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Abstract

We derive by the traditional Algebraic Bethe Ansatz method the Bethe equations for the general
open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [1]. The
technical difficulties due to the breaking of U(1) symmetry and the absence of a reference state are
overcome by an algebraic construction where the two-boundary Temperley-Lieb Hamiltonian is realised
in a new Uqsl2-invariant spin chain involving infinite-dimensional Verma modules on the edges [2]. The
equivalence of the two Hamiltonians is established by proving Schur-Weyl duality between Uqsl2 and
the two-boundary Temperley-Lieb algebra. In this framework, the Nepomechie condition turns out to
have a simple algebraic interpretation in terms of quantum group fusion rules.

Introduction

Let us consider the open XXZ Hamiltonian acting on H := (C2)⊗N with the most general boundary fields

Hn.d. :=
1

2

N−1∑

i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 + cosh(h)σz

i σ
z
i+1 + sinh(h)(σz

i+1 − σz
i )
)

+
sinh(h)

2 sinh(hδl) cosh(hκl)

(
ehθlσ+

1 + e−hθlσ−
1 + sinh

(
h(δl + κl)

)
σz
1

)

+
sinh(h)

2 sinh(hδr) cosh(hκr)

(
ehθrσ+

N + e−hθrσ−
N − sinh

(
h(δr + κr)

)
σz
N

)

(1)

depending on 7 parameters h, δl/r, κl/r and θl/r where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

are Pauli matrices and

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1

2
(σx − iσy) =

(
0 0
1 0

)
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are raising and lowering matrices. Performing a rotation of angle θ around the z-axis shifts θl/r by θ while
leaving the other 5 parameters unchanged so one can always set, for example, θr to 0. In other words, the
spectrum of Hn.d. only depends on the difference

Θ := θl − θr (2)

and so there is actually only 6 relevant parameters.1

While it is known from Sklyanin’s boundary Bethe ansatz formalism [3] and the subsequent construction
of boundary K-matrices [4, 5] that Hn.d. is integrable, the rigorous implementation of this procedure for
the most general choice of parameters is far from being straightforward. The main reason is that the non-
diagonal boundary terms in (1) containing σ±

1 and σ±
N break the U(1) invariance of the usual XXZ model

and so |↑〉
⊗N

is not an eigenvector of Hn.d. anymore and cannot be used as a reference state (also sometimes
called “pseudovacuum”) for Algebraic Bethe Ansatz (ABA).

In the last twenty years, various new approaches have been proposed to circumvent this problem. A first
major breakthrough was made in [1, 6] and independently in [7], with the derivation of the Bethe Ansatz
Equations (BAE) under the assumption

δl + κl + δr + κr ±Θ = 2M + 1−N ∈ Z (3)

whereM ≥ 0 is the magnon number, a constraint informally known as the ”Nepomechie condition”.2 Later
on, the BAE for any choice of parameters were derived [8] and it turned out that if the constraint (3) is not
satisfied they contained an additional ”inhomogeneous” term, which moreover fixed the magnon number
to M = N (see more details in Appendix C). The same equations were also obtained using the separation
of variables method [9]. Additionally, the closely related Modified Algebraic Bethe Ansatz formalism was
developed [10–12] as well as an algebraic framework based on the so-called q-Onsager algebra [13].

Although these methods provide a satisfactory solution to the spectral problem of Hn.d. it is fair to say
they are rather indirect and still lack a simple conceptual understanding. Indeed, in the above-mentioned
works, the BAE are either derived by analytically continuing some truncated functional relations and fusion
rules at roots of unity [1, 6], by using an intricate dynamical gauge transformation [7, 12] or by writing the
most general form for the eigenvalues of the transfer matrix respecting certain analyticity conditions and
asymptotics [8]. In all these different approaches, the Nepomechie condition (3) naturally appears at some
step of the computation but its conceptual meaning remains elusive.

In this paper, we will rigorously derive the BAE for all Hn.d., under the constraint (3) by standard
Algebraic Bethe Ansatz and explain the algebraic origin of this condition.

