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Abstract: We propose a broad class of d-dimensional conformal field theories of SU(N)
adjoint scalar fields generalising the 4d Fishnet CFT (FCFT) discovered by Ö. Gürdogan
and one of the authors as a special limit of γ-deformed N = 4 SYM theory. In the
planar N → ∞ limit the FCFTs are dominated by the “fishnet” planar Feynman graphs.
These graphs are explicitly integrable, as was shown long ago by A. Zamolodchikov. The
Zamolodchikov’s construction, based on the dual Baxter lattice (straight lines on the plane
intersecting at arbitrary slopes) and the star-triangle identities, can serve as a “loom”
for “weaving” the Feynman graphs of these FCFTs, with certain types of propagators, at
any d. The Baxter lattice with M different slopes and any number of lines parallel to
those, generates an FCFT consisting of M(M − 1) fields and a certain number of chiral
vertices of different valences with distinguished couplings. These non-unitary, logarithmic
CFTs enjoy certain reality properties for their spectrum due to a symmetry similar to the
PT-invariance of non-hermitian hamiltonians proposed by C. Bender and S. Boettcher.
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1 Introduction

The Fishnet Conformal Field Theories (FCFTs) first appeared in [1] as a special double-
scaling limit of the superconformal 4d N = 4 SYM theory, combining weak coupling and
strong imaginary γ-deformation. Its particular bi-scalar case appeared to be explicitly
integrable in the planar, multicolor limit due to the observation by A. Zamolodchikov [2]
that the “fishnet” planar Feynman graphs with the shape of a regular square lattice, domi-
nating in the perturbation theory, are integrable.1 Since then, a few generalizations of this

1This contrasts to the still mysterious planar integrability of the full N = 4 SYM theory, as well as of
its general fishnet limit with three couplings [1] dominated by so called dynamical fishnet graphs [3], still
awaiting explanation.
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FCFT have been found, for various dimensions and massless propagators [4], inclusion of
fermions [3] as well as the fishnet limit of 3-dimensional γ-deformed ABJM theory [5].

The FCFTs are genuinely non-unitary, logarithmic CFTs. The study of their physical
properties in the planar limit can be achieved in much greater detail due to the narrow set
of planar Feynman graphs in the theory, in addition to their integrability. A particularly
studied case is the d-dimensional bi-scalar CFT. Certain sets of conformal dimensions of
its local operators have been computed explicitly, using only conformal symmetry for the
shortest ones [4, 6, 7]. The conformal dimensions of certain longer operators have been cal-
culated using the equivalence to the integrable non-compact spin chain, via the Quantum
Spectral Curve approach [8–11], perturbatively up to very high orders and numerically with
a great precision [12], or in the asymptotic limit of long operators [5]. The thermodynam-
ical Bethe ansatz equations have been written for general types of such operators [13, 14].
Certain structure constants have been computed, exactly [4, 6, 7] or in various approxi-
mations [15]. Four-point correlators of certain operators have been computed exactly, in
disc topology [16–20] and for short operators in cylindrical topology [4, 6, 7]. It was shown
that the bi-scalar FCFT possesses the quantum mechanically stable flat vacua [21]. The
fishnet amplitudes appear to be dominated by a single fishnet graph and obey the Yangian
symmetry [22–25]. Finally, the AdS dual of the FCFT has been proposed in the form of a
“fish-chain” — a discretised string theory living on AdS5 background [26–28].

However, only a limited subset of all possible FCFTs following from the Zamolod-
chikov’s construction of integrable fishnet graphs has been explored by now. In this work
we will fully exploit this construction and show how to define the most general FCFTs
dominated in the planar limit by integrable fishnet graphs, dual to the Baxter lattice of
an arbitrary number n of intersecting straight lines having M ≤ n different slopes (so
the rest of them are parallel to the basic M ones). We will show that such FCFTs have
M(M − 1) scalar complex N ×N matrix fields with a certain number of interactions (with
free couplings) whose number depends on M . We will call such a Baxter lattice a Loom
— the device to “weave” dual graphs, and the corresponding field theories — the Loom
FCFTs. They will be classified and counted in this paper.

At each order of perturbation theory of such a Loom FCFT we have to sum up all
Feynman graphs dual to the Baxter lattices with all possible types of intersections of these
n lines. We will also discuss the renormalisation and clarify the issue of the multi-trace
couplings [29] which have to be added to the action in order to preserve the conformal
symmetry in such generalised FCFTs. Furthermore we will consider a few new concrete
realisations of the Loom FCFTs. We give the detailed description of the cases of M = 3
and M = 4 slopes.

An important property of these non-unitary FCFTs is a symmetry of their Lagrangians
w.r.t. the time-reversal, T -transformation — i.e. the simultaneous hermitian conjugation
of all matrix fields — and the t-transformation — i.e. the transposition of all matrix fields.
We called it the “tT -symmetry”. This leads to certain positivity properties of the spec-
trum of anomalous dimensions: the dimensions can be either real or in complex conjugate
pairs. This property is reminiscent of the spectrum of non-hermitian PT symmetric QM
hamiltonians proposed in [30, 31].
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2 Integrable planar Feynman graphs

The Loom FCFTs we are going to construct in this paper will be called integrable in the pla-
nar limit, meaning that the planar Feynman diagrams defining various physical quantities
in such FCFTs are integrable at any loop order. The integrability of a Feynman diagram
should be understood in the sense of A. Zamolodchikov’s construction [2] of integrable 2d
statistical mechanical systems that imitate these graphs. In this section, we will review the
Zamolodchikov’s construction. It is based on the general Baxter lattice — a set of inter-
secting straight lines on the plane. The Baxter lattices are in one-to-one correspondence
with the Feynman diagrams of the theory, whose construction will be reviewed below.

In [2] it was showed that Feynman diagrams with triangular, square and hexagonal lat-
tice topology are integrable. The FCFTs dominated by such graphs have been constructed
in [1, 5, 32]. But the Loom FCFTs we will present in this paper are based on the most
general integrable graphs of Zamolodchikov’s construction. The integrability is verified in
all these cases via Baxter’s star-triangle relation [33, 34].

Let us review now the construction of the Feynman diagrams dual to the Baxter
lattices.

2.1 Feynman diagrams vs dual graphs

First, we start from an arbitrary scalar planar diagram with dimensionless vertices and
define its dual graph. We will show that the integrability of the diagram implies that the
dual graph is of the Baxter type, i.e. made of straight lines.

The central object of our construction are Feynman diagrams in d dimensions with
massless propagators. In order to define planarity and the 1/N expansion over the topolo-
gies of diagrams, we work with the fields in certain matrix representation — we choose the
SU(N) adjoint representation — so to impose a rigid order for the fields inside each vertex.
Each propagator of such a field Φij scales with a given dimension ∆ and has the matrix
structure

G∆(x)ij,kl = δikδjl −N−1δijδkl
x2∆ . (2.1)

Each Feynman graph consisting of propagators of this type has, after contraction of all
indices, a standard weight N2−2h, where h is the genus of the graph [35]. The propagators
can be convoluted at their endpoints forming vertices of a given valence n ≥ 3, that is∫

ddz
n∏
k=1

G∆k
(xk − z) , (2.2)

where G∆(x − y) = (1/(x − y)2)∆ is a propagator already stripped of its indices. For the
scale invariance (and thus the conformal invariance) each vertex is subject to the constraint∑n
k=1 ∆k = d in order for the associated coupling constant to be dimensionless.2
The dual graph of a Feynman diagram is defined by the following prescription [2] (see

figure 1):
2We will use for the actions of these FCFTs the normalization S = NTr(. . . ), so that all these couplings

are finite in the large N limit (’t Hooft couplings).
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Δb
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Figure 1. A Feynman diagram with four scale-invariant vertices and its associated dual graph
with the “checkerboard” coloring. The scaling dimensions ∆a and ∆b are related to the angles α
and β respectively.

• A vertex of the Feynman diagram with n propagators lies inside a polygon whose n
edges belong to the dual graph and each of its vertices is traversed by a propagator
originating in the middle of the polygon.

• Each angle α of the n internal angles of the polygon is determined by the scaling
dimension ∆ of the propagator that passes through this angle, according to the
formula

π − α = 2π
d

∆ . (2.3)

• The faces of the dual graph feature a checkerboard colouring (black/white), depend-
ing on whether they contain or not a Feynman diagram vertex.

Notice that the sum of the interior angles of each n-gon is equal to (n−2)π, which encodes
the scale-invariance condition ∑i∈vertex ∆i = d of the vertices of the diagram via (2.3).
Conversely, for a given dual graph one can draw the original Feynman diagram by inserting
a vertex inside each black (either white) face and connecting by a propagator any pair of
vertices of the diagram that lie on faces of the dual graph that have a vertex in common.
The power (scaling dimension of the corresponding field) of the propagator is determined
by the angle of the face of the dual graph through which it passes.

2.2 Loom for integrable Feynman graphs

The geometry of the dual graph is useful to identify the restricted subclass of all conformal
diagrams that are integrable. The precise criterion for identifying the integrable graphs
will be given below. Tentatively, integrability means that the graphs can be computed
via the methods of quantum integrability, following the Zamolodchikov’s construction [2]
and using the tools of non-compact integrable spin-chains with conformal SO(1, d + 1)
symmetry [36–38] developed on the basis of [2]. It will also help us to write the Lagrangians
of FCFTs that are dominated only by the set of these integrable planar diagrams (or some
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Figure 2. Star-triangle duality. The faces of the dual graph are black/white. Red lines and dots
correspond to the Feynman diagram elements. The graph on the right is obtained by that on the
left moving the line [a, a′] across the intersection of [b, b′] and [c, c′] lines.

of their subsets). We can relate the integrability of a diagram to the geometry of its dual
graph. The main statement on the basis of our construction is:

A Feynman diagram is integrable if its dual graph is made of intersecting straight lines,
i.e. the Feynman diagram is dual to a Baxter lattice.

The proof of this statement relies on the star-triangle identity which is the fundamental
equation of integrability of the SO(1, 1 + d) spin chain. The star-triangle identity for both,
a fragment of Baxter graph and the dual Feynman diagram, is presented on the figure 2.
On the Feynman diagram side the star-triangle is an integral identity that equates a cubic
scale-invariant vertex to the product of three propagators [34] (see figure 2):

∫
ddz

3∏
k=1

G∆k
(xk − z) = π

d
2

Γ
(
d
2 −∆1

)
Γ
(
d
2 −∆2

)
Γ
(
d
2 −∆3

)
Γ (∆1) Γ (∆2) Γ (∆3)

3∏
k=1

G d
2−∆k

(xk−1 − xk+1) .

