
HAL Id: hal-03926637
https://hal.science/hal-03926637

Submitted on 18 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ecoCode: a SonarQube Plugin to Remove Energy Smells
from Android Projects

Olivier Le Goaer, Julien Hertout

To cite this version:
Olivier Le Goaer, Julien Hertout. ecoCode: a SonarQube Plugin to Remove Energy Smells from
Android Projects. ASE ’22: 37th IEEE/ACM International Conference on Automated Software En-
gineering, Oct 2022, Rochester MI, United States. pp.1-4, �10.1145/3551349.3559518�. �hal-03926637�

https://hal.science/hal-03926637
https://hal.archives-ouvertes.fr

ecoCode: a SonarQube Plugin to Remove Energy Smells from
Android Projects

Olivier Le Goaër
Universite de Pau et des Pays de l’Adour

Pau, France
olivier.legoaer@univ-pau.fr

Julien Hertout
Snapp’ Group

Bordeaux, France
jhertout@snapp.fr

ABSTRACT
To face the climate change, Android developers urge to become
green software developers. But how to ensure carbon-efficient mo-
bile apps at large? In this paper, we introduce ecoCode, a SonarQube
plugin able to highlight code structures that are smelly from an en-
ergy perspective. It is based on a curated list of energy code smells
likely to impact negatively the battery lifespan of Android-powered
devices. The ecoCode plugin enables analysis of any native Android
project written in Java in order to enforce green code.
— Demo video on https://youtu.be/4XIYGyPEhXQ

CCS CONCEPTS
• Software and its engineering → Application specific develop-
ment environments.

KEYWORDS
android, energy, battery, smells, quality, debt
ACM Reference Format:
Olivier Le Goaër and Julien Hertout. 2022. ecoCode: a SonarQube Plu-
gin to Remove Energy Smells from Android Projects. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3551349.3559518

1 INTRODUCTION
Climate change may not seem like an issue that should concern An-
droid mobile developers, but the truth is that their work does have
a carbon footprint. It is not only about instant over-consumption
of energy at runtime but also about the limited number of charge-
/discharge cycles of the battery that incidentally shorten the lifes-
pan of handheld devices. Indeed, it is now well-known that most of
the carbon footprint is emitted during the manufacturing of new
terminals, and that this fast pace is no more sustainable.

Mobile developers, perhaps even more than other developers,
lack of knowledge on how to write, maintain, and evolve energy-
efficient software [2]. Whilst energy efficiency is becoming a major
quality attribute, as is security or maintenability, we pinpoint the
absence of lint-like tools to avoid poorly designed apps from an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559518

energy viewpoint. Linters have been used to address specific aspects
of Android development like performance [3], permissions [5] or
UI layout [6], and very recently for energy hotspots. Noticeable
initiatives in that field are the EcoAndroid [4] plugin, a specific
extension of Android Lint [7], the revised version of ADoctor [1]
and the E-Debitum plugin [8]. Unfortunately, all these code analysis
tools suffer from a limited number of detection rules and have not
gone beyond the prototype stage.

Our work confirms the existence of a more significant number
of android-specific energy smells that could be detected by code
inspection. Energy smells can be defined as structures with technical
(and ecological) debt which affect energy consumption negatively.
Energy code smells imply the possibility of refactoring. In addition,
among the static code analysers that work for Android projects,
SonarQube is a world-class solution which can foster a rapid adop-
tion by green developers worldwide. The result of this applied
research is called ecoCode (stands for “ecological code”), and was
released as an Open Source Software on GitHub1 in January 2022.
ecoCode has reached the Minimum Viable Product stage to attract
early-adopter customers.

This paper is organized as follows: Section 2 outlines the em-
pirical catalog of energy smells for Android. Section 3 describes
how SonarQube was extended to cope with this new code smells,
before we illustrate how it operates in Section 4. The final word is
in Section 5.

2 ANDROID-SPECIFIC ENERGY SMELLS
Our work does not deals with the energy impact of classic object-
oriented code smells [10, 11] or idioms [12, 13] on Android system,
but rather with code patterns and API calls that have a vivid influ-
ence on the battery drain. It ranges from true battery-killers that
must absolutely be avoided, to merely good practices.

2.1 Elements of Methodology
We yielded a catalog of smells by mixing several sources of knowl-
edge. The primary and most indisputable of all is the Android API
reference itself. We mined the online documentation (D) with the
query .*(energy|battery|power).* to find energy-related hints,
and refined the results. We also inspired from research (R) litera-
ture on that topic (e.g. [9]), and conducted interviews (I) of senior
Android developers to get new understandings, during brainstorm-
ing workshops. The result is a premiere gran catalog of 40 energy
smells tied to the Android platform.