Our first step is to reinterpret Hn.d. as (a representation of) an abstract element

H := −µlbl − µrbr −

N−1∑

i=1

ei

belonging to a certain lattice algebra, namely the two-boundary Temperley-Lieb algebra 2Bδ,yl/r,Y,N , eval-

uated in a specific 2N -dimensional representation (W0, ρW0
) called the vacuum module (see definitions in

Section 1.1). Concretely, this means that, with some (explicit) mapping of parameters (h, δl/r, κl/r,Θ) ↔
(δ, yl/r, Y, µl/r), we have Hn.d. = ρW0

(H) (see Theorem 1 which is due to [14]).
The next step is to repackage all the Hn.d. satisfying (3) into sectors of a different spin chain whose

Hilbert space

H2b := Vαl
⊗
(
C2
)⊗N

⊗ Vαr

is constructed from N spin- 12 representations and two infinite-dimensional Verma modules Vαl/r
of the Uqsl2

quantum group and whose Hamiltonian H2b commutes with the action of Uqsl2 on H2b (Sections 1.2–1.3).
As a representation of Uqsl2, H2b decomposes into an (infinite) direct sum of irreducible representations,

1One can also show that the spectrum of Hn.d. does not depend on the sign of Θ (see end of Section 1.1).
2Note that the notations α±, β±, θ±, η in [1] correspond here to δl/r, κl/r, θl/r, h respectively and that k = 2M + 1−N

according to [1, Equation (3.31)].
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with some multiplicity spaces HM , M ≥ 0 (39). It was shown in [2] that (for even N) HM carries an
action of the two-boundary Temperley-Lieb algebra 2Bδ,yl/r,YM ,N for some explicit value YM of the Y
parameter (41). Here we prove that, as a 2Bδ,yl/r,YM ,N -module, HM is isomorphic to the (irreducible)
vacuum module W0 if M ≥ N and to an irreducible piece of W0 if 0 ≤ M ≤ N − 1 (Theorem 3),
thereby confirming [2, Conjecture 1]. This new Schur-Weyl duality between Uqsl2 and the two-boundary
Temperley-Lieb algebra is the main algebraic result of this paper.

Using this theorem, we can interpret the restriction of H2b to HM as a representation of H and thus
identify it with Hn.d. satisfying (3) for M ≥ N and with an irreducible subblock of Hn.d. satisfying (3) for
0 ≤M ≤ N−1 (Corollary 1). By a simple algebraic transformation, we are also able to reach the remaining
block of Hn.d. for 0 ≤ M ≤ N − 1 as well as negative values of M , thus realising any Hn.d. satisfying (3)
as some subsector of H2b (Corollary 2). In other words, the spectral problem of Hn.d. for all values of
the parameters subject to the constraint (3) is equivalent to diagonalising H2b. But this is a simpler task,
since H2b, as a representation of H, is integrable [15], and, as an operator acting on H2b, is Uqsl2-invariant
and so has a suitable highest-weight reference eigenvector to implement ABA. This formalism also gives
an algebraic interpretation of the Nepomechie condition: it is just a direct consequence of the fusion rules
for the Uqsl2-modules entering the construction of H2b, in particular Verma modules, which restrict the
possible values of the Y parameter of 2Bδ,yl/r,Y,N to the discrete set {YM ,M ∈ Z}.

It is worth mentioning that the idea to use the two-boundary Temperley-Lieb algebra to derive the
BAE for Hn.d. and to understand the Nepomechie condition from an algebraic point of view was previously
explored in [16]. However, the lack of a suitable Uqsl2-invariant representation in that paper makes it
necessary to use coordinate Bethe ansatz in a given basis and keeps the relevant underlying algebra hidden.

The paper is divided into two parts. The first (Section 1), purely algebraic, introduces the objects
and states the theorems we need to make a precise connection between Hn.d. and H2b. The second (Sec-
tion 2) is devoted to the diagonalisation of H2b, first by implementing the ABA procedure for the simpler
one-boundary Hamiltonian Hb (Section 2.1) and then by extending it to the two-boundary Hamiltonian
H2b (Section 2.2). The main text is supplemented by three technical appendices, the first (Appendix A)
containing the proof of Theorem 3, the second (Appendix B) carrying out ABA for the most general inte-
grable Uqsl2-invariant highest-weight spin chain and the third (Appendix C) discussing an alternative form
of BAE for Hn.d. also appearing in the literature.

Notations

• N : Length of bulk of spin chains

• σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
: Pauli matrices

• σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1

2
(σx − iσy) =

(
0 0
1 0

)
: Raising and lowering matrices

• H :=
(
C2
)⊗N

: Hilbert space of the open XXZ spin chain of length N

• Hn.d. : Open XXZ Hamiltonian with non-diagonal boundary terms

• H
(M)
n.d. : Hn.d. under the Nepomechie constraint (3) for M ∈ Z

• TLδ,N : Temperley-Lieb (TL) algebra on N sites with loop weight δ

• ei, 1 ≤ i ≤ N − 1 : Generators of the Temperley-Lieb algebra or their spin-chain representatives

• Bδ,y,N : Blob algebra on N sites with loop weight δ and blob weight y

• b, b̄ := 1− b : Blob/anti-blob generator or its spin-chain representative

• 2Bδ,yl/r,Y,N : Two-boundary Temperley-Lieb algebra on N sites with loop weight δ, left/right blob
weights yl/r and two-blob weight Y