(2.4)
If the dual graph is made of straight lines, the four segments around a graph vertex

have pairwise the same angles. Hence, each vertex of the graph features four angles with
equal pairs of opposite angles, two angles on the black faces and two supplementary on the
white faces. Consequently, one can draw two conformal Feynman diagrams for the same
dual Baxter graph: one has vertices inside black faces, while the other has vertices inside
white faces. The scaling dimensions of the propagators of two diagrams crossing the same
vertex are related as

∆′ = d

2 −∆ = d

2πα . (2.5)

Let us stress that the propagators with both dimensions can be present in each of these
diagrams if we admit the presence of parallel lines in the loom.

The sharp statement of integrability can be seen from a Feynman integral once we
move a line (conserving its slope) through one or a few crossings in the loom, as depicted
in figures 3, 4. Such moves can be represented as commutations of certain convoluted
integral kernels in the associated pieces of the corresponding Feynman diagram. The
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a b
a b

Figure 3. A dual graph made of coloured faces and its dual Feynman diagram, made of propagators
(red lines), integrated points (red dots) and external points (red circles). The graph on the right is
obtained from graph on the left via the translation of the segment [a, b] across the vertex marked
in blue. The two diagrams are equal by star-triangle identity.

a) b) c)

Figure 4. A portion of Baxter lattice with 4 slopes depicted by different colours (a). The same
graph after tilting one red line (b). On the associated Feynman diagram the tilting corresponds to
twisting the powers of propagators across the red line. The graph enjoys the symmetry (b)∼(c) of
the loom via the star-triangle relation. On the Feynman diagram this amounts to the commutation
of an infinite family of integral kernels — the portion of Feynman diagram associated to the tilted
line and parametrised by the tilting angle — with the rest of the diagram. This fact establishes the
integrability of the diagrams.

exchange of lines is therefore a statement of commutation of integral operators — certain
monodromy matrices of the inhomogeneous quantum chain with the symmetry SO(1, d+1),
with conformal spins represented by the spacetime coordinates of the vertices.

2.3 Integrable vs non-integrable diagrams: examples

Let us consider a few examples of planar conformal diagrams, and determine whether or
not they belong to the loom picture, i.e. whether they are integrable.

First, we take a diagram with the topology of a honeycomb, formed by cubic vertices of
two types (see figure 5 (left)). The scaling dimensions of the three propagators converging in
each vertex are ∆1, ∆2 and ∆3. If we impose the scale-invariance constraint ∆1+∆2+∆3 =
d the dual graph has the topology of a Kagomé lattice formed by straight lines with three
different slopes. Hence, the integrability definition is satisfied.

– 6 –
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Figure 5. a) Hexagonal “honeycomb” lattice Feynman graph (red propagators and vertices) the
dual graph with Kagomé topology. b) Triangular lattice Feynman diagram. The Baxter lattice is
the same Kagomé as in (a), with exchanged colouring of the faces.

Δ1 Δ3

Δ2Δ4

Δ1 Δ3

Δ2Δ4

Δ6

Δ5
Δ6 Δ6

Δ4

Figure 6. Feynman diagram with Kagomé topology, in red. The dual Baxter lattice is a tiling of
the plane with black/white faces that cannot be realised with straight lines.

Similarly, let us take a diagram with the topology of a triangular lattice made of
valence-6 vertices (see figure 5 (right)). The dual graph has the topology of a Kagomé —
and so it is made of straight lines — if and only if the six propagators emitted by a vertex
and ordered clockwise, have dimensions ∆1 = ∆4, ∆2 = ∆5 and ∆3 = ∆6 and also satisfy
the scale-invariance condition ∆1 + ∆2 + ∆3 = d/2. The checkerboard colouring of faces
is interchanged with respect to the previous example. Thus, also this Feynman graph is
integrable.

Let’s analyse the graphs generated starting from the Kagomé Baxter lattice, and the as-
sociated Feynman diagrams. By moves of lines we can relate the honeycomb and triangular
lattice examples, that is to exchange the checkerboard colouring of the faces. Furthermore,
we could form squares and pentagons in the loom, besides hexagonal and triangular faces,
which means to generate quartic and quintic interaction vertices in the Feynman diagrams.
We will use these moves in the next section to construct all interactions in the related
Loom FCFTs.

It is interesting to consider now those Feynman diagrams with the Kagomé structure,
i.e. made up of three types of quartic vertices and propagators depicted in figure 6. These
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diagrams have an important role in the dynamical Fishnet models and in the Eclectic field
theory [3, 39]. The dimensions of the four propagators for each vertex can be labelled
as (∆1,∆2,∆3,∆4), (∆1,∆2,∆5,∆6) and (∆3,∆4,∆5,∆6). The dual graph of such a
Feynman diagram is a tiling made of white rectangles and black triangles and hexagons
which cannot be realised with straight lines (see figure 6). Indeed, in terms of scaling
dimensions that would require the following system of linear relations

∆1 + ∆2 = ∆3 + ∆4 = ∆5 + ∆6 = d/4 ,
∆1 + ∆3 + ∆5 = d/2 ,
∆2 + ∆4 + ∆6 = d/2 .

(2.6)

which has no solution. We conclude that a planar conformal diagram made of these three
quartic vertices cannot belong to a Loom and thus it is not integrable (at least by the
star-triangle method).

In what follows, using the observations of this section we will construct the most gen-
eral FCFTs whose planar diagrams are integrable, i.e. each of them dual to its Loom —
a particular Baxter graph consisting of a certain number n of lines with M ≤ n differ-
ent slopes.

3 FCFTs from the Loom

In this section, we will formulate the Lagrangian of a general Loom FCFT, integrable in
the planar limit. We will start from the case of FCFTs with M = 2, 3, 4 slopes of lines on
the Baxter lattice, and later we will extend our scope to the general M -Loom FCFTs.

The Loom FCFTs can be called “solvable”, in the sense that many interesting physical
quantities can be efficiently computed at high orders of perturbation theory, or even at
finite coupling, using the integrability property of the underlying Feynman diagrams.

In a general, M -Loom FCFT one introduces a set of M(M − 1) complex matrix quan-
tum fields with particular dimensions and interaction vertices. The number of such interac-
tions, which we will describe and count below, is quickly growing with M . The realisation
of a Loom FCFT requires to restrict the possible vertices to a fixed chirality, so that to
get rid of all the diagrams that cannot be generated via the Baxter lattices. The chirality
of a vertex is defined by the order in which the complex matrix fields — in some represen-
tation of SU(N) — appear inside a single trace interaction. It is clear then that choosing
specific chirality — as one always does in the Loom FCFT — requires to deal with non-
unitary, logarithmic CFT. Nevertheless, as we will show in section 5, these FCFTs enjoy
an interesting symmetry, similar to the PT invariance of non-hermitian QM hamiltonians
proposed in [30, 31], which leads to certain reality properties for the spectrum of conformal
dimensions of the operators.

We will also discuss the renormalization of the Loom FCFTs and the necessity of
adding various multi-trace terms into the Lagrangian, necessary for restoring the conformal
invariance.

– 8 –
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3.1 Bi-scalar fishnet

The simplest example of the Loom FCFT is given by the bi-scalar fishnet [1, 3]. This
is the case of a loom with M = 2 slopes, i.e. there are M(M − 1) = 2 different angles
on the Baxter lattice. Hence the Feynman diagrams have two types of propagators (2.1)
associated with two fields X and Y (see figure 7). The only possible type of graphs is then
the square lattice with vertices the Tr

[
XY X̄Ȳ

]
. The angles between two loom directions

are θ12 and π− θ12 and for the isotropic Fishnet one has θ12 = π/2 — that is the lattice of
two orthogonal sets of lines.

The Lagrangian of bi-scalar FCFT is given by

L(a)
d =NTr

[
X̄(−∂µ∂µ)d/2−∆1 X+Ȳ (−∂µ∂µ)d/2−∆2 Y +(4π)d/2ξ2XY X̄Ȳ

]
+ double-traces,

(3.1)
where X,Y are complex scalar fields and ∆2 = d/2−∆1 = d θ12/(2π). The theory is also
invariant under the internal symmetry U(1)⊗U(1)

X → eiaX , Y → eibY , (3.2)

since the quartic vertex has zero charge. The double-trace terms here, needed for the
renormalisation of the theory and for fixing eventually the corresponding couplings at the
conformal point, are

Tr [XY ]Tr
[
X̄Ȳ

]
, Tr

[
X̄Y

]
Tr
[
Ȳ X

]
. (3.3)

The bi-scalar theory at θ12 = π/2 has extra internal symmetries

X → Y , Y → X̄ or X → Ȳ , Y → X , (3.4)

At this special point, further double-trace counter-terms are needed for the UV complete-
ness of the theory, namely

Tr
[
X2
]
Tr
[
X̄2
]
, Tr

[
Y 2
]
Tr
[
Ȳ 2
]
, (3.5)

which would otherwise be dimensionful. All couplings for double-trace counter-terms in this
theory have real or complex conjugate critical points as functions of the (non-renormalised)
coupling ξ. The conformal symmetry is restored at such critical points [3, 6, 29].

3.2 Loom FCFT with 3 slopes

Let us consider now the Loom FCFT for M = 3 slopes in d-dimensional Euclidean space-
time. In this case the field content of the theory will be that of M(M − 1) = 6 complex
scalars in the adjoint representation of SU(N). We denote three of these fields as X,Y, Z
and ∆1,∆2,∆3 are their scaling dimensions. These three fields interact among themselves
via a sextic vertex, and satisfy the scale-invariance constraint ∆1 + ∆2 + ∆3 = d/2. If they
were alone, they would form the planar Feynman diagrams of the shape of triangular lat-
tice (at least in the bulk of a large diagram), similarly to the Fishnet reduction of ABJM
theory [5]. The dual Baxter lattice corresponding to such diagrams forms the Kagomé
lattice with hexagonal and triangular faces (see the right figure 5).

– 9 –
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1
2 3

Figure 7. Feynman diagram structures generated by a Baxter, loom lattice with 3 slopes. First
two examples are the hexagonal honeycomb and the triangular lattice. The third picture is a rather
generic loom structure involving also vertices of valence 4 and 5, obtained from the second picture,
applying star-triangle to the three triangles marked by numbers.

X Y

Z

Y X

Z

Y X

Z

X
u

Z

u

w

v
X

u

w

Figure 8. A primer of the single-trace interaction in double-line notation. The vertex of valence
six on the left can be used to generate the vertices of lower valence by substituting two propagators
of fields X,Y, Z with one propagator of a corresponding field u, v, w, (3.7). On the Baxter lattice
this consists of moving out the red dotted line at each step.

Similarly, we denote the other three fields as u, v, w and notice that they interact via
the cubic vertices, giving rise to diagrams with honeycomb structure in the bulk, as in the
left figure 5. The corresponding Baxter lattice is once again of Kagomé type, but now the
diagram vertices lie on triangular faces rather than on hexagonal ones. The dimensions
of u, v, w-fields are d/2 − ∆1, d/2 − ∆2, d/2 − ∆3, respectively. The fields u, v, w can be
considered as dual to the fieldsX,Y, Z, in the sense that their propagators cross respectively
the same vertices of the Baxter lattice but across the complementary pair of angles.

