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ABSTRACT. The development of hybrid nanomaterials that preserve and combine the properties 

of their constituents is a central issue of nanosciences. Herein, we describe the polymerization 

via CuAAC (copper-catalyzed azide-alkyne cycloaddition) of cobalt(III) corroles around 

conductive carbon nanotubes to produce chemically robust hybrid catalysts for Oxygen 

Reduction Reaction (ORR). A combination of techniques including UV-Vis-NIR absorption, 

Raman and X-ray Photoelectron Spectroscopy (XPS) as well as Scanning Electron Microscopy 



 2

(SEM) were used to characterize the assembly of the two parts of the functional hybrid system 

for which the activity and the selectivity toward the ORR process in acidic media are enlightened 

by a combination of Rotating Disk Electrode (RDE) and Rotating Ring Disk Electrode (RRDE) 

measurements. The polymerized hybrid (click MWNT-CoCorr) exhibits an overpotential of ca. 

230 mV compared to a reference platinum ink; the number of electrons involved in the reduction 

of oxygen is close to 3 in acidic media demonstrating that the corrole cobalt centers in the 

hybrids reduce oxygen via a mix of 2 and 4 electrons pathways. 
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Introduction 

The development of hybrid nanomaterials that preserve and combine the properties of their 

constituents is a central issue of nanosciences. For more than twenty years, carbon 

nanomaterials, first carbon nanotubes and then later graphene have drawn attention because of 

their specific surface area, their aspect ratio (diameter vs. length, thickness vs. surface), their 

mechanical properties and among all because of their electronic properties and energy 

applications.1-17 

Within the context of renewable energy, the Hydrogen Evolution Reaction (HER), Hydrogen 

Oxidation Reaction (HOR), Oxygen Evolution Reaction (OER) and Oxygen Reduction Reaction 

(ORR) are important electrochemical reactions that must be controlled to efficiently fabricate or 

consume hydrogen and oxygen in fuel cells to produce energy. These reactions require the 

presence of catalysts like platinum, or platinum group metals (PGM) and the cost and the 

scarcity of these metals encourage scientists to look for alternatives based on non-noble metal18-

20 or metal-free materials.13,14,18,21 

In Proton Exchange Membrane Fuel Cells (PEMFCs), the reduction of oxygen is the limiting 

reaction because of its slow kinetics, the multi-electron process and the competition between the 

2-electrons and 4-electrons pathways. In nature, reactions involving the reduction of oxygen are 

performed by iron porphyrins in the active sites of cytochrome c oxidase (CcO). Thus, 

bioinspired catalysts based on Fe/Cu bimetallic systems, cofacial porphyrins, cofacial corroles or 

hangman-type systems mimicking the structure of the coenzyme have been synthesized and have 

been studied for ORR.22-30 Recently, it appeared that the reduction of oxygen strongly depends 

on the environment of the catalytic center.31 Indeed, a bimetallic center (Fe/Cu) is required to 

perform the reduction of oxygen particularly under rate-limiting electron flux. By 
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electrochemistry (RDE – rotating disk electrode) in solution or on surface, ‘‘iron-only’’ 

porphyrins and phthalocyanines are efficient catalysts for the 4-electrons reduction of dioxygen 

in alkaline or neutral conditions as long as the electron supply is not a limiting factor.32-35 

Moreover, it was shown that monomeric cobalt MN4 materials such as Co-

phthalocyanines,33,36,37 Co-porphyrins33,38 and more recently Co-corroles39-41 were able to reduce 

oxygen via a mix pathway involving 2 and 4 electrons. In the case of Co-corroles, several works 

have been dedicated to improve the activity and the selectivity of the catalysts towards the 

reduction of oxygen. If simple Co-corroles were shown to produce exclusively hydrogen 

peroxide thanks to a 2-electrons process in solution42 or after adsorption on edge-plane pyrolytic 