3



• bl/r, b̄l/r := 1− bl/r : Left/right blob/anti-blob generators (bl := b) or their spin-chain representatives

• Wbb
j , Wbb̄

j , W b̄b
j , W b̄b̄

j , 1 ≤ j ≤ N/2, and W0 : Standard Bδ,y,N -modules

• H := −µlbl − µrbr −
∑N−1

i=1 ei ∈ 2Bδ,yl/r,Y,N : Abstract two-boundary Temperley-Lieb Hamiltonian

• 2Buni
δ,yl/r,N

: Universal two-boundary Temperley-Lieb algebra on N sites with loop weight δ and

left/right blob weights yl/r and central element Y

• q = eh : Deformation parameter of the XXZ spin chain.

• [x]q :=
qx − q−x

q− q−1
: q-deformed numbers

• {x} := qx − q−x

• Uqsl2 : Quantum group, a q-deformation of SU(2)

• E,F,K,K−1 : Generators of Uqsl2.

• C : Casimir element of Uqsl2

• Vα : Infinite-dimensional Verma module of Uqsl2 of highest-weight qα

• HXXZ : Uqsl2-invariant open XXZ Hamiltonian

• Hb := Vα ⊗
(
C2
)⊗N

: Hilbert space of the one-boundary spin chain of length N

• Hb := −µb+HXXZ : Uqsl2-invariant one-boundary Hamiltonian with coupling µ

• H2b := Vαl
⊗
(
C2
)⊗N

⊗ Vαr : Hilbert space of the two-boundary spin chain of length N

• H2b := −µlbl +HXXZ − µrbr : Uqsl2-invariant two-boundary Hamiltonian with couplings µl, µr

• HM , M ≥ 0 : Subspaces of highest-weight vectors of weight qαl+αr+N−2M−2 of H2b

1 Algebraic setting

In this section we present the necessary algebraic tools:

• The relevant lattice algebras, namely the Temperley-Lieb (TL) algebra, the Blob algebra and the
two-boundary Temperley-Lieb algebra and their representations (Section 1.1),

• The Uqsl2 quantum group and its representations (Section 1.2),

• Uqsl2-invariant spin chains with Hilbert spaces H, Hb, H2b and corresponding Hamiltonians HXXZ,
Hb, H2b (Section 1.3),

• Schur-Weyl duality between the Uqsl2 and lattice algebra actions on these spin chains (Section 1.3).

Most of the formalism and results were introduced in [2] and we will often refer to this paper for additional
details. To simplify the exposition we will always assume that N is strictly positive and even, but our
construction can be extended to the odd N case too.
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1.1 Lattice algebras

The Temperley-Lieb algebra [17], denoted TLδ,N , is defined by generators (ei)1≤i≤N−1 and relations

e2i = δei , eiei±1ei = ei , [ei, ej ] = 0 ∀ |i− j| ≥ 2 , (4)

with δ ∈ C some parameter. If we set

ei =

.

.

.

.
...

. .

. .
...

.

.

.

.

i i+ 1

these relations are neatly expressed by the graphical rules

e2i =

.

.
...

. .

. .
...

.

..

.
...

. .

. .
...

.

.

= δ
.

.
...

. .

. .
...

.

.

eiei+1ei =

...

.

. . .

. . .

.

.

.
...

...

.

.

.

. . .

. . .

.
...

...

.

. . .

. . .

.

.

.
...

= ...

.

. . .

. . .

.

.

.
...

.

The parameter δ is then interpreted as the weight of a closed loop.
The TL can be shown to be finite-dimensional and all its irreducible representations, called standard

modules, have been classified. They are indexed by an integer 0 ≤ j ≤ N/2 interpreted as half the number
of through lines propagating in a TL diagram. Concretely, the standard module Wj has a basis of so-called
link states which are half-diagrams containing exactly 2j through lines. For example, for N = 4, these are
given by

W0 = C〈
. . . . ,. .. .

〉

W1 = C〈
. . .. .. ,.. ... . , .... . .

〉

W2 = C〈
.. .. .. ..〉

A TL diagram then acts on these link states by propagating them with the diagrammatical rules of the TL
algebra, with the additional condition that if two through lines are contracted then the diagram acts by 0.
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For example

e2
. .. .

= . .. ..

.

. . .

.. .

= δ
. .. .

e2
. . . .

= . . . ..

.

. . .

.. .

=
. .. .

e2
. . .

.
.
. = . . .

.
.
.

.

.

. . .

.. .

=
.
.

.

.
. .

e3
. . .

