one). λ2G is a 3-qubit positively

controlled gate, where the two upper qubits are controls: they

both need to be in state |1〉 for the gate G to fire on the

bottom qubit. We also consider more general multi-controlled

gates Λx1...xkG with positive (when xi = 1) and negative

(when xi = 0) controls: if the first qubit is in the state |x1〉

4



= (8)

H

H
=

H

H
(9)

X X = (10)

= (11)

X
=

X
(12)

Z Z = (13)

= (14)

Z
=

Z

Z
(15)

RX(θ)
=

RX(θ)
(16)

RX(0) = (17)

RX(θ) RX(θ′) = RX(θ+θ′) (18)

H
=

HH H

X
(19)

Fig. 4: Standard circuit identities that can be derived from the axioms of QC0, given in Figure 3 . The proofs are given in

Appendix B-A.

(resp. |x̄1〉) then Λx2...xkG (resp. the identity) is applied on

the remaining qubits. Finally, Λx
yG denotes a multi-controlled

gate with control qubits on both sides – above and below – of

the target qubit.

We will follow a standard construction for multi-controls

using a decomposition into elementary 1- and 2-qubit gates

(see for instance [33]). Note that we do not aim here at

defining all controlled operators: as this construction is the

main apparatus for the completeness result, we only focus on

the operations s(ϕ), X , RX(θ) and P (ϕ). Other controlled

operations can then be derived if needed.

We first define in Definition 6 circuits implementing regular,

all-positive multi-controlled gates λnG. We then present in

Definition 7 how to handle positive and negative controls. In

Definition 8 we finally introduce controlled gates with controls

both above and below the gate G.

Definition 6 (Positively multi-controlled gates). For all n ∈
N and G ∈ {s(ϕ), X,RX(θ), P (ϕ)}, we define a quantum

circuit λnG.7 This circuit acts on n wires when G = s(ϕ)
and n+ 1 otherwise. We define each circuit λnG as follows.

• λnRX(θ) is defined by induction:

λ0RX(θ) := RX(θ),

λn+1RX(θ) :=
λnRX(-θ2 )λnRX( θ2 )

H H

.

• λnP (ϕ) is defined by induction using λnRX(ϕ):

λ0P (ϕ) := P (ϕ),

7Note that G spans non-elementary gates, the constructor λ is not consid-
ered as a gate operator, and the fact that the circuit λnG happens to be related
to G is a corollary of its definition, as discussed further in the article.

λn+1P (ϕ) :=
λn+1RX(ϕ)

λnP (ϕ2 )

H H

.

• λnX is a simple macro:

λnX := λnP (π)

H H

• Finally, λ0s(ψ) := s(ψ) and λn+1s(ψ) := λnP (ψ).

Definition 7 (Multi-controlled gates). For any k-length list

of booleans x = x1, . . . , xk (xi ∈ {0, 1}), for any G ∈
{s(ϕ), X,RX(θ), P (ϕ)} we define the quantum circuit ΛxG
as

ΛxG := λkG

Xx1 Xx1

Xxk Xxk

when G ∈ {X,RX(θ), P (ϕ)}, and

Λxs(ϕ) := λks(ϕ)

Xx1 Xx1

Xxk Xxk

.

where x = 1− x, X1 = X , and X0 = .

Definition 8 (General multi-controlled gates). Given two lists

of booleans x ∈ {0, 1}k and y ∈ {0, 1}ℓ, if xy is the

concatenation of x and y we define the two quantum circuits

• for any G ∈ {X,RX(θ), P (ϕ)}

Λx
yG := ΛxyG

ℓ

k

• Λx
ys(ϕ) := Λxys(ϕ).

5



One can double check using the semantics that Λx
yG is

actually a multi-controlled gate:

Proposition 9. For any x, u ∈ {0, 1}k, y, v ∈ {0, 1}ℓ, a ∈
{0, 1} and G ∈ {X,RX(θ), P (ϕ)},

q
Λx
yG

y
|u, a, v〉 =

{

|u〉 ⊗ (JGK |a〉)⊗ |v〉 if uv = xy,

|u, a, v〉 otherwise,

and

q
Λx
ys(ϕ)

y
|u, v〉 =

{

eiϕ |u, v〉 if uv = xy,

|u, v〉 otherwise.

We use the standard bullet-based graphical notation for

multi-controlled gates: the ith control is black (resp. white)

when xi = 1 (resp. xi = 0), and the j th from the end control

is black (resp. white) when yℓ−j+1 = 1 (resp. = 0), e.g.:

Λ11
1 X : , Λ0

10RX(θ) :
RX(θ)

,

Λ10P (ϕ) :

P (ϕ)

, Λ1...1RX(θ) :

RX(θ)

.

To avoid ambiguity with CNot we will not use this notation

in the particular case of Λ1X and Λ1X . Notice however that

Λ1X is provably equivalent to CNot:

Proposition 10. QC0 ⊢ Λ1X = .

Proof. The proof is given in Appendix B-B.

E. Properties of multi-controlled gates

In a multi-qubit controlled gate, all control qubits play a

similar role. This can be expressed as the following commuting

property:

RX(θ)

=

RX(θ)

This property is provable in QC0, considering three cases

depending whether the exchanged control qubits are either

above or below the target qubit:

Proposition 11. For any x ∈ {0, 1}k, y ∈ {0, 1}ℓ, z ∈
{0, 1}m, a, b ∈ {0, 1} and any G ∈ {s(ψ), X,RX(θ), P (ϕ)},

QC0 ⊢ Λxabz
y G

k

= Λxbaz
y G

k

(20)

QC0 ⊢ Λx
zabyG

ℓ

= Λx
zbayG

ℓ

(21)

QC0 ⊢ Λxa
byG

k − 1

ℓ− 1

= Λxb
ayG

k − 1

ℓ− 1

(22)

A peculiar property of controlled phase gates (and hence

controlled scalars) is that the target qubit is actually equivalent

to the control qubits, e.g.:

P (ϕ)

= P (ϕ)

This property is also provable in QC0:

Proposition 12. For any x ∈ {0, 1}k, y ∈ {0, 1}ℓ,

QC0 ⊢ Λx
y1P (ϕ) = Λx1yP (ϕ) (23)

Proof of Proposition 11 and Proposition 12. The two proper-

ties are proved at once. The proof relies on the following

commutation property which can be proved by induction (see

Appendix B-E).

QC0 ⊢
ΛxRX(θ′)ΛxRX(θ)

=
ΛxRX(θ′) ΛxRX(θ)

(24)

The proof of Equations (20)-(22) for G = RX(θ) follows

by induction. We then prove Equation (23) which requires

a few technical developments. The proof of Eq. (20)-(22)

for the other gates then follows from the RX(θ) case and

Equation (23) (see Appendix B-F).

The gates P (ϕ) form a monoid, i.e. P (ϕ + ϕ′) = P (ϕ) ◦
P (ϕ′) (Equation (k)) and P (0) = (Equation (d)). Notice

that RX(θ) and s(ϕ) also form monoids. It is provable in QC0

that their multi-controlled versions enjoy the same property:

Proposition 13. For any x ∈ {0, 1}k, y ∈ {0, 1}ℓ,

QC0 ⊢ Λx
yRX(θ′) ◦ Λx

yRX(θ) = Λx
yRX(θ + θ′),

QC0 ⊢ Λx
yP (ϕ

′) ◦ Λx
yP (ϕ) = Λx

yP (ϕ+ ϕ′),

QC0 ⊢ Λx
ys(ϕ

′) ◦ Λx
ys(ϕ) = Λx

ys(ϕ+ ϕ′),

QC0 ⊢ Λx
yRX(0) = idk+ℓ+1,

QC0 ⊢ Λx
yP (0) = idk+ℓ+1,

QC0 ⊢ Λx
ys(0) = idk+ℓ,

where idk is defined as in Figure 1.

Proof. First, proving that multi-controlled gates with angle 0
are equivalent to the identity is straightforward by induction.

To prove the rest of the proposition, we first prove that

QC0 ⊢ Λ1..1RX(θ′) ◦ Λ1..1RX(θ) = Λ1..1RX(θ + θ′). The

proof is by induction: we unfold the two multi-controlled

6



gates, use Equation (24) to put the multi-controlled gates with

angles θ/2 and θ′/2 side by side, and merge them using the

induction hypothesis. We use again Equation (24) to allow the

combination of the multi-controlled gates with angle −θ/2
and −θ′/2, closing the case.

The cases with more general controls are derived from this

one using Definitions 7 and 8. The cases of P and s are

derived from the RX case using Definition 6 and an ancillary

lemma stating that a multi-controlled phase commutes with

the controls of another multi-controlled gate. The details of

the proof are given in Appendix B-G.

Remark 14. Note that Proposition 13 does not imply the

periodicity of controlled gates. The latter is proven in Propo-

sition 22 with the help of the rules of Figure 5.

Combining a control and anti-control on the same qubit

makes the evolution independent of this qubit, as in the

following example in which the evolution is independent of

the second qubit:8

P (ϕ)P (ϕ)

=
P (ϕ)

Such simplifications can be derived in QC0.

Proposition 15. For all bitstrings x ∈ {0, 1}k, y ∈ {0, 1}ℓ,
and for all G ∈ {s(ϕ), X,RX(θ), P (ϕ)},

QC0 ⊢ Λ0x
y G ◦ Λ1x

y G = ⊗ Λx
yG.

Proof. Without loss of generality, we assume y as the empty

string ǫ and G = RX(θ), as it can derive the other cases.

The proof is by induction: we unfold the multi-controlled and

multi-anti-controlled gates. We can then move the X gate

through H and CNot gates due to the anti-control, changing

the sign of an RX rotation from −θ/2 to θ/2. The rest of the

proof is similar to the one of Proposition 13, except that two

RX gates cancel out, leading to the identity on the first qubit

and the desired multi-controlled gate on the second one. The

details of the proof are given in Appendix C-A.

Proposition 15 shows how control and anti-control can be

combined on the first qubit of a multi-controlled gate. Note,

however, that it can be generalised to any control qubit thanks

to Proposition 11.

Another useful property of multi-controlled gates is that

they commute when there is a control and anti-control on the

same qubit, as in the following example in which their controls

differ on the third (and last) qubit:

P (ϕ)

=
P (ϕ)

8Notice that in the above example we implicitly use Proposition 11 to swap
the first two qubits and apply Proposition 15. As a consequence, the resulting
multi-controlled gate acts on non-adjacent qubits. Similarly to the CNot case
(see Equations (4) and (5)), we use some syntactic sugar to represent such
multi-controlled gates acting on non-adjacent qubits.

When the target qubit is the same, such a commutation prop-

erty can be derived in QC0, using in particular Equation (n).

Proposition 16. For any x, x′ ∈ {0, 1}k, y, y′ ∈ {0, 1}ℓ, and

G,G′ ∈ {X,RX(θ), P (ϕ)}, if xy 6= x′y′9 then

QC0 ⊢ Λx
yG ◦ Λx′

y′G′ = Λx′

y′G′ ◦ Λx
yG .

Proof. The proof relies on a generalisation of Equation (24),

and follows by an induction argument whose base case can be

derived thanks to Equation (n). The details of the proof are

given in Appendix C-C.

Controlled and anti-controlled gates also commute when the

target qubits are not the same in both gates, as in:

P (ϕ) = P (ϕ) .

This property can also be derived in QC0, using in particular

Equation (o):

Proposition 17. For any a, b ∈ {0, 1}, x, x′ ∈ {0, 1}k, y, y′ ∈
{0, 1}ℓ, z, z′ ∈ {0, 1}m and G,G′ ∈ {X,RX(θ), P (ϕ)}, if

xyz 6= x′y′z′ then

QC0 ⊢ Λx
yazG ◦ Λx′by′

z′ G′ = Λx′by′

z′ G′ ◦ Λx
yazG

Proof. The proof is also based on the generalisation of Equa-

tion (24), using an inductive argument whose base case can

be derived thanks to Equation (o). The details of the proof are

given in Appendix C-E.

F. Euler angles and Periodicity

QC0 is not complete. In particular equations based on Euler

angles, which require non-trivial calculations on the angles,

cannot be derived. As a consequence we add to the equational

theory the three rules shown in Figure 5, leading to the

equational theory QC. We write QC ⊢ C1 = C2 when C1 can

be rewritten into C2 using equations of Figure 3 and Figure 5

(together with the deformation rules).

The Euler decomposition of H (Equation (p)) is not unique:

Proposition 18. QC ⊢ H = RX(−π
2 )P (−π

2 ) P (−π
2 )

Proof. The proof is given in Appendix C-F.

More generally the Euler angles are not unique, but can be

made unique by adding some constraints on the angles, like

choosing them in the appropriate intervals (see Figure 5).

Proposition 19. Equations (q) and (r) are sound. Moreover,

the choice of parameters in the RHS-circuits to make the

equations sound is unique (under the constraints given in

Figure 5).

Proof. The soundness and uniqueness of Equation (q) are

well-known properties. Regarding Equation (r), we first notice

9xy 6= x′y′ iff ∃i, xi 6= x′

i ∨ yi 6= y′i.
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H = RX(π2 )P (π2 ) P (π2 ) (p)

RX(α1) RX(α3)P (α2) = RX(β2) P (β3)P (β1)
β0

(q)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4)
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
(r)

Fig. 5: Non-structural equations. In Equations (q) and (r) the LHS circuit has arbitrary parameters which uniquely determine

the parameters of the RHS circuit. Equation (q) is nothing but the well-known Euler-decomposition rule which states that any

unitary can be decomposed, up to a global phase, into basic X- and Z-rotations. Thus for any αi ∈ R, there exist βj ∈ [0, 2π)
such that Equation (q) is sound. We make the angles βj unique by assuming that β1 ∈ [0, π), β2 ∈ [0, 2π) and if β2 ∈ {0, π}
then β1 = 0. Equation (p) is the particular Euler decomposition of H . Equation (r) reads as follows: the equation is defined

for any n ≥ 2 input qubits, in such a way that all gates are controlled by the first n− 2 qubits. Equation (r) can be seen as a

generalisation of the Euler rule, using multi-controlled gates. Similarly to Equation (q), for any γi ∈ R, there exist δj ∈ [0, 2π)
such that Equation (r) is sound. We can ensure that the angles δj are uniquely determined by assuming that δ1, δ2, δ5,∈ [0, π),
δ3, δ4, δ6 ∈ [0, 2π), if δ3 = 0 then δ2 = 0, if δ3 = π then δ1 = 0, if δ4 = 0 then δ1 = δ3 (= δ2) = 0, if δ4 = π then δ2 = 0, if

δ4 = π and δ3 = 0 then δ1 = 0, and if δ6 ∈ {0, π} then δ5 = 0.

that the semantics of both circuits is of the form

(

I 0
0 U

)

where U is a 3 × 3 matrix. We then use the fact that this

matrix can be decomposed into basic rotations that can be

proved to be unique [30]. The details of the proof are given

in Appendix C-G.

Notice that Equation (q) subsumes Equations (k) and (l),

which can now be derived using the other axioms of QC.

Proposition 20. The following two equations of QC,

P (ϕ1) P (ϕ2) = P (ϕ1+ϕ2) (k)

P (ϕ)X X = P (−ϕ)
ϕ

(l)

can be derived from the other axioms of QC.

Proof. The proofs are given in Appendix C-H.

The introduction of the additional equations of Figure 5

allows us to prove some extra properties about multi-controlled

gates, like periodicity (for those with a parameter) in Propo-

sition 22 and the fact that a multi-controlled X gate is self-

inverse.

Proposition 21. For any x ∈ {0, 1}k, y ∈ {0, 1}ℓ,

QC ⊢ Λx
yX ◦ Λx

yX = idk+ℓ+1

Proof. The case x = y = ǫ is a direct consequence of

Equation (10). For the other cases, by Definitions 6 to 8,

Equations (10) and (a), and Proposition 13, it is equivalent

to show that, for any x ∈ {0, 1}k,

QC ⊢ ΛxP (2π) = idk+1.

Without loss of generality, we can consider x ∈ {1}k. Then

the result is a consequence of Proposition 13 and Equation (r).

Indeed, by taking γ1 = γ3 = γ4 = 0 and γ2 = 2π in the LHS

of Equation (r), the unique angles on the right are all zeros:

δ1 = δ2 = δ3 = δ4 = δ5 = δ6 = δ7 = δ8 = δ9 = 0.

By Proposition 13, any multi-controlled gate with zero angle

is the identity, which gives us the desired equality. Further

details can be found in Appendix C-I.

Proposition 22. For any x ∈ {0, 1}k, y ∈ {0, 1}ℓ, θ ∈ R,

QC ⊢ Λx
yRX(θ + 4π) = Λx

yRX(θ)

QC ⊢ Λx
yP (θ + 2π) = Λx

yP (θ)

QC ⊢ Λx
ys(θ + 2π) = Λx

ys(θ)

Proof. Following the additivity of Proposition 13, it is suffi-

cient to show that for any x ∈ {0, 1}k, y ∈ {0, 1}ℓ,

QC ⊢ Λx
yRX(4π) = idk+ℓ+1,

QC ⊢ Λx
yP (2π) = idk+ℓ+1,

QC ⊢ Λx
ys(2π) = idk+ℓ.

Also, with Equations (10) and Definitions 7 and 8, it is

sufficient to show that for any x ∈ {1}k,

QC ⊢ ΛxRX(4π) = idk+1,

QC ⊢ ΛxP (2π) = idk+1,
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QC ⊢ Λxs(2π) = idk.

First, we prove the three cases with x = ǫ. Then, we

use QC ⊢ ΛxP (2π) = idk+1, proven in Proposition 21

using Equation (r). We obtain the other statements as direct

consequences of the 2π-periodicity of P . Further details are

provided in Appendix C-J.

III. COMPLETENESS

In this section we prove the main result of the paper, namely

the completeness of QC. To this end, a back and forth encoding

of quantum circuits into linear optical quantum circuits is

introduced. We use the graphical language for linear optical

circuits introduced in [30].

A. Optical circuits

A linear optical polarisation-preserving (LOPP for short)

circuit is an optical circuit made of beam splitters ( θ ) and

phase shifters ( ϕ ):

Definition 23. Let LOPP be the prop generated by ϕ , θ

with ϕ, θ ∈ R.

Like quantum circuits, LOPP-circuits are defined as a prop:

one can see them as raw circuits quotiented by the ≡-

equivalence given in Figure 1.

In the following, we consider the single photon case, hence

each input mode (or wire) represents a possible input position

for the photon. The photon moves from left to right in the

circuit. The state of the photon is entirely defined by its

position, and as a consequence the state space is of the form

Cn when there are n possible modes. We consider the standard

orthonormal basis {|p〉}p∈[0,n) of Cn. The semantics is defined

as follows.

Definition 24 (Semantics). For any n-mode LOPP-circuit C,

let JCK : Cn → Cn be a linear map inductively defined as

follows: JC2 ◦ C1K := JC2K ◦ JC1K, JC1 ⊗ C3K := JC1K ⊕

JC3K =
(

JC1K 0
0 JC3K

)

,

q
θ

y
:= |p〉 7→ cos(θ) |p〉+ i sin(θ) |1− p〉

=

(

cos(θ) i sin(θ)
i sin(θ) cos(θ)

)

J K := |p〉 7→ |1− p〉 =

(

0 1
1 0

)

J ϕ K := eiϕ J K := 1 J K := 0

Remark 25. The definition of J.K relies on the inductive

structure of raw LOPP-circuits, it is however well-defined on

LOPP-circuits as for any raw LOPP-circuits C,C′, C ≡ C′

implies JCK = JC′K.