graphite,43,44 their ability to catalyse partially and increasingly the 4-electrons process was 

evidenced after tuning several factors such as the nature of their meso and/or -substituents,45,46 

the axial ligation of the pristine cobalt center47 or by creating very sophisticated corrole based 

architectures where the active catalyst is linked to a proton relay30,48,49 or to another cobalt 

macrocycle.28,50 One of the crucial step during the 4-electrons ORR is the cleavage of the O-O 

bond of the peroxo intermediates that requires fast electron transfer from the electrode to the 

catalytic center.40 This fast electron transfer is probably the main cause of the enhanced catalytic 

activity and selectivity resulting from the composite association of Co-corroles and conductive 

supports such as Fe3O4 nanoarrays,51 high surface area carbon supports52,53 or carbon 

nanotubes.54-56 The immobilization of the catalyst on carbon materials is then ensured using two 

strategies. The first one rely a simple adsorption of Co-corroles through - interactions that was 

performed by several groups. For example, nanocomposites composed of cobalt(III) 

tris(pentafluorophenyl)corroles adsorbed on carbon nanotubes were shown to reduce and thereby 

monitor oxygen in physiological media during in vivo experiments.57 Because the interactions of 
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the complexes and the carbon surface are still weak, Lei et al. described in 2016 the ORR 

activity of carbon nanotubes functionalised by a similar complex bearing a peripheral pyrene 

group introduced to ensure a stronger noncovalent assembly.55 The second strategy to gather 

metallocorroles and carbon nanotube is to proceed to a covalent grafting. This grafting requires 

at first the functionalization of the carbon surface by, for example, ethynyl benzene moieties that 

were used as linkers to attach co-corroles via an azide-alkyne cycloaddtition.56 If these strategies 

produced neat composites showing efficient catalytic ORR properties, one cannot exclude that an 

active layer of adsorbed complexes will be partially lost with time using concentrated acidic 

environments whereas the robust covalent grafting of molecules transforms hybridized sp2 

carbon atoms into sp3 ones and induces sizeable decrease of their electronic properties.58 The aim 

of the present study is to propose an alternative way of preparing chemically robust Co-corroles-

carbon nanotubes conjugates by the creation of a catalyst polymer network around the preserved 

conducting material and to test the resulting materials for ORR in acid media. 

For this purpose, cobalt corroles bearing three propargyl groups on the meso positions were 

designed to be polymerized around Multi Walled Carbon Nanotubes (MWNT) via the copper-

catalyzed azide-alkyne cycloaddition (CuAAC)59,60 or Hay coupling.61 Because the experimental 

conditions of the latter reaction proved to be too harsh for the active metallocorrole, we focused 

herein on the formation of core-shell structures via CuAAC. The MWNT-CoCorr hybrid 

materials were characterized by UV-Vis absorption, XPS and Raman spectroscopy and scanning 

electron microscopy and their electro-catalytic properties were investigated by rotating ring disk 

electrode (RRDE). 

Results and Discussion 
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The synthesis of the polymerizable cobalt corrole (CoCorr) is depicted in Scheme 1 and starts 

from the 5,10,15-tris(pentafluorophenyl)corrole (tpfc) because such meso electron-withdrawing 

groups were shown to induce facilitated Co(III)/Co(II) reductions and improved selectivity 

toward the 4-electrons reduction of O2 to give H2O.39 Moreover, it was described that the 

fluorine atoms in para position of the meso-pentafluorophenyl groups can be easily and 

selectively substituted by various nucleophilic groups.62,63 Following the procedure of Wiehe et 

al.,62 the triple nucleophilic aromatic substitution of tpfc by propargyl alcohol in a basic medium 

gave the macrocycle 1 bearing three ethynyl moieties in 66% yield (Scheme 1). The subsequent 

metallation of 1 by Co(OAc)2·4H2O using classical conditions and in presence of 

triphenylphosphine (PPh3) produced the penta-coordinated cobalt complex CoCorr in 73% 

yield. 