.
.
. = . . .

.
.
.

.

.

. ..

. . .

= 0

By some standard combinatorial arguments one can show that

dimWj =

(
N

N
2 − j

)
−

(
N

N
2 − j − 1

)
. (5)

Let us now define some boundary extensions of the TL algebra. The simplest one is the blob algebra
introduced in [18] and denoted Bδ,y,N . It has an additional generator b called the blob satisfying

b2 = b , e1be1 = ye1 , [b, ei] = 0 for 2 ≤ i ≤ N − 1. (6)

with y ∈ C some parameter. Graphically, b is represented by

b =

.

.
•

.

.
...

.

.

.

.

and the rules (6) mean that

.

.

•
• =

.

.
•

. .

. .. .

. .

• = y

. .

. .

(7)

The parameter y is then interpreted as the weight of a closed loop carrying a blob. One often introduces
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the anti-blob b̄ = 1− b, represented by

b̄ =

.

.
◦

.

.
...

.

.

.

.

which also satisfies relations (6) but with the blob weight y replaced by δ − y. Moreover, bb̄ = b̄b = 0 so
diagrammatically

.

.

•
◦ =

.

.
•
◦ = 0

(8)

which justifies the anti-blob terminology.
The blob algebra is also finite-dimensional and the classification of its standard modules is very similar

to the analogous construction in the TL algebra. They are also indexed by 0 ≤ j ≤ N/2 and constructed
using link states with 2j through lines but now we also have to decorate all the cups and through lines
which can touch the left boundary by blobs and anti-blobs. Since only the leftmost through line can touch
it, we have two types of standard modules: Wb

j where the leftmost through line carries a blob and W b̄
j

where it carries an anti-blob. For j = 0 there are no through lines so we just have W0.
3 For example

Wb
1 = C〈

. .
•
..• .. ,. .◦ ..• .. ,..• ... . ,..• .. . .〉

W b̄
1 = C〈

. .
◦
..◦ .. ,. .• ..◦ .. ,..◦ ... . ,..◦ .. . .〉

The action of the the blob algebra on Wb
j , W

b̄
j , with 1 ≤ j ≤ N/2, and W0 is defined in the same way as for

the TL algebra with the additional diagrammatical rules (7) and (8). Moreover one can show [18, 19] that

dimWb
j = dimW b̄

j =

(
N

N/2 + j

)
, dimW0 =

(
N

N/2

)
. (9)

We can further extend the blob algebra by working with two blobs, one on the left, denoted bl := b,
with weight yl := y and one on the right, denoted br and represented by

br =

.

.

�

.

.
...

.

.

.

.

and satisfying an analogue of (6)–(7) but on the right

b2r = br , eN−1breN−1 = yreN−1 , [bl, br] = 0 , [br, ei] = 0 for 1 ≤ i ≤ N − 2 , (10)

with a weight yr for a loop carrying the right blob �. One of course also has a right anti-blob b̄r = 1 − br
represented by � and satisfying (10) with weight δ−yr together with br b̄r = b̄rbr = 0. This is not sufficient

3We will often slightly abuse notation and denote W0 the module with no through lines irrespectively of the lattice algebra
we consider.
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from a diagrammatical point of view however as we also need to assign some weight Y ∈ C to a closed loop
carrying both the left and the right blob. Formally, this non-local relation is given by




N/2∏

i=1

e2i−1


 bl




N/2−1∏

i=1

e2i


 br




N/2∏

i=1

e2i−1


 = Y

N/2∏

i=1

e2i−1 . (11)

The generators (ei)1≤i≤N−1 and bl/r with relations (4)–(6)–(10)–(11) then define a finite-dimensional alge-
bra called the two-boundary Temperley-Lieb algebra denoted 2Bδ,yl/r,Y,N .

The classification of standard modules of the two-boundary TL algebra is a natural generalisation of the
blob algebra case [14,20]. Namely, for 1 ≤ j ≤ N we have four types of modules, namely Wbb

j , W b̄b
j , Wbb̄

j and

W b̄b̄
j , with 2j through lines depending on whether the leftmost/rightmost line carries a blob/anti-blob, as

well as a single module W0 with no through lines, all of these being constructed from link states decorated
by left/right blob/anti-blob in all allowed ways. The action of 2Bδ,yl/r,Y,N on these representations is again
given by the defining diagrammatical rules of the algebra. One can show [14, 20] that

dimWbb
j = dimW b̄b

j = dimWbb̄
j = dimW b̄b̄

j =

N/2∑

k=j

(
N

N/2 + k

)
, dimW0 = 2N . (12)

W0 is called the vacuum module. It is generically irreducible but can become reducible but indecomposable
for certain values of the parameters [14] which will be important for us later on (see Section 1.3 and
Appendix A). It is also worth mentioning that since a closed loop touching both boundaries can be formed
only if there are no through lines, W0 is the only standard module which actually depends on the value of
Y .