We consider a simple equational theory for LOPP-circuits

(Figure 6), which is derived from the rewriting system intro-

duced in [30]. Contrary to the rewriting system of [30], the

swap is part of LOPP-circuits. Moreover, the most elaborate

equation – Equation (G) – is slightly simplified in the present

paper to have one parameter less.

We use the notation LOPP ⊢ C1 = C2 whenever C1 can

be transformed into C2 using the equations of Figure 6 (and

circuit deformations of Figure 1).

Theorem 26. The equational theory given by Figure 6 is

sound and complete: for any LOPP-circuits C1, C2, LOPP ⊢
C1 = C2 iff JC1K = JC2K.

Proof. The soundness can be shown with the semantics given

in Definition 24. Regarding completeness, we show that we

can derive from Figure 6 the rules of the strongly normal-

ising rewriting system of [30]. The full proof is given in

Appendix D-A.

B. Forgetting the monoidal structure

The proof of completeness for quantum circuits is based

on a back and forth translation from linear optical circuits.

While both kinds of circuits form a prop, so both have a

monoidal structure, these monoidal structures do not coincide.

The monoidal structure of quantum circuits corresponds to the

tensor product, whereas that of linear optical circuits is a direct

sum. Hence the translations do not preserve the monoidal

structure.

As a consequence there is a technical issue around defining

the translation directly on circuits. We instead define the trans-

formations on raw circuits (cf. Section II-A). The collection

of raw quantum (resp. LOPP) circuits is denoted QCraw (resp.

LOPPraw). Notice that we recover the standard circuits by con-

sidering the raw circuits up to the equivalence relation ≡ given

in Figure 1: QC = QCraw/≡ and LOPP = LOPPraw/≡.

To avoid ambiguity in the graphical representation of raw

circuits one can use boxes like X

X

X

for ( X ⊗ X )⊗ X .

We also use box-free graphical representation that we interpret

as a layer-by-layer description of a raw circuit, more precisely

we associate with any box-free graphical representation, a raw-

circuit of the form C = (. . . ((L1 ◦L2)◦L3)◦ . . .)◦Lk where

Li = (. . . ((gi,1 ⊗ gi,2)⊗ gi,3)⊗ . . .)⊗ gi,ℓi .
For instance, ((id1 ⊗ id1)⊗X) ◦ (CNot⊗H) is

H X

=

X

◦

H

We extend the notation QC ⊢ · = · and LOPP ⊢ · = · to

raw circuits. For any raw quantum circuits (resp. raw optical

circuits) C1, C2, we write QC ⊢ C1 = C2 (resp. LOPP ⊢
C1 = C2) if C1 and C2 are equivalent by the congruence

defined in Figure 3, Figure 5 and Figure 1 (resp. Figure 6 and

Figure 1).10

Notice that there exists a derivation between two circuits

if and only if there exists a derivation between two of

10In this context, the circuits depicted in Figures 3, 5 and 6 are interpreted
as box-free graphical representations of raw circuits.
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0 = 2π = (A)

0
= (B)

=
π
2

−π
2

−π
2

(C)

ϕ2ϕ1 = ϕ1+ϕ2 (D)

θ
ϕ

ϕ
=

θ
ϕ

ϕ
(E)

α1
α2 α3

=
β1 β2

β3

β4

(F)

γ1

γ3

γ4
γ2

= δ3

δ4

δ6

δ2

δ1 δ5

δ7

δ8

δ9

(G)

Fig. 6: Axioms of the LOPP-calculus. In Equation (F) and Equation (G), the LHS circuit has arbitrary parameters which

uniquely determine the parameters of the RHS circuit. For any αi ∈ R, there exist βj ∈ [0, 2π) such that Equation (F) is

sound, and for any γi ∈ R, there exist δj ∈ [0, 2π) such that Equation (G) is sound. We can ensure that the angles βj are

unique by assuming that β1, β2 ∈ [0, π) and if β2 ∈ {0, π2 } then β1 = 0, and we can ensure that the angles δj are unique by

assuming that δ1, δ2, δ3, δ4, δ5, δ6 ∈ [0, π). If δ3 ∈ {0, π2 } then δ1 = 0, if δ4 ∈ {0, π2 } then δ2 = 0, if δ4 = 0 then δ3 = 0, and

if δ6 ∈ {0, π2 } then δ5 = 0. The existence and uniqueness of such βj and δj are given by Lemmas 10 and 11 of [30].

their representative raw circuits. Indeed, intuitively the only

difference is that the derivation on raw circuits is more fine-

grained as the equivalence relation ≡ is made explicit.

C. Encoding quantum circuits into optical ones

We are now ready to define the encoding of (raw) quan-

tum circuits into (raw) linear optical circuits. For dimension

reasons, an n-qubit system is encoded into 2n modes. One

can naturally choose to encode |x〉, with x ∈ {0, 1}n, into

the mode |x〉 where x =
∑n

i=1 xi2
n−i is the usual binary

encoding. Alternatively, we use Gray codes to produce circuits

with a simpler connectivity, in particular two adjacent modes

encode basis qubit states which differ on exactly one qubit.

Definition 27 (Gray code). Let Gn : C2n → C{0,1}n

be the

map |k〉 7→ |Gn(k)〉 where Gn(k) is the Gray code of k,

inductively defined by G0(0) = ǫ and

Gn(k) =

{

0Gn−1(k) if k < 2n−1,

1Gn−1(2
n − 1− k) if k ≥ 2n−1.

For instance G3 is defined as follows:

0 7→ 000 4 7→ 110
1 7→ 001 5 7→ 111
2 7→ 011 6 7→ 101
3 7→ 010 7 7→ 100

In order to get around the fact that the encoding an n-

qubit circuit into a 2n-mode optical circuit cannot preserve

the parallel composition, we proceed by ‘sequentialising’ the

circuit: roughly speaking, an n-qubit circuit is seen as a

sequential composition of layers, each layer being an n-qubit

circuit made of an elementary gate g acting on at most two

qubits in parallel with the identity on all other qubits, e.g.

idk ⊗ g⊗ idl. The encoding of such a layer, denoted Ek,l(g),
is a 2n-mode optical circuit acting non-trivially on potentially

all the modes.

For instance, consider a 3-qubit layer which consists in

applying P (ϕ) on the second qubit. Its semantics is |x, y, z〉 7→
eiϕy |x, y, z〉. Such a circuit is encoded into an 8-mode optical

circuit E1,1(P (ϕ)) made of 4 phase shifters acting on the

modes p ∈ [2, 5] (those s.t. G3(p) = x1z). Indeed, the

semantics of E1,1(P (ϕ)) is |p〉 7→

{

eiϕ |p〉 if p ∈ [2, 5]

|p〉 otherwise
.

The encoding map is formally defined as follows:

Definition 28 (Encoding). Let E : QCraw → LOPPraw be

defined as follows: for any n-qubit circuit C, E(C) = E0,0(C)
where Ek,ℓ is inductively defined as:

• Ek,ℓ(C1 ⊗C2) = Ek+n1,ℓ(C2) ◦Ek,ℓ+n2(C1), where C1

(resp. C2) is acting on n1 (resp. n2) qubits;

• Ek,ℓ(C2 ◦ C1) = Ek,ℓ(C2) ◦ Ek,ℓ(C1);

Let us define σk,n,ℓ as a 2k+n+ℓ-mode linear optical circuit

made only of swaps (that is, without any ϕ or θ ) such

that Gn ◦ Jσk,n,ℓK ◦ G
−1
n (|x, y, z〉) = |x, z, y〉 for any x ∈

{0, 1}k, y ∈ {0, 1}n and z ∈ {0, 1}ℓ. We then define

Ek,ℓ( ) = σk,ℓ,2 ◦ σk+ℓ,1,1 ◦ σk,2,ℓ,

Ek,ℓ( ) = ( )⊗2k+ℓ

,

Ek,ℓ( ) = ( )⊗2k+ℓ+1

,

Ek,ℓ(s(ϕ)) = ( ϕ )
⊗2k+ℓ

.

where C⊗n means C n times in parallel: C⊗0 = and

C⊗n+1 = C ⊗ C⊗n.

For the remaining generators, we have:

E0,0( H ) =
π
4

−

π
2

−

π
2
,

E0,0( P (ϕ) ) = ϕ ,

E0,0( ) = ,
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and whenever (k, ℓ) 6= (0, 0):

Ek,ℓ( H ) = σk,ℓ,1 ◦





π
4

−

π
2

−

π
2

−

π
2

−

π
2

π
4





⊗2k+ℓ−1

◦ σk,1,ℓ,

Ek,ℓ( P (ϕ) ) = σk,ℓ,1 ◦

(

ϕ

ϕ

)⊗2k+ℓ−1

◦ σk,1,ℓ,

Ek,ℓ( ) = σk,ℓ,2 ◦













⊗2k+ℓ−1

◦ σk,2,ℓ.

Remark 29. Note that for any n-qubit circuit C, Ek,ℓ(C) is a

2k+n+ℓ-mode optical circuit. Also note that σk,n,ℓ is nothing

but a permutation of wires. By Lemma 36 – which is indepen-

dent from the definition of E – any actual circuit satisfying

the above property (Gn ◦ Jσk,n,ℓK ◦G−1
n (|x, y, z〉) = |x, z, y〉)

is convenient for our purposes. A formal definition of σk,n,ℓ
is however given in Appendix D-G.

Example 30. Consider the simple circuit C0 =

H

. The

encoding is as shown in Figure 7. Using the topological rules

(Figure 1), one can simplify E(C0) into the circuit C1:

π
4

−π
2

−π
2

−π
2

−π
2

π
4

π
4

−π
2

−π
2

−π
2

−π
2

π
4

000

001

011

010

110

111

101

100

The encoding of quantum circuits into linear optical circuits

preserves the semantics, up to Gray codes.

Proposition 31. For any n-qubit quantum circuit C,

Gn ◦ JE(C)K = JCK ◦Gn

Proof. By induction.

D. Decoding

Regarding the decoding, i.e. the translation back from linear

optical circuits to quantum circuits, we use the same sequen-

tialisation approach. Note that such a decoding is defined only

for optical circuits with a power of two number of modes.

The decoding of a 2n-mode layer idk ⊗ g ⊗ idl is a n-

qubit circuit denoted Dk,n(g). For instance consider a 16-

mode layer which consists in applying ϕ on the fourth mode.

Its semantics is |p〉 7→

{

eiϕ |p〉 if p = 3

|p〉 otherwise
. Such a circuit

is decoded into a 4-qubit circuit D3,4( ϕ ) implementing

the multi-controlled phase ΛG4(3)s(ϕ), whose semantics is

|x, y, z, t〉 7→

{

eiϕ |x, y, z, t〉 if xyzt = G4(3)

|x, y, z, t〉 otherwise
.

The decoding map is formally defined as follows:

Definition 32 (Decoding). Let D : LOPPraw → QCraw be de-

fined as follows: for any 2n-mode circuit C, D(C) = D0,n(C)
where for any n, k, ℓ with k+ℓ ≤ 2n and C : ℓ→ ℓ, Dk,n(C)
is inductively defined as follows.

• Dk,n(C1 ⊗C2) = Dk+ℓ1,n(C2) ◦Dk,n(C1), where C1 is

acting on ℓ1 modes;

• Dk,n(C2 ◦C1) = Dk,n(C2) ◦Dk,n(C1);
• Dk,n( ) = idn.

The remaining generators are treated as follows.

Dk,n( ) = idn, Dk,n( ϕ ) = ΛGn(k)s(ϕ),

Dk,n( ) = Λ
xk,n
yk,nX, Dk,n(

θ ) = Λ
xk,n
yk,nRX(−2θ),

where x2k,n := Gn−1(k), y2k,n := ǫ, x2k+1,n := w and

y2k+1,n := 1.0q, where q ∈ {0, ..., n − 2} and w ∈
{0, 1}n−q−2 are such that Gn(2k + 1) = wa1.0q for some

a ∈ {0, 1}.

Example 33. We consider the optical circuit C1 obtained in

Example 30. With all of the gates P and RX parametrized

with −π
2 , we can show that D(C1) ≡

P RX PP RX PP RX PP RX P

Similarly to the encoding function, the decoding function

preserves the semantics up to Gray codes.

Proposition 34. For any 2n-mode optical circuit C,

JD(C)K ◦Gn = Gn ◦ JCK .
Proof. The proof is by induction.

E. Quantum circuit completeness

The proof of completeness is based on the encod-

ing/decoding of quantum circuits into optical circuits. In-

tuitively, given two quantum circuits representing the same

unitary map, one can encode them as linear optical circuits.

Since the encoding preserves the semantics and LOPP is

complete, there exists a derivation proving the equivalence of

the encoded circuits. In order to lift this proof to quantum

circuits, it remains to prove that the decoding of an encoded

quantum circuit is provably equivalent to the original quantum

circuit, and that each axiom of LOPP can be mimicked in

QC. Notice that since the encoding/decoding is defined on

raw circuits, an extra step in the proof consists in showing

that the axioms of ≡ can also be mimicked in QC.

Examples (30) and (33) point out that composing encoding

and decoding does not lead, in general, to the original circuit,

the decoded circuit being made of multi-controlled gates.

However, we show that the equivalence with the initial circuit

can always be derived in QC:
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E(C0) = E0,0( ⊗ H )

= E2,0( H ) ◦ E0,1( )

= σ2,0,1 ◦





π
4

−

π
2

−

π
2

−

π
2

−

π
2

π
4





⊗2

◦ σ2,1,0 ◦ σ0,1,2 ◦












◦ σ0,2,1

= id8 ◦





π
4

−

π
2

−

π
2

−

π
2

−

π
2

π
4





⊗2

◦ id8 ◦







 ◦












◦









Fig. 7: Encoding of the circuit discussed in Example 30.

Lemma 35. For any n-qubit raw quantum circuit C,

QC ⊢ D(E(C)) = C.

Proof. We prove by structural induction on C that

∀k, ℓ, QC ⊢ D(Ek,ℓ(C)) = idk ⊗ C ⊗ idℓ.

For any two n-qubit raw circuits C1, C2, one has

D(Ek,ℓ(C2 ◦ C1)) = D(Ek,ℓ(C2)) ◦D(Ek,ℓ(C1))

and for any m-qubit raw circuit C3,

D(Ek,ℓ(C1 ⊗ C3)) = D(Ek+n,ℓ(C3)) ◦D(Ek,ℓ+m(C1)).

Hence, it remains the basis cases which are proved as

Lemma 64 in Appendix D-D.

Note that in general, the decoding function does not pre-

serve the topological equivalence. For instance, with the raw

circuits C1 =

θ

and C2 = θ , we have

C1 ≡ C2 but D(C1) =
RX(-2θ)

X

X

X

X
and

D(C2) =
RX(-2θ)

. Thus, the topological rules also have

to be mimicked in QC:

Lemma 36. For any 2n-mode raw optical circuits C1, C2, if

C1 ≡ C2 then QC ⊢ D(C1) = D(C2).

Proof. The proof consists intuitively in verifying that the

decoding of every equation of Figure 1 is provable in QC.

The proof is given in Appendix D-E.

Lemma 37. For any 2n-mode raw optical circuits C1, C2, if

LOPP ⊢ C1 = C2 then QC ⊢ D(C1) = D(C2).

Proof. The proof consists intuitively in verifying that the

decoding of every equation of Figure 6 is provable in QC.

The proof is given in Appendix D-F.

We are now ready to prove the main result of the paper.

Theorem 38 (Quantum circuit completeness). QC is a com-

plete equational theory for quantum circuits: for any quantum

circuits C1, C2, if JC1K = JC2K then QC ⊢ C1 = C2.

Proof. Given two quantum circuits C1, C2 s.t. JC1K = JC2K,

let C′
1 (resp. C′

2) be a raw quantum circuit, representa-

tive of C1 (resp. C2). Thanks to Proposition 31 we have

JE(C′
1)K = JE(C′

2)K. The completeness of LOPP implies

LOPP ⊢ E(C′
1) = E(C′

2). By Lemma 37, we have QC ⊢
D(E(C′

1)) = D(E(C′
2)). Moreover Lemma 35 implies QC ⊢

C′
1 = C′

2. From this derivation we obtain a derivation of

QC ⊢ C1 = C2, where the steps corresponding to the

equivalence relation ≡ are trivialised.

IV. DISCUSSIONS

We have introduced the first complete equational theory

for quantum circuits. Although this equational theory is fairly

simple, Equation (r) is an unbounded family of equations —

one for each possible number of control qubits. Such a family

of equations is a natural byproduct of our proof technique:

The decoding of each axiom of LOPP produces an equation

made of multi-controlled gates that has to be derived using

QC. It is actually quite surprising that Equation (r) is the only

remaining equation with multi-controlled gates.

Notice that one can get rid of these multi-controlled gates

by extending the context rule as described below. Indeed,

Equation (r) can be derived from its 2-qubit case

RX(γ1)

P (γ2) RX(γ3)

RX(γ4)
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
(r’)

if one allows the following control context rule ⊢ ΛC1 = ΛC2

when ⊢ C1 = C2. Notice that it requires extending the Λ-

construction to any circuit – which can be done in an inductive

way like Λ(C2 ◦C1) = ΛC2 ◦ΛC1 and Λ(C1⊗C2) = (ΛC1⊗
idm) ◦ (id1 ⊗ σm,n) ◦ (ΛC2 ⊗ idn) ◦ (id1 ⊗ σn,m).

A natural application of the completeness result is to design

procedures for quantum circuit optimisation based on this

equational theory. One can take advantage of the terminating

and confluent rewriting system for optical circuits [30] by

mimicking the applications of the rewrite rules on quantum

12



circuits. However, the exponential blowup of the encoding map

makes this approach probably inefficient as it is and requires

some improvements.

Another future work is to prove (upper or lower) bounds on

the size of a derivation between two given equivalent circuits,

as well as a bound on the size of the intermediate quantum

circuits. This might be useful for providing a verifiable quan-

tum advantage, in particular if there exist polysize quantum

circuits requiring exponentially many rewrites [11].
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APPENDIX A

CONTENTS

All the equations from Equation (6) to Equation (19) are proven either directly from the axioms of QC0, given in Figure 3,

or from the equations already proven. Those proofs are in Appendix B-A.

Proposition 10 is proven in Appendix B-B.

In Appendix B-C, we highlight the inductive properties of multicontrolled gates which will be used in the inductive proofs

of the following appendices, in the form of Lemmas 39 to 44.

Lemmas 45 to 47 are introduced and proven by induction in Appendix B-D. Alongside with Equation (24) proven in

Appendix B-E, those properties are used to prove Propositions 11 and 12 in Appendix B-F.

To prove Proposition 13, we introduce Lemma 48. We do a proof by induction with both hypotheses, to prove at the same

time Proposition 13 and Lemma 48, as detailed in Appendix B-G.

Appendices B-H, C-B and C-D introduce and prove Equations (28) and (29) and Lemmas 50 to 54. Those properties on

multi-controlled gates are to be used in other later proofs.

Propositions 15, 16, 17, 18, 19, 20, 21 and 22 are respectively proven in Appendix C-A, C-C, C-E, C-F, C-G, C-H, C-I and

C-J.

Theorem 26 is proven in Appendix D-A.

Appendices D-B and D-C introduce convenient notations and Lemmas 57 to 61, useful for proving the main result.

Finally, Lemmas 35, 36 and 37 are proven in Appendices D-D, D-E and D-F.

The σk,n,ℓ are defined in Appendix D-G.