Scheme 1. Synthetic procedure for Co-corrole (CoCorr)a 

 

a(i) Propargyl alcohol, KOH, THF, rt, 18h, 66 %; (ii) Co(OAc)2·4H2O, PPh3, CH2Cl2/MeOH, rt, 

10 min, 73%. 

The 1H and 19F NMR spectra of CoCorr confirmed the diamagnetism of CoCorr (CoIII, low-

spin d6) which remains pentacoordinated in solution (see the supporting information). The UV-

Vis-NIR spectrum of CoCorr recorded in CH2Cl2 (Figure S1) is analogous to the one reported 
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for the complex Co(tpfc)PPh3 and features a split Soret band (346 and 410 nm) and several less 

intense Q-bands located at 549, 586 and 811 nm. The electrochemical properties of CoCorr in 

CH2Cl2 containing 0.1 M of tetra-n-butylammonium hexafluorophosphate (nBu4NPF6) were 

probed by cyclic voltammetry (Figure S2) and the corresponding redox potential values are 

given versus the potential of the standard calomel electrode. The cyclic voltammogram of 

CoCorr displays a reversible ligand centered oxidation process at +1.19 V and a reversible 

reduction at +0.28 V that has been previously attributed to the CoIII/CoII couple. The reversibilty 

of this reduction observed in CH2Cl2 is quite unexpected because previous studies using other 

solvents reported irreversible first reduction processes of phosphine ligated cobalt(II) corroles 

resulting from the dissociation of the axial phosphine ligand.64,65 

The synthesis of MWNT-CoCorr hybrid (click MWNT-CoCorr) is shown in Scheme 2. 

Briefly, purified MWNTs66 were dispersed in N,N-dimethylformamide (DMF) under argon, then 

1,6-diazidohexane,67 CoCorr, Cu(MeCN)4PF6 and tris(3-hydroxypropyltriazolylmethyl)amine 

(THPTA)68 were added. The suspension was stirred at room temperature overnight, filtered 

through a 0.2 µm PTFE membrane and washed successively with DMF, water, NH4Cl solution 

(to remove the copper catalyst), again with water, then ethanol and dichloromethane. As a 

reference material, we also prepared physisorbed MWNT-CoCorr (ads MWNT-CoCorr) by 

simply mixing MWNT with CoCorr in tetrahydrofuran using bath sonication before removal of 

the solvent using an argon flow. 

 

Scheme 2. Synthetic procedure for the MWNT-CoCorr hybrids (ads MWNT-CoCorr, click 

MWNT-CoCorr)a 
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a(i) THF sonication, rt, 10 min; (ii) 1,6-diazidohexane, Cu(MeCN)4PF6, THPTA, DMF, rt, 

overnight. 

The click MWNT-CoCorr hybrid was characterized by UV-Vis-NIR absorption, Raman and 

X-ray photoelectron spectroscopies. First the absorption spectra (Figure 1a) show that the 

spectrum of the click MWNT-CoCorr hybrid is the combination of the spectra of MWNT and 

of CoCorr. The XPS spectra of the MWNT and click MWNT-CoCorr hybrid are compared in 

Figures 1b and 1c. The survey spectra of the click MWNT-CoCorr hybrid show (additionally to 

the presence of carbon and oxygen) the presence of nitrogen, fluorine and cobalt coming from 

the corrole; the atomic content of cobalt in the hybrid was estimated to 0.15%; this number 

should be taken with caution since at this low value XPS cannot be quantitative. For comparison, 

the atomic percentage of cobalt in the ads MWNT-CoCorr is 0.69% (calculated from the 

quantity of MWNT and CoCorr introduced in the mixture). 
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Figure 1. a) Absorption spectra of CoCorr, MWNT and click MWNT-CoCorr hybrid in DMF; 

b) XPS spectra (survey) of MWNT and click MWNT-CoCorr hybrid. The peaks labelled * are 

due to Auger band of oxygen and fluorine and the one with • is due to Co2s and to the presence of 
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copper from catalyst which was not totally removed probably because of the presence of 

numerous triazole groups in the hybrids; c) comparison between the C1s high resolution spectra 

of MWNT and click MWNT-CoCorr (top), high resolution spectra of Co2p and N1s of click 