The main interest of this whole formalism for the open XXZ spin chain with non-diagonal boundary
terms is the following. Let us set

ei = −
1

2

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 + cosh(h)(σz

i σ
z
i+1 − 1) + sinh(h)(σz

i+1 − σz
i )
)
,

bl =
1

2 sinh(hαl)

(
iehθlσ+

1 + ie−hθlσ−
1 + cosh(hαl)σ

z
1

)
+

1

2
,

br = −
1

2 sinh(hαr)

(
iehθrσ+

N + ie−hθrσ−
N + cosh(hαr)σ

z
N

)
+

1

2
,

µl/r =
sinh(h) sinh

(
hαl/r

)

sinh
(
ζl/r −

hαl/r

2

)
sinh

(
ζl/r +

hαl/r

2

)

(13)

with some new parameters αl/r and ζl/r . Then, up to an irrelevant additive constant, we have

Hn.d. = −µlbl − µrbr −

N−1∑

i=1

ei

with4

hδl =
hαl

2
− ζl , hκl =

hαl

2
+ ζl +

iπ

2
,

hδr =
hαr

2
− ζr , hκr =

hαr

2
+ ζr −

iπ

2
,

(14)

and the following result holds.

Theorem 1 (J. de Gier, A. Nichols [14]). The ei, 1 ≤ i ≤ N − 1, and bl/r from (13) satisfy the relations
of the two-boundary TL algebra with weights

δ = 2 cosh(h) , yl/r =
sinh

(
h(αl/r + 1)

)

sinh
(
hαl/r

) , Y =
sinh

(
hαl+αr+1±Θ

2

)
sinh

(
hαl+αr+1∓Θ

2

)

sinh(hαl) sinh(hαr)
(15)

4Other choices are possible but this will not affect the end result.
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where Θ := θl − θr (2), and thus define a 2N -dimensional representation of 2Bδ,yl/r,Y,N on (C2)⊗N . More-
over, this representation is isomorphic to the vacuum module W0.

Using this theorem, we can identify (C2)⊗N with W0 and interpret Hn.d. as an abstract element of
2Bδ,yl/r,Y,N

H := −µlbl − µrbr −
N−1∑

i=1

ei (16)

evaluated in the vacuum representation W0, that is Hn.d. = ρW0
(H) where ρW0

: 2Bδ,yl/r,Y,N → EndC(W0)
is the representation map of W0. This will be an essential ingredient of our construction. In what follows
we will always tacitly make the identification (C2)⊗N ∼= W0.

Note also that the weights (15) do not depend on the sign of Θ, so the spectrum Hn.d. is invariant under
the transformation Θ ↔ −Θ. In particular, the +Θ and −Θ choices in the Nepomechie condition (3) are
equivalent. When convenient, we will write ±Θ instead of Θ.

1.2 The Uqsl2 quantum group

Let us now introduce the second main ingredient: the Uqsl2 quantum group.
The algebra Uqsl2 [21, 22] (see also [23, Ch. 6.4] and [24, Ch.VI-VII]) is defined by generators E, F, K

and K−1 and relations

KEK
−1 = q2E , KFK

−1 = q−2
F , [E,F] =

K− K−1

q− q−1
, KK

−1 = K
−1

K = 1 . (17)

It is a q-deformation of the universal enveloping algebra of the Lie algebra sl2, in the sense that we recover
the commutation relations of the sl2 triple (E,F,H) in the limit q → 1 with K = qH. It is important for
defining the action on tensor products of representations that this algebra admits the coproduct

∆(E) = 1⊗ E+ E⊗ K , ∆(F) = K
−1 ⊗ F+ F⊗ 1 , ∆(K±1) = K

±1 ⊗ K
±1 . (18)

As sl2, Uqsl2 admits (2j + 1)-dimensional spin-j representations for all j ∈ 1
2N. For our purposes we

will need the fundamental spin- 12 representation C2 where the action of the generators is given by

EC2 = σ+ , FC2 = σ− , K
±1
C2 = q±σz

. (19)

Let us also introduce the Verma modules Vα [24, Ch.VI.3] that we shall need to define our modified
boundary conditions. For all α ∈ C they are given in a basis Vα :=

⊕
0≤nC |n〉 by

EVα |n〉 = [n]q[α− n]q |n− 1〉 ,

FVα |n〉 = |n+ 1〉 ,

K
±1
Vα

|n〉 = q±(α−1−2n) |n〉

(20)

for all n ≥ 0, with |−1〉 = 0, and where

[x]q :=
qx − q−x

q− q−1
=

{x}

{1}
, {x} := qx − q−x .