APPENDIX B

USEFUL QUANTUM CIRCUITS EQUATIONS

A. Proofs of Equations (6) to (19)

Proof of Equation (6):

P (ϕ)
=

P (ϕ)

(h)
=

P (ϕ)

(e)
=

P (ϕ)

(i)
=

P (ϕ)

(e)
=

P (ϕ)

Proof of Equation (8):

(e)
=

15



(g)
=

(e)
=

Proof of Equation (9):

H

H
(a)
=

H

H

HH

(m)
=

H

H P (π2 ) P (−π
2 )

P (π2 )

(6)
=

H

H P (π2 )

P (−π
2 )P (π2 )

(m)
=

H

H

H H

(a)
=

H

H

Note that the second use of Equation (m) relies on the fact that is defined as , and uses a few topological rules.

Proof of Equation (7):

RX(θ)
(a)
=

H HP (θ)

H H

-θ/2

(9)
=

H HP (θ)

H H

-θ/2

(6)
=

H H

P (θ)H H

-θ/2
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(9)
=

H H

P (θ)H H

-θ/2

(a)
=

RX(θ)
.

Proof of Equation (10):

X X
(d)
= P (0)X X

(l)
= P (0)

0

(b)(d)
=

Proof of Equation (11):

(8)
=

(g)
=

=

=

Proof of Equation (12):

X

(a)(2)
=

H HZ

H H

(9)(1)
=

P (π)H H

H H

17



(i)(9)
=

P (π)H H

H H

(a)(2)
=

X

Proof of Equation (13):

Z Z
(2)(a)
= H H H HXX

(a)
= H HXX

(10)
= H H

(a)
=

Proof of Equation (14):

=

(8)(g)
=

(e)
=

=

Proof of Equation (15):

Z

(2)(a)
=

XH H

H H

18



(9)
=

XH H

H H

(f)
=

XH H

H HX

(9)
=

XH H

H HX

(2)(a)
=

Z

Z

Proof of Equation (16):

RX(θ)

(a)(3)
=

H HP (θ)

-θ/2
H H

(9)
=

H HP (θ)

H H
-θ/2

(i)
=

H HP (θ)

H H
-θ/2

(9)
=

H HP (θ)

H H
-θ/2

(a)(3)
=

RX(θ)

Proof of Equation (17):

RX(0)
(3)
= H HP (0)

0

(b)(d)
= H H

(a)
=

Proof of Equation (18):

RX(θ) RX(θ′)
(3)
= H HP (θ) H HP (θ′)

-θ/2 -θ′
/2

19



(a)
= H P (θ) HP (θ′)

-θ′
/2-θ/2

(c)(k)
= H P (θ + θ′) H

-θ+θ′

2

(3)
= RX(θ+θ′)

Proof of Equation (19):

HH H

X

H
(a)
=

HH H

X

H

H H H H

(9)(a)
=

X H H H H

(m)
=

X H HP (π2 ) P (−π
2 )

P (π2 )

(6)(e)
=

X H HP (π2 )

P (−π
2 )P (π2 )

(i)
=

X H HP (π2 )

P (−π
2 )P (π2 )

(13)(15)
=

X H HP (π2 )

P (−π
2 )P (π2 ) Z Z

Z

(1)(k)(13)
=

X H H

P (−π
2 )

ZP (π2 )

P (π2 )

(i)
=

X H H

P (−π
2 )

ZP (π2 )

P (π2 )

(6)(i)
=

X H H

P (−π
2 )

ZP (π2 )

P (π2 )
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(m)
=

X H HZ

H H

(1)(i)
=

X H HZ

H H

(2)(a)
=

X H HX

H H

(10)(9)
=

H H

H H

(a)(e)
=

It follows that

H
(e)(a)
=

HH H

X

B. Proof of Proposition 10

First, we can notice that

Λ1P (π)
def
=

ΛǫP (π2 )

H H
Λ1RX(π)

def
=

H HRX(π2 ) RX(-π2 )

H HP (π2 )

(3)
= -π/4

H

H HP (π2 )

P (π2 ) H P (-π2 ) HH

π/4
H H

(a)(c)
=

H

H HP (π2 )

P (π2 ) H P (-π2 ) HH
0

(b)
=

H

H HP (π2 )

P (π2 ) H P (-π2 ) HH

(9)
=

H

HP (π2 )

P (π2 ) P (-π2 ) HH

H

H
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(a)(9)
=

H

HP (π2 )

P (π2 ) P (-π2 ) H

H

(a)
=

P (π2 )

P (π2 ) P (-π2 )

(m)
=

H H

It follows that

QC0 ⊢ Λ1X
def
= Λ1P (π)

H H

=
H H HH

(a)
= .

C. Inductive properties for multi-controls: Lemmas 39 to 44

The following technical lemmas highlight the inductive properties of the circuits ΛxG. They are at the heart of the proof of

the completeness result.

Lemma 39 (Base case for the inductive properties). For all G ∈ {s(ψ), X,RX(θ), P (ϕ)}, if ǫ is the empty list, ΛǫG = G.

Proof. In the case of an empty list, in Definition 7 there are no gates Xxi , and ΛǫG = λ0G. We can then check in Definition 6

that each λ0G is G: by definition this is true for RX(θ), s(ψ) and P (θ). For X we fall back on the definition of X as

HP (π)H = HZH .

Lemma 40 (Inductive properties for ΛxG). For all x ∈ {0, 1}k, and G ∈ {s(ϕ), X,RX(θ), P (ϕ)},

Λ0xG = Λ1xG

X X

Proof. This is directly derived from the definition of ΛxG: the Xx1’s on the top wire are X for Λ0xG and the identity for

Λ1xG, while the Xxi’s on the lower wires are the same.

Lemma 41 (Inductive properties for Λxs(ϕ)). Suppose that x is a k-length list of booleans. We then have Λ1s(ϕ) = P (ϕ),
Λ1x1s(ϕ) = Λ1xP (ϕ), and

Λ1x0s(ϕ) = Λ1xP (ϕ)

X X

Proof. By definition, Λ1s(ϕ) is λ1s(ϕ): there are no Xxi since the list only contains a single 1. By definition, λ1s(ϕ) is

λ0P (ϕ), which is P (ϕ).
Suppose now that x is a k-length list of booleans, and b is a single boolean. Consider Λ1xbs(ϕ): by definition it is

λk+2s(ϕ)
Xx1 Xx1

XxkXxk

XbXb

.
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By definition, λk+2s(ϕ) = λk+1P (ϕ). Now, Λ1xP (ϕ) is

λk+1P (ϕ)
Xx1 Xx1

XxkXxk

.

We directly recover Λ1x1s(ϕ), i.e. when b = 1, and the case b = 0 since this just amounts to add the two gates X0 = X1 = X
on the bottom wire.

Lemma 42 (Inductive properties of ΛxX). Suppose that x is a k-length list of boolean. Then

Λ1xX = Λ1xP (π)

H H

.

Proof. By definition,

Λ1xX = λk+1X
Xxk

Xx1

Xxk

Xx1

=
λk+1P (π)

Xxk

Xx1

Xxk

Xx1

HH

,

which is exactly the right-hand-side of the desired equation.

Lemma 43 (Inductive properties of ΛxP (ϕ)). Suppose that x is a k-length list of boolean. Then

QC0 ⊢ Λ1xP (ϕ) = Λ1xRX(ϕ)
Λ1xs(ϕ2 )

H H

Proof. By definition,

Λ1xP (ϕ) =
λk+1P (ϕ)

Xxk

Xx1

Xxk

Xx1

=
λkP (ϕ2 )

Xxk

Xx1

λk+1RX(ϕ)

Xxk

Xx1

HH

Since XX is the identity according to Equation (10), this is equal to

λkP (ϕ2 )

Xxk

Xx1

λk+1RX(ϕ)

Xxk

Xx1Xx1 Xx1

Xxk Xxk

HH

.

We can conclude by noting that

Λ1xs(
ϕ

2
) =

λkP (ϕ2 )

Xxk

Xx1 Xx1

Xxk
and Λ1xRX(ϕ) =

λk+1RX(ϕ)

Xxk

Xx1Xx1

Xxk
.

Lemma 44 (Inductive properties of ΛxRX(ϕ)). Suppose that x is a k-length list of boolean. Then

QC0 ⊢ Λ1xRX(θ) =
ΛxRX(- θ2 )ΛxRX( θ2 )

H H

.
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Proof. By definition of Λ1xRX(θ) and λk+1RX(θ), we have:

Λ1xRX(θ) =
λkRX(- θ2 )λkRX( θ2 )

H H

Xx1

Xxk

Xx1

Xxk

.

Using Equation (10), we infer that

Λ1xRX(θ) =
λkRX(-θ2 )λkRX( θ2 )

H H

Xx1

Xxk

Xx1

Xxk

Xx1

Xxk

Xx1

Xxk

.

We can then conclude by using the definition of ΛxRX( θ2 ) and ΛxRX(- θ2 ) (and the deformation of circuits coming from the

prop structure).

Since these lemmas are essentially consequences of the definitions (except for the use of Equation (10) in Lemmas 43

and 44), in the following we will mostly keep their uses implicit.

D. Ancillary lemmas: Lemmas 45 to 47

For the following lemmas, it is convenient to introduce a graphical notation of multi-controlled gate which allows for more

flexibility in the position of the target qubit, relatively to the control qubits:

Λx

G

ℓ

k

:=

ΛxG

ℓ

k

Lemma 45. For any x ∈ {0, 1}k,

Λx

RX(θ)

Λx

RX(θ′)

=

Λx

RX(θ)

Λx

RX(θ′)

.

Proof. We proceed by induction on k. If k = 0, then the equality is a consequence of the topological rules. If k ≥ 1, by

Equation (10) we can assume without loss of generality that x = 1z with z ∈ {0, 1}k−1. One has

Λx

RX(θ)

Λx

RX(θ′)

Lemma 44
=

Λz

RX( θ2 )

Λz

RX( θ
′

2 )

Λz

RX(- θ2 )

H H

Λz

RX(- θ
′

2 )

H H

then it is easy to see that the two parts commute by induction hypothesis and Equations (8) and (a), together with topological

rules.

24



Lemma 46. For any x ∈ {0, 1}k,

Λx

RX(θ)

=

Λx

RX(θ)

.

Proof. We proceed by induction on k. If k = 0, then the result is just Equation (7). If k ≥ 1, then we can assume without

loss of generality that x = 1z with z ∈ {0, 1}k−1. One has

Λx

RX(θ)

=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(e)
=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(j)
=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

induction
hypothesis

=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H
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(e)
=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(14)(j)
=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(e)
=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

=

Λx

RX(θ)

Lemma 47. For any x ∈ {0, 1}k,

QC0 ⊢ Λ0xRX(θ) =
ΛxRX( θ2 )ΛxRX( θ2 )

H H

.

Proof. The proof relies on the following property:

QC0 ⊢ ΛxRX(θ)

Z

= ΛxRX(-θ)

Z

(25)
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that we prove by induction on the length of x as follows:

If x = ǫ, then

RX(θ)Z
(3)
= H HP (θ)

-θ/2

Z

(a)(2)
= H HP (θ)

-θ/2

X

(10)(l)(c)
= H HP (-θ)

θ/2

X

(2)(3)(a)
= RX(-θ) Z

If x 6= ǫ, then the commutation is a direct consequence of the induction hypothesis and Equation (i).

Given this property, the result can be deduced as follows:

Λ0xRX(θ) =
ΛxRX(- θ2 )ΛxRX( θ2 )

H HX X

(2)(a)
=

ΛxRX(- θ2 )ΛxRX( θ2 )

H HZ X

(15)
=

ΛxRX(- θ2 )ΛxRX( θ2 )

H HZ X

Z

(25)
=

ΛxRX( θ2 )ΛxRX( θ2 )

H HZ X

Z

(15)(1)(i)(13)
=

ΛxRX( θ2 )ΛxRX( θ2 )

H HZ X

(2)(a)(13)
=

ΛxRX( θ2 )ΛxRX( θ2 )

H H
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E. Proof of Equation (24)

We actually prove a slightly more general result: for any x, x′ ∈ {0, 1}k,

QC0 ⊢
Λx′

RX(θ′)ΛxRX(θ)
=

Λx′

RX(θ′) ΛxRX(θ)
(26)

Equation (24) corresponds to the case where x = x′.

Proof of Equation (26). The proof is by induction on x.

If x = ǫ (i.e. k = 0),

RX(θ) RX(θ′)

(3)
=

RX(θ) P (θ′)H H

-θ′
/2

(a)(9)
=

RX(θ) P (θ′)H H

HH
-θ′
/2

(6)(3)(a)(c)
=

P (θ)

P (θ′)

H H

HH
- θ+θ′

2

(i)
=

P (θ)

P (θ′)

HH

H H
- θ+θ′

2

(6)(a)(c)(3)
=

RX(θ)P (θ′) HH

H H
-θ′
/2

(9)(a)(3)
=

RX(θ)RX(θ′)

If k ≥ 1, then we can write x = az and x′ = a′z′ with a, a′ ∈ {0, 1}. One has (where the ± signs correspond respectively

to (−1)a and (−1)a
′

):

Λx′

RX(θ′)ΛxRX(θ)

Lemma 47
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H H
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(a)(j)(14)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(e)(14)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

induction
hypothesis

=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(g)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(8)(j)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

induction
hypothesis

=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(8)(j)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

induction
hypothesis

=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H
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(8)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(g)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

induction
hypothesis

=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(14)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(8)(e)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(14)(j)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(a)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

HH H
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Lemma 47
=

Λx′

RX(θ′) ΛxRX(θ)
.

F. Proof of Propositions 11 and 12

First, we consider the case G = RX(θ) of Equations (20)-(22), for which the proof is a direct induction based on Equation (24)

that is proven in Appendix B-E.

Next, we prove Equation (23) in the case y = ǫ.
We can assume without loss of generality that x = 1k. We proceed by induction on k. If k = 0, then

Λ1P (ϕ)
def
=

H

H HP (ϕ2 )

P (ϕ2 ) H P (-ϕ2 ) HHHH

ϕ/2-ϕ/2

(c)(b)(a)(9)
=

P (ϕ2 )

P (ϕ2 ) P (-ϕ2 )

(6)
=

P (ϕ2 )

P (ϕ2 ) P (-ϕ2 )

(c)(b)(a)(9)
= Λǫ

1P (ϕ).

If k ≥ 1, then one has

Λx1P (ϕ)
def
= Λx1RX(ϕ)

Λx1s(ϕ2 )

H H

Equations (20)-(22)

(case G = RX (θ))
= Λ1xRX(ϕ)

Λx1s(ϕ2 )

H H

def
=

Λx1s(ϕ2 )

H H

ΛxRX(-ϕ2 )ΛxRX(ϕ2 )

H H
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=
Λx1s(ϕ2 )

H HΛxRX(-ϕ2 )RX(ϕ2 )

H H

Λx Λx

def
=

Λxs(ϕ4 )

H HΛxRX(-ϕ2 )RX(ϕ2 )

H H

Λx Λx

RX(ϕ2 )

Λx

Lemmas 45 and 46
=

Λxs(ϕ4 )

H H

ΛxRX(-ϕ2 )RX(ϕ2 )H H

Λx Λx

RX(ϕ2 )

Λx

=

Λxs(ϕ4 )

H HΛxRX(-ϕ2 )RX(ϕ2 )

H H

Λx Λx

RX(ϕ2 )

Λx

= Λx1P (ϕ)

= Λx
1P (ϕ).

Now, we can prove Equations (20)-(22) in the case G = s(ψ) (the cases G = P (ϕ) and G = X are direct consequences of

this case). Without loss of generality we can assume y = ǫ and consider only Equation (20).

The proof is by induction on the number r of input qubits of ΛxabzG. If z = ǫ, which is necessarily the case in the base

case r = 2, then the result is a direct consequence of the case y = ǫ of Equation (23). If z 6= ǫ, then using Definitions 6 and 7

(in particular in the case of Λ1xP (ϕ)), the result is a direct consequence of the induction hypothesis and the case G = RX(θ)
of Equations (20)-(22).

Finally, using the definition of Λx
y1P (ϕ) in terms of Λxy1P (ϕ), the general case of Equation (23) follows directly from the

case y = ǫ and Equations (20)-(22).

G. Proof of Proposition 13

It remains to treat the ΛxP and Λxs cases of Proposition 13. Those cases are a direct consequence of the following lemma:
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Lemma 48. For any x ∈ {0, 1}k and y ∈ {0, 1}ℓ with ℓ ≥ k,

QC0 ⊢ ΛyRX(θ)

Λxs(ϕ)

= ΛyRX(θ)

Λxs(ϕ)

.

To prove the previous lemma, we do a proof by induction on k. However, to prove the induction step for k ≥ 2, we use

QC0 ⊢ Λ1k−2

s(ϕ)◦Λ1k−2

s(ϕ′) = Λ1k−2

s(ϕ+ϕ′) and QC0 ⊢ Λ1k−2

s(0) = idk−1, which are the statements of Proposition 13.

Therefore, we will do a common induction proof for both the other cases of Proposition 13 and for Lemma 48. The plan of

the proof is the following. First we prove an ancillary equation (Equation (27)) which is derived from previous lemmas. Then

we proceed with the induction proof: for k ≥ 2, Lemma 48 is proved with Proposition 13 for k − 2, while the induction step

of Proposition 13 is directly a consequence of Lemma 48 and Proposition 13 for k − 1, and the ΛxRX case which is already

proven.

Proof. First we prove the following property, which is true for any a, b ∈ {0, 1}, z ∈ {0, 1}m and G ∈ {s(ϕ), P (ϕ), RX(θ), X}:

QC0 ⊢ ΛabzG = ΛaczG where c =

{

b if a = 0

b̄ if a = 1
(27)

To prove Equation (27), by Equations (10), (12) and (f) we can assume without loss of generality that a = b = 1. If G = RX(θ),
then

Λ11zRX(θ)

=

ΛzRX(- θ4 )ΛzRX( θ4 )

H H

ΛzRX( θ4 )ΛzRX(- θ4 )

H H

HH

(9)(a)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(e)(14)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H
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(e)(14)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(8)(j)(e)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(e)(14)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(e)(14)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(8)(j)(e)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(9)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH

(e)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH

(14)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH
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(e)
=

ΛzRX(-θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(-θ4 )

H

HH

(14)(j)(8)
=

ΛzRX(-θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(-θ4 )

H

HH

(24)
=

ΛzRX(-θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(-θ4 )

H

HH

(j)(e)
=

ΛzRX(-θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(-θ4 )

H

HH

(24)
=

ΛzRX(-θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(-θ4 )

H

HH

(g)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(14)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH
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(24)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(j)(a)
=

ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH H H

Lemma 47,

def
= Λ10zRX(θ)

Now, to prove Proposition 13 and Lemma 48, by Equation (10) we can assume without loss of generality that x = 1k. We

proceed by induction on k. If k = 0, then Proposition 13 is a consequence of Equations (b), (c), (d) and (k), and Lemma 48

is a consequence of the topological rules. If k = 1, then Λxs(ϕ) = P (ϕ). Let y = az with a ∈ {0, 1}. By Lemma 47, one has

QC0 ⊢ ΛyRX(θ)

P (ϕ)

=

P (ϕ)

ΛzRX(± θ
2 )ΛzRX( θ2 )

H H

(a)(b)(c)(3)
=

RX(ϕ)

ΛzRX(± θ
2 )ΛzRX( θ2 )

H H

ϕ/2

(16)
=

RX(ϕ)

ΛzRX(± θ
2 )ΛzRX( θ2 )

H H

ϕ/2

(3)(c)(b)(a)
=

P (ϕ)

ΛzRX(± θ
2 )ΛzRX( θ2 )

H H

Lemma 47
= ΛyRX(θ)

P (ϕ)
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where the ± sign is (−1)a. The case of k = 1 for Proposition 13 is then a direct consequence of the previous result, the

case with RX , Definition 6 (case λnP (ϕ)) and Equations (a), (d) and (k).