The analysis of the interaction vertices is demonstrated on figure 8. All of them can
be generated starting from the Kagomé graph with vertices inside the hexagonal faces,
corresponding to a Feynman diagram with the topology of a triangular lattice, with a
sextic interaction that reads

Tr
[
XY ZX̄Ȳ Z̄

]
, (3.6)

It is depicted on the left picture of figure 8. On the dual lattice, this vertex is formed by
three pairs of straight lines, one pair for each of three slopes.

By star-triangle moves of loom lines, the hexagonal faces that contain the valence-6
vertex can be transformed into faces of lower number of edges, that is to vertices of a
lower valence. The replacement of two among X,Y, Z with one of the fields u, v, w follows

– 10 –
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the pattern3

XY 7→ w , Y Z 7→ u , ZX̄ 7→ v , X̄Ȳ 7→ w̄ , Ȳ Z̄ 7→ ū , Z̄X 7→ v̄ . (3.7)

Any of this moves transforms the sextic vertex into one of the six quintic vertices

Tr
[
XY vȲ Z̄

]
, Tr

[
wZX̄Ȳ Z̄

]
, Tr

[
XuX̄Ȳ Z̄

]
,

Tr
[
XY ZX̄ū

]
, Tr

[
XY Zw̄Z̄

]
, Tr

[
v̄Y ZX̄Ȳ

]
,

(3.8)

as it is demonstrated on the 2nd picture on figure 8. One further replacement of fields
delivers nine valence-4 vertices

Tr
[
wvȲ Z̄

]
, Tr

[
wZX̄ū

]
, Tr

[
Xuw̄Z̄

]
,

Tr
[
XuX̄ū

]
, Tr [v̄Y Zw̄] , Tr

[
v̄Y vȲ

]
,

Tr [XY vū] , Tr
[
wZw̄Z̄

]
, Tr

[
v̄uX̄Ȳ

]
,

(3.9)

as demonstrated on the 3nd picture on figure 8. And finally, the last move on the loom
transforms the initial sextic vertex to the same graph with interchanged white/black faces,
corresponding to a “honeycomb” Feynman diagram with cubic vertices, as seen in the left
picture of figure 8:

Tr [ūwv] , Tr [uw̄v̄] . (3.10)

All the 18 vertices of the theory are neither hermitian nor are they accompanied by
their hermitian conjugate vertices in the Lagrangian. That is, all single-trace interactions
have only one chirality, and the theory is not unitary. Each interaction vertex carries an
independent coupling constant. We will usually assume that the couplings associated to a
pair of vertices related by the exchange of barred/unbarred fields are complex conjugate of
each other. This assumption, although not necessary for a well defined integrable FCFT,
enables the Loom FCFT with some reality property of the spectrum, explained later in 5.

The Lagrangian of M = 3 Loom FCFT reads

L3-loom = NTr
[
X̄(−∂µ∂µ)

d
2−∆1X + Ȳ (−∂µ∂µ)

d
2−∆2Y + Z̄(−∂µ∂µ)

d
2−∆3Z

]
+

+NTr
[
ū(−∂µ∂µ)∆1u+ v̄(−∂µ∂µ)∆2v + w̄(−∂µ∂µ)∆3w

]
+

+ LsT + LdT ,

(3.11)

where the single-trace part LsT of the Lagrangian is a sum over the 18 vertices listed
in (3.6), (3.8), (3.9), (3.10), generically all with independent coupling constants. The
part LdT contains the double-trace counter-terms that need to be included in order to
renormalise some composite operators and will be analysed in section 3.2.1.

The 3-loom FCFT has an internal symmetry U(1)⊗U(1)⊗U(1). Under this symmetry
the fields transform acquiring a phase

φ → φ ei(α1q1+α2q2+α3q3) , (3.12)
3Notice that the definition of w̄, ū, v̄ does not follow the rules of hermitian conjugation. As we already

mentioned, in these non-unitary theories we have to consider in the functional integral all the barred fields
as independent from non-barred.
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that depends on the quantum numbers, U(1) charges (q1, q2, q3) listed in the following
tables

q1 q2 q3
X 1 0 0
Y 0 1 0
Z 0 0 1

;

q1 q2 q3
u 0 1 1
v -1 0 1
w 1 1 0

The barred fields have opposite quantum numbers. The charges for u, v, w are fixed by
requiring all interaction vertices to be neutral, that is such that both sided of the replace-
ments (3.7) have the same quantum numbers.

A notable reduction of the 3-Loom FCFT is the single-coupling Lagrangian

LABJM =NTr
[
X̄(−∂µ∂µ)

d
2−∆1X+Ȳ (−∂µ∂µ)

d
2−∆2Y +Z̄(−∂µ∂µ)

d
2−∆3Z+η2XY ZX̄Ȳ Z̄

]
.

(3.13)
It reduces to the ABJM fishnet CFT [5] when ∆1 = ∆2 = ∆3 = 1/2; d = 3 and in this
case the U(1) symmetry is the residual R-symmetry group after the breaking of original
superconformal symmetry of the ABJM gauge theory. To be precise, let us point out that
the ABJM FCFT should be defined with fields X,Z in the fundamental and Y in the
anti-fundamental representation of U(N). Practically, the Lagrangian (3.13) produces the
same correlators as in the properly defined ABJM fishnet.

Another interesting reduction of 3-loom FCFT contains only triple vertices:

Lhoneycomb = N Tr
[
ū(−∂µ∂µ)∆1u+ v̄(−∂µ∂µ)∆2v + w̄(−∂µ∂µ)∆3w + ζ2

1 ūwv + ζ2
2 uw̄v̄

]
,

(3.14)
which gives at d = 6, ∆1 = ∆2 = ∆3 = 1 the FCFT proposed in [32].

Under special circumstances the 3-Loom theory (3.11) enjoys discrete symmetries,
following from the fact that any cyclic re-labelling of loom directions — and therefore of
the fields — does not change the set of single-trace interactions. Indeed, if we further
impose that ∆1 = ∆2 = ∆3 = d/6, and if all interactions of a given valence q are assigned
one and the same coupling constant ηq, the Lagrangian is actually invariant. An example
of such symmetries is

X → Y , Y → Z , Z → X̄ , u→ v , v → w̄ , w → u . (3.15)

3.2.1 Renormalisation and double-trace terms

Single-trace couplings associated to the interactions in LsT are fixed at any value under
the RG transformations. Indeed, one can readily convince oneself that any insertion of a
chiral vertex inside its own single-trace vertex function increases the genus of the Feynman
diagram by at least one unit, producing the suppression factor 1/N2 [5].

In order to complete the discussion of renormalisation we should consider that 2, 3-point
functions of short composite single-trace operators may get divergent quantum corrections
in the loop expansion. Thus, we shall consider all the irreducible multi-trace n-point
functions Γ(n) of the theory that have bare dimension equal to d and are U(1)⊗3 invariant.
These quantities are responsible for the appearance of multi-trace counter-terms in the
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Lagrangian LdT , ubiquitous in various deformations of SYM theories [40–42], and therefore
of running couplings that break conformality.

For generic angles in the loom, i.e. generic scaling dimensions of the fields, the afore-
mentioned requirements are met only by vertices obtained via splitting of single-trace
interactions (3.6)–(3.9) into multi-traces. Cubic vertices do not matter here, because any
such splitting of a cubic vertex would involve at least one trace of a single field, which is
zero due to SU(N) symmetry.

Starting from Γ(4) we shall consider the first class of double-trace vertices given by
those double-trace splitting of the vertices (3.9) that contain inside each trace both a field
— say Φ = {X,Y, Z} — and its dual — say φ = {u, v, w}. That is, we shall consider the
vertices

Tr [Φφ]Tr
[
Φ̄φ̄

]
, Tr

[
Φφ̄
]
Tr
[
Φ̄φ

]
, Tr [Φφ]Tr

[
Φ̄′φ̄′

]
, Tr

[
Φ̄φ̄
]
Tr
[
Φ′φ′

]
. (3.16)

For example, let the fields be Φ = X, φ = u and Φ′ = Z, φ′ = w and let us denote the
relevant single-trace couplings as follows

η2
4,1Tr

[
XuX̄ū

]
, η2

4,3Tr
[
wZw̄Z̄

]
, η2

4,13Tr
[
Xuw̄Z̄

]
, η̄2

4,13Tr
[
X̄ūwZ

]
. (3.17)

and similarly for double-trace counter-terms to be subtracted to the Lagrangian:

α2
4,1Tr [Xu]Tr

[
X̄ū

]
, α2

4,3Tr [wZ]Tr
[
w̄Z̄

]
, α2

4,13Tr [Xu]Tr
[
w̄Z̄

]
, ᾱ2

4,13Tr
[
X̄ū

]
Tr [wZ] .

(3.18)
The vertex Tr [Xu]Tr

[
X̄ū

]
receives divergent contributions from the series of bubble-

diagrams in the loop expansion:

b2   +b1   += b3 +...

The coefficients bk are functions of the coupling constants. Omitting the numerical factors
for each diagram, we can write them as

b1 = η2
4,1 − α2

4,1 , b2 = (η2
4,1 − α2

4,1)2 + |η2
4,13 − α2

4,13|2 ,
b3 = (η2

4,1 − α2
4,1)3 + 2|η2

4,13 − α2
4,13|2(η2

4,1 − α2
4,1) +(η2

4,3 − α2
4,3)|η2

4,13 − α2
4,13|2 .