The basis vectors |n〉 diagonalise K and their K-eigenvalue qα−1−2n is called the weight. The vector |0〉 is
annihilated by the raising operator E and is thus called the highest-weight vector. When q is not a root of
unity, Vα is irreducible if and only if qα 6= ±qn for all n ∈ N∗. If that is the case, Vα is also unique, meaning
that any Uqsl2-module generated from a highest-weight vector of weight qα−1 is isomorphic to Vα. Finally,
for all α ∈ C such that qα 6= ±1 we have the fusion rule

Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1 . (21)

The above definitions have to be slightly adapted if q is a root of unity. This case was thoroughly treated
in [2] and presents no major complications. To keep the exposition simple, from now on we will always
assume q to be generic (not a root of unity) unless otherwise stated. We refer to [2] for further details.
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1.3 Uqsl2-invariant spin chains and Schur-Weyl duality

Applying the coproduct (18) N − 1 times (recall that the coproduct is coassociative, and so the result does
not depend on the order of its application) to the spin- 12 representation (19) we obtain a well-defined action

of Uqsl2 on H :=
(
C2
)⊗N

. Now if we set

ei = −
1

2

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q+ q−1

2
(σz

i σ
z
i+1 − 1)

)
−

q− q−1

4
(σz

i+1 − σz
i ) =




0 0 0 0
0 q −1 0
0 −1 q−1 0
0 0 0 0


 (22)

as in (13), with q = eh, it turns out that that the ei commute with this Uqsl2 action [25]. This implies that
the Hamiltonian

HXXZ =
1

2

N−1∑

i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q+ q−1

2
σz
i σ

z
i+1

)
+

q− q−1

4
(σz

N − σz
1)

=
q+ q−1

2
(N − 1)−

N−1∑

i=1

ei

(23)

(which is just the first line of Hn.d. from (1), i.e. without the two boundary terms) is Uqsl2-invariant.
More generally, the whole TLδ,N -action on H generated by the ei commutes with Uqsl2. Actually, not
only they commute, but they are even mutual maximal centralisers and H decomposes as a (TLδ,N , Uqsl2)-
bimodule [26–29]

H =

N/2⊕

j=0

Wj ⊗ C
2j+1 , (24)

where Wj are the standard TLδ,N -modules introduced above and C2j+1 are spin-j representations of Uqsl2.
This result is known as (quantum) Schur-Weyl duality. This result is essential, as it reduces the study of

HXXZ on H :=
(
C2
)⊗N

to its restriction on standard TLδ,N -modules.
Unfortunately we cannot use this method for Hn.d. because the boundary terms (13)

bl =
1

{αl}

(
iqθlσ+

1 + iq−θlσ−
1 +

qαl + q−αl

2
σz
1

)
+

1

2
=

1

{αl}

(
qαl iqθl

iq−θl −q−αl

)
,

br = −
1

{αr}

(
iqθrσ+

N + iq−θrσ−
N +

qαr + q−αr

2
σz
N

)
+

1

2
=

1

{αr}

(
−q−αr −iqθr

−iq−θr qαr

)

break the Uqsl2 symmetry. This is why we are going to build a different Hamiltonian which does preserve
the quantum group symmetry and then show that it can be related back to Hn.d. through the two-boundary
TL algebra.

Following [2] let us first introduce the one-boundary Hamiltonian. It is constructed by tensoring the
usual spin chain H := (C2)⊗N with the Verma module Vα and adding a new Uqsl2-invariant boundary term
acting on the two leftmost sites, Vα ⊗ C2, of the new Hilbert space

Hb := Vα ⊗ (C2)⊗N .

Because of the fusion rule (21) the most general such term can only be a linear combination of projectors
b± on the direct summands Vα±1, which are given by

b± =
±1

{α}

(
−q−1K−1 + q±α {1}F

q{1}K−1
E qK−1 − q∓α

)
. (25)

In the expression above, b± are operators acting on Vα ⊗C2 which we have written as 2× 2 matrices with
entries in End(Vα). Since b+ + b− = 1, it is sufficient, up to irrelevant additive terms in the Hamiltonian,
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to consider boundary couplings of the form −µb, with b := b+ and µ ∈ C a coupling constant. The
one-boundary Hamiltonian on Hb is then defined as

Hb := −µb−

N−1∑

i=1

ei . (26)

One can also check that b satisfies

b2 = b , e1be1 = ye1 , [b, ei] = 0 for 2 ≤ i ≤ N − 1 (27)

with

y =
[α+ 1]q
[α]q

. (28)