MWNT-CoCorr; d) Raman spectra (excitation λ = 532 nm) of MWNT, click MWNT-CoCorr 

hybrid and Co-Corr. 

The Raman spectra recorded with excitation at 532 nm are presented in Figure 1d. The 

spectrum of MWNT shows the typical first order graphitic mode (G band) at 1590 cm−1 and the 

defect band (D band) at 1350 cm−1 as well as the second order 2D and D + G in the 2500–3000 

cm−1 region. The cobalt corrole (in red) exhibits rich features in particular in the 950-1700 cm−1 

region; some of these bands can be observed on the spectrum of the click MWNT-CoCorr 

hybrid (see the zoom of the spectra of CoCorr and click MWNT-CoCorr in Figure S3) 

confirming the presence of corroles on the nanotubes. 

The nanotube hybrids were characterized by scanning electron microscopy (SEM). Figure 2 

presents the micrographs of two nanotube-corrole hybrids: the click MWNT-CoCorr and the 

ads MWNT-CoCorr for which the corrole is simply adsorbed on the nanotube sidewall; the 

latter hybrid served as reference material for the electrocatalytic studies. The images of the ads 

MWNT-CoCorr clearly show the tubular structures with drop-like aggregates on the nanotubes. 

This behavior has already been observed for iron porphyrins adsorbed on MWNT;34 and is due to 

the segregation between the two components (i.e. nanotubes and corroles, in the present case). 

Therefore, a part of the corrole active species is not properly in contact with the nanotubes. On 

the contrary, for the click MWNT-CoCorr (Figure 2b) no aggregates were detected suggesting 

that the corroles are homogeneously distributed on the nanotube surfaces. 



 

Figure 2. SEM images of a) 

physisorbed hybrid ads MWNT

aggregates. 
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slightly higher current density of 2 mA·cm−2 at 2000 rpm (Figure 3b); it is generally admitted 

that carbon nanotubes reduce oxygen following a 2-electron process.69,70 When the corrole is 

combined to the nanotubes, the ORR activity increases remarkably; indeed ads MWNT-CoCorr 

and click MWNT-CoCorr (Figure 3c-d) exhibit onset potentials for ORR of ca. 0.40 V and 0.45 

V vs. Ag/AgCl, respectively. It is worth mentioning that on the same setup and under the same 

conditions the onset potential for the reduction of oxygen of a reference platinum (Pt/C) ink is 

0.70 V vs. Ag/AgCl reference electrode (Figure 3e); this means that our best hybrids present an 

overpotential of 250 mV compared to platinum.  

The current density is related to the number of electrons involved in the reduction of oxygen. 

Thus, the increase of current density for click MWNT-CoCorr suggests that the hybrid material 

ink reduces oxygen via a process involving a higher number of electrons than the catalytic inks 

made only with cobalt corrole. The presence of the nanotubes is therefore extremely important in 

improving the ORR properties. We believe that this is due to the conductivity of the nanotubes, 

which facilitates the access of the electrons to the catalytic centers. This result is not surprising, 

since it was reported, for the case of a series of iron porphyrins deposited on different carbon 

electrodes, that the mesoscale environment around the catalytic center plays a crucial role in the 

resulting properties.31 The limited ORR activity of ads MWNT-CoCorr compared to click 

MWNT-CoCorr may be also attributed to the segregation of corrole and the nanotubes in the 

catalytic ink and therefore to the lack of efficient electron transfer from the nanotube to the 

corrole to perform the reduction. Figure S4 present the cyclic voltammetry curves of CoCorr, 