If k ≥ 2, let z = 1k−1 and t = 1k−2. To prove Lemma 48, one has

Λxs(ϕ) =
ΛtRX(-ϕ2 )

H H

Λzs(ϕ2 )

ΛtRX(ϕ2 )

H H

induction hypothesis

of Proposition 13
=

ΛtRX(-ϕ2 )

H H

Λzs(ϕ2 )

ΛtRX(ϕ2 )

H H

Λts(ϕ4 ) Λts(-ϕ4 )

induction hypothesis

of Lemma 48
=

ΛtRX(-ϕ2 )

H H

Λzs(ϕ2 )

ΛtRX(ϕ2 )

H H

Λts(ϕ4 ) Λts(-ϕ4 )

(a), def
=

ΛtP (-ϕ2 )

H H

Λzs(ϕ2 )

ΛtP (ϕ2 )

H HH H

(9)(a)
=

ΛtP (-ϕ2 )

Λzs(ϕ2 )

ΛtP (ϕ2 )

def
= Λzs(-ϕ2 )

Λzs(ϕ2 )
Λzs(ϕ2 )

.

Hence, the commutation with ΛyRX(θ) follows by induction hypothesis and Equation (27), together with Proposition 11.

Then to prove the ΛxP case of Proposition 13, one has

ΛxP (ϕ′) ◦ ΛxP (ϕ) = ΛxRX(ϕ)
ΛzP (ϕ2 )

H H

ΛxRX(ϕ′)
ΛzP (ϕ

′

2 )

HH

(a)
= ΛxRX(ϕ)

ΛzP (ϕ2 )

H H

ΛxRX(ϕ′)
ΛzP (ϕ

′

2 )

induction hypothesis

of Lemma 48
= ΛxRX(ϕ)

ΛzP (ϕ2 )

H H

ΛxRX(ϕ′)
ΛzP (ϕ

′

2 )
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ΛxRX case and

induction hypothesis

of Proposition 13
= ΛxRX(ϕ+ϕ′)

ΛzP (ϕ+ϕ′

2 )

H H

= λxP (ϕ+ ϕ′).

Finally, the Λxs case is a direct consequence of the ΛzP case.

H. Ancillary equations: Equations (28) and (29)

Lemma 49. The following equations can be derived in QC:

ΛxX = ΛxRX(π)
Λxs(π2 ) (28)

RX(α1) P (α2) RX(α3)

=

P (β1) RX(β2) P (β3)

P (β0)
(29)

where in Equation (29), the angles are the same as in Equation (q).

Proof. If x = ǫ, then Equation (28) is a direct consequence of Lemma 39 and Equations (2), (b), (c) and (3). If x 6= ǫ, then

Equation (28) is a direct consequence of Lemmas 40, 42 and 43 and Equations (10) and (a).

Proof of Equation (29):

RX(α1) P (α2) RX(α3)

≡
RX(α1) P (α2) RX(α3)

Propositions 12 and 13
=

RX(α1)

P (α2)

RX(α3)

RX(0)

(r)
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

By uniqueness of the right-hand side in Equations (q) and (r), the δi are such that the last circuit is equal to

RX(0)P (0)P (β1)

RX(β2)

RX(0)P (0) P (β3) P (β0)

P (0)
, where the βj are computed in the same

way as in Equation (q). It follows from Propositions 12 and 13 that this is equal modulo QC0 to the right-hand side of

Equation (29).
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APPENDIX C

PROOFS OF SECTIONS II-E AND II-F

A. Proof of Proposition 15

Without loss of generality, we can assume that y = ǫ.
The case where G = s(ϕ) and x = ǫ follows directly from Equations (l), (k) and (d). The cases where G = s(ϕ) and x 6= ǫ

follow directly from the case G = P (ϕ), together with Equation (10).

By Equations (10) and (a), the case G = X follows directly from the case G = P (π).
The case G = P (ϕ) follows from the case G = RX(θ) by a straightforward induction, using Lemmas 43 and 48

and Equation (a).

Thus, it suffices to treat the case where G = RX(θ). One has

Λ0xRX(θ) ◦ Λ1xRX(θ)
Lemmas 44 and 47

=
ΛxRX(-θ2 )ΛxRX( θ2 )

H H

ΛxRX( θ2 )ΛxRX( θ2 )

H H

(a)
=

ΛxRX(-θ2 )ΛxRX( θ2 )

H

ΛxRX( θ2 )ΛxRX( θ2 )

H

(24)
=

ΛxRX(-θ2 )ΛxRX( θ2 )

H

ΛxRX( θ2 )ΛxRX( θ2 )

H

(e), Proposition 13,

(e)(a)
=

ΛxRX(θ)
.

B. Ancillary lemmas: Lemmas 50 to 51

Lemma 50. For any x ∈ {0, 1}k,

ΛxRX(θ)

H H

=
ΛxRX(θ)

HH

Proof. We proceed by induction on k. If k = 0 then the result is a direct consequence of Equations (3), (a) and (i). If k ≥ 1,

then without loss of generality we can assume that x = 1z with z ∈ {0, 1}k−1. One has

ΛxRX(θ)

H H

=

H H

ΛzRX(- θ2 )ΛzRX( θ2 )

H H
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(a)
=

H H

ΛzRX(- θ2 )ΛzRX( θ2 )

H H

H H

(9)
=

H

H

ΛzRX(- θ2 )ΛzRX( θ2 )

H

HH H

(a)
=

H

ΛzRX(- θ2 )ΛzRX( θ2 )

HH H

(e)(11)
=

H

ΛzRX(- θ2 )ΛzRX( θ2 )

HH H

induction
hypothesis

=

H

ΛzRX(- θ2 )ΛzRX( θ2 )

HH H

(11)(e)
=

H

ΛzRX(- θ2 )ΛzRX( θ2 )

HH H

induction
hypothesis

=

H

ΛzRX(- θ2 )ΛzRX( θ2 )

HH H

(a)(9)(a)
=

H H

ΛzRX(- θ2 )ΛzRX( θ2 )

H H
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=
ΛxRX(θ)

HH

.

Lemma 51. For any x ∈ {0, 1}k,

Λx

RX(θ)

=
Λx

RX(θ)

.

Proof.

Λx

RX(θ)

=
Λx

RX(-θ2 )

Λx

RX( θ2 )

HH

(a)
=

Λx

RX(-θ2 )

Λx

RX( θ2 )

HH

HH

(9)
=

Λx

RX(-θ2 )

Λx

RX( θ2 )

H

H H

H
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(8)
=

Λx

RX(- θ2 )

Λx

RX( θ2 )

H

H H

H

(9)
=

Λx

RX(- θ2 )

Λx

RX( θ2 )

HH

HH

(a)
=

Λx

RX(- θ2 )

Λx

RX( θ2 )

HH

=
Λx

RX(θ)

C. Proof of Proposition 16

We assume without loss of generality that y = y′ = ǫ.

First, for the case where G = RX(θ) and G′ = RX(θ′), we prove by induction on k that for any x, x′ ∈ {0, 1}k,

QC0 ⊢ ΛxRX(θ) ◦ Λx′

RX(θ′) = Λx′

RX(θ′) ◦ ΛxRX(θ). (30)

The desired result corresponds to Equation (30) with x 6= x′. Note that when x = x′, Equation (30) is a consequence of

Proposition 13.

If k = 0, then Equation (30) is a direct consequence of Equation (18). If k ≥ 1, then we can write x = az and x′ = a′z′

with a, a′ ∈ {0, 1}. One has (where the ± signs correspond respectively to (−1)a and (−1)a
′

):
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Λx′

RX(θ′) ◦ ΛxRX(θ)
Lemma 47

=
ΛzRX(± θ

2 )ΛzRX( θ2 )

H H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H H

(a)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(26)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

induction
hypothesis

=
ΛzRX(± θ

2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(e)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

induction
hypothesis,

(e)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(26)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

(a)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

HH H

Lemma 47
= ΛxRX(θ) ◦ Λx′

RX(θ′)

If G = P (θ) and G′ = P (θ′), we prove by induction on k that for any z, z′ ∈ {0, 1}k,

Λzs(ϕ) ◦ Λz′

s(ϕ′) = Λz′

s(ϕ′) ◦ Λzs(ϕ). (31)

The result corresponds to the case where z = x1 and z′ = x′1 with x 6= x′. Note that the case where x = x′ is a consequence

of Proposition 13.

If k = 0, then Equation (31) is a consequence of the topological rules.

If k = 1, then it is a consequence of Equations (k) and (l).
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If k ≥ 2, note first that by Equations (2), (a), (25), and (13) (or (l), (a) and (3) if m = 0), for any x ∈ {0, 1}m,

QC0 ⊢ Λx0s(ϕ) = ΛxRX(-ϕ)
Λxs(ϕ2 )

H H

. (32)

Let z = xa and z′ = x′a′ with a, a′ ∈ {0, 1} and x, x′ ∈ {0, 1}k−1. One has (with the ± signs being (−1)1−a and (−1)1−a′

respectively):

Λz′

s(ϕ′) ◦ Λzs(ϕ)
(10)(a)(32)

= ΛxRX(±ϕ)
Λxs(ϕ2 )

H

Λx′

s(ϕ
′

2 ) Λx′

RX(±ϕ′)

H

Lemma 48
= ΛxRX(±ϕ)

Λxs(ϕ2 )

H

Λx′

s(ϕ
′

2 ) Λx′

RX(±ϕ′)

H

induction
hypothesis

= ΛxRX(±ϕ)
Λxs(ϕ2 )

H

Λx′

s(ϕ
′

2 ) Λx′

RX(±ϕ′)

H

(30)
= ΛxRX(±ϕ)

Λxs(ϕ2 )

H

Λx′

s(ϕ
′

2 ) Λx′

RX(±ϕ′)

H

Lemma 48
= ΛxRX(±ϕ)

Λxs(ϕ2 )

H

Λx′

s(ϕ
′

2 ) Λx′

RX(±ϕ′)

H

(10)(a)(32)
= Λzs(ϕ) ◦ Λz′

s(ϕ′).

For the case where G = RX(θ) and G′ = P (θ′), we prove by induction on k ≥ 1 that for any x, x′ ∈ {0, 1}k with x 6= x′,

QC0 ⊢ Λx′

RX(θ′)ΛxRX(θ)

H H

= Λx′

RX(θ′) ΛxRX(θ)

HH

(33)

Note that by Lemma 48 and the preceding case, Equation (33) is equivalent to the desired result.

If k = 1, then without loss of generality we can assume that x = 1 and x′ = 0. One has

H HRX(θ′)RX(θ)

Lemma 47
=

H HRX( θ
′

2 )RX(- θ2 )RX( θ2 ) RX( θ
′

2 )

HHHH
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(a)(7)
=

H H

RX( θ
′

2 )RX(- θ2 )

RX( θ2 ) RX( θ
′

2 )

HH

(16)
=

H H

RX( θ
′

2 )RX(- θ2 )

RX( θ2 ) RX( θ
′

2 )

HH

(n)
=

HH

RX( θ
′

2 ) RX(- θ2 )

RX( θ2 )RX( θ
′

2 )

H H

(16)
=

HH

RX( θ
′

2 ) RX(- θ2 )

RX( θ2 )RX( θ
′

2 )

H H

(7)(a)
=

HH RX( θ
′

2 ) RX(- θ2 )RX( θ2 )RX( θ
′

2 )

H HHH

Lemma 47
=

HH RX(θ′) RX(θ)

If k ≥ 2, then by Proposition 11, we can assume without loss of generality that we can write x = az and x′ = az′ with

a, a′ ∈ {0, 1} and z 6= z′. One has (where the ± signs correspond respectively to (−1)a and (−1)a
′

):

Λx′

RX(θ′)ΛxRX(θ)

H H

Lemma 47
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H H

(a)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

Lemma 50
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H
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induction
hypothesis

=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

Lemma 50
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

induction
hypothesis

=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

(19)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

H

X

H

(a)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

H

X

H H HH H

Lemma 50,

(a)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

X

H HH H

Lemma 50
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

X

H HH H

induction
hypothesis,

(a)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

HX

HH H

(12)(19)

(10)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

HH HH H
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Lemma 50,

(a)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

HH H

Lemma 50
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

HH H

induction
hypothesis,

(a)
=

H H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

(19)(a)
=

H

X

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

HH

(a)
=

H

X

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

HHH H

Lemma 50,

(a)
=

H

X

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

HH

(12)(19)

(10)(a)
=

H

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H H

Lemma 50,
(a)
=

ΛzRX(± θ
2 )ΛzRX( θ2 )

H

H

Λz′

RX(± θ′

2 )Λz′

RX( θ
′

2 )

H

H

H H

Lemma 47
= Λx′

RX(θ′) ΛxRX(θ)

HH

If G = X or G′ = X , then by Equation (28), the result follows from the preceding cases together with Lemma 48 and

Equation (31).
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D. Ancillary lemmas: Lemmas 52 to 54

Lemma 52. For any x ∈ {0, 1}k and y ∈ {0, 1}ℓ,

QC0 ⊢ (idk ⊗X ⊗ idℓ) ◦ Λ
x
yX = Λx

yX ◦ (idk ⊗X ⊗ idℓ)

and

QC0 ⊢ (idk ⊗X ⊗ idℓ) ◦ Λ
x
yRX(θ) = Λx

yRX(θ) ◦ (idk ⊗X ⊗ idℓ)

Proof. The case of Λx
yX is a direct consequence of Propositions 15 and 16. Indeed, using Proposition 15, (idk ⊗X ⊗ idℓ)

can be decomposed into a product of multi-controlled gates of the form Λx′

y′X with x′ ∈ {0, 1}k and y′ ∈ {0, 1}ℓ. Then these

multi-controlled gates commute with Λx
yX , trivially in the case where x′y′ = xy, and by Proposition 16 in the other cases.

For the case of Λx
yRX(θ), note that (b), (c) ⊢ X = RX(π)

π/2
. Then s(π2 ) commutes by the topological rules, while

the commutation of (idk ⊗RX(π)⊗ idℓ) is a direct consequence of Propositions 15, 16 and 13: using Proposition 15, it can

be decomposed into a product of multi-controlled gates of the form Λx′

y′RX(π) with x′ ∈ {0, 1}k and y′ ∈ {0, 1}ℓ. Then these

multi-controlled gates commute with Λx
yRX(θ), by Proposition 16 in the cases where x′y′ 6= xy, and by Proposition 13 in the

case where x′y′ = xy.

Lemma 53.

QC0 ⊢

P (ϕ) XX

=

P (-ϕ)

P (ϕ)

Proof.

P (ϕ) XX

=

RX(ϕ) XX

P (ϕ2 )

H H

(2)(a)
=

RX(ϕ) XZ

P (ϕ2 )

H H

(25)(a)(13)
=

RX(-ϕ)

P (ϕ2 )

H H

Proposition 13 and Lemma 48
=

RX(-ϕ)

P (-ϕ2 )

H H

P (ϕ)
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=

P (-ϕ)

P (ϕ)

Lemma 54. For any x ∈ {0, 1}k and y ∈ {0, 1}ℓ with ℓ ≥ k,

QC0 ⊢ Λys(ϕ′)

Λxs(ϕ)

= Λys(ϕ′)

Λxs(ϕ)

.

Proof. We proceed by induction on ℓ − k. If ℓ = k then the result is a consequence of Proposition 13 or 16 (or just of the

topological rules if k = ℓ = 0). If ℓ ≥ k+1, then without loss of generality, we can assume that y = t1 for some t ∈ {0, 1}ℓ−1.

Then by Lemma 43 (together with Lemma 40 and Equation (10)),

QC0 ⊢ Λys(ϕ′)

Λxs(ϕ)

=

Λxs(ϕ)

H H

ΛtRX(ϕ′)
Λts(ϕ

′

2 )

so that the commutation follows by induction hypothesis and Lemma 48.

E. Proof of Proposition 17

First, the cases where G or G′ = X follow from the other cases. Indeed, using Equation (28) and Proposition 15 (together

with Proposition 11), and then Proposition 12, one gets that for any t ∈ {0, 1}p,

QC0 ⊢ ΛtX = ΛtRX(π)ΛtP (π2 ) ΛtP (π2 )

X X

.

Then, if G or G′ = X , one can use this decomposition and make the multi-controlled parts commute using the other cases.

The non-controlled X gates commute with the control dots by changing their colour, with the help of Equation (10). This

does not alter the fact that the multi-controlled gates commute, since the X gates are not on the same wire than the control

dots of different colours. And since the decomposition produces each time two X gates on the same wire, any control dot gets

changed twice, so that it is the same at the end as at the beginning.

Thus, it suffices to treat the cases where G,G′ ∈ {RX(θ), P (ϕ)}.

If G = RX(θ) and G′ = P (ϕ) (or conversely), then by Proposition 12, the result is a consequence of Lemma 52

and Proposition 16.

If G = P (ϕ) and G′ = P (ϕ′), then by Proposition 12, the result is a consequence of Lemmas 53 and 54 (together with

Equation (10)) and Proposition 16.

It remains to treat the case where G = RX(θ) and G′ = RX(θ′). By Lemma 52, we can assume without loss of generality

that a = b = 1. By definition of Λt
u, we can also assume without loss of generality that k = m = 0. Then the hypothesis

xyz 6= x′y′z′ becomes y 6= y′. We proceed by induction on ℓ. If ℓ = 1, then without loss of generality we can assume that

x = 1 and x′ = 0. One has
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RX(θ)

RX(θ′)

Proposition 11,

def
=

RX(- θ
′

2 )

H HRX(θ)

RX( θ
′

2 )

(24)
=

RX(- θ
′

2 )

HHRX(θ)

RX( θ
′

2 )

Lemma 47,
def
=

RX( θ4 ) RX( θ4 )RX(- θ4 ) RX(- θ4 )

RX( θ
′

4 ) RX( θ
′

4 )RX(- θ
′

4 )RX(- θ
′

4 )

H

H

H

H H

H

HH

H

H H H

(a)
=

RX( θ4 ) RX( θ4 )RX(- θ4 ) RX(- θ4 )

RX( θ
′

4 ) RX( θ
′

4 )RX(- θ
′

4 )RX(- θ
′

4 )

H

H

H

H

H

H

(7)
=

RX( θ4 )

RX( θ4 )RX(- θ4 )

RX(- θ4 )

RX( θ
′

4 )

RX( θ
′

4 )RX(- θ
′

4 )

RX(- θ
′

4 )

H

H

H

H

H

H

(16)
=

RX( θ4 )

RX( θ4 )RX(- θ4 )

RX(- θ4 )

RX( θ
′

4 )

RX( θ
′

4 )RX(- θ
′

4 )

RX(- θ
′

4 )

H

H

H

H

H

H

(9)(e)
=

RX( θ4 )

RX( θ4 )RX(- θ4 )

RX(- θ4 )

RX( θ
′

4 )

RX( θ
′

4 )RX(- θ
′

4 )

RX(- θ
′

4 )

H

H

H

H

H

H

(o)
=

RX( θ4 )

RX( θ4 ) RX(- θ4 )

RX(- θ4 )

RX( θ
′

4 )

RX( θ
′

4 ) RX(- θ
′

4 )

RX(- θ
′

4 )

H

H

H

H

H

H

50



(e)(9)
=

RX( θ4 )

RX( θ4 ) RX(- θ4 )

RX(- θ4 )

RX( θ
′

4 )

RX( θ
′

4 ) RX(- θ
′

4 )

RX(- θ
′

4 )

H

H

H

H

H

H

(16)
=

RX( θ4 )

RX( θ4 ) RX(- θ4 )

RX(- θ4 )

RX( θ
′

4 )

RX( θ
′

4 ) RX(- θ
′

4 )

RX(- θ
′

4 )

H

H

H

H

H

H

(7)
=

RX( θ4 )RX( θ4 ) RX(- θ4 )RX(- θ4 )

RX( θ
′

4 ) RX( θ
′

4 ) RX(- θ
′

4 )RX(- θ
′

4 )

H

H

H

H

H

H

(a)
=

RX( θ4 )RX( θ4 ) RX(- θ4 )RX(- θ4 )

RX( θ
′

4 ) RX( θ
′

4 ) RX(- θ
′

4 )RX(- θ
′

4 )

H

H

H

HH

H

H H

H

H HH

Lemma 47,

def
=

RX(- θ
′

2 )

H H

RX( θ
′

2 )

RX(- θ2 )

HH

RX( θ2 )

(24)
=

RX(- θ
′

2 )

H H

RX( θ
′

2 )

RX(- θ2 )

H H

RX( θ2 )

Proposition 11,

def
=

RX(θ)

RX(θ′)

.