Together with (4) this means that Hb carries a representation of the blob algebra. By construction, the
actions of Uqsl2 and Bδ,y,N on Hb commute with each other. One can actually show [2] that if qα /∈ ±qZ,
we have Schur-Weyl duality, namely Uqsl2 and Bδ,y,N are mutual maximal centralisers and we have the
(Bδ,y,N , Uqsl2)-bimodule decomposition

Hb = W0 ⊗ Vα ⊕

N/2⊕

j=1

(
Wb

j ⊗ Vα+2j ⊕W b̄
j ⊗ Vα−2j

)
. (29)

The two-boundary Hamiltonian is constructed in very much the same way, this time by tensoring
the usual spin chain H = (C2)⊗N with two Verma modules Vαl

and Vαr , on the left and on the right
respectively [2]. The most general left boundary coupling is still given by −µlbl with bl the projector on
Vαl+1 from (25). On the other hand, the projector on the Vαr+1 summand of C2 ⊗Vαr

∼= Vαr+1 ⊕Vαr−1 is

br =

(
qK− q−αr q{1}KF

{1}E −q−1K + qαr

)
. (30)

The two-boundary Hamiltonian is then defined on the Hilbert space

H2b := Vαl
⊗ (C2)⊗N ⊗ Vαr (31)

as

H2b := −µlbl − µrbr −

N−1∑

i=1

ei (32)

with µr ∈ C a coupling constant. Similarly to bl, the new generator br satisfies

b2r = br , eN−1breN−1 = yreN−1 , [br, ei] = 0 for 1 ≤ i ≤ N − 2 (33)

with

yr =
[αr + 1]q
[αr]q

. (34)

To obtain a representation of the two-boundary TL algebra it remains to compute the weight Y of
a loop carrying both br and bl. We can indeed find such a Y , but it turns out that in our case it will
not be a number but some non-trivial central element [2]. This is why we need to use a slightly different
version of the two-boundary TL algebra, namely the universal two-boundary TL algebra 2Buni

δ,yl/r,N
. It is

defined by the same relations as 2Bδ,yl/r,Y,N but now Y is treated as an additional generator denoted Y

and commuting with all the other generators ei and bl/r, i.e. it is a central extension of 2Bδ,yl/r,Y,N . If we
want to recover the usual two-boundary TL at some fixed value of Y ∈ C, we just have to take the quotient
2Buni

δ,yl/r,N
/〈Y− Y 〉 ∼= 2Bδ,yl/r,Y,N . In particular, this implies that any representation of 2Bδ,yl/r,Y,N for any

value of Y ∈ C is automatically a representation of 2Buni
δ,yl/r,N

(the converse is not true in general, however).

Note also that contrary to the usual two-boundary TL algebra, 2Buni
δ,yl/r,N

⊃ C[Y] is infinite-dimensional.
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Coming back to our spin chain, we showed in [2] that H2b carries a representation of the universal
two-boundary TL algebra 2Buni

δ,yl/r,N
. Concretely, Uqsl2 admits a Casimir element

C := {1}2FE + qK+ q−1
K
−1 (35)

which commutes with Uqsl2 and moreover its action on H2b, denoted CH2b
, commutes with the ei and bl/r.

Then the relation (11) is satisfied for

Y =
qαl+αr+1 + q−αl−αr−1 − CH2b

{αl}{αr}
(36)

making H2b a representation of 2Buni
δ,yl/r,N

. By construction, this action commutes with that of Uqsl2.

Following [2], we can restrict the action of 2Buni
δ,yl/r,N

to a Y-eigenspace to obtain a well-defined action of

the usual two-boundary TL algebra 2Bδ,yl/r,Y,N for some fixed value of Y . Since the Casimir C commutes

with Uqsl2 it acts as a scalar on any irreducible representation of Uqsl2, in particular5

CVα = qα + q−α , (37)

and so this amounts to computing the decomposition of H2b into simple Uqsl2-modules. Using the fusion
rule for Verma modules, valid for qαl/r , qαl+αr 6= ±qZ,

Vαl
⊗ Vαr

∼=
⊕

n≥0

Vαl+αr−1−2n (38)

as well as (21), we obtain the Uqsl2-decomposition

H2b =
⊕

M≥0

HM ⊗ Vαl+αr−1+N−2M , (39)

where HM are some multiplicity spaces of dimension

dM := dimHM =





M∑

k=0

(
N

k

)
for 0 ≤M ≤ N

2N for M ≥ N

(40)

which can be identified with the subspaces of highest-weight vectors of weight qαl+αr−2+N−2M . By direct
computation, one then shows [2] that restricted to HM , Y acts as the scalar

YM =

[
M + 1− N

2

]
q

[
αl + αr −M + N

2

]
q

[αl]q[αr]q
(41)

and so, for all M ≥ 0, HM is a representation of the two-boundary TL algebra 2Bδ,yl/r,YM ,N .
The final question is what are these representations. Let us first recall an important result from [14,20],

valid for generic q.