MWNT, ads MWNT-CoCorr and click MWNT-CoCor; from these curves it is possible to 

observe the capacitive current on the materials. We can say that the formation of the covalent 

network has two effects on the electrochemical response when comparing (click MWNT-
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CoCorr) to the physisorbed hydrid (ads MWNT-CoCorr): the electrochemical surface area 

seems indeed larger (about 1.5 time according to capacitive current at 0.75V – Figure S4b), but 

the dominant effect is the decrease of the charge transfer resistance as observable by a shift of 

140 mV of the overpotential of the two systems (threshold: −0.5 mA/cm2). The mechanism is not 

clear and we believe that it is not the covalent linkage between the corroles that is important but 

more likely the fact that the corroles are more homogeneously distributed and/or in better contact 

with the nanotube sidewalls. 

 

Figure 3. a)-d) RDE curves recorded for ORR in O2-saturated 0.5 M H2SO4 (scan rate = 5 

mV·s−1, room temperature) for CoCorr, MWNT, ads MWNT-CoCorr and click MWNT-
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CoCorr mixed with Nafion and deposited on Glassy Carbon (GC) electrodes for rotation speeds 

of 0, 400, 800, 1200, 1600 and 2000 rpm; the potential are given vs. Ag/AgCl; e) comparison 

between the RDE curves at 800 rpm of CoCorr, MWNT, ads MWNT-CoCorr, click MWNT-

CoCorr and a reference platinum ink. 

 

The number of electrons involved in the reduction of oxygen was determined for the click 

MWNT-CoCorr hybrid by RRDE and using Koutecky-Levich equation (Eq. 1) with Levich 

analysis (Eq 2).71 

ଵ

௃
=

ଵ

௃ೖ
+

ଵ

௃ಾ೅
   [Eq. 1] 

𝐽ெ் =  −0.620𝑛𝐹𝐶ைଶ
𝐷ைଶ

మ

య 𝜐ି
భ

ల𝜔
భ

మ   [Eq. 2] 

With J the measured current, Jk the kinetic current, JMT the mass transport current in [Eq. 1] 

and n the number of electron involved in the reduction of oxygen, F the Faraday’s constant 

(96 485.34 C·mol−1), CO2 the concentration of oxygen (1.1·10−6 mol·cm−3), DO2 the diffusion 

coefficient of oxygen in aqueous solution (1.4·10−5 cm2·s−1),  the kinematic viscosity (0.01 

cm2·s−1)72 and  the rotation speed (rad·s−1). The K-L plot determined at different potentials 

(0.0, −0.1, −0.2 and −0.3 V vs Ag/AgCl) on the RDE curves of click MWNT-CoCorr (see 

Figure 3d) is shown in Figure 4a. Using the Levich analysis [Eq. 2], we determined that the 

number of electrons involved in the reduction of oxygen was of 3.20 at −0.3 V and it dropped 

regularly to 2.7 electrons at 0.0 V (Figure 4b); the values are summarized in Table 1. 
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Figure 4. a) K-L plots at different potential −0.3 V (pink), −0.2 V (blue), −0.1 V (green) and 0.0 

V (red) vs. Ag/AgCl determined from the RDE curves for click MWNT-CoCorr; b) number of 

electrons determined using the Levich analysis as a function of the disk potential (Working 

Electrode); c) RRDE curves for the reduction of oxygen (negative current) and for the oxidation 

of hydrogen peroxide (positive current) at a rotation rate of 1200 rpm for click MWNT-CoCorr 

in O2-saturated 0.5M H2SO4. The ring electrode was polarized at 1.2 V vs. Ag/AgCl; scan rate: 5 

mV s−1. 

The number of electrons involved in the reaction can also be determined by monitoring the 

oxidation of the hydrogen peroxide produced by the catalyst at the disk by the ring electrodes. 