If k ≥ 2, by Proposition 11 we can assume without loss of generality that y = at and y′ = a′t′ with a, a′ ∈ {0, 1} and

t 6= t′. One has (with the ± signs being (−1)a and (−1)a
′

respectively):

Λy

RX(θ)

Λy′

RX(θ′)

=
Λt

RX( θ2 )

Λt′

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′

RX(± θ′

2 )

H H
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(a)
=

Λt

RX( θ2 )

Λt′

RX( θ
′

2 )

Λt

RX(± θ
2 )

H

Λt′

RX(± θ′

2 )

H

Lemma 51
=

Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′ Λt′

RX(± θ′

2 )

induction
hypothesis

=
Λt

RX( θ2 )

Λt′

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′

RX(± θ′

2 )

Lemma 51,

induction
hypothesis

=
Λt

RX( θ2 )

Λt

RX(± θ
2 )

H H

Λt′

RX( θ
′

2 )

Λt′

RX(± θ′

2 )

(8)
=

Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′ Λt′

RX(± θ′

2 )
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Proposition 11,

Lemma 51
=

Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′ Λt′

RX(± θ′

2 )

(8),

Proposition 11,

Lemma 51
=

Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′ Λt′

RX(± θ′

2 )

Lemma 51,
induction
hypothesis

=
Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′ Λt′

RX(± θ′

2 )

(8),

Proposition 11,

Lemma 51
=

Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H H

Λt′ Λt′

RX(± θ′

2 )

(a)
=

Λt

RX( θ2 )

RX( θ
′

2 )

Λt

RX(± θ
2 )

H HH H

Λt′ Λt′

RX(± θ′

2 )
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= Λy

RX(θ)

Λy′

RX(θ′)

.

F. Proof of Proposition 18

H
(d)(k)(17)(18)

= RX(−π
2 )P (−π

2 ) P (−π
2 ) RX(π2 )P (π2 ) P (π2 ) H

(p)
= RX(−π

2 )P (−π
2 ) P (−π

2 ) H H

(a)
= RX(−π

2 )P (−π
2 ) P (−π

2 )

G. Proof of Proposition 19

The proof is inspired by the proofs of Lemmas 10 and 11 of [30]. Given any n-qubit quantum circuit C, let JCKg :=
G

−1
n ◦ JCK ◦Gn.

1) Soundness of Equation (q): Given any α1, α2, α3 ∈ R, let U :=
q

RX(α1) RX(α3)P (α2)
y
g
. We have to prove that there

exist unique β0, β1, β2, β3 satisfying the conditions of Figure 5 such that

s
RX(β2) P (β3)P (β1)

β0
{

g

= U . We are going to

first prove that assuming that such βj exist, their values are uniquely determined by U . Since we are going do so by giving

explicit expressions of the unique possible value of each βj in terms of the entries of U , it will then be easy to check that

these expressions indeed define angles with the desired properties.

One has

U =

t
RX(β2) P (β3)P (β1)

β0
|

g

= eiβ0

(

cos
(

β2

2

)

−ieiβ1 sin
(

β2

2

)

−ieiβ3 sin
(

β2

2

)

ei(β1+β3) cos
(

β2

2

)

)

If U has a null entry, then since it is unitary, it is either diagonal or anti-diagonal. If it is diagonal, then sin
(

β2

2

)

= 0,

which, since β2 ∈ [0, 2π), implies that β2 = 0, which by the constraint on β1 and β2, implies that β1 = 0. Consequently,

β0 = arg(U0,0) and β3 = arg
(

U1,1

U0,0

)

. If U is anti-diagonal, then cos
(

β2

2

)

= 0, which, since β2 ∈ [0, 2π), implies that β2 = π,

which by the constraint on β1 and β2, implies that β1 = 0. Consequently, β0 = arg
(

U0,1

−i

)

and β3 = arg
(

U1,0

U0,1

)

.

If U has no null entry, then one has β2 6= π and
ie−iβ1U0,1

U0,0
= tan

(

β2

2

)

. Hence, β1 is the unique angle in [0, π) such that

ie−iβ1U0,1

U0,0
∈ R, namely arg

(

iU0,1

U0,0

)

mod π. In turn, β2 is the unique angle in [0, 2π)\ {π} such that tan
(

β2

2

)

=
ie−iβ1U0,1

U0,0
.

Finally, one has eiβ3 =
cos(

β2
2 )U1,0

−i sin(
β2
2 )U0,0

, so that β3 = arg

(

cos(
β2
2 )U1,0

−i sin(
β2
2 )U0,0

)

, and eiβ0 =
U0,0

cos(
β2
2 )

, so that β0 = arg

(

U0,0

cos(
β2
2 )

)

.

2) Soundness of Equation (r): Given any n-qubit quantum circuit C such that JCKg is of the form

(

I 0
0 U

)

with

U ∈ C3×3, let JCKg3 := U .

Given any γ1, γ2, γ3, γ4 ∈ R, let U :=

u
wwwv RX(γ1)

P (γ2) RX(γ3)

RX(γ4)

}
���~

g3

. We have to prove that there exist unique
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δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9 satisfying the conditions of Figure 5 such that
u
wwwv

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

}
���~

g3

= U,

or equivalently, s

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
{

g3

= U.

We are going to first prove that assuming that such δj exist, their values are uniquely determined by U . Since we are going

do so by giving explicit expressions of the unique possible value of each δj in terms of the entries of U , it will then be easy

to check that these expressions indeed define angles with the desired properties.

Let U123 :=

s

RX(δ3)P (δ2)P (δ1)

{

g3

=





eiδ2 0 0

0 ei(δ1+δ2) cos
(

δ3
2

)

−i sin
(

δ3
2

)

0 −iei(δ1+δ2) sin
(

δ3
2

)

cos
(

δ3
2

)



, U4 :=

s
RX(δ4)

{

g3

=





cos
(

δ4
2

)

−i sin
(

δ4
2

)

0

−i sin
(

δ4
2

)

cos
(

δ4
2

)

0
0 0 1



 and U56 :=

s

RX(δ6)P (δ5)

{

g3

=





1 0 0

0 eiδ5 cos
(

δ6
2

)

−i sin
(

δ6
2

)

0 −ieiδ5 sin
(

δ6
2

)

cos
(

δ6
2

)



. Let also UI :=

U123 ◦ U
†, UII := U4 ◦ UI and UIII := U56 ◦ UII.

By construction,

UIII =

s

P (δ7) P (δ9)

P (δ8)
{†

g3

=





e−iδ9 0 0

0 e−i(δ7+δ8+δ9) 0
0 0 e−iδ8



 (E1)

so that

UII = U †
56 ◦ UIII =





e−iδ9 0 0

0 e−i(δ5+δ7+δ8+δ9) cos
(

δ6
2

)

ie−i(δ5+δ8) sin
(

δ6
2

)

0 ie−i(δ7+δ8+δ9) sin
(

δ6
2

)

e−iδ8 cos
(

δ6
2

)



 (E2)

and UI = U †
4 ◦UII. Since U4 acts as the identity on the last entry, this implies that (UI)2,0 = 0.11 That is, by definition of UI,

− iei(δ1+δ2) sin
(

δ3
2

)

U †
0,1 + cos

(

δ3
2

)

U †
0,2 = 0. (E3)

By direct calculation using the definitions of UI and UII, one gets (UI)0,0 = eiδ2U †
0,0 and (UI)1,0 = ei(δ1+δ2) cos

(

δ3
2

)

U †
0,1−

i sin
(

δ3
2

)

U †
0,2, so that (UII)1,0 = −i sin

(

δ4
2

)

(UI)0,0 +cos
(

δ4
2

)

(UI)1,0 = −i sin
(

δ4
2

)

eiδ2U †
0,0+cos

(

δ4
2

)

(ei(δ1+δ2) cos
(

δ3
2

)

U †
0,1−

i sin
(

δ3
2

)

U †
0,2). That is, since by (E2), (UII)1,0 = 0:

− i sin
(

δ4
2

)

eiδ2U †
0,0 + cos

(

δ4
2

)

(

ei(δ1+δ2) cos
(

δ3
2

)

U †
0,1 − i sin

(

δ3
2

)

U †
0,2

)

= 0 (E4)

• If U0,1 = U0,2 = 0, then since U is unitary, U0,0 6= 0 and (E4) becomes −i sin
(

δ4
2

)

eiδ2U †
0,0 = 0, that is sin

(

δ4
2

)

= 0.

Since δ4 ∈ [0, 2π), this implies that δ4 = 0, which by the conditions of Figure 5, implies that δ1 = δ2 = δ3 = 0.

• If (U0,1, U0,2) 6= (0, 0), then ei(δ1+δ2) cos
(

δ3
2

)

U †
0,1− i sin

(

δ3
2

)

U †
0,2 6= 0. Indeed, if this expression was equal to 0, by (E3)

this would mean that the non-zero vector

(

ei(δ1+δ2)U †
0,1

U †
0,2

)

is in the kernel of the matrix

(

cos
(

δ3
2

)

−i sin
(

δ3
2

)

−i sin
(

δ3
2

)

cos
(

δ3
2

)

)

,

whereas this matrix is invertible. Then:

– If U0,0 = 0, then (E4) implies that cos
(

δ4
2

)

= 0, which, since δ4 ∈ [0, 2π), implies that δ4 = π. By the conditions of

Figure 5, this implies that δ2 = 0. Then:

∗ If U0,2 = 0, then U0,1 6= 0, and (E3) implies that sin
(

δ3
2

)

= 0, that is, since δ3 ∈ [0, 2π), that δ3 = 0. By the

conditions of Figure 5, together with the fact that δ4 = π, this implies that δ1 = 0.

∗ If U0,1 = 0, then U0,2 6= 0, and (E3) implies that cos
(

δ3
2

)

= 0, that is, since δ3 ∈ [0, 2π), that δ3 = π. By the

conditions of Figure 5, this implies that δ1 = 0.

∗ If U0,1, U0,2 6= 0, then (E3), on the one hand, implies that δ3 6= π, and on the other hand, is equivalent to

tan
(

δ3
2

)

=
e−iδ1U †

0,2

iU †
0,1

.

11Where we denote by Mi,j the entry of indices (i, j) of any matrix M , the index of the first row and column being 0.
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Hence, δ1 is the unique angle in [0, π) such that
e−iδ1U

†
0,2

iU
†
0,1

∈ R. In turn, δ3 is the unique angle in [0, 2π) such that

tan
(

δ3
2

)

=
e−iδ1U

†
0,2

iU
†
0,1

.

– If U0,0 6= 0, then (E4) can be simplified into

− i tan
(

δ4
2

)

eiδ2U †
0,0 + ei(δ1+δ2) cos

(

δ3
2

)

U †
0,1 − i sin

(

δ3
2

)

U †
0,2 = 0. (E5)

∗ If U0,2 = 0, then U0,1 6= 0, and (E3) implies that sin
(

δ3
2

)

= 0, that is, since δ3 ∈ [0, 2π), that δ3 = 0. By the

conditions of Figure 5, this implies that δ2 = 0. Then (E5) becomes

−i tan
(

δ4
2

)

U †
0,0 + eiδ1U †

0,1 = 0

that is,

tan
(

δ4
2

)

=
eiδ1U †

0,1

iU †
0,0

.

Hence, δ1 is the unique angle in [0, π) such that
eiδ1U

†
0,1

iU
†
0,0

∈ R. In turn, δ4 is the unique angle in [0, 2π) such that

tan
(

δ4
2

)

=
eiδ1U

†
0,1

iU
†
0,0

.

∗ If U0,1 = 0, then U0,2 6= 0, and (E3) implies that cos
(

δ3
2

)

= 0, that is, since δ3 ∈ [0, 2π), that δ3 = π. By the

conditions of Figure 5, this implies that δ1 = 0. Then (E5) becomes

−i tan
(

δ4
2

)

eiδ2U †
0,0 − iU †

0,2 = 0

that is,

tan
(

δ4
2

)

= −
e−iδ2U †

0,2

U †
0,0

.

Hence, δ2 is the unique angle in [0, π) such that
e−iδ2U

†
0,2

U
†
0,0

∈ R. In turn, δ4 is the unique angle in [0, 2π) such that

tan
(

δ4
2

)

= −
e−iδ2U

†
0,2

U
†
0,0

.

∗ If U0,1, U0,2 6= 0, then (E3), on the one hand, implies that δ3 /∈ {0, π}, and on the other hand, is equivalent to

ei(δ1+δ2) =
cos
(

δ3
2

)

U †
0,2

i sin
(

δ3
2

)

U †
0,1

. (E6)

Then by substituting in (E5), we get

−i tan
(

δ4
2

)

eiδ2U †
0,0 +

cos2
(

δ3
2

)

U †
0,2

i sin
(

δ3
2

) − i sin
(

δ3
2

)

U †
0,2 = 0

which can be simplified into

−i tan
(

δ4
2

)

eiδ2U †
0,0 +

U †
0,2

i sin
(

δ3
2

) = 0

which is equivalent to

tan
(

δ4
2

)

= −
e−iδ2U †

0,2

sin
(

δ3
2

)

U †
0,0

. (E7)

Hence, δ2 is the unique angle in [0, π) such that
e−iδ2U †

0,2

U †
0,0

∈ R. Then (E6) can be rephrased into

tan
(

δ3
2

)

=
e−i(δ1+δ2)U †

0,2

iU †
0,1

.

Hence, δ1 is the unique angle in [0, π) such that
e−i(δ1+δ2)U

†
0,2

iU
†
0,1

∈ R. In turn, δ3 is the unique angle in [0, 2π) such

that tan
(

δ3
2

)

=
e−i(δ1+δ2)U

†
0,2

iU
†
0,1

. Finally, δ4 is the unique angle in [0, 2π) satisfying (E7).
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Thus, assuming that the δj exist, since UI and UII only depend on δ1, δ2, δ3, δ4 and U , they are uniquely determined by U .

Then (E2) implies that

• If (UII)1,2 = 0, then sin
(

δ6
2

)

= 0, which means, since δ6 ∈ [0, 2π), that δ6 = 0. By the conditions of Figure 5, this

implies that δ5 = 0.

• If (UII)2,2 = 0, then cos
(

δ6
2

)

= 0, which means, since δ6 ∈ [0, 2π), that δ6 = π. By the conditions of Figure 5, this

implies that δ5 = 0.

• If (UII)1,2 = 0, (UII)2,2 6= 0, then

tan
(

δ6
2

)

=
eiδ5(UII)1,2
i(UII)2,2

.

Hence, δ5 is the unique angle in [0, π) such that
eiδ5 (UII)1,2
i(UII)2,2

∈ R. In turn, δ6 is the unique angle in [0, 2π) such that

tan
(

δ6
2

)

=
eiδ5 (UII)1,2
i(UII)2,2

.

Thus, assuming that the δj exist, since UIII only depends on δ5, δ6 and UII, it is uniquely determined by U . Then by (E1),

δ8 = arg((UIII)
†
2,2), δ9 = arg((UIII)

†
0,0) and δ7 = arg

(

(UIII)0,0(UIII)2,2
(UIII)1,1

)

.

H. Proof of Proposition 20

Proof of Equation (k):

P (ϕ1) P (ϕ2)
(a)
= P (ϕ1) P (ϕ2) H HH H H H

(b)(c)(3)
= RX(ϕ1) RX(ϕ2) HH

ϕ1+ϕ2

2

(d)
= RX(ϕ1) RX(ϕ2) HH

ϕ1+ϕ2

2

P (0)

(q)
= HH

ϕ1+ϕ2

2

RX(β2) P (β3)P (β1)

β0

(q)
= RX(ϕ1+ϕ2) RX(0) HH

ϕ1+ϕ2

2

P (0)

(d)(17)
= RX(ϕ1+ϕ2) HH

ϕ1+ϕ2

2

(3)(a)(c)(b)
= P (ϕ1+ϕ2)

The first use of Equation (q) is valid since Equation (q) is applied from the left to the right. The second use of Equation (q)

is valid since it preserves the semantics. Note that one can show that β1 = β3 = 0, β2 = ϕ1 + ϕ2 mod 2π and β0 =
{

0 if (ϕ1 + ϕ2 mod 4π) ∈ [0, 2π)

π if (ϕ1 + ϕ2 mod 4π) ∈ [2π, 4π)
.

Proof of Equation (l):

P (ϕ)X X
(2)(1)
= P (ϕ)P (π) HH P (π) HH

(b)(c)(3)
= P (ϕ)RX(π) RX(π)

π
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(q)(c)
= RX(β2) P (β3)P (β1)

β0 + π

One has β1 = β2 = 0, β3 = −ϕ mod 2π and β0 = ϕ− π mod 2π. Indeed, this choice of angles satisfies the conditions of

Equation (q) and is sound with respect to the semantics, and Proposition 19 guarantees that this is the only possible choice.

Thus, by Equations (d) and (17), this implies that one can transform P (ϕ)X X into P (-ϕ mod 2π)

(ϕ−π mod 2π)+π

(b)(c)
=

P (-ϕ mod 2π)
ϕ

. Finally, P (-ϕ)
(17)
= RX(0)P (-ϕ)RX(0)

(q)(b)
= RX(0) P (-ϕ mod 2π)P (0)

(d)(17)
=

P (-ϕ mod 2π) , which terminates the proof.

I. Proof of Proposition 21

First, we can show that QC ⊢ ΛxP (2π) = idk+1 as follows:

P (2π)

Proposition 13
=

RX(0)

P (2π) RX(0)

RX(0)

(r)
=

RX(0)P (0)P (0)

RX(0)

RX(0)P (0) P (0) P (0)

P (0)

Proposition 13
=

It follows that, for x ∈ {1}k:

ΛxX ΛxX
def
= ΛxP (π)

H

ΛxP (π)

H HH

(a)
= ΛxP (π) ΛxP (π)

HH

Proposition 13
= ΛxP (2π)

HH

QC⊢ΛxP (2π)=idk+1

=

HH

58



(a)
=

J. Proof of Proposition 22

First, we prove the case for x = ǫ :

QC0 ⊢ RX(4π) = id1 QC0 ⊢ P (2π) = id1 QC0 ⊢ s(2π) = id0

.

P (2π)
(1)(k)
= Z Z

(13)
=

2π
(b)
=

It follows that:

RX(4π)
(3)
= H HP (4π)

-2π

= H H

(a)
=

We can now prove the general case, first by noticing that QC ⊢ ΛxP (2π) = idk+1, as proven in Appendix C-I.

As Λx1s(2π) = ΛxP (2π), we have for any x ∈ {1}k, QC ⊢ Λxs(2π) = idk.