However, despite their empirical evidence, some smells may
suffers controversies, like for example the real benefit of dark UI on

1https://github.com/cnumr/ecoCode/tree/main/src/android-plugin

https://youtu.be/4XIYGyPEhXQ
https://doi.org/10.1145/3551349.3559518
https://doi.org/10.1145/3551349.3559518
https://github.com/cnumr/ecoCode/tree/main/src/android-plugin

ASE ’22, October 10–14, 2022, Rochester, MI, USA Le Goaer et al.

OLED screens. But what makes them very relevant is that they are
android-specific, statically detectable and have multiple detection
scopes (not only Java source code).We also found that energy smells
can be arranged into 8 categories:

(1) Optimized API: refers to APIs have been specifically de-
signed to perform some tasks in a more battery-efficient way
than regular ones.

(2) Leakage: refers to resources acquisition without their re-
lease, which cause an unnecessary workload.

(3) Bottleneck: refers to accumulation of data or operations
that requires an energy peak to be processed.

(4) Sobriety: refers to variants known as less energy-greedy,
calling for a trade-off between the gain and the user experi-
ence.

(5) Idleness: refers to resources usage strategies when the app
enters in an idle state.

(6) Power: refers to actions undertaken in regard of the battery-
level and its internal management by the OS.

(7) Batch: refers to grouped execution of operations in order to
optimize energy consumption

(8) Release: refers to compile-time adjustments before a large-
scale deployment.

2.2 Empirical Catalog
Table 1 shows the source of knowledge the smell originated from, its
category, its name and its detection scope within a native Android
project. Due to place limitation, the detailed description of the
catalog is available online2.

The catalog simply lists the Android coding practices in a quite
neutral way. Depending on the static detection strategy that will be
chosen, some smells can be regarded as either good smells (saving
energy) or bad smells (draining energy). This peculiarity is rare
enough to be noted, in a code quality context where only bad smells
are traditionally considered.

3 ECOCODE: A SONARQUBE PLUGIN
SonarQube, edited by SonarSource, allows to improve quality in
software development projects. It is mainly focused on maintain-
ability and security aspects but can be extended to address new
concerns. Thus, the SonarQube framework allows writing custom
coding rules to detect the aforesaid energy smells. We went one
step further by customizing the GUI of the web-based dashboard.

3.1 Multi-scope Analysis
Unlike Android Lint for exemple, SonarQube is a general-purpose
solution, unaware of the Android nature of project being analyzed.
A challenge is that our catalog of smells implies a threefold scan-
ning at once: Java files (source code), Xml files (manifest, certain
types of resources) and Gradle files (build, settings, properties). The
SonarQube framework provides built-in solutions to traverse Java
files throughout an Abstract Syntax Tree, and Xml files throughout
XPath expressions. As a side note, whilst Kotlin rules are available
to end-user in the base SonarQube product, the Kotlin AST is not
available for custom rules. Similarly, there is nothing to scan Gradle

2https://olegoaer.perso.univ-pau.fr/android-energy-smells/

Table 1: 40 Energy Smells for Android

Origin Name Scope
Optimized API (2)

D Fused Location Java, Gradle
D Bluetooth Low-Energy Java

Leakage (3)

D, R Media Leak Java
D, R Sensor Leak Java
I Everlasting Service Java

Bottleneck (4)

R Internet In The Loop Java
D Wifi Multicast Lock Java
R Uncompressed Data Transmission Java

D, R Uncached Data Reception Java
Sobriety (10)

R Dark UI Xml, Bitmap
D Day Night Mode Xml, File System
I Brightness Override Java
D Thrifty Geolocation Java
D Thrifty BLE Java
D Thrifty Motion Sensor Java
I Thrifty Notification Java
I Vibration-free Java
I Torch-free Java
D High Frame Rate Java

Idleness (6)

D Keep Screen On Java, Xml
D Keep CPU On Java

D, R Durable Wake Lock Java
D, R Rigid Alarm Java
D Continuous Rendering Java
D Keep Voice Awake Java

Power (4)

D Ignore Battery Optimizations Xml
D Companion in background Xml
D Charge Awareness Java, Xml
D Save Mode Awareness Java, Xml

Batch (3)

I Service@Boot-time Java, Xml
D Sensor Coalesce Java
D Job Coalesce Java

Release (8)

I Supported Version Range Xml
I Same dependencies Gradle
I Duplicate dependencies Gradle
I Fat app Gradle
D Convert to WebP File System
D Clear cache Java
D Shrink Resources Gradle
R Disable Obfuscation Gradle

https://olegoaer.perso.univ-pau.fr/android-energy-smells/

ecoCode: a SonarQube Plugin to Remove Energy Smells from Android Projects ASE ’22, October 10–14, 2022, Rochester, MI, USA

files written in Groovy. That is why we embedded the Codenarc
project3 into the ecoCode plugin to leverage from its Groovy parser.
Finally, scanning the project’s structure in terms of directories and
files (scope File System) is done with plain Java IO API.