In a similar fashion, the vertex Tr [Xu]Tr [Zw] receives divergent quantum corrections from
the series of bubble-diagrams:

c2   +c1   += c3 +... 

where the coefficients ck are also simple polynomials of order k in the couplings.
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The coefficients bk and ck make it transparent that the operators such as Tr [Xu] and
Tr [Zw] — having the same U(1) charge — can mix at the quantum level. Moreover, the
critical value for the RG flow of double-trace couplings corresponds to protected operators
Tr [Φφ]:

α4,k = ± η4,k , α4,hk = ± η4,hk . (3.19)

There is actually a second class of double-trace splittings of (3.9) vertices, namely

Tr
[
Φφ′

]
Tr
[
Φ̄′φ̄

]
, Tr

[
Φφ̄′

]
Tr
[
Φ̄′φ

]
. (3.20)

The quantum corrections to these vertices are finite, since the sum of the powers of prop-
agators in each bubble is in general different from (d/2 mod N).4 Therefore, no further
quartic double-trace counter-terms are needed. Let us then consider the double-trace ver-
tices Γ(5) that receive divergent quantum corrections, namely

Tr [ABC]Tr [Φφ] , Tr [ABC]Tr
[
Φφ̄

]
, (3.21)

where A,B,C are three fields that one can read out of (3.8). The infinities in the loop
expansion are removed by quartic double-traces (3.18) that renormalise the series of bubbles
at any loop. It is left to study double-traces Γ(6), namely

α2
6,1Tr [XY Z]Tr

[
X̄Ȳ Z̄

]
, α2

6,2Tr
[
Y ZX̄

]
Tr
[
Ȳ Z̄X

]
, α2

6,3Tr
[
ZX̄Ȳ

]
Tr
[
Z̄XY

]
. (3.22)

The same observation continue to hold in this case as well: the renormalisation of double-
trace vertices is given by a series of quartic bubbles of the type field/(dual field) Φφ.
It is indeed not possible to create a new series of planar corrections intertwining three
propagators, as it is clear from the following picture:

X

Y

Z

Z

Y

X

Each Γ(6) stays finite under the renormalisation of quartic double-traces, with except the
two-loop bubble that contains quintic vertices only:

++
n

Σn

Hence, at the point (3.19) the couplings α2
6,k receive counter-terms at two loops only, with

the renormalization factor

(Zα2
6,k
− 1) ∝ 1

ε

|η2
5,k − α2

5,k|2

α2
6,k

. (3.23)

4Nevertheless, for special values of the angles in the loom also these bubbles become divergent and they
generate double-trace couplings in the action.
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X

Y Z

Z Y

X X

Y Z

Z Y

X

Figure 9. The irreducible quantum corrections to the three-point functions Tr
[
(XY )(ZX̄)(Ȳ Z̄)

]
and Tr [XY ]Tr

[
ZX̄

]
Tr
[
Ȳ Z̄
]
. Both contributions are realised by vertices with the wrong chirality

and cannot appear at leading order in N in the loom FCFTs.

Let us consider for instance the vertex Tr[XY Z]Tr
[
X̄Ȳ Z̄

]
; the Callan-Symanzik β-function

at one loop reads

β6,1 ∝
|η2

5,1 − α2
5,1|2

α2
6,1

, (3.24)

and in order to restore scale-invariance at the quantum level we add, together with (3.19),
additional criticality conditions

α5,k = ±η5,k . (3.25)

At the critical point, the sextic double-trace couplings are zero. The operator Tr [XY Z]
is not protected but it receives anomalous dimension at the order η2

6,1 only, due to a 1/ε-
divergent bubble graph. This fact makes 〈Tr [XY Z]Tr

[
X̄Ȳ Z̄

]
〉 the only non-protected in

the mixing among operators

{Tr [XY Z] ,Tr [Xu] ,Tr [wZ]} , (3.26)

defined by U(1)⊗3 charge (1, 1, 1) and bare dimension-d/2.
The multi-trace splitting of (3.6) can generate also triple-trace vertices, for instance

Tr [XY ]Tr
[
ZX̄

]
Tr
[
Ȳ Z̄

]
, which may need to be renormalised. We shall therefore look at

3-point functions of length-2 single-traces. As we exemplify in figure 9 the 2PI corrections
at leading order in N violate the chirality of the sextic vertices involved, and we can
conclude that no counter-term is needed.

Finally, let us point out that the discussion of renormalisation becomes richer once
we set the angles in the Baxter lattice to some special points. For instance, whenever
∆Φ = ∆Φ′ the bubble corrections to vertices of type (3.20) become divergent and need to
be renormalised similarly to vertices (3.16). More interestingly, one may specify the lattice
angles so to generate wrapping divergencies in double-trace terms like Tr

[
X2]Tr [X̄2

]
. In

d-dimensions these counter-terms are needed iff [X] = d/4, which is the condition θ12 = π/2
on the angles of the Baxter lattice. The occurrence of this class of double-traces is very
constrained: for example when 2θ12 +θ23 = π the theory features the double-trace counter-
term Tr

[
X2Y

]
Tr
[
X̄2Ȳ

]
, but a theory that features both of above counter-terms would
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... ...X2 X2 X2Y X2Y

Figure 10. The generic Feynman integral that corrects the two-point function of Tr
[
X2] by

wrappings around the cylinder (left) and generates double-trace counter-terms at θ12 = π/2. The
analogue quantities for the two-point function of Tr

[
X2Y

]
has a similar iterative structure of

wrappings, but with valence-5 vertices (right).

require θ23 = 0, that is a degeneration of the Baxter lattice. The wheel-graphs contributing
to these two-point correlators are depicted on figure 10.

The critical value for the coupling α2
XX that renormalises the operator Tr[X2] when

θ12 = π/2 can be computed in perturbation theory. Following the appendix B of [7],
the Callan-Symanzik β-function shall take the form of a quadratic polynomial at every
order in perturbation theory [41]. Its coefficients depend on the coupling η2

4 associated to
Tr[XuX̄ū]:

β
(
α2
XX

)
= f2(η2

4)α4
XX + f1(η2

4)α2
XX + f0(η2

4) . (3.27)

The coupling α2
XX is well defined as a function of η2

4 at the two, complex conjugated,
critical values — the zeros of the β-function. Similar arguments hold about the existence
of critical values for the coupling α2

XXY that renormalises the operator Tr[X2Y ] in the
theory with 2θ12 + θ23 = π.

3.3 Loom FCFT with 4 slopes

In order to formulate the general M -Loom FCFT it is essential to analyse the case of
M = 4 slopes in detail. Notably, for M > 3 the structure of the Feynman diagrams
cannot be put into that of a lattice of highest(lowest)-valence vertices, as it is the case
of the triangular(honeycomb) lattice for M = 3. In fact, it turns out that a replacement
rule similar to (3.7) is enough to generate all interactions, i.e. the vertices appearing in
the Baxter loom can still be obtained by star-triangle transformations starting from the
2M = 8-valence vertex.

The field content of 4-loom FCFT consists of M(M − 1) = 12 complex scalars. We
find it convenient to denote four of them as

X1 , X2 , X3 , X4 , (3.28)

with dimensions ∆1,∆2,∆3,∆4, and then the fields with “dual” scaling dimensions ∆′i =
d/2−∆i as

u1 , u2 , u3 , u4 . (3.29)

We denote the last four fields as

Y1, Y2 , and their duals v1, v2 , (3.30)
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v1

Y1
Y2

Y1

v2
θ12

θ23θ34

θ13

θ41

X1
X2 X3

X4X4

X1
X2

X3

Y1v1

X1

X2X3

X4

X1

X2 X3

X4

v1

v1Y1

Y1

v1

v1

Y2

v2

Y1

Figure 11. Left: a portion of Baxter lattice made of lines with slopes numbered from 1 to 4 and
the associated Feynman diagram. We highlight (some of the) different angles appearing between
slopes and corresponding to different propagators/fields in the theory. Right: the highest valence
vertex (3.31) and the surrounding vertices in detail, in double-line notation.

with scaling dimensions ∆5,∆6 and d/2 − ∆5, d/2 − ∆6, respectively. The dimensions
of fields are subject to the constraints imposed by the scale invariance of the interaction
vertices — the sum of dimensions of propagators around any vertex is always equal to d —
which is built-in via the geometry of closed polygons in the dual, loom graph construction
(see section 2).

The fields interact via the total of 131 single-trace chiral vertices. The highest valence
facet one can build in the loom is an octagon with four couples of parallel edges, and the
corresponding valence-8 vertex represented in figure 11 (right) reads

Tr
[
X1X2X3X4X̄1X̄2X̄3X̄4

]
, (3.31)

compatible with the constraint ∆1 + ∆2 + ∆3 + ∆4 = d
2 . All vertices of valence 7 can be

obtained by one star-triangle move starting from (3.31), replacing two fields Xi with one
field Yi or vi according to the rules

X1X2 → v1 , X2X3 → v2 , X3X4 → Y1 , X4X̄1 → Y2 , (3.32)

and thus reducing an octagonal loom face to a heptagonal one in 8 different ways:

Tr
[
v1X3X4X̄1X̄2X̄3X̄4

]
, Tr

[
X1v2X4X̄1X̄2X̄3X̄4

]
, Tr

[
X1X2Y1X̄1X̄2X̄3X̄4

]
Tr
[
X1X2X3Y2X̄2X̄3X̄4

]
, Tr

[
X1X2X3X4v̄1X̄3X̄4

]
, Tr

[
X1X2X3X4X̄1v̄2X̄4

]
Tr
[
X1X2X3X4X̄1X̄2Ȳ1

]
, Tr

[
X2X3X4X̄1X̄2X̄3Ȳ2

]
.

(3.33)

As we said, there is no planar Feynman diagram with only valence-8 vertices. The closest
relative to the Kagomé lattice of M = 3 is the tiling of octagons and pentagons showed
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in the figure 11. There are four valence-5 vertices appearing in the diagram of figure 11,
namely

Tr
[
X1v2X4v̄1Ȳ1

]
, Tr

[
X̄1v̄2X̄4v1Y1

]
, Tr

[
X2Y1v̄1X̄3Ȳ2

]
, Tr

[
X̄2Ȳ1v1X3Y2

]
. (3.34)

The latter are not all the vertices of valence 5 in the Loom FCFT(4): there are in total 48
vertices of valence five. This theory also features 28 vertices of valence six, 38 vertices of
valence four and 8 cubic vertices, namely:

Tr [u1ū2v̄1] , Tr
[
u1ū4Ȳ2

]
, Tr [ū3ū4Y1] , Tr [u2ū3v̄2] ,

Tr [u2ū1v1] , Tr [u4ū1Y2] , Tr
[
u3u4Ȳ1

]
, Tr [u3ū2v2] .

(3.35)

The complete list of the vertices of 4-Loom FCFT is given in the appendix A.
Leaving only a certain small number of constants non-zero in 4-Loom FCFT, we can

end up with a few interesting particular FCFTs. In particular, retaining only the quartic
couplings Tr [v1X3Y2ū1] and Tr

[
u1v̄1X̄3Ȳ2

]
we arrive at the FCFT called “Checkerboard”,

which contains the known FCFTs as particular cases (bi-scalar, ABJM FCFTs considered
above, or BFKL-type FCFT) and generalises them to the presence of spectral parameter
in the Feynman graphs [43].