Finally:

Λ1xRX(4π) = Λ1xP (4π)
Λ1xs(-2π)

H H

QC⊢idk+1=Λ1xs(2π)

= Λ1xP (4π)
Λ1xs(-2π)

H H

Λ1xs(2π) Λ1xs(2π)
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ψ → ψ mod 2π (43)

ψ
→

ψ mod 2π
(44)

ϕ2ϕ1 → ϕ1+ϕ2 (45)

0 → (46)

0
→ (47)

θ

ϕ
→

θ
−ϕ ϕ

ϕ
(48)

π
2

ϕ

→
π
2

ϕ
(49)

θ0
ϕ0

→
π−θ0

ϕ0−π

π

(50)

θ4
→

θ4−π
π

π
(51)

θ1

θ2

θ3

ϕ1

ϕ2

∗

∗

→ α1

α2

α3

β2

β1 β3

β4

β5

β6

(52)

α1
α2 α3

∗

→
β1 β2

β3

β4

(53)

Fig. 8: Rewriting rules of PPRS. ϕ
∗

denotes either ϕ or . The conditions on the angles are given in [30], note that

for Equations (52) and (53) they are the same as in Figure 6 (with ϕ1, ϕ2 and α2 taken as being 0 if missing).

Proposition 13
= Λ1xP (2π)

H H

Λ1xs(2π)
Λ1xP (2π)

QC⊢Λ1xs(2π)=idk+1

QC⊢Λ1xP (2π)=idk+2

=

H H

(a)
=

APPENDIX D

PROOFS OF SECTION III

A. Proof of Theorem 26

One can easily show that every equation of Figure 6 is sound with respect to the semantics. Regarding the completeness

proof, we use the rewriting system of Figure 8 that has been introduced in [30]. This rewriting system has been proved to be

strongly normalising, moreover it has been proved that any two swap-free circuits having the same semantics are reduced to

the same normal form [30].

Using Equation (C) one can transform any circuit into a swap-free circuit. As a consequence, to prove the completeness it

only remains to show that every rule of Figure 8 can be derived using the equations of Figure 6.
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First we can notice that Rule (53) is exactly the same as Equation (F) (up to Equation (A)).

Rule (43) is derived from Equation (A) and Equation (D).

Rule (44) is derived from Equation (F) with α1 = α2 = 0 and α3 = ψ + 2kπ.

Rule (45) is derived from Equation (D).

Rule (46) is derived from Equation (A).

Rule (47) is derived from Equation (B).

Rule (48) is derived from Equation (D), Equation (A) and Equation (E).

Rule (49) is derived from Equation (C) and Equation (D).

Rule (50) is derived from Equation (F) with α1 = 0, α2 = ϕ0 and α3 = θ0.

Rule (51) is derived from Equation (F) with α1 = α2 = 0 and α3 = θ4.

Regarding Rule (52), its LHS can be transformed as follows:

θ1

θ2

θ3

ϕ1

ϕ2

∗

∗

(A)(D)(E)
=

θ1

θ2

θ3
ϕ2 − ϕ1ϕ1

ϕ1

(G)
= α1

α2

α3

β′
2

β′
1 β′

3

β′
4

β′
5

β′
6

ϕ1

ϕ1

(D)
= α1

α2

α3
β′
3

β′
4

β′
5

β′
6

ϕ1 + β′
2

ϕ1 + β′
1

Note that the angles in the resulting circuit are not necessarily those of the RHS of Rule (52).

However, one can show that it can be put in normal form using the rules of Figure 8 except

Rule (52). As we have seen above that each of these rules can be derived using equations of Figure 6, this shows that Rule

(52) can also be derived using the equations of Figure 6.

B. Useful Definitions

Definition 55. Given x ∈ {0, 1}k, y ∈ {0, 1}ℓ and G ∈ {s(ψ), X,RX(θ), P (ϕ)}, we define

Λ̄x
yG :=

∏

x′∈{0,1}k

y′∈{0,1}ℓ

x′y′ 6=xy

Λx′

y′G

where the product denotes a sequential composition taken in an arbitrary order.

Definition 56. Given x ∈ {0, 1}k, y ∈ {0, 1}ℓ and z ∈ {0, 1}m, we define

Λ
x
y
z

:= Λx1y
z X, Λ

x
y
z

:= Λx
y1zX, Λ̄

x
y
z

:=
∏

x′∈{0,1}k

y′∈{0,1}ℓ

z′∈{0,1}m

x′y′z′ 6=xyz

Λx′1y′

z′ X and Λ̄
x
y
z

:=
∏

x′∈{0,1}k

y′∈{0,1}ℓ

z′∈{0,1}m

x′y′z′ 6=xyz

Λx′

y′1z′X.
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C. Ancillary lemmas: Lemmas 57 to 61

Lemma 57.

QC ⊢

P (ϕ) XX

=

P (-ϕ)

P (ϕ)

Proof.

P (ϕ) XX

Equation (10) and Propositions 21, 16 and 15
=

P (ϕ)X

Λ̄
~1
ǫX

X

Λ̄
~1
ǫX

Propositions 16 and 21
=

P (ϕ) XX

Lemma 53
=

P (-ϕ)

P (ϕ)

where ~1 denotes a list of appropriate length whose elements are all equal to 1.

Lemma 58.

QC0 ⊢

RX(θ)P (π)

=

RX(-θ) P (π)

Proof.

RX(θ)P (π)

Equation (1) and Propositions 13, 16 and 15
=

RX(θ)Z

Λ̄
~1
ǫP (-π)
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Proposition 16
=

RX(-θ)Z

Λ̄
~1
ǫP (-π)

(25)
=

RX(-θ) Z

Λ̄
~1
ǫP (-π)

Propositions 15, 16 and 13 and Equation (1)
=

RX(-θ) P (π)

Lemma 59. For any x ∈ {0, 1}k,

QC ⊢ ΛxRX(2π) = Λxs(π) ⊗

Proof.

ΛxRX(2π)
(10), (a), Proposition 13 and Lemma 43

= ΛxP (2π)
Λxs(-π)

H H

Propositions 22 and 13 and Equation (a)
= Λxs(π)⊗

Lemma 60.

QC ⊢

RX(θ)P (π)

=

RX(2π−θ)

P (π)

Proof.

RX(θ)P (π)

Lemma 58 and Proposition 22
=

RX(-θ) P (-π)
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Propositions 13 and 22
=

RX(2π−θ) P (-π)RX(2π)

Lemma 59
=

RX(2π−θ) P (-π)

P (π)

Proposition 12
=

RX(2π−θ)

P (-π)P (π)

Propositions 15, 16 and 13
=

RX(2π−θ)

P (π)

Lemma 61. For any raw optical circuits C1 : ℓ1 → ℓ1 and C2 : ℓ2 → ℓ2, and any k, ℓ, n with ℓ ≥ ℓ1 and k + ℓ ≤ 2n,

QC0 ⊢ Dk+ℓ,n(C2) ◦Dk,n(C1) = Dk,n(C1) ◦Dk+ℓ,n(C2).

Proof. We proceed by structural induction on C1 and C2.

• If C1 = C′′
1 ◦ C′

1, then

Dk+ℓ,n(C2) ◦Dk,n(C1) = Dk+ℓ,n(C2) ◦ (Dk,n(C
′′
1 ) ◦Dk,n(C

′
1))

while

Dk,n(C1) ◦Dk+ℓ,n(C2) = (Dk,n(C
′′
1 ) ◦Dk,n(C

′
1)) ◦Dk+ℓ,n(C2)

so the result follows by Equation (t2) of quantum circuits and the induction hypothesis.

• The case C2 = C′′
2 ◦ C′

2 is similar to the previous one.

• If C1 = C′
1 ⊗ C′′

1 with C′
1 : ℓ′1 → ℓ′1, then

Dk+ℓ,n(C2) ◦Dk,n(C1) = Dk+ℓ,n(C2) ◦ (Dk+ℓ′1,n
(C′′

1 ) ◦Dk,n(C
′
1))

while

Dk,n(C1) ◦Dk+ℓ,n(C2) = (Dk+ℓ′1,n
(C′′

1 ) ◦Dk,n(C
′
1)) ◦Dk+ℓ,n(C2)

so the result follows by Equation (t2) of quantum circuits and the induction hypothesis.

• The case C2 = C′
2 ⊗ C′′

2 is similar to the previous one.

• If C1 or C2 is or , then the results follows from Equation (t1) of quantum circuits.

• If C1, C2 ∈ { ϕ , θ , }, then Dk,n(C1) = ΛGn(k)s(ϕ), Λ
xk,n
yk,nRX(−2θ) or Λ

xk,n
yk,nX and Dk+ℓ,n(C2) =

ΛGn(k+ℓ)s(ϕ), Λ
xk+ℓ,n
yk+ℓ,nRX(−2θ) or Λ

xk+ℓ,n
yk+ℓ,nX . Using the definitions of Gn(k), xk,n and yk,n, it is easy to check that in

any case, Dk,n(C1) and Dk+ℓ,n(C2) satisfy the premises of either Proposition 16 or 17 and therefore commute.
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D. Proof of Lemma 35

For the sake of clarity, the proofs are given separately in Appendices D-D1 to D-D3.

Lemma 62. For any N ≥ 1, i ∈ {0, ..., N − 1}, b ∈ {0, ..., 2i − 1} and a ∈ {0, ..., 2N−i−1 − 1},

QC ⊢ D(υN,i,b,a) = Λ
Gi(b)

GN−i−1(2N−i−1−a−1)
X

where υN,i,b,a is defined in Appendix D-G, and given n ∈ N and k ∈ {0, ..., 2n − 1}, Gn(k) ∈ {0, 1}n is the n-bit Gray code

of k, defined in Definition 27. Note that GN−i−1(2
N−i−1 − a− 1) differs from GN−i−1(a) by only the first bit.

Lemma 63. For any k, ℓ, n ∈ N,

QC ⊢ D(σk,n,ℓ) = idk ⊗ σn,ℓ.

where σ0,0 := and σn,ℓ := σℓ
n+ℓ−1, where σn+ℓ−1 is defined in Figure 1.

Lemma 64. For any g ∈ { , , s(ϕ), H , P (ϕ) , , },

QC ⊢ D(Ek,ℓ(g)) = idk ⊗ g ⊗ idℓ.

1) Proof of Lemma 62: We proceed by induction on a.

It follows from the definition of D that

D(υN,i,b,0)
def
= D





(2b+1)2N−i−1−1{

2N−(2b+1)2N−i−1−1{



 = Λ
Gi(b)

GN−i−1(2N−i−1−1)X.

Assuming for some a ∈ {1, ..., 2N−i−1 − 1} that QC0 ⊢ D(υN,i,b,a−1) = Λ
Gi(b)

GN−i−1(2N−i−1−a)
X , by definition of υN,i,b,a,

one has12

QC0 ⊢ D(υN,i,b,a) = D(s−a) ◦D(s+a) ◦
(

Λ
Gi(b)

GN−i−1(2N−i−1−a)X
)

◦D(s+a) ◦D(s−a)

where s+a =

(2b+1)2N−i−1+a−1{

2N−(2b+1)2N−i−1−a−1{

and s−a =

(2b+1)2N−i−1−a−1{

2N−(2b+1)2N−i−1+a−1{

.

Due to the properties of Gray codes, GN−i−1(2
N−i−1 − a− 1) differs from GN−i−1(2

N−i−1 − a) by only one bit. That

is, there exist k, ℓ ≥ 0 with k + ℓ = N − i− 2, x ∈ {0, 1}k, y ∈ {0, 1}ℓ and α ∈ {0, 1}, such that

GN−i−1(2
N−i−1 − a− 1) = xαy and GN−i−1(2

N−i−1 − a) = xᾱy

where ᾱ := 1− α.

Additionally, GN−i(2
N−i−1 − a − 1) differs from GN−i(2

N−i−1 + a) by only the first bit, and GN−i(2
N−i−1 − a) also

differs from GN−i(2
N−i−1 + a− 1) by only the first bit. Therefore, there exists β ∈ {0, 1} such that

GN−i(2
N−i−1 − a− 1) = βxαy, GN−i(2

N−i−1 + a) = β̄xαy,

GN−i(2
N−i−1 − a) = βxᾱy and GN−i(2

N−i−1 + a− 1) = β̄xᾱy.

It follows from the definition of D that D(s−a) = Λ
Gi(b).βx
y X and D(s+a) = Λ

Gi(b).β̄x
y X . Hence, by Propositions 11, 15

and 16, QC0 ⊢ D(s−a)◦D(s+a) = D(s+a)◦D(s−a) =

X

Λx

Λy

ΛGi(b)

= (σ1,i⊗idN−i−1)◦
(

⊗ Λ
Gi(b)x
y X

)

◦(σi,1⊗idN−i−1),

so that

QC ⊢ D(υN,i,b,a) = (σ1,i ⊗ idN−i−1) ◦
(

⊗ ΛGi(b)x
y X

)

◦
(

Λǫ
Gi(b)xᾱy

X
)

◦
(

⊗ ΛGi(b)x
y X

)

◦ (σi,1 ⊗ idN−i−1)

with

12Note that this product of five raw circuits should be written with more parentheses since the composition is not associative. We have omitted these
parentheses by abuse of language in order to lighten the notations. In the following, we will similarly omit the associativity parentheses whenever this does
not create ambiguity.
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QC ⊢
(

⊗ Λ
Gi(b)x
y X

)

◦
(

Λǫ
Gi(b)xᾱy

X
)

◦
(

⊗ Λ
Gi(b)x
y X

)

Propositions 21, 16 and 15
= (idN−1 ⊗X) ◦

(

⊗ Λ̄
Gi(b)x
y X

)

◦
(

Λǫ
Gi(b)xᾱy

X
)

◦
(

⊗ Λ̄
Gi(b)x
y X

)

◦ (idN−1 ⊗X)

Propositions 15 and 16
= (idN−1 ⊗X) ◦

(

⊗ Λ̄
Gi(b)x
y X

)

◦
(

⊗ Λ̄
Gi(b)x
y X

)

◦
(

Λǫ
Gi(b)xᾱy

X
)

◦ (idN−1 ⊗X)

Propositions 16 and 21
= (idN−1 ⊗X) ◦

(

Λǫ
Gi(b)xᾱy

X
)

◦ (idN−1 ⊗X)

In other words,

QC ⊢ D(υN,i,b,a) = (idi+k+1 ⊗X ⊗ idℓ) ◦
(

Λ
Gi(b)
xᾱy X

)

◦ (idi+k+1 ⊗X ⊗ idℓ) .

By definition of Λ
Gi(b)
xᾱy X and Equation (10), this implies that

QC ⊢ D(υN,i,b,a) = ΛGi(b)
xαy X

which, since xαy = GN−i−1(2
N−i−1 − a− 1), is the desired property.

Remark 65. By defining υN,i,b,a in a less natural way using not only and but also ϕ and θ , one could avoid

using Proposition 21 and get the stronger result that QC0 ⊢ D(υN,i,b,a) = Λ
Gi(b)
GN−i−1(2N−i−1−a−1)X , which would in turn

imply that the equalities of Lemmas 63 and 64 can also be taken modulo QC0 instead of QC.

2) Proof of Lemma 63: First, if n = 1, by definition (see Definition 32 and Appendix D-G), one has

D(σk,1,ℓ) =

k+ℓ
∏

j=k+1

PjQjPj

where M := k + ℓ+ 1, Pj :=

2j−1
∏

b=0
b mod 4∈{1,2}

2M−j−1−1
∏

a=0

D(υM,j,b,a) and Qj :=

2j−1−1
∏

b=0

2M−j−3−1
∏

a=0

D(υM,j−1,b,a).

By Lemma 62, for all j,

QC ⊢ Pj =

2j−1
∏

b=0
b mod 4∈{1,2}

2M−j−1−1
∏

a=0

Λ
Gj(b)

GM−j−1(2M−j−1−a−1)
X

It is easy to check that when a goes from 0 to 2M−j−1−1, GM−j−1(2
M−j−1−a−1) takes all possible values in {0, 1}M−j−1,

once each, and that when b takes all possible values between 0 and 2j − 1 that are congruent to 1 or 2 modulo 4, Gj(b) takes,

once each, all values in {0, 1}j in which the last bit has value 1. Hence, it follows from Propositions 15, 16 and 10 that

QC ⊢ Pj = idj−1 ⊗ ⊗ idM−j−1.

Again by Lemma 62, for all j,

QC ⊢ Qj =

2j−1−1
∏

b=0

2M−j−3−1
∏

a=0

Λ
Gj−1(b)

GM−j(2M−j−a−1)
X

Similarly, it is easy to check that when b goes from 0 to 2j−1 − 1, Gj−1(b) takes all values in {0, 1}j−1, once each, and that

when a goes from 0 to 2M−j−3, GM−j(2
M−j − a − 1) takes, once each, all values in {0, 1}M−j in which the first bit has

value 1. Hence, it follows from Propositions 15, 16 and 10 that

QC ⊢ Qj = idj−1 ⊗ ⊗ idM−j−1.

Thus,

QC ⊢ D(σk,1,ℓ) =

k+ℓ
∏

j=k+1

idj−1 ⊗ ⊗ idM−j−1.
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By Equation (h), this implies that

QC ⊢ D(σk,1,ℓ) =

k+ℓ
∏

j=k+1

idj−1 ⊗ ⊗ idM−j−1 ≡ idk ⊗ σ1,ℓ. (54)

Finally, if n > 1, then

D(σk,n,ℓ)
def
= D(σn

k,1,ℓ+n−1)

def
= D(σk,1,ℓ+n−1)

n

(54)
= (idk ⊗ σ1,ℓ+n−1)

n

≡ idk ⊗ σn,ℓ.

3) Proof of Lemma 64: If g = or then the result follows directly from the definitions.

If g = s(ϕ), then it follows from the definitions of Ek,ℓ and D that

D(Ek,ℓ(s(ϕ))) =
∏

x∈{0,1}k+ℓ

Λxs(ϕ)

where we use the notation
∏

x∈{0,1}k+ℓ to denote the product without specifying the order of the factors. By Propositions 15

and 16, this implies that

QC ⊢ D(Ek,ℓ(s(ϕ))) = idk+ℓ ⊗ s(ϕ)

which is equal to idk ⊗ s(ϕ)⊗ idℓ by the topological rules of quantum circuits.

If g = P (ϕ) , then it follows from the definitions that if k = ℓ = 0,

D(E0,0( P (ϕ) )) = D( ϕ ) ≡ Λ1s(ϕ) = P (ϕ).

and if (k, ℓ) 6= (0, 0),

D(Ek,ℓ(P (ϕ)) = D(σk,ℓ,1) ◦D





(

ϕ

ϕ

)⊗2k+ℓ−1


 ◦D(σk,1,ℓ)

with

D





(

ϕ

ϕ

)⊗2k+ℓ−1


 =
∏

x∈{0,1}k+ℓ

Λx1s(ϕ) =
∏

x∈{0,1}k+ℓ

ΛxP (ϕ).

By Propositions 15 and 16, this product is equal modulo QC0 to idk+ℓ ⊗ P (ϕ). Then, Lemma 63 together with topological

rules of quantum circuits gives us the result.

If g = H , then it follows from the definitions that if k = ℓ = 0,

D(E0,0( H )) = D(
π
4

−

π
2

−

π
2
) ≡ Λ1s(−π

2 ) ◦ Λ
ǫ
ǫRX(−π

2 ) ◦ Λ
1s(−π

2 )

= RX(−π
2 )P (−π

2 ) P (−π
2 )

(18)
= H

and if (k, ℓ) 6= (0, 0),

D(Ek,ℓ( H ) = D(σk,ℓ,1) ◦D











π
4

−

π
2

−

π
2

−

π
2

−

π
2

π
4





⊗2k+ℓ−1




◦D(σk,1,ℓ)
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with

D











π
4

−

π
2

−

π
2

−

π
2

−

π
2

π
4





⊗2k+ℓ−1




≡

∏

x∈{0,1}k+ℓ









∏

a∈{0,1}
Λxa1s(−

π

2
)



 ◦





∏

a∈{0,1}
ΛxaRX

(

−
π

2

)



 ◦





∏

a∈{0,1}
Λxa1s(−

π

2
)







 .