The RRDE measurement at a rotation rate of 1200 rpm is given in Figure 4c. The number of 

electrons involved in the reduction of oxygen can be deduced from [Eq. 3]: 
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  [Eq. 3] 

NC, the collection coefficient (0.2) was determined using the one-electron Fe(CN)6
3–/Fe(CN)6

4– 

redox couple and Idisk and Iring were determined on the RRDE curves. We determined the 

variation of the number of electrons from the curves at 1200 rpm (Figure 4c) at different 

potentials (from −0.3 to +0.1V vs. Ag/AgCl); the corresponding value goes from 3.17 to 3.07. 

The number of electrons involved in the reduction are collected in Table 1. 
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The RRDE curves for CoCorr and ads MWNT-CoCorr are given in Figure S5. For the 

catalytic inks made of these materials, the number of electrons involved in the reduction of 

oxygen is 3.25 and 3.36, respectively. These values are determined at −0.3V vs. Ag/AgCl for a 

rotation rate of 1200 rpm, they are very similar to the one of click MWNT-CoCorr. 

 

Table 1. Number of electrons involved in the reduction of oxygen by the click MWNT-CoCorr 

hybrids determined using the K-L plots and by RRDE at −0.3V vs. Ag/AgCl. 

 
K-L plots (at different EWE / 
V) 

RRDE 1200 rpm (at different EWE / V) 

click 
MWNT-
CoCorr 

−0.3 −0.2 −0.1 0.0 −0.3 −0.2 −0.1 0.0 0.1 

Nb electrons 3.20 2.94 2.81 2.73 3.17 3.14 3.12 3.11 3.07 

 

By RRDE and Koutecky-Levich analyses, we estimated that the number of electrons involved 

in the reduction of oxygen is around three. The cobalt corroles reduce oxygen via a mix of two 

and four electrons process and therefore produce hydrogen peroxide. The formation of “face-to-

face”-like multilayers of cobalt corrole around the nanotubes could improve the reduction 

process as we have shown for a multilayer of cobalt porphyrins around carbon nanotubes.66 

Conclusion 

Here, we described the ORR activity of MWNT-CoCorr hybrids prepared by the 

unprecedented polymerization of poly-alkynyl cobalt corroles around carbon nanotubes through 

multiple CuAAC. This polymerization ensures i) a chemical stability of the composite catalysts 

by excluding the partial loss of the active layer by desorption and ii) an improved cohesion 
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between the two partners by preventing the segregation between the two components when their 

assembly results only from - interactions. 

While iron tetraphenylporphyrin or iron phthalocyanine are extremely simple and efficient 

catalysts for 4-electron oxygen reduction in alkaline media; their ORR activity rapidly degrades 

in 0.5M H2SO4. Therefore, the development of materials compatible with acidic media, which is 

the environment in PEMFC, is strongly needed. The ORR activity of the click MWNT-CoCorr 

hybrid combines the properties of each component. This activity rely on a mix pathway 

involving 2 and 4 electrons and therefore has a selectivity towards the 4-electrons ORR process 

that remains modest with an overpotential of 230 mV (for click MWNT-CoCorr) compared to 

i) the reference platinum ink and to ii) previous hybrids systems gathering carbon supports and 

analogous cobalt corroles for which the number of electrons involved in the reduction of oxygen 

could reach 3.6 in acidic media.55,56 Previous and recent results have shown that the compactness 

of adsorbed Co-corroles49,53 or the length of the linking arm73 when they are grafted are crucial to 

get improved ORR selectivity when they are associated to carbon support. In the present work, 

the moderate selectivity probably results from the bulkyness of the complexes and the flexibility 

of their polymers that increase the average distance between the active sites and the nanotubes. 

However, these materials are paving the way for preparing analogous and robust hybrid ORR 

catalysts by using polymerization as an alternative way of gathering the conducting and active 

layers. 
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