3.3.1 U(1) symmetry

Let us argue that the analogue of the U(1)⊗M symmetry featured by the M = 2 or M = 3
loom FCFTs exists for M = 4. We are looking for a symmetry of the type

U(1)⊗U(1)⊗ · · · ⊗ U(1)︸ ︷︷ ︸
n-fold

,

such that any field, say Φ, transforms acquiring a phase that depends on a set of k charges
qΦ,k ∈ R — one for each copy of U(1)

Φ→ ei
∑n

k=1 qΦ,kθk × Φ , Φ̄→ e−i
∑n

k=1 qΦ,kθk × Φ̄ . (3.36)

In order to detect the symmetry, let’s call x(Φ) = ∑n
k=1 qΦ,kθk the angle associated by

a given transformation for the field Φ. The values of x(Φ) — for every transformation
{θ1, . . . , θn} — shall satisfy the same set of linear equations ensuring that each interaction
vertex is invariant. Namely, given a vertex Tr [Φa1 . . .Φar ], the associated constraint on
charges is

x(Φa1) + · · ·+ x(Φar ) = 0 ⇐⇒
r∑
s=1

qΦas ,k = 0 , ∀k = 1, . . . , n . (3.37)

Since in the loom FCFTs the interactions appear always in pairs of the type

Tr [ABC · · · ] , Tr
[
ĀB̄C̄ · · ·

]
, (3.38)

and the charge of a field acquires a “−′′ sign under hermitian conjugation, the system
features pairs of identical equations, hence half of them must be dropped. Due to the huge
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number of vertices in the theory it is convenient to use Mathematica to solve the system.
It follows from the solution that all x(Φ) can be expressed via a linear combination of
four of them x(Xk). It appears that the theory is invariant under four copies of U(1), and
labelling the corresponding charges as (q1, q2, q3, q4) we obtain

q1 q2 q3 q4
X1 1 0 0 0
X2 0 1 0 0
X3 0 0 1 0
X4 0 0 0 1

;

q1 q2 q3 q4
u1 0 1 1 1
u2 -1 0 1 1
u3 -1 -1 0 1
u4 1 1 1 0

;

q1 q2 q3 q4
Y1 0 0 1 1
Y2 -1 0 0 1
v1 1 1 0 0
v2 0 1 1 0

.

The classification of fields and vertices and the analysis of U(1) charges make it trans-
parent that the interactions generated by the Loom can be read out from the highest-valence
vertex (3.31) via a rule that substitutes strings of Xi’s with one field

X1X2 → v1 , X2X3 → v2 , X3X4 → Y1 , X4X̄1 → Y2 ,

X2X3X4 → u1 , X3X4X̄1 → u2 , X4X̄1X̄2 → u3 , X̄1X̄2X̄3 → u4 .
(3.39)

Each of these substitutions preserves the scaling dimension and the U(1) charges. The
first line in (3.39) is just the star-triangle replacement of two fields with one, noticed
in (3.32), but also the second line can be broken up into star-triangles, making manifest
the origin of the replacement as a feature of the Loom. Indeed, applying the star-triangle
transformations in the first line of (3.39) to the states in the second line, we can rewrite
the latter line as follows

X2X3X4 → v2X4 → u1 , X3X4X̄1 → Y1X̄1 → u2 ,

X4X̄1X̄2 → Y2X̄2 → u3 , X̄1X̄2X̄3 → v̄1X̄3 → u4 .
(3.40)

After the discussion of the Loom FCFTs for M = 3, 4 we are ready to proceed with
the general construction for any number M of slopes in the Baxter lattice, including the
renormalisation and double-trace terms.

3.4 Loom FCFT with M slopes

In the following we present the general scheme for the construction of Lagrangian of the
Loom FCFT with any number of slopes M in its the Baxter lattice. We will label the M
slopes as k = 1, . . . ,M . The crossing of two lines along the h-th and k-th slope of the
Baxter lattice forms two complementary angles that we denote θhk and θ′hk = π − θhk.
A lattice with M slopes can generate faces with any number n of edges inside the range
3 ≤ n ≤ 2M by means of the star-triangle moves of the Loom, starting from simpler
configurations. Therefore, the Feynman diagrams associated with the general Baxter lattice
can featureM(M−1)/2 different propagators that pass through the angles θhk - associated
to complex scalar fields Φhk — and M(M − 1)/2 propagators that pass through the angles
θ′hk, associated to the “dual” fields φhk, as shown in figure 12.

In order to fix the notation we introduce the ordering of slopes in the following way:
we call 0 < θhk < π an angle that is comprised between the slope h and the slope k < h
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θ23

θ12

Φ12
Φ12

φ12

φ12

θ34

θM1

Figure 12. The slopes {M, 1, 2, 3, 4} of a loom withM > 4, and the associated angles θij they form
on the Baxter lattice (its fragment is on the left). On the right, the Feynman diagram propagators
that cross a certain Baxter lattice vertex in orthogonal directions: for fields Φ and for dual fields φ.

in clockwise order and θkh = −θhk ∈ (−π, 0). Unbarred and barred fields Φhk cross the
same vertex of the Baxter lattice from the side of θhk > 0 and θkh < 0 respectively. The
analogous picture holds for φhk unbarred/barred fields with respect to the angle θ′hk.

The fields Φhk have the scaling dimensions

∆hk = θ′hk
2π d , (3.41)

while the fields φhk have the scaling dimension

∆′hk = θhk
2π d = d

2 −∆hk . (3.42)

The fields φ are “dual” to the fields Φ in the sense that the effect of a star-triangle duality
is to replace the propagators of each Φ-field with the propagators of the corresponding
φ-field.

The Lagrangian of the loom field theory withM directions has therefore a kinetic term
given by the sum of a M(M − 1) free fields with bare dimensions ∆hk and ∆′hk

L0 = 1
N

M∑
h>k

Tr
[
Φ̄hk (−∂µ∂µ)∆′hk Φhk + φ̄hk (−∂µ∂µ)∆hk φhk

]
, (3.43)

and it is in general non-local as it features the integral operators

(−∂µ∂µ)a f(x) = π
d
2

Γ
(
d
2 − a

)
Γ (a)

∫
ddy

(x− y)2( d
2−a)

f(y) . (3.44)

The latter reduces to a differential one — therefore local — only for integer values of
“a”. However, we stress that the locality property of the Lagrangian in a CFT is not so
fundamental as for the massive theories.
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The vertices of the theory can be read out of the general Baxter lattice, analysing the
possible faces one can form with lines along M slopes. There is a unique vertex of maximal
valence 2M that corresponds to a 2M -gon on the Baxter lattice, and reads

1
N

Tr
[
Φ12Φ23 . . .ΦM1Φ̄12 . . . Φ̄M1

]
(x) , (3.45)

where Φ̄hk is the hermitian conjugate of Φhk.5 The interactions in the Loom FCFT can be
packed into a single-trace Lagrangian

Lint = 1
N

2M∑
n=3

#(M,n)∑
k=1

η2
n,k Tr [. . .Φ . . . φ . . . ] , (3.46)

where #(M,n) is the number of vertices of valence n for a given M number of slopes in
the Baxter lattice. We stress that in the general Loom FCFT each single trace vertex can
enter with an independent coupling which we denoted as η2

n,k. However, we will impose
the additional requirement that each pair of vertices of the type

η2 Tr [ABC . . . FG] + η̄2 Tr
[
ĀB̄C̄ . . . F̄ Ḡ

]
, (3.47)

enters with complex conjugate couplings η̄ = (η)∗. This will impose natural restictions to
the spectrum of anomalous dimensions, as it will be discussed in section 5.

3.4.1 Counting of vertices in FCFT with M slopes

The counting and classification of vertices becomes quickly cumbersome as M increases.
In order to count the vertices of a given valence n one should count the number of the
ways by which one can construct an n-gon having the edges along a subset of slopes of the
loom. This problem can be rephrased in terms of ordered partitions. Given a slope h we
can assign it two elements h and h̄ that are its two orientations. A polygon with n edges
corresponds to an ordered subset of n elements from the string

1 2 3 . . .M 1̄ 2̄ . . . M̄ , (3.48)

such that its first element i and its last element is j̄ with j > i. Given a subset ilhk . . . j̄,
any pair of successive elements denotes the crossing of two lines in the Baxter lattice, and
thus the associated propagator/field in the vertex. For instance, one can associate hk, hk̄
and h̄k̄ to Φhk, φhk and Φ̄hk respectively. It is evident that each pair of the type hk̄ is
constrained by k < h since a given direction h cannot cross itself h̄ or even more tilted
lines k̄ > h̄.

Each vertex of valence n is a subsequence of n letters extracted from (3.48) for which
we can specify the first and last “letter” in the unbarred/barred subsets: a . . . c b̄ . . . d̄. Let
l be the number of unbarred letters and n− l the number of barred ones. Once a and c are
fixed, there are l−2 intermediate letters to choose in a+1, . . . , c−1, which is a set of length

5Since the theory is non-unitary, the barred and unbarred fields can be often considered as independent
variables in the functional integrals defining physical quantities.
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a− c− 1. Similarly, there are n− l− 2 unbarred letters to be chosen inside b+ 1, . . . , d− 1
once b and d are fixed. Thus once a, c, b, d are fixed, for a given l the number of generated
vertices is

c−a+1∑
l=1

(
c− a− 1
l − 2

)(
d− b− 1
n− l − 2

)
. (3.49)

Last formula is correct only whenever c > a and b > d. If a = c one has only one choice,
the unbarred string is “a′′ and l can only be zero. Similarly for b = d the barred string
is “d′′ and n − l shall be 0. We can simply correct the binomials by δa,c and δb,d shifts
that take into account these latter cases too, and the formula for the number of vertices of
valence n in the M -Loom FCFT reads:

#(n,M) =
M∑

a,b=1

M∑
c=max(a,b)+1

M∑
d=max(a,b)+1

c−a+1∑
l=1

(
c− a− 1
l − 2 + δa,c

)(
d− b− 1

n− l − 2 + δb,d

)
. (3.50)

For the first few M ’s the number of vertices #(n,M) of valence n ≤ 12 reads

M 3 4 5 6 7 8 9 10 11 12
3 2 9 6 1 0 0 0 0 0 0
4 8 38 48 28 8 1 0 0 0 0
5 20 110 202 200 120 45 10 1 0 0
6 40 255 612 852 780 495 220 66 12 1

Thus, for a general Loom FCFT the number of coupling constants grows very fast (ex-
ponentially) with M . For instance, these numbers are {18, 131, 708, 3333, . . . } for M =
3, 4, 5, 6, . . . , respectively. However, we have the freedom to restrict these couplings in
an arbitrary way. Say, we can set any subset of these couplings to be equal, imposing
additional symmetries on the action, and/or set some of them to zero, excluding certain
interactions from the theory without spoiling the integrability of diagrams. In this pro-
cess, some fields can disappear from interaction terms and thus can be decoupled from
the theory. This is the way to construct particular reductions, useful for various physical
questions, such as bi-scalar or ABJM FCFT discussed in the previous sections.