By Propositions 15 and 16, this product is equal modulo QC0 to idk+ℓ ⊗ RX(−π
2 )P (−π

2 ) P (−π
2 ) , which by Proposition 18

is equal modulo QC0 to H . Then, Lemma 63 together with topological rules of quantum circuits gives us the result.

If g = , then it follows from the definitions that if k = ℓ = 0,

D(E0,0( )) = D
( )

≡ Λ1
ǫX

which is equal to modulo QC0 by Proposition 10;

and if (k, ℓ) 6= (0, 0),

D(Ek,ℓ( ) = D(σk,ℓ,2) ◦D





















⊗2k+ℓ−1







◦D(σk,2,ℓ)

with

D





















⊗2k+ℓ−1







≡
∏

x∈{0,1}k+ℓ

Λx1X.

By Propositions 15 and 16, this product is equal modulo QC0 to idk+ℓ⊗Λ1X , which by Proposition 10 is equal modulo QC0

to idk+ℓ ⊗ . Then, Lemma 63 together with topological rules of quantum circuits gives us the result.

If g = , then it follows from the definitions that

D(Ek,2,ℓ( ) = D(σk,ℓ,2) ◦D(σk+ℓ,1,1) ◦D(σk,2,ℓ)

By Lemma 63, this is equal modulo QC to (idk ⊗ σℓ,2) ◦ (idk+ℓ ⊗ ) ⊗ (idk ⊗ σℓ,2), which by the topological rules of

quantum circuits, is equal to idk ⊗ ⊗ idℓ.

E. Proof of Lemma 36

Definition 66 (Context). A N -mode raw context C[·]i with i ∈ N is inductively defined as follows:

• [·]i is a i-mode raw context

• if C[·]i is a N -mode raw context and C is a M -mode raw optical circuit then C[·]i ⊗ C and C ⊗ C[·]i are N+M -mode

raw contexts

• if C[·]i is a N -mode raw context and C is a N -mode raw optical circuit then C[·]i ◦ C and C ◦ C[·]i are N -mode raw

contexts.

Definition 67 (Substitution). Given a N -mode raw context C[·]i and a i-mode raw circuit C, we define the substituted circuit

C[C] as the N -mode raw circuit obtained by replacing the hole [·]i by C in C[·]i.

To prove Lemma 36, it suffices to prove that for each rule of Figure 1, of the form C1 = C2 with C1, C2 ∈ LOPPraw(i, i),
and any 2n-mode raw context C[·]i, one has QC ⊢ D(C[C1]) = D(C[C2]). For this purpose, we prove a slightly more general

result, namely that for any k, n and any ℓ-mode raw context C[·]i with k + ℓ ≤ 2n, one has QC ⊢ Dk,n(C[C1]) = D(C[C2]).
We proceed by induction on C[·]i:

• If C[·]i = C ◦ C′[·]i, then Dk,n(C[C1]) = Dk,n(C) ◦Dk,n(C
′[C1]) and Dk,n(C[C2]) = Dk,n(C) ◦Dk,n(C

′[C2]), so the

result follows by induction hypothesis. The case C[·]i = C′[·]i ◦ C is similar.

• If C[·]i = C ⊗ C′[·]i with C : ℓ1 → ℓ1, then Dk,n(C[C1]) = Dk+ℓ1,n(C
′[C1]) ◦ Dk,n(C) and Dk,n(C[C2]) =

Dk+ℓ1,n(C
′[C2]) ◦Dk,n(C), so the result follows by induction hypothesis. The case C[·]i = C′[·]i ⊗ C is similar.

It remains to prove for each rule of Figure 1, of the form C1 = C2 with C1, C2 ∈ LOPPraw(i, i), that for any k, n with

k + i ≤ 2n, one has QC ⊢ Dk,n(C1) = Dk,n(C2).
For Equation (t2), for any C1, C2, C3 : ℓ→ ℓ,

Dk,n((C3 ◦ C2) ◦ C1) = (Dk,n(C3) ◦Dk,n(C2)) ◦Dk,n(C1)
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and

Dk,n(C3 ◦ (C2 ◦ C1)) = Dk,n(C3) ◦ (Dk,n(C2) ◦Dk,n(C1)).

Both are equal according to Equation (t2) of quantum circuits.

For Equation (t5), for any optical circuits C1 : ℓ1 → ℓ1, C2 : ℓ2 → ℓ2 and C3 : ℓ3 → ℓ3,

Dk,n((C1 ⊗ C2)⊗ C3) = Dk+ℓ1+ℓ2,n(C3) ◦ (Dk+ℓ1,n(C2) ◦Dk,n(C1))

and

Dk,n(C1 ⊗ (C2 ⊗ C3)) = (Dk+ℓ1+ℓ2,n(C3) ◦Dk+ℓ1,n(C2)) ◦Dk,n(C1).

Again, both are equal according to Equation (t2) of quantum circuits.

For Equation (t1), for any ℓ-mode optical circuit C, by definition of idℓ and Dk,n,

Dk,n(idℓ ◦ C) = (idn ◦ (idn ◦ (· · · ◦ (idn ◦ idn)) · · · )) ◦Dk,n(C)

with ℓ+ 1 occurences of idn in the right-hand side. This is equal to Dk,n(C) according to Equation (t1) of quantum circuits.

Similarly, Dk,n(C ◦ idℓ) ≡ Dk,n(C).
For Equation (t3), for any ℓ-mode optical circuit C,

Dk,n( ⊗ C) = Dk,n(C) ◦ idℓ

which is equal to Dk,n(C) according to Equation (t1) of quantum circuits. Similarly, Dk,n(C ⊗ ) ≡ Dk,n(C).
For Equation (t6), for any optical circuits C1, C2 : ℓ→ ℓ and C3, C4 : m→ m,

Dk,n((C2 ◦ C1)⊗ (C4 ◦ C3)) = (Dk+ℓ,n(C4) ◦Dk+ℓ,n(C3)) ◦ (Dk,n(C2) ◦Dk,n(C1))

and

Dk,n((C2 ⊗ C4) ◦ (C1 ⊗ C3)) = (Dk+ℓ,n(C4) ◦Dk,n(C2)) ◦ (Dk+ℓ,n(C3) ◦Dk,n(C1)).

The result follows from Equation (t2) of quantum circuits and Lemma 61.

For Equation (t7), one has

Dk,n( ◦ ) = Λ
xk,n
yk,nX ◦ Λ

xk,n
yk,nX

which by Proposition 21, implies that

QC ⊢ Dk,n( ◦ ) = idn.

On the other hand,

Dk,n( ⊗ ) = idn ◦ idn ≡ idn.

For Equation (t4), we proceed by induction on C.

• If C = C1 ◦ C2, then σk ◦ ((C1 ◦ C2) ⊗ ) ≡ (σk ◦ (C1 ⊗ )) ◦ (C2 ⊗ ), and the derivation of the equivalence

does not use Equation (t4). Hence it follows from the paragraphs above that

QC ⊢ Dk,n(σk ◦ ((C1 ◦ C2)⊗ )) = Dk,n((σk ◦ (C1 ⊗ )) ◦ (C2 ⊗ )).

It follows similarly from those paragraphs that

QC ⊢ Dk,n(( ⊗ (C1 ◦ C2)) ◦ σk) = Dk,n((C1 ⊗ ) ◦ ((C2 ⊗ ) ◦ σk)).

The equality modulo QC of the two right-hand sides follows from the induction hypothesis, together with the compatibility

of Dk,n with Equation (t2) modulo QC, which is proved above.

• If C = C1 ⊗ C2 with C1 : ℓ1 → ℓ1 and C2 : ℓ2 → ℓ2, then

σk ◦ ((C1 ⊗ C2)⊗ ) ≡ ((σℓ1 ◦ (C1 ⊗ ))⊗ idℓ2) ◦ (idℓ1 ⊗ (σℓ2 ◦ (C2 ⊗ )))

and the derivation of the equivalence does not use Equation (t4), so that by the paragraphs above (together with Equation (t1)

of quantum circuits),

QC ⊢ Dk,n(σk ◦ ((C1 ⊗ C2)⊗ )) = Dk,n(σℓ1 ◦ (C1 ⊗ )) ◦Dk+ℓ1(σℓ2 ◦ (C2 ⊗ )).

The result follows by applying a similar transformation to the right-hand side of Equation (t4) and applying the induction

hypothesis.

• If C = or , then the result follows from Equations (t1) and (t3) of quantum circuits.
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• If C = ϕ , let us write Gn(k) as xay with a ∈ {0, 1} and y = ǫ if k is even or y = 1.0q for some q if k is odd. Then

by definition of Dk,n and Equation (23), if a = 1 then

QC ⊢ Dk,n(σ1 ◦ ( ϕ ⊗ )) = Λx
yX ◦ Λx

yP (ϕ)

and

QC ⊢ Dk,n(( ⊗ ϕ ) ◦ σ1) = (id|x| ⊗X ⊗ id|y|) ◦ Λ
x
yP (ϕ)(id|x| ⊗X ⊗ id|y|) ◦ Λ

x
yX.

By Propositions 15, 16 and 21, the following equalities are true modulo QC:

Λx
yX ◦ Λx

yP (ϕ) = (id|x| ⊗X ⊗ id|y|) ◦ Λ̄
x
yX ◦ Λx

yP (ϕ)
= (id|x| ⊗X ⊗ id|y|) ◦ Λ

x
yP (ϕ) ◦ Λ̄

x
yX

= (id|x| ⊗X ⊗ id|y|) ◦ Λ
x
yP (ϕ) ◦ (id|x| ⊗X ⊗ id|y|) ◦ Λ

x
yX

which gives us the result. The case a = 0 is similar.

• If C = θ , by the properties of the Gray code, exactly one bit differs between Gn(k) and Gn(k + 1), as well as

between Gn(k + 1) and Gn(k + 2), and in exactly one of the two cases this is the last bit that differs (namely between

Gn(k) and Gn(k + 1) if k is even, and between Gn(k + 1) and Gn(k + 2) if k is odd). Hence we can write Gn(k) as

xayb with a, b ∈ {0, 1}, in such a way that Gn(k + 2) = xāyb̄ and Gn(k + 1) = xayb̄ or xāyb depending on the parity

of k. We treat the case where k is even, the case with k odd is similar. Then

Dk,n(σ2 ◦ (
θ ⊗ )) ≡ ΛxayX ◦ Λx

yb̄X ◦ ΛxayRX(−2θ)

and

Dk,n(( ⊗ θ ) ◦ σ2) ≡ Λx
yb̄
RX(−2θ) ◦ ΛxayX ◦ Λx

yb̄
X

so by Lemma 52 and Equation (10), it suffices to prove that for any θ,

QC ⊢ Λx1yX ◦ Λx
y1X ◦ Λx1yRX(θ) = Λx

y1RX(θ) ◦ Λx1yX ◦ Λx
y1X.

To prove this, one has, modulo QC (together with the topological rules of quantum circuits):

Λx1yX ◦ Λx
y1X ◦ Λx1yRX(θ)

Propositions 21, 16, 11, 15 and 10
= Λx

y1XΛx1yRX(θ) Λ̄
x
y
ǫ

Propositions 16 and 17
= Λx

y1XΛx1yRX(θ)Λ̄
x
y
ǫ

Propositions 21, 16, 11, 15 and 10
= Λx1yRX(θ)Λ̄

x
y
ǫ

Λ̄
x
y
ǫ

Proposition 17
= Λx1yRX(θ)Λ̄

x
y
ǫ

Λ̄
x
y
ǫ
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(e)
= Λx1yRX(θ)Λ̄

x
y
ǫ

Λ̄
x
y
ǫ

(h)
= Λx1yRX(θ)Λ̄

x
y
ǫ

Λ̄
x
y
ǫ

Proposition 11
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λ̄
x
y
ǫ

(h)
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λ̄
x
y
ǫ

(10)(f)(12)
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λ̄
x
y
ǫ

X X

Propositions 10, 15 and 16
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λ̄
x
y
ǫ

X X

Lemma 52, (10)
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λ̄
x
y
ǫ
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Propositions 10, 11, 15, 16 and 21
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λx
y1X

Proposition 17
= Λx

y1RX(θ)Λ̄
x
y
ǫ

Λx
y1X

Propositions 21, 16, 11, 15 and 10
= Λx

y1RX(θ) ◦ Λx1yX ◦ Λx
y1X.

• The case C = is similar to the preceding one, with RX(θ) replaced by X .

F. Proof of Lemma 37

By Lemma 36, to prove Lemma 37, it suffices to prove that for each rule of Figure 6, of the form C1 = C2 with

C1, C2 ∈ LOPPraw(i, i) (see Footnote 10), and any 2n-mode raw context C[·]i, one has QC ⊢ D(C[C1]) = D(C[C2]). For this

purpose, we prove a slightly more general result, namely that for any k, n and any ℓ-mode raw context C[·]i with k+ ℓ ≤ 2n,

one has QC ⊢ Dk,n(C[C1]) = D(C[C2]). We proceed by induction on C[·]i:

• If C[·]i = C ◦ C′[·]i, then Dk,n(C[C1]) = Dk,n(C) ◦Dk,n(C
′[C1]) and Dk,n(C[C2]) = Dk,n(C) ◦Dk,n(C

′[C2]), so the

result follows by induction hypothesis. The case C[·]i = C′[·]i ◦ C is similar.

• If C[·]i = C ⊗ C′[·]i with C : ℓ1 → ℓ1, then Dk,n(C[C1]) = Dk+ℓ1,n(C
′[C1]) ◦ Dk,n(C) and Dk,n(C[C2]) =

Dk+ℓ1,n(C
′[C2]) ◦Dk,n(C), so the result follows by induction hypothesis. The case C[·]i = C′[·]i ⊗ C is similar.

It remains to prove for each rule of Figure 6, of the form C1 = C2 with C1, C2 ∈ LOPPraw(i, i), that for any k, n with

k+ i ≤ 2n, one has QC ⊢ Dk,n(C1) = Dk,n(C2). Again by Lemma 36, it suffices to prove that QC ⊢ Dk,n(C
′
1) = Dk,n(C

′
2)

for arbitrary C′
1 and C′

2 such that C′
1 ≡ C1 and C′

2 ≡ C2.

For Equation (A), one has Dk,n( 0 ) = ΛGn(k)s(0), Dk,n( 2π ) = ΛGn(k)s(2π) and Dk,n( ) = idn. The three are

equal modulo QC by Propositions 13 and 22.

For Equation (B), one has Dk,n( 0 ) = Λ
xk,n
yk,nRX(0) (where xk,n and yk,n are defined in Definition 32) and Dk,n( ) =

idn ◦ idn ≡ idn. The two are equal modulo QC by Proposition 13.

For Equation (C), one has Dk,n( ) = Λ
xk,n
yk,nX , and Dk,n(

π
2

−π
2

−π
2 ) =





∏

j∈{k,k+1}
ΛGn(j)s(−

π

2
)



 ◦Λ
xk,n
yk,nRX(−π). Note

that the definitions imply that

{Gn(k), Gn(k + 1)} = {xk,n0yk,n, xk,n1yk,n}. (55)

Therefore,

Dk,n(
π
2

−π
2

−π
2 ) = σ1,|xk,n| ◦





∏

a∈{0,1}
Λaxk,nyk,ns(−

π

2
)



 ◦ Λǫ
xk,nyk,n

RX(−π) ◦ σ|xk,n|,1

Propositions 15 and 16
= σ1,|xk,n| ◦

(

⊗ Λxk,nyk,ns(−π
2 )
)

◦ Λǫ
xk,nyk,n

RX(−π) ◦ σ|xk,n|,1

which by Lemma 48, Definition 8, Proposition 22, and Equation (a), is equal modulo QC to Λ
xk,n
yk,nX .

For Equation (D), one has Dk,n( ϕ2ϕ1 ) = ΛGn(k)s(ϕ2) ◦ ΛGn(k)s(ϕ1) and Dk,n( ϕ1+ϕ2 ) = ΛGn(k)s(ϕ1 + ϕ2). Both

are equal modulo QC by Proposition 13.

For Equation (E), one has

Dk,n(
θ

ϕ

ϕ
) = Λ

xk,n
yk,nRX(−2θ) ◦





∏

j∈{k,k+1}
ΛGn(j)s(ϕ)
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(55)
= Λ

xk,n
yk,nRX(−2θ) ◦





∏

a∈{0,1}
Λxk,nayk,ns(ϕ)





= σ1,|xk,n| ◦ Λ
ǫ
xk,nyk,n

RX(−2θ) ◦





∏

a∈{0,1}
Λaxk,nyk,ns(ϕ)



 ◦ σ|xk,n|,1

Propositions 15 and 16
= σ1,|xk,n| ◦ Λ

ǫ
xk,nyk,n

RX(−2θ) ◦ ( ⊗ Λxk,nyk,ns(ϕ)) ◦ σ|xk,n|,1

Lemma 48
= σ1,|xk,n| ◦ ( ⊗ Λxk,nyk,ns(ϕ)) ◦ Λǫ

xk,nyk,n
RX(−2θ) ◦ σ|xk,n|,1

Propositions 15 and 16
= σ1,|xk,n| ◦





∏

a∈{0,1}
Λaxk,nyk,ns(ϕ)



 ◦ Λǫ
xk,nyk,n

RX(−2θ) ◦ σ|xk,n|,1

=





∏

a∈{0,1}
Λxk,nayk,ns(ϕ)



 ◦ Λ
xk,n
yk,nRX(−2θ)

(55)
=





∏

j∈{k,k+1}
ΛGn(j)s(ϕ)



 ◦ Λ
xk,n
yk,nRX(−2θ)

= Dk,n(
θ

ϕ

ϕ
).

For Equation (F), one has

Dk,n(
α1

α2 α3 ) ≡ Λ
xk,n
yk,nRX(−2α3) ◦ Λ

Gn(k)s(α2) ◦ Λ
xk,n
yk,nRX(−2α1)

and

Dk,n(
β1 β2 β3

β4
) ≡ ΛGn(k+1)s(β4) ◦ Λ

Gn(k)s(β3) ◦ Λ
xk,n
yk,nRX(−2β2) ◦ Λ

Gn(k)s(β1).

Note that for some ak ∈ {0, 1}, one has Gn(k) = xk,nakyk,n and Gn(k + 1) = xk,nākyk,n. Therefore, by Proposition 12,

for any ϕ ∈ R, one has QC ⊢ ΛGn(k)s(ϕ) = Λ
xk,n
yk,nP (ϕ) and QC ⊢ ΛGn(k+1)s(ϕ) = (id|xk,n| ⊗X ⊗ id|yk,n|) ◦ Λ

xk,n
yk,nP (ϕ) ◦

(id|xk,n| ⊗ X ⊗ id|yk,n|), or conversely. Thus, up to using Equation (10) and possibly Lemma 52, it suffices to prove that

λn−1RX(−2α3)◦λ
n−1P (α2)◦λ

n−1RX(−2α1) = (idn−1⊗X)◦λn−1P (β4)◦ (idn−1⊗X)◦λn−1P (β3)◦λ
n−1RX(−2β2)◦

λn−1P (β1). One has

P (β4)P (β1) RX(-2β2) P (β3) XX

Lemma 53
=

P (-β4)P (β1) RX(-2β2) P (β3)

P (β4)

Proposition 13
=

P (β3−β4)P (β1) RX(-2β2)

P (β4)
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Proposition 22
=

P (β3−β4 mod 2π)P (β1) RX(-2β2)

P (β4)

Because of the conditions on the angles in the right-hand side of Equation (F), if β2 = 0 then the angles of the last circuit

satisfy the conditions so that it matches the right-hand side of Equation (29). Hence, since it has the same semantics as

λn−1RX(−2α3) ◦ λ
n−1P (α2) ◦ λ

n−1RX(−2α1), both circuits are equal according to Equation (29).