3.2 Rules Implementation
The catalog is described regardless of the static code analysis tool to
be used. In the present case of SonarQube, a given energy smell has
sometimes had to be broken down into several rules, especially be-
cause target languages are managed separately. Basically, a custom
rule is written in Java following the visitor-programming style. We
written some helpers to avoid doing things the hard way. Helpers
include checking for invocation of methods with a given signature,
checking values behind constants, checking method calls are paired
(e.g. open()/close() or acquire()/release()).

A rule is then associated with a tag which refers to one of the
8 category it belongs to. It is associated with a severity (among
Info, Minor, Major, Critical) and a remediation cost that indicate
the estimated time to fix the code. For lack of anything better, the
severity Info is used to emulate a good smell while the 3 others are
devoted to bad smells.

Last but not least, a rule is accompanied with a unit test at the
plugin level that tests as many cases as possible. The plugin also
comes with an integration test in the form of a mock Android
project having no other purpose than violating all the rules at the
same time.

3.3 Graphical User Interface
Energy efficiency being a novel quality attribute, we deemed it
relevant to provide a tailored graphic interface, applying surface
modifications to the extant web-based user interface. Behind the
scene, this tedious work requires to locate key places into the Reac-
tJS codebase to be altered. Thus, the menubar now adheres to the
ecoCode look and feel, and more generally, icons and color scheme.
Visible modifications include: home page, project cards, display
of issues and view of a rule, overview page of rules, and detailed
analysis of a project.

Advanced visual revamping is planned for a better user experi-
ence, but it requires to dive deep into the core concepts of Sonar-
Qube product. For example, by default, code smells are reported
without any distinction whereas we have defined 8 categories and
that rules have been tagged accordingly.

4 WALK THROUGH ECOCODE
SonarQube works on web side. Hence, from the developer side, he
just has to upload his working project to the server spinning up the
instance of ecoCode. It can also be done by branching ecoCode to
Source Control Management tools like GitLab or GitHub (pipeline
CI/CD).

4.1 Android Studio Setup
The considered Android project must have a dependency to the
SonarQube plugin in the build.gradle file at the app level. Config-
uration of the project to be uploaded is set in the gradle.properties.

3https://codenarc.org/

This is where you fill in, for example, the host of the ecoCode in-
stance and the access token.

The preferred way for pushing effortlessly the current project
to the ecoCode server is to create a specific running configuration
based on a Gradle task, thereby directly accessible from Android
Studio panels and menus (Figure 1). This task have to be launched
every time the developer wants a new analysis of his project.

Figure 1: Pushing the MyApp project to ecoCode server
through Android Studio (2021.1.1 version here) is a breeze.

4.2 Android Project Analysis
ecoCode comes with the specific quality profile ecoCode way, in
addition to the default profile Sonar way. It means that the enforce-
ment of green code adds up to the enforcement of clean code on
any Android development project. Of course, each development
team can adjust this profile based on what makes sense to him, as
well as quality gate.

The developer then finds the functionalities it is used to with
this kind of code quality tool. Especially, he can browse to the list
of energy smells detected. A click on the issue shows the code
snippet concerned. He can then see the rule detail which provides
an explanation and illustrate both non-compliant and compliant
code in order to guide the developer to fix the issue.

4.3 The MyApp Example
In this paper, MyApp refers to an open source Android app4 with a
codebase of 1.5k lines, which helps new students to find buildings
on our university campus. A closer look at Figure 2 shows that
6 issues were detected on the main branch, either in Java or Xml
files: 1 × Ignore Battery Optimizations, 4 × Fused Location, 1 ×

Vibration-free. It is worthwhile mentioning that a type of energy
smell can be reported several times simply if it occurs in several
places.

In the present case, the app failed the green quality gate (see
Figure 3) that states no more than 4 issues (by default). It means
4https://git.univ-pau.fr/summer-school/uppamaps

https://codenarc.org/
https://git.univ-pau.fr/summer-school/uppamaps

ASE ’22, October 10–14, 2022, Rochester, MI, USA Le Goaer et al.

Figure 2: Custom web page reporting the energy smells de-
tected in the projectMyApp.

that the project should be reworked before it is published on Google
Play Store and thus prior to be run on a potential huge number of
devices. Technical debt is estimated to 2h25 min. Actually, since a
smell is repeated 4 times, it is likely that the remediation step will
be more rapid.