3.4.2 U(1) symmetry for general M

The counting of vertices in the previous section can be matched against the replacement
rule of the type (3.7) for M = 3 or (3.39) for M = 4, based on the star-triangle symmetry
of the Loom. This rule becomes more transparent once we look at the internal U(1)-
symmetries of the M -Loom FCFT. This symmetry can be spotted by solving directly a
system of neutrality constraints on the vertices of the theory, as it was done for M = 4 in
section 3.3.1, or rather derived by star-triangle moves applied to the highest-valence vertex

Tr
[
Φ12 · · ·ΦM1 Φ̄12 · · · Φ̄M1

]
. (3.51)

That is, we shall consider a symmetry group

U(1)⊗U(1)⊗ · · · ⊗ U(1)︸ ︷︷ ︸
M -fold

(3.52)
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and associate to M fields Φi,i+1 a unit-vector charge

q(Φi,i+1) = (0, . . . , 1︸︷︷︸
i-th

, . . . , 0) . (3.53)

Next, replacing a couple of fields Φi−1,iΦi,i+1 in the 2M -vertex with another Loom field φ
via star-triangle, the neutrality of the newly-obtained vertex reads

q(φ) = q(Φi−1,i) + q(Φi,i+1) . (3.54)

The procedure can be iterated by applying other star-triangle moves to the vertex, all
the way(s) until it reduces to a cubic one. By construction from the Loom, this iteration
catches all the vertices in the theory and involves all the fields in it. Nicely, it provides
a way to classify fields according to the “level”, i.e. the number of star-triangle moves
necessary for a field to appear. For instance, at M = 4 the level-0 fields are Xk, then Yk
and vk are level-1 and fields uk, dual to Xk, are level-2. A field of level n can be regarded
as the replacement of a string of n+ 1 fields of level-0

Φi,i+1Φi+1,i+2 · · ·Φi+n,i+n+1 → φ (level-n) . (3.55)

Last equation determines at once the scaling dimensions of φ and its U(1)-charges

[φ] =
n∑
j=1

[Φi+j,i+j+1] , q(φ) =
n∑
j=1

q(Φi+j,i+j+1) . (3.56)

It also provides a quick check on the number of fields in the theory compatible with the sym-
metries of the Loom. Starting from M complex fields at the level-0, any pair Φi−1,iΦi,i+1
can be substituted by a single field, resulting in M complex fields at level-1. The same is
true all the way until the level M − 2, making a total of M(M − 1) complex fields and
M(M − 1) conjugate fields.

3.4.3 Renormalisation and conformal symmetry of FCFTs

The fixed chirality of interactions (each term does not have its complex conjugate) gener-
ated by the Loom construction implies that in the large-N , multi-color limit the single-trace
vertices do not receive corrections at any order of the weak coupling expansion from graphs
that contain only the single-trace interactions. Thus, in any Loom FCFT the single-trace
couplings have fixed values under the renormalisation group (RG) transformations as it
was first observed in the bi-scalar theory [7, 29].

Nevertheless, the single-trace interactions of the theory are not UV finite as they can
generate infinities in the two-point (or higher-point) functions of single-trace operators at
loop level. These divergences cannot just be multiplicatively renormalised since the single-
trace interactions can generate double-trace (or multi-trace) divergent vertex functions that
require the introduction of counter-terms with generically running couplings in order to be
renormalised.

In order to analyse the renormalisation of a Loom FCFT one should understand which
counter-terms can be generated, i.e. what are the possible scale-invariant and U(1)⊗M -
invariant multi-trace vertices to be added to the interaction Lagrangian. For general angles
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in the Baxter lattice, this is equivalent to look for all possible multi-trace splittings of the
single-trace Loom FCFT interactions that preserve the order of fields. For instance starting
from Tr [ABCDEF ] the candidate multi-trace counter-terms are{

Tr [ABCD]Tr [EF ] , Tr [ABC]Tr [DEF ] , Tr [AB]Tr [CD]Tr [EF ] , cyclic perm.
}
(3.57)

where all the fields A, . . . F are different — as it is always the case in a Loom FCFT vertex.
Any reshuffling of fields inside the traces that is not equivalent to (3.57) by trace cyclicity,
say for instance Tr [ABDC]Tr [EF ] or Tr [AD]Tr [BC]Tr [EF ], shall be a priori excluded
since they violate the chirality of the theory and thus would generate sub-leading terms in
the large-N expansion.

Furthermore, we can generalise two observations made at M = 3. First, due to the
chirality the only way to get divergent quantum corrections to a double-trace vertex is by
means of a series of bubbles that “intertwine” two propagators of the type “field/dual field”:
Φ/φ. On the contrary, trying to generate bubbles by intertwining more than two propaga-
tors gives contributions that are subleading at large-N :

...
... ...

......
...

...
......

... ...
...

~1/N2 ~1/N2 ~1/N0

Notice that the entire bubble series besides the one-bubble term is generated by the inser-
tion of valence-4 interactions.

Secondly, there are no divergent irreducible vertex functions with more than two traces,
i.e. such multi-trace vertices do not get renormalised at leading order in large-N limit and
should be dropped from our analysis.

On the right picture of last figure there is an example of quartic bubble inserted in
a double-trace correlator with any number of external fields. The sum over such bubble
insertions is divergent and actually requires the coupling renormalisation if and only if
the two propagators sum up to d/2 (plus integers). Examples of relevant vertices in this
analysis are the vertex Tr[XY ]Tr[X̄Ȳ ] of the bi-scalar fishnet (3.1) [7, 29], or of the vertices

Tr [XY Z]Tr
[
X̄Ȳ Z̄

]
, Tr [XY Z]Tr

[
X̄ū

]
, Tr [Xu]Tr

[
X̄ū

]
, (3.58)

of 3-Loom FCFT, as well as of the following vertices of 4-Loom FCFT:

Tr [X1X2X3X4]Tr
[
X̄1X̄2X̄3X̄4

]
, Tr [X1v2]Tr

[
X4v̄1Ȳ1

]
. (3.59)

A similar analysis of such terms can be reproduced for general M -Loom FCFT and one
comes to the same conclusions as observed for M = 2, 3. At special points in the space
of loom FCFTs — that is for special angles θij in the Baxter lattice — there can be
other double-trace counter-terms which are induced by wrapping corrections [6, 7, 29],
as it was discussed in section 3.2.1 for M = 2, 3 with the examples of Tr[X2]Tr[X̄2] and
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Tr[X2Y ]Tr[X̄2Ȳ ]. A classification of these second class of vertices can be done once we
fix M and constrain some angles at which they can appear, appropriately. As a general
conclusion, we can claim that the Loom FCFTs are UV complete and scale-invariant at
the quantum level when the double-trace couplings are set to specific values — i.e. the
critical points, that achieve the conformality of field theories via the Baxter lattice con-
struction. However, we stress again that our Loom FCFTs are non-unitarity theories due
to the chirality of their Lagrangian. That means that the FCFTs are genuinely logarithmic
CFTs [12, 44].

3.5 d = 4 spinning FCFT

The general construction described above can be further generalised replacing scalars with
spinning fields. Let us focus on the definition of a spinning Baxter lattice in d = 4 di-
mensions, corresponding to a loom FCFT action containing fields that transform under
the product of two irreps of SU(2)L and SU(2)R, e.g. left/right fermions (1

2 , 0) and (0, 1
2).

The loom picture on the Baxter lattice is modified by associating spins to the slopes
j = 1, 2, . . . ,M , such that the j-th slope is defined not only by its angle but also by the
SU(2) representation of spin sj .

Locally the Baxter lattice has the structure of crossings of straight lines, and each
crossing is labelled by the two spins (si, sj) of the intersecting lines that define the left/right
spin of the propagator that passes through this crossing. The rule associating angles to
scaling dimensions of fields takes now into account also the spins:

∆ = π − θ
2π d+ si + sj . (3.60)

We shall introduce fermions on the lattice in the way that preserves the star-triangle
integrability, that is defining the cubic vertices of the theory corresponding to triangular
faces in the lattice, and deriving all other interactions by star-triangle moves. Given the
set of three lines that cross forming a triangle, the propagators in the corresponding cubic
vertex transform under a representation (a2 ,

b
2). Thus the propagator is defined as follows:

[G∆(x)]αα̇
β̇β

=
(σα1α̇1

µ1 ⊗ · · · ⊗ σαaα̇a
µa

)x̂µ1 · · · x̂µa (σ̄ν1
β̇1β
⊗ · · · ⊗ σ̄νb

β̇bβb
)x̂ν1 · · · x̂νb

(x2)∆ , (3.61)

where (· · · ) stands for symmetrysation over greek indices, which run over 1, 2 and x̂µ =
xµ/|x|. We shall use the compact notation

[G∆(x)]αα̇
β̇β

=
(
x2
)−∆

[x]αα̇ [x̄]β̇β =
(
x2
)−∆

[x]a [x̄]b , (3.62)

in order to give the analytic expression of the star-triangle identity of figure 13:∫
d4y

[x− y]2s3 [x− y]2s1
(x− y)2(u+2)

[y]2s1R2s12s2(u+ v)[y]`
y−2(u+v)

[y− z]2s2 [y− z]2s3
(y − z)2(v+2) =

= cs1,s2,s3(u, v)× [x]2s3R2s2,2s3(v)[x]2s2
x−2v

[x− z]2s2 [x− z]2s1
(x− z)2(u+v+2)

[z]2s1R2s1,2s3(u)[z]2s3
z−2u ,

(3.63)
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α
γ

β

α

γ

β

a

a'

b

b'
c'

c

c'

c

a

a'

b

b'

R(v)

R(u)

R(u+v)

Figure 13. Left: diagrammatic form of the l.h.s. (3.63) of the star-triangle duality as a star of
propagators. Right: diagrammatic form of the r.h.s. (3.63) of the star-triangle duality as a triangle
of propagators. The spinor indices are mixed by the SU(2) fused R-matrices that are contracted
with the matrices σ,σ appearing in the definition (3.61), and their position is denoted by short
segments. The angles are α = π(u + v + 2)/2, β = −πv/2, γ = −πu/2. Magenta, blue and green
lines are associated with spins s1, s2 and s3 respectively.

where cs1,s2,s3(u, v) is a simple ratio of Γ-functions of u and v , and s1, s2, s3 are the spin
of each of the three intersecting slopes (for details see formula (2.31) in [38]).