If β2 6= 0, then

P (β3−β4 mod 2π)P (β1) RX(-2β2)

P (β4)

Propositions 13 and 22
=

P (β3−β4 mod 2π)P (β1) RX(2π−2β2)

P (β4)

RX(2π)

Lemma 59
=

P (β3−β4 mod 2π)P (β1) RX(2π−2β2)

P (β4)P (π)

Lemma 54 and Propositions 13 and 22
=

P (β3−β4 mod 2π)P (β1) RX(2π−2β2)

P (β4+π mod 2π)

Because of the conditions on the angles in the right-hand side of Equation (F), one has β2 ∈ (0, π), so that 2π−2β2 ∈ (0, 2π),
and if 2π− 2β2 = π then β2 = π

2 , so that β1 = 0. Hence, the angles of the last circuit satisfy the conditions so that it matches

the right-hand side of Equation (29). Again, since it has the same semantics as λn−1RX(−2α3)◦λ
n−1P (α2)◦λ

n−1RX(−2α1),
both circuits are equal according to Equation (29).

For Equation (G), by the properties of the Gray code, exactly one bit differs between Gn(k) and Gn(k + 1), as well as

between Gn(k+1) and Gn(k+2), and in exactly one of the two cases this is the last bit that differs (namely between Gn(k)
and Gn(k + 1) if k is even, and between Gn(k + 1) and Gn(k + 2) if k is odd). Hence we can write Gn(k) as xayb with

a, b ∈ {0, 1}, in such a way that Gn(k + 2) = xāyb̄ and Gn(k + 1) = xayb̄ or xāyb depending on the parity of k. We treat

the case where k is even, the case with k odd is similar. One has

Dk,n





γ1

γ3

γ4γ2


 ≡ ΛxayRX(−2γ4) ◦ Λ
x
yb̄
RX(−2γ3) ◦ Λ

xaybs(γ2) ◦ Λ
xayRX(−2γ1)

and

Dk,n





δ3

δ4

δ6

δ2

δ1 δ5

δ7

δ8

δ9



 ≡ Λxāyb̄s(δ9) ◦ Λ
xayb̄s(δ8) ◦ Λ

xaybs(δ7) ◦ Λ
x
yb̄
RX(−2δ6) ◦ Λ

xayb̄s(δ5)

◦ΛxayRX(−2δ4) ◦ Λ
x
yb̄
RX(−2δ3) ◦ Λ

xaybs(δ2) ◦ Λ
xayb̄s(δ1).

Up to using Equation (10), we can assume that the components of x and y are all equal to 1. Up to using additionally

Lemma 52, we can assume that a = 1 and b = 0. Finally, up to deforming the circuits, we can assume that y = ǫ. Thus, it

suffices to prove that

QC ⊢ Λx1RX(−2γ4)◦Λ
x
1RX(−2γ3)◦Λ

x10s(γ2)◦Λ
x1RX(−2γ1) = Λx01s(δ9) ◦ Λ

x11s(δ8) ◦ Λ
x10s(δ7) ◦ Λ

x
1RX(−2δ6) ◦ Λ

x11s(δ5)◦
Λx1RX(−2δ4) ◦ Λ

x
1RX(−2δ3) ◦ Λ

x10s(δ2) ◦ Λ
x11s(δ1)
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where x = 1n−2.

The left-hand side is equal to

RX(-2γ1)

P (γ2) RX(-2γ3)

RX(-2γ4)

Propositions 13, 15 and 16
=

RX(-2γ1)

P (-γ2) RX(-2γ3)

RX(-2γ4)

P (γ2)

Lemma 48
=

RX(-2γ1)

P (-γ2) RX(-2γ3)

RX(-2γ4)

P (γ2)

≡
RX(-2γ1)

P (-γ2) RX(-2γ3)

RX(-2γ4)

P (γ2)

while the right-hand side is equal to

RX(-2δ3)P (δ2)P (δ1)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8)

Propositions 13, 15 and 16
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8)P (γ2)

≡

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8)P (γ2)

Hence, it suffices to prove that

RX(-2γ1)

P (-γ2) RX(-2γ3)

RX(-2γ4)
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8)

.

The left-hand side matches the left-hand side of Equation (r), hence it suffices to prove that the right-hand side can be put in

the form of the right-hand side of Equation (r) with the angles satisfying the conditions. One has

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8)
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Propositions 13 and 15
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8)P (-δ7)

P (-δ9)

Propositions 12 and 13
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8−δ9)P (-δ7)

Propositions 13, 15 and 16
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8−δ9)P (-δ7)

Proposition 13
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8−δ7−δ9)

Propositions 12, 13, 15 and 16
=

RX(-2δ3)P (δ2−γ2)P (δ1−δ2)

RX(-2δ4)

RX(-2δ6)P (δ5) P (δ7)

P (δ9)

P (δ8−δ7−δ9)

It remains to prove that any circuit of the form

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
can

be transformed using the axioms of QC in such a way that the angles satisfy the conditions given in Figure 5. We treat the

conditions in the following order (note that some of the conditions of Figure 5 have been split into two parts):

• δ3 ∈ [0, 2π)
• δ4 ∈ [0, 2π)
• δ6 ∈ [0, 2π)
• if δ3 = 0 then δ2 = 0
• if δ3 6= 0 but δ4 = π then δ2 = 0
• if δ3 = 0 and δ4 = π then δ1 = 0
• if δ3 = π then δ1 = 0
• if δ4 = 0 then δ1 = δ2 = δ3 = 0
• if δ3 6= 0 then δ1 ∈ [0, π)
• if δ3 = 0 then δ1 ∈ [0, π)
• if δ6 = 0 then δ5 = 0
• if δ6 = π then δ5 = 0
• δ2 ∈ [0, π)
• δ5 ∈ [0, π)
• δ7, δ8, δ9 ∈ [0, 2π).

For each of them, we prove that given a circuit satisfying the previous conditions, we can transform it into a circuit satisfying

also the considered condition.
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If δ3 /∈ [0, 2π), then by Proposition 22, we can assume that it is in [0, 4π), and then if it is in [2π, 4π), then:
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RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3−2π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

RX(2π)

Lemma 59
=

RX(δ3−2π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Proposition 15
=

RX(δ3−2π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π) P (π)

Proposition 16 and Lemma 58
=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π) P (π)

Proposition 15
=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Lemmas 48 and 54
=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Proposition 13
=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8+π)

with δ3 − 2π ∈ [0, 2π). Hence, we can assume that δ3 ∈ [0, 2π).

If δ4 /∈ [0, 2π), then by Proposition 22, we can ensure that it is in [0, 4π), and then if it is in [2π, 4π), then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
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Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)RX(2π)

Lemma 59
=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

Proposition 15
=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

Propositions 16 and 13 and Lemma 58
=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(-δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

Lemma 54 and Propositions 13 and 15
=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(-δ6)P (δ5) P (δ7) P (δ9+π)

P (δ8)

with δ4 − 2π ∈ [0, 2π). Hence, we can assume additionally that δ4 ∈ [0, 2π).

If δ6 /∈ [0, 2π), then by Proposition 22, we can ensure that it is in [0, 4π), and then if it is in [2π, 4π), then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6−2π)P (δ5) P (δ7) P (δ9)

P (δ8)

RX(2π)

Lemma 59
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6−2π)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)
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Lemma 54 and Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6−2π)P (δ5) P (δ7) P (δ9)

P (δ8+π)

with δ6 − 2π ∈ [0, 2π). Hence, we can assume additionally that δ6 ∈ [0, 2π).

If δ3 = 0 but δ2 6= 0, then:

RX(0)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Lemma 48
=

P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 15
=

P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ2)

Propositions 16 and 13
=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7) P (δ9)

P (δ8)

P (δ2)

Propositions 13 and 15
=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7−δ2) P (δ9)

P (δ8)

P (δ2)

Propositions 12, 13, 15 and 16
=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7−δ2) P (δ2+δ9)

P (δ8)

Proposition 13
=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7−δ2) P (δ2+δ9)

P (δ8)

P (0) RX(0)

.
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Hence, we can assume additionally that if δ3 = 0 then δ2 = 0.

If δ3 6= 0, and δ4 = π but δ2 6= 0, then:

RX(δ3)P (δ2)P (δ1)

RX(π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13 and Equation (28)
=

RX(δ3)P (δ2)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 15
=

RX(δ3)P (δ2)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )P (δ2)

Propositions 13 and 16
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )P (δ2)

Proposition 12
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

P (δ2)X X

Lemma 54
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

P (δ2) XX

Lemmas 53 and 57
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

P (δ2)X X

Proposition 21
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (-π2 )

P (δ2)X

Propositions 12 and 13
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ2+δ5) P (δ7) P (δ9)

P (δ8)

P (-π2 )

X
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Equation (28) and Proposition 13
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ2+δ5) P (δ7) P (δ9)

P (δ8)RX(π)

Proposition 13
=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ2+δ5) P (δ7) P (δ9)

P (δ8)RX(π)

P (0)

Hence, we can assume additionally that if δ4 = π then δ2 = 0 (note that by the previous assumption we already had δ2 = 0
when δ3 = 0).

If δ3 = 0 and δ4 = π, then by assumption, δ2 = 0. If we do not have additionally that δ1 = 0, then:

RX(0)P (0)P (δ1)

RX(π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

P (δ1)

RX(π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13 and Equation (28)
=

P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 12
=

P (δ1)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Lemma 54
=

P (δ1)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 21 and Lemmas 57 and 53
=

P (δ1)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

X X
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Proposition 12
=

P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 16
=

P (δ1)RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Propositions 13 and 15 and Lemma 54
=

RX(δ6)P (δ5) P (δ7−δ1) P (δ1+δ9)

P (δ8)X

P (-π2 )

Equation (28) and Proposition 13
=

RX(δ6)P (δ5) P (δ7−δ1) P (δ1+δ9)

P (δ8)RX(π)

Proposition 13
=

RX(δ6)P (δ5) P (δ7−δ1) P (δ1+δ9)

P (δ8)RX(π)

RX(0)P (0)P (0)

Hence, we can assume additionally that if δ3 = 0 and δ4 = π then δ1 = 0.

If δ3 = π but δ1 6= 0, then:

RX(π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13 and Equation (28)
=

XP (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Propositions 13, 15 and 16
=

XP (δ2) P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Lemma 54
=

XP (δ2) P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )
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Proposition 21 and Lemmas 57 and 53
=

XP (δ2) P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

X X

Proposition 12
=

XP (δ2)

P (δ1) RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 16
=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 12
=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)

P (δ5)

P (δ7) P (δ9)

P (δ8)P (-π2 )

Propositions 13, 15 and 16
=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)

P (δ5−δ1)

P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 12
=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)P (δ5−δ1) P (δ7) P (δ9)

P (δ8)P (-π2 )

Lemmas 48 and 54 and Proposition 13
=

XP (δ2)

RX(δ4)

RX(δ6)P (δ5−δ1) P (δ7) P (δ9)

P (δ1+δ8)P (-π2 )

Equation (28) and Proposition 13
=

P (δ2)

RX(δ4)

RX(δ6)P (δ5−δ1) P (δ7) P (δ9)

P (δ1+δ8)

RX(π)P (0)

Hence, we can assume additionally that if δ3 = π then δ1 = 0.

If δ4 = 0 but (δ1, δ2, δ3) 6= (0, 0, 0), then:

84



RX(δ3)P (δ2)P (δ1)

RX(0)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3)P (δ2)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

(29)
=

P (δ2)P (δ1) P (δ7) P (δ9)

P (δ8)

P (β1) RX(β2) P (β3)

P (β0)

Lemma 54 and Proposition 13
=

P (δ2)P (δ1) P (β3+δ7) P (δ9)

P (β0+δ8)

P (β1) RX(β2)

Proposition 15
=

P (δ2)P (δ1) P (β3+δ7) P (δ9)

P (β0+δ8)

P (β1) RX(β2)P (δ2)

Propositions 16 and 13
=

P (δ1+δ2+β1) P (β3+δ7) P (δ9)

P (β0+δ8)

RX(β2) P (δ2)

Propositions 13 and 15 and Lemma 54
=

P (δ1+δ2+β1) P (β3+δ7−δ2) P (δ2+δ9)

P (β0+δ8)

RX(β2)

Proposition 13
=

P (δ1+δ2+β1) P (β3+δ7−δ2) P (δ2+δ9)

P (β0+δ8)

RX(β2)RX(0)P (0)P (0)

RX(0)

where β0, β1, β2 and β3 satisfy the conditions given in Figure 5. In particular, β2 ∈ [0, 2π), so that the previous assumptions

are preserved. This implies that we can assume additionally that if δ4 = 0 then δ1 = δ2 = δ3 = 0.

If δ1 /∈ [0, π), then by Proposition 22, we can ensure that it is in [0, 2π), and then if it is in [π, 2π), then, if δ3 6= 0:
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RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)P (δ1−π)

Propositions 13, 15 and 16
=

RX(δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)P (δ1−π)

Lemma 60
=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Proposition 16
=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Proposition 12
=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)

P (δ5)

P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Propositions 13, 15 and 16
=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)

P (δ5−π)

P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Lemmas 48 and 54 and Proposition 13
=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)

P (δ5−π)

P (δ7) P (δ9)

P (δ8+π)

P (δ1−π)

Proposition 12
=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5−π) P (δ7) P (δ9)

P (δ8+π)

P (δ1−π)

with δ1 − π ∈ [0, π). Moreover, since δ3 6= 0, one has 2π − δ3 ∈ [0, 2π), so that the previous assumptions are preserved.

And, still in the case where δ1 ∈ [π, 2π), if δ3 = 0, then by assumption, δ2 = 0, and one has:
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RX(0)P (0)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)P (δ1−π)

Proposition 12
=

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

P (δ1−π)

Lemma 60
=

P (π)

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

Proposition 16
=

P (π)

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

Propositions 13 and 15 and Lemma 54
=

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7−π) P (δ9+π)

P (δ8)

P (δ1−π)

Proposition 13
=

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7−π) P (δ9+π)

P (δ8)

RX(0)P (0)P (δ1−π)

with δ1 − π ∈ [0, π).

If δ6 = 0 but δ5 6= 0, then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(0)P (δ5) P (δ7) P (δ9)

P (δ8)
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Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5+δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5+δ7) P (δ9)

P (δ8)

RX(0)P (0)

Hence, we can assume additionally that if δ6 = 0 then δ5 = 0.

If δ6 = π but δ5 6= 0, then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(π)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13 and Equation (28)
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

X

P (-π2 )

Lemma 54
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

X

P (-π2 )

Proposition 21 and Lemmas 57 and 53
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

X

P (-π2 )

X X

Proposition 12
=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5) P (δ7)

P (δ9)

P (δ8)

X

P (-π2 )
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Propositions 16, 13 and 15
=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5)P (δ7−δ5)

P (δ9)

P (δ8)

X

P (-π2 )

Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)P (δ7−δ5)

P (δ9)X

P (-π2 )

Proposition 12
=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)

P (δ7−δ5) P (δ9)X

P (-π2 )

Equation (28) and Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)

P (δ7−δ5) P (δ9)RX(π)

Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)

P (δ7−δ5) P (δ9)RX(π)P (0)

Hence, we can assume additionally that if δ6 = π then δ5 = 0.

If δ2 /∈ [0, π), then by Proposition 22, we can ensure that it is in [0, 2π), and then if it is in [π, 2π), then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 13
=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

Proposition 15
=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

Propositions 16 and 12
=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

P (π) XX
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Lemma 52
=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

P (π) XX

Lemma 60
=

RX(δ3)P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

XX

P (π)

RX(2π−δ4)

Lemma 52 and Equation (10)
=

RX(δ3)P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

RX(2π−δ4)

Lemma 60
=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

RX(2π−δ4)

RX(2π−δ3)

P (π)

Proposition 16
=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

RX(2π−δ4)

RX(2π−δ3)

P (π)

Propositions 12, 16 and 15
=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)RX(2π−δ4)

RX(2π−δ3)

P (π)

Lemmas 48 and 54 and Proposition 13
=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8+π)RX(2π−δ4)

RX(2π−δ3)

with δ2 − π ∈ [0, π). Moreover, since δ2 6= 0, by assumption δ3 6= 0 and δ4 6= 0, so that 2π − δ3 and 2π − δ4 are still in

[0, 2π) and the previous assumptions are preserved.

If δ5 /∈ [0, π), then by Proposition 22, we can ensure that it is in [0, 2π), and then if it is in [π, 2π), then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
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Proposition 13
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5−π) P (δ7) P (δ9)

P (δ8)

P (π)

Lemma 60
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(2π−δ6)P (δ5−π) P (δ7) P (δ9)

P (δ8)P (π)

Propositions 12, 13, 15 and 16
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(2π−δ6)P (δ5−π) P (δ7−π) P (δ9)

P (δ8+π)

with δ5−π ∈ [0, π). Moreover, since δ5 6= 0, by assumption δ6 6= 0, so that 2π− δ6 ∈ [0, 2π) and the previous assumptions

are preserved.

Finally, by Proposition 22 we can put δ7, δ8 and δ9 in [0, 2π) without modifying the other angles.

G. Definition of σk,n,ℓ

σk,0,ℓ := ( )⊗2k+ℓ

and ∀n ≥ 2, σk,n,ℓ := σn
k,1,ℓ+n−1, with

σk,1,ℓ =

k+ℓ
∏

j=k+1

PjQjPj

where

• given a family of N -mode circuits CA, ..., CB ,

B
∏

i=A

Ci := (. . . ((CB ◦ CB−1) ◦ CB−2) ◦ . . .) ◦ CA,

• M := k + ℓ+ 1
• Pj is a raw optical circuit such that Gn ◦ JPjK ◦G−1

n = idj−1 ⊗
r z

⊗ idM−j−1, defined as

Pj :=

2j−1
∏

b=0
b mod 4∈{1,2}

2M−j−1−1
∏

a=0

υM,j,b,a

• Qj is a raw optical circuit such that Gn ◦ JQjK ◦G−1
n = idj−1 ⊗

r z
⊗ idM−j−1, defined as

Qj :=
2j−1−1
∏

b=0

2M−j−3−1
∏

a=0

υM,j−1,b,a

• υN,i,b,a is a raw optical circuit such that υN,i,b,a ≡

(2b+ 1)2N−i−1 − a− 1

(2b+ 1)2N−i−1 − 1

(2b+ 1)2N−i−1

(2b+ 1)2N−i−1 + a

0

N − 1

. It is defined for any N ≥ 1,
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i ∈ {0, ..., N − 1}, b ∈ {0, ..., 2i − 1} and a ∈ {0, ..., 2N−i−1 − 1}, by finite induction on a by

υN,i,b,0 :=

(2b+1)2N−i−1−1{

2N−(2b+1)2N−i−1−1{

,

and for a ∈ {1, ..., 2N−i−1 − 1},

υN,i,b,a := s−a ◦ s+a ◦ υN,i,b,a−1 ◦ s+a ◦ s−a,

where s+a :=

(2b+1)2N−i−1+a−1{

2N−(2b+1)2N−i−1−a−1{

and s−a :=

(2b+1)2N−i−1−a−1{

2N−(2b+1)2N−i−1+a−1{

.
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