Figure 3: Custom web page showing the environmental sta-
tus ofMyApp (Social status is a future work).

5 CONCLUSION
ecoCode empowers all native android developers to write greener
code. At the time of writing, three-quarters of the catalog of energy
smells have been implemented into the plugin. The extension of
the catalog of smells pursue on one side, and their concrete imple-
mentations on the other side. We are expecting a lot from events
like hackathons to engage as many people as possible, and not only
developers.

ecoCode is still in its infancy and debates have only just begun
about the severity of the rules (i.e. their measurable impact), their oc-
currence in real-world Android projects, and their remediation cost.
Yet, it provides a free, cutting-edge tool to engineers and researchers
to conduct a broad panel of empirical software engineering studies.

ACKNOWLEDGMENTS
ecoCode is a joint work between Université de Pau et des Pays de
l’Adour and Snapp’, a company specialized in mobile apps reali-
sations. The project was funded by a grant from Region Nouvelle
Aquitaine (France).

REFERENCES
[1] Iannone, E., Pecorelli, F., Nucci, D.D., Palomba, F., Lucia, A.D. (2020). “Refactoring

Android-specific Energy Smells: A Plugin for Android Studio”. Proceedings of
the 28th International Conference on Program Comprehension.

[2] Gustavo Pinto and Fernando Castor (2017). “Energy efficiency: a new concern for
application software developers”. Commun. ACM 60, 12 (December 2017), 68–75.

[3] Sarra Habchi, Xavier Blanc, and Romain Rouvoy. (2018). “On adopting linters
to deal with performance concerns in Android apps”. Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. Asso-
ciation for Computing Machinery, New York, NY, USA, 6–16.

[4] A. Ribeiro, J. F. Ferreira and A. Mendes, (2021). “EcoAndroid: An Android Studio
Plugin for Developing Energy-Efficient Java Mobile Applications,” 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security (QRS), pp.
62-69

[5] Sowndarajan, Karthick & Binu, Sumitra. (2017). “Static Analysis Tool for Identifi-
cation of Permission Misuse by Android Applications”. International Journal of
Applied Engineering Research.

[6] Suelen Goularte Carvalho et al. (2019). “An Empirical Catalog of Code Smells for
the Presentation Layer of Android Apps”. Empirical Software Engineering.

[7] Olivier Le Goaër. (2020). “Enforcing Green Code With Android Lint,”. 35th
IEEE/ACM International Conference on Automated Software Engineering Work-
shops (ASEW), pp. 85-90

[8] Daniel Maia, Marco Couto, João Saraiva, and Rui Pereira. (2020). “E-Debitum:
managing software energy debt”. Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering Workshops. Association for
Computing Machinery, New York, NY, USA, 170–177.

[9] Luis Cruz and Rui Abreu. (2019). “Catalog of energy patterns for mobile applica-
tions”. Empirical Software Engineering. 24, 4, 2209–2235.

[10] Oliveira, J., Viggiato, M., Santos, M.F., Figueiredo, E., and Marques-Neto, H.T.
(2018). “An Empirical Study on the Impact of Android Code Smells on Resource
Usage”. In Proceedings of The Thirtieth International Conference on Software
Engineering and Knowledge Engineering (SEKE 2018).

[11] Umme Ayda Mannan, Iftekhar Ahmed, Rana Abdullah M. Almurshed, Danny Dig,
and Carlos Jensen. (2016). “Understanding code smells in Android applications”.
In Proceedings of the International Conference on Mobile Software Engineering
and Systems (MOBILESoft ’16). ACM, New York, NY, USA, 225–234.

[12] Palomba, Fabio & Di Nucci, Dario & Panichella, Annibale & Zaidman, Andy &
Lucia, Andrea. (2018). “On the Impact of Code Smells on the Energy Consumption
of Mobile Applications”. Information and Software Technology.

[13] Carette, Antonin & Younes, Mehdi & Hecht, Geoffrey & Moha, Naouel & Rouvoy,
Romain. (2017). “Investigating the energy impact of Android smells”. 115-126.
10.1109/SANER.2017.7884614.

	Abstract
	1 Introduction
	2 Android-specific Energy Smells
	2.1 Elements of Methodology
	2.2 Empirical Catalog

	3 ecoCode: a SonarQube Plugin
	3.1 Multi-scope Analysis
	3.2 Rules Implementation
	3.3 Graphical User Interface

	4 Walk Through ecoCode
	4.1 Android Studio Setup
	4.2 Android Project Analysis
	4.3 The MyApp Example

	5 Conclusion
	Acknowledgments
	References