The matrices Rab(u) are solutions of the Yang-Baxter equation acting on the tensor
product of (a+1)- and (b+1)-dimensional symmetric irrep of SU(2). They can be obtained
via fusion procedure [45]. In contrast to the scalar Loom FCFTs, in presence of fermions
the loom moves change the configuration of such R-matrices, besides producing a factor
with a ratio of Γ-functions. Nevertheless, the integrability of Feynman integrals — thus of
the perturbative expansion of correlators — is preserved thanks to Yang-Baxter property.
The derivation of (3.63) is indeed a straightforward generalisation of the scalar case. The
details of it can be found in [38]. An example of such a theory including the spinor fields
is the so-called N = 2 FCFT [46]

LN=2 = N Tr
[
λ̄1(σ · ∂)λ1 + λ̄2(σ · ∂)λ2 + 4πiξ

(
φ̄∆φ+ λ1φ̄λ2 + λ̄1φλ̄2

)]
. (3.64)

In the framework of Loom FCFT, it corresponds to a special reduction of M = 3 slopes in
d = 4 dimensions, with angles

θ12 = θ23 = θ31 = 2π
3 , (3.65)

and spins s1 = s2 = 0 and s3 = 1
2 . Triangular faces in the Baxter lattice correspond to the

cubic vertices (3.10) where now the fields v and w have scaling dimension ∆′23 = ∆′31 = 3
2

and transform in the representations (1
2 , 0) and (0, 1

2) under spacetime rotations, namely
as left and right Weyl fermions. The field u is scalar, and it has the scaling dimension
∆′12 = 1.
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a b
a b

R

R

R

Figure 14. The analogue of figure 3 in presence of spinning Baxter lattice/spinning propagators.
Coloured solid lines of the Baxter lattice carry a certain SU(2) symmetric representation: different
colors depict, in general, different spins. The propagators (3.61) that cross a lattice vertex featuring
one (two) coloured lines are dressed with one (two) numerators in the corresponding SU(2) sym-
metric representation(s). Solid lines are scalar propagators, while dashed lines indicate the Pauli
matrix structure(s) in the numerators of (3.61).

v u

u v

w

Figure 15. Two couple of cubic vertices Tr [ūvw] and Tr [uv̄w̄] in presence of a spinning slope
(magenta) in the Baxter lattice.

With the identification λ1 = v, λ2 = w and φ = u we recover from (3.10) the original
notation of (3.64). We show this vertex in figure 15 using the notation of figure 14. The
interaction in (3.64) is only the cubic sector of M = 3 Loom FCFT, obtained whenever all
the other couplings are set to zero. The general 3-Loom FCFT with spins (0, 0, 1

2) includes
also the interactions (3.6)–(3.9). For instance, the highest valency vertex is now a sextic
interaction of two right fermions (duals to u, ū), two left fermions (duals to v, v̄) and two
scalars (duals to w, w̄). In the notation of figure 14, we can draw the sextic interaction as
presented on figure 16. More involved examples can feature more than one spin structure
in the theory, with two or more spinning slopes in the Baxter lattice. In such a case we
have to deal with vertices having also an SU(2) ⊗ SU(2) tensor structure that mixes spin
degrees of freedom via the fused R-matrix, constrained by integrability.
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Z

X Y

Z

XY

Figure 16. The sextic vertex of 3-Loom FCFT in presence of a spinning slope (magenta) in the
Baxter lattice.

4 Loom CFT amplitude as a sum over Loom graphs

The fishnet amplitudes with disc topology at N = ∞ have been introduced and studied
for the bi-scalar FCFT [22, 23, 47, 48]. It was observed that such an amplitude is always
given by a single graph cut out of the regular square lattice. We will generalise here these
amplitudes to any M -Loom FCFT and show that only a very limited number of diagrams
contributes to such amplitude, all related by star-triangle moves.

Let us argue that in the large-N limit of any Loom FCFT the scattering amplitudes
with disk topology are described by a finite set of processes, i.e. of Feynman integrals, at
any couplings. Following the LSZ prescription, a scattering amplitude with n particles and
disk topology is the residue on-shell p2

k = 0 , k = 1, . . . , n, of the Fourier transform of an
n-point single-trace correlator, for instance

Tr
[
Φ12(x1)φ23(x2)Φ̄12(x3) · · · φ̄46(xn)

]
. (4.1)

The weak-coupling expansion of such correlator in the planar limit, with the disc topol-
ogy, has a finite number of contributions that can be readily read out of the Baxter lat-
tice. In fact, any such Feynman diagram can be obtained starting from a very large and
general Baxter lattice by drawing a closed path that cuts the propagators of the fields
Φ12 , φ23 , Φ̄12 , . . . φ̄46 in a given order. Once such diagram is computed, all other contri-
butions to the same correlator are obtained by a number of star-triangle transformations,
that is of moves of lines on the Baxter lattice, with fixed order of external legs on the
boundary. There exists clearly only a finite set of such moves: the related diagrams, say
B and B′ are related to each other by a chain of the star-triangle moves. Then according
to the formula (2.4) dey differ by a finite ratio V(B → B′) of Γ-functions, i.e.

B(x1, . . . , xn) = V(B → B′)B′(x1, . . . , xn) , (4.2)

and they carry in general a different set of couplings. We can define systematically a
standard “base” diagram B0 that defines the equivalence class [B0] of all the other diagrams
that are related to it by star-triangle moves. For a given n-point diagram its base diagram
is defined as follows: let us consider the dual portion of Baxter lattice and let the number
m(h) be the number of times the slope h occurs in it. Let us draw a bundle of m(h) lines
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Figure 17. Two possible Baxter lattices dual to the Feynman diagrams contributing to a certain
8-particles amplitude involving four different slopes. They are related via star-triangle moves.

with slopes h for each of the slope that appears in the given diagram. The bundles can
be ordered so that they form a polygon with at most M edges, since 1 ≤ h ≤M . Finally,
the base diagram is obtained by cutting a close contour out of these bundles, such that
to reproduce the boundary conditions, i.e. the order of fields inside the trace (4.1). An
example is given already at the level of Baxter lattice by figure 17: the portion of lattice
on the left is associated to its base representative B0 on the right. Finally, the full answer
for a given planar correlator (4.1) can be arranged as the following sum∑
B∈[B0]

(coupling of B)×B(x1, . . . , xn) = B0(x1, . . . , xn)
∑

B∈[B0]
V(B0 → B)(coupling of B)

(4.3)
that is a homogeneous polynomial in the couplings that multiplies a single function of the
coordinates. Here the (coupling of B) means the product of all single trace couplings of the
graph B. It was shown in [22, 23] that in the bi-scalar theory (3.1) the correlators of the
type (4.1), defining the off-shell bi-scalar amplitudes, obey the Yangian symmetry: a certain
“lasso” operator can be applied at the external coordinates of such correlator with disc
topology, for which this correlator appears to be an eigenfunction.6 It is highly probable
that the same Yangian symmetry is proper to arbitrary correlators of the type (4.1) in any
Loom FCFT.

5 “tT” invariance and reality properties of the spectrum

As it was noticed already in the early papers on Fishnet CFTs [1, 4–7, 12], the spectrum of
their anomalous dimensions of consists of either positive or complex conjugate dimensions.
Such is the case of d-dimensional bi-scalar Fishnet CFT (3.1).

The appearance of complex dimensions is a ubiquitous feature in this non-unitary
CFT, but the fact that they enter in complex-conjugate pair needs some explanation. Let
us discuss the symmetry behind this phenomenon.

Consider first the case of FCFT (3.1). If we apply the time reversal, T transformation.
It corresponds to the hermitian conjugation to this Lagrangian: L(X,Y ) → L(X,Y ). Un-

6We recall that this symmetry develops an anomaly on-shell, due to the region where the loop momenta
are collinear with external ones [48], so the Yangian symmetry applies only to the off-shell amplitudes.
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der this transformation, both kinetic terms do not change, whether as the last, interaction
term transforms into its “chiral” dual (4π)d/2ξ2 Tr

[
XY X̄Ȳ

]
. If we than apply the transpo-

sition: X,Y → (X)t, (X)t, called here as t transformation, the matrix fields inside the trace
will be reordered in the opposite way, thus rendering the original, chiral interaction terms:

Tr
[
XY X̄Ȳ

]
T−→ Tr

[
XY X̄Ȳ

]
= Tr

[
X̄tȲ tXtXt

]
t−→ Tr

[
X̄Ȳ XY

]
That means that the composition of two transformations, which we call here tT transfor-
mation, is a symmetry of this Lagrangian. Since the functional measure is also obviously
tT invariant, this is the symmetry of the whole theory.

What are the consequences of this symmetry on the spectrum of anomalous dimen-
sions? It is clear that the operators are not necessarily tT -symmetric, e.g.

Tr[XXY X̄] tT→ Tr[X̄X̄Ȳ X] .

Then the two point function of such an operator, defining its conformal dimension, tT
transforms in the following way:[

〈Ō(x)O(0)〉
]tT

= 〈ŌtT(x)OtT(0)〉 = |x|−2∆∗ ,

which means that the conformal dimensions are either equal and real for both, O and OtT
operators, or they are complex conjugate.

However, there are a few subtleties in the interpretation of such behavior of anomalous
dimensions. Take as an example the spectrum of the length-2 exchange operators in the
4-point function

KX(x1, x2;x′1, x′2) = 1
N
〈Tr[X(x1)X(x2)]Tr[X̄(x′1)X̄(x′2)]〉 , (5.1)

in the FCFT (3.1). The direct calculation generalizing the eq. (6) of [4] to any ω gives the
following equation for the spectrum of such operators:

Γ
(
d
2 − ω

)2
Γ
(

∆+S
2 + ω

)
Γ
(
d
2 + ω − ∆−S

2

)
Γ(ω)2Γ

(
∆+S

2 − ω
)

Γ
(
d
2 − ω −

∆−S
2

) = ξ4 (5.2)

In order to demonstrate here the issues of reality/complexity of the spectrum at various
values of ω (i.e. for various angles α = 2π

d ω of the 2-loom), we will consider, for the sake of
simplicity of solutions for ∆(ξ), the case of d = 4 and of the spin S = 0.

At ω = 1/2 (5.2) reduces to ∆2 + 16ξ4 + 3 = 4∆, so that the two real solutions have
the following perturbative expansions

∆1 = 1 + 8ξ2 + 32ξ4 + 256ξ6 + 2560ξ8 +O
(
ξ9
)

∆2 = 3− 8ξ2 − 32ξ4 − 256ξ6 − 2560ξ8 +O
(
ξ9
)

(5.3)

Notice that the second one is the “shadow” solution, so we are left only with the first one
in the spectrum, corresponding to the exchange operator Tr[X2(x)].
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The case ω = 3/2, which corresponds to the exchange operator Tr[Y 2(x)], has quite
similar reality properties. The spectral equation (5.2) reduces now to −(∆−5)(∆−3)2(∆−
1)2(∆ + 1) = 256ξ4, so that we have 6 real solutions with the following perturbative
expansions

∆1 = −1 + 2ξ4

3 + 20ξ8

27 + 647ξ12

486 +O
(
ξ15
)

∆2 = 5− 2ξ4

3 −
20ξ8

27 −
647ξ12

486 +O
(
ξ15
)

∆3 = 1 + 2
√

2ξ2 + 3ξ4 + 53ξ6

4
√

2
+ 30ξ8 + 20679ξ10

128
√

2
+ 1821ξ12

4 + 5543373ξ14

2048
√

2
+O

(
ξ15
)

∆4 = 3− 2
√

2ξ2 − 3ξ4 − 53ξ6

4
√

2
− 30ξ8 − 20679ξ10

128
√

2
− 1821ξ12

4 − 5543373ξ14

2048
√

2
+O

(
ξ15
)

∆5 = 1− 2
√

2ξ2 + 3ξ4 − 53ξ6

4
√

2
+ 30ξ8 − 20679ξ10

128
√

2
+ 1821ξ12

4 − 5543373ξ14

2048
√

2
+O

(
ξ15
)

∆6 = 3 + 2
√

2ξ2 − 3ξ4 + 53ξ6

4
√

2
− 30ξ8 + 20679ξ10

128
√

2
− 1821ξ12

4 + 5543373ξ14

2048
√

2
+O

(
ξ15
)
(5.4)

we see that, again, all solutions are real at real ξ2. The first solution corresponds to
“shadow” operator and should be dropped from the spectrum.

If now we consider ω = 1 — the “isotropic” biscalar FCFT coming from N = 4
SYM [1] — we obtain the 4th order equation (∆− 4)(∆− 2)2∆ = 16ξ4 with the following
4 perturbative solutions

∆1 = 2− 2iξ2 + iξ6 − 7iξ10

4 + 33iξ14

8 +O
(
ξ18
)

∆2 = 2 + 2iξ2 − iξ6 + 7iξ10

4 − 33iξ14

8 +O
(
ξ18
)

∆3 = −ξ4 + 5ξ8

4 −
21ξ12

8 + 429ξ16

64 +O
(
ξ18
)
,

∆4 = 4 + ξ4 − 5ξ8

4 + 21ξ12

8 − 429ξ16

64 +O
(
ξ18
)

(5.5)

Here we have two real solutions, out of which the ∆3 corresponds to the “shadow” operator
of the last one. But we also get 2 complex conjugate solutions. Their appearance is due to
the quadratic cut w.r.t. ξ4 in the spectral equation (5.2) at S = 0, ω = d/4, at any d.

Actually, one of these two complex dimensions should be also considered as of the
“shadow” operator. Indeed, it is know [6, 7] that the correlators of bi-scalar theory at
ω = d/4 develop a cut at ξ2 ∈ (0,∞), due to the presence of two complex conjugate
double-trace terms (3.5). The coupling for these terms has two complex conjugate critical
values (functions of ξ given by zeros of the β-function of the type (3.27)). To regularize the
theory we have to add a little complex part to ξ2 → ξ2 ± iε. Then the theory, depending
on the sign will run in the IR to one of these critical points. For plus sign, the eigenvalue
∆1 corresponds to the “shadow” operator and ∆2 - to the physical one, and vice verse for
the minus sign. In conclusion, our theorem of positivity of spectrum is valid up to the fact
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that some complex dimensions can correspond to shadow operators and thus they are not
in the spectrum. The last phenomenon happens for particular angles of the loom, such as
α = 2π

d ω = π/2 in the example above.
We see similar patterns of reality in the behavior of two dimensions on figure2 of [12]:

for small enough coupling ξ, the operator tr X3
1 has a real dimension. However, at the

value ξ3 ' 0.21 it collides with its “shadow” and they form a complex conjugate pair. A
similar picture is seen in analytic perturbative calculations [12], (e.g. the eqs. (7.11-13)
therein), but both complex conjugated pairs of dimensions can correspond to the physical
operators.7

The tT symmetry is a common feature not only of this bi-scalar fishnet CFT but it is
proper to any generalised, Loom FCFT at generic values of the angles in the Baxter lattice.
Indeed, all kinetic terms of any Loom FCFT are obviously tT symmetric, which is also true
for the single-trace interaction terms (see e.g. (3.6)–(3.10) for the case of M = 3 slopes).
Due to the chirality of the Lagrangian, the T transformation changes all single-trace chiral
terms to anti-chiral and replaces their couplings with the complex conjugates, whether as
the t transformation sets them back to the original ordering, but also replaces each field
with its hermitian conjugate. Due to the structure of the Baxter lattice, the vertices in the
Loom FCFT always appear in pairs (3.47), so that the single-trace interactions of the FCFT
Lagrangian are tT -invariant.8 The double-trace terms described in the section 3 have the
same tT -symmetry since they have the same sequence of fields as in single-trace vertices
but split into two traces, and their coupling are real, as demonstrated in section 3.4.3 and
discussed in the last paragraph of section 3.2.1 regarding the 3-Loom FCFT. Therefore, the
spectrum of Loom FCFT at any M and generic angles obeys the same reality property: it
contains either real conformal dimensions or complex conjugate pairs. However, as it was
demonstrated above for the bi-scalar model at ω = d/4, for particular angles of the Baxter
lattice, new double-trace terms with complex couplings can appear which will violate the
tT -symmetry, and hence the reality property of a part of the spectrum.

This tT symmetry reminds the PT symmetry of non-unitary quantum mechanical
systems and QFTs proposed in [30, 31, 49], where the spectrum of energies obeys the same
properties: it contains either real or complex conjugate energy levels. The latter usually
appear for certain critical finite values of couplings and their appearance is interpreted as
the breakdown of PT symmetry.

6 Conclusions

In this work, we constructed the most general family of Fishnet CFTs — the conformal
theories of matrix fields with “chiral” planar interactions in various dimensions. The dis-
tinguished feature of these Loom FCFTs is that their perturbation theory contains only a
very limited set of Feynman diagrams, dual to the so called Baxter lattices — a set of inter-
secting straight lines on the plane. These diagrams appear to be integrable, as was noticed

7We are grateful to Gregory Korchemsky for very pertinent comments on the violation of tT -symmetry.
8We can imagine a chiral FCFT in terms of planar Feynman graphs drawn on a transparent glass:

looking at them from behind the glass we see the planar graphs of anti-chiral FCFT.
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long ago by A. Zamolodchikov [2]: all such Feynman graphs at a given order of perturba-
tion theory are related by star-triangle identities, so that effectively only one or a handful
of graphs are subject to non-trivial computations. Particular cases of such FCFTs have
been proposed in the past, starting from the bi-scalar FCFT [1, 4] appearing in γ-twisted
N = 4 SYM reduction, or 3d FCFT [5] — a reduction of γ-twisted ABJM model.

Our present work gives the general scheme of construction of such theories, integrable
in ’t Hooft limit, in any dimension and for most general dimensions of matrix quantum
fields. Each such FCFT is characterised by Baxter lattices consisting of a system of M
crossing straight lines with different slopes, and their parallels. This lattice serves as a the
“loom” for “weaving” the dual integrable planar Feynman graphs. That’s why we call such
a theory the M -Loom FCFT. Its action has M(M − 1) matrix scalar fields, and a number
of scalar interactions, quickly (exponentially) increasing with M . On the other hand, one
can choose for particular physical applications a particular subset of non-zero couplings,
thus reducing the number of interactions and decoupling certain fields. We also outlined
the generalisation of these M -Loom FCFTs to spinning matrix fields in d = 4 dimensions.

Let us list some of the prospects and applications concerning our construction of M -
Loom FCFTs:

• M -loom FCFTs are non-unitary, logarithmic CFTs, with the non-diagonalisable mix-
ing matrix of conformal operators containing Jordan cells. It would be interesting
to understand the general structure of the spectrum of anomalous dimensions and of
the OPE in these theories, to compute, or may be even to bootstrap the structure
functions, along the lines of [50].

• M -loom FCFTs obey a certain discrete symmetry which we called tT symmetry: it
combines the T -transformation (time reversal) and the t-transformation (transpose
of fields). Due to that, the conformal dimensions in the theory are real or enter
into the spectrum in complex conjugate pairs. The property is similar to that of the
spectrum of PT -symmetric non-unitary QM systems considered in [30, 31]. It would
be interesting to push further this analogy and may be also to search for applications
to condensed matter physics.

• There is still no understanding how the integrability works for the so-called dynamical
fishnet CFT — the three-coupling reduction of γ-twisted N = 4 SYM [1, 3]. It seems
that we cannot include it into our general M -loom FCFT scheme based on the star-
triangle identity. Does it exist a generalisation of our construction, that likely relies
on integrability with long range interactions, which is suitable for the dynamical
fishnet?

• The Fishnet CFT is a step in understanding the integrability of the full N = 4 SYM.
However, we still don’t know how to construct the corresponding 1+1-dimensional
PSU(2, 2|4) spin chain (certainly with non-local interactions!) whose solution would
be equivalent to the summation of all planar Feynman graphs of the theory. It may
be that such graphs have a (well) hidden dynamical lattice structure, just a bit more
complicated than the dynamical graphs of FCFT [1, 3].
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• The discovery of FCFTs triggered the study of the spectrum of logarithmic CFTs,
in particular of its structure in terms of Jordan cells, starting from some toy-models
called Hyper-Eclectic and Eclectic spin chains [39, 51, 52]. These have similar proper-
ties of the spectrum: the Hamiltonian is not diagonalisable, and its Jordan form con-
tains Jordan cells. Their classification is a problem of combinatorics of random walks
(also known as “stampedes” [53]), expressible in the language of Young tableaux.
What is the general method for counting stampedes on a M -Loom diagram rather
than on a bi-scalar one?

• The study of the four-point Basso-Dixon Feynman integrals in the bi-scalar FCFT in
four and two dimensions [16, 17, 54, 55] and later at any d [20] and the use of Yangian
symmetry to bootstrap other higher-point fishnet integrals for the planar amplitudes
and correlators [22–24, 56] has uncovered an amazingly rich structure. Indeed, it
allowed to make contact with the hexagonalisation techniques inspired by AdS/CFT
holography. It also shed some light on the problem of understanding the space of
functions of higher-point higher-loop Feynman integrals [25, 57]. The computation
of similar quantities in other FCFTs from the Loom could provide great results in
this direction.

• The study of the spectrum of FCFTs is a very tricky problem, in spite of the inte-
grability. It involves the construction of a framework for the underlying non-compact
spin chains, with the spins in principal series representations of conformal groups,
analogous to the Algebraic Bethe Ansatz and inspired by the SL(2,C) techniques
of [58, 59]. The solution might have the ultimate formulation in terms of the Quan-
tum Spectral Curve formalism, similar to that of the N = 4 SYM [8–10], based on
the Hasse diagram, QQ-relations for Baxter’s Q functions and on their analyticity
properties. This construction was achieved so far only partially [12, 28].
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A Vertices of M = 4 Loom FCTF

We list in the following all the vertices generated by the Baxter lattice with M = 4 slopes,
according to the notations for fields of section 3.3.

– 34 –



J
H
E
P
0
6
(
2
0
2
3
)
0
4
1

• The vertex of valence 8:

• The 8 vertices of valence 7:

• The 28 vertices of valence 6:

• The 48 vertices of valence 5:
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• The 38 vertices of valence 4:

• The 8 vertices of valence 3:
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