Theorem 2. i) For 0 ≤ M ≤ N/2 − 1 the vacuum module W0 of 2Bδ,yl/r,YM ,N is reducible but inde-

composable, with a unique irreducible proper 2Bδ,yl/r,YM ,N -submodule isomorphic to Wbb
N/2−M and an

irreducible subquotient W0/W
bb
N/2−M .

ii) For N/2 ≤ M ≤ N − 1 the vacuum module W0 of 2Bδ,yl/r,YM ,N is reducible but indecomposable,

with a unique irreducible proper 2Bδ,yl/r,YM ,N -submodule isomorphic to W b̄b̄
M+1−N/2 and an irreducible

subquotient W0/W
b̄b̄
M+1−N/2.

5Just evaluate it on the highest-weight vector: C |0〉 = {1}2FE |0〉+ qK |0〉+ q−1K−1 |0〉 =
(
qα + q−α

)
|0〉.
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iii) For M ≥ N the vacuum module W0 of 2Bδ,yl/r,YM ,N is irreducible.

Based on this theorem and the dimensions (40) a conjecture about the nature of the 2Bδ,yl/r,YM ,N -
modules HM was made in [2]. In Appendix A we prove this conjecture, so let us restate it here as a
theorem:

Theorem 3. For q ∈ C\qiπQ, qαl , qαr ∈ C\{±qZ} such that qαl+αr /∈ ±qZ and N ∈ 2N∗, Uqsl2 and
2Buni

δ,yl/r,N
are mutual centralisers on H2b in (31), with generators ei, 1 ≤ i ≤ N − 1, bl, br, Y acting by

(22), (25), (30), (36) respectively, and we have the (2Buni
δ,yl/r,N

, Uqsl2)-bimodule decomposition

H2b =
⊕

M≥0

HM ⊗ Vαl+αr−1+N−2M , (42)

where the HM are irreducible 2Bδ,yl/r,YM ,N -modules given by

HM
∼= Wbb

N/2−M  W0 for 0 ≤M ≤ N/2− 1 ,

HM
∼= W0/W

b̄b̄
M+1−N/2 for N/2 ≤M ≤ N − 1 ,

HM
∼= W0 for N ≤M .

(43)

This theorem means, in particular, that even for 0 ≤ M ≤ N − 1, HM is always isomorphic to an
irreducible piece of the vacuum module W0 of 2Bδ,yl/r,YM ,N , either a stable subspace (0 ≤ M ≤ N/2− 1)
or an irreducible subquotient (N/2 ≤M ≤ N − 1) of W0.

Now recall q = eh, δ = 2 cosh(h) = [2]q, and compare (15) with (28)–(34)–(41). All the weights coincide,
except for Y , which however matches in both cases if and only if

αl + αr ±Θ = 2M + 1−N .

where Θ := θl − θr (2). Recalling the reparametrisation (14) this is equivalent to

δl + κl + δr + κr ±Θ = 2M + 1−N ,

which is exactly the Nepomechie condition (3)! Moreover Theorems 1–2–3 imply the following. Set

Hn.d.(δ, yl/r, µl/r, YM ) = H
(M)
n.d. and for any 2Bδ,yl/r,Y,N -module M denote the representation map ρM :

2Bδ,yl/r,Y,N → EndC(M). Then:

Corollary 1. i) For 0 ≤M ≤ N/2− 1

H
(M)
n.d. = ρW0

(H) =

(
ρW0/Wbb

N/2−M
(H) ∗

0 ρWbb
N/2−M

(H)

)
=

(
ρW0/Wbb

N/2−M
(H) ∗

0 H2b|HM

)
.

ii) For N/2 ≤M ≤ N − 1

H
(M)
n.d. = ρW0

(H) =



ρW0/W b̄b̄

M+1−N/2
(H) ∗

0 ρW b̄b̄
M+1−N/2

(H)


 =

(
H2b|HM ∗

0 ρW b̄b̄
M+1−N/2

(H)

)
.

iii) For M ≥ N

H
(M)
n.d. = ρW0

(H) = H2b|HM .

In other words, the spectrum of all the open non-diagonal XXZ Hamiltonians with non-diagonal bound-
ary terms for all the values of the parameters covered by the Nepomechie condition (3) with M ≥ N is
contained in the irreducible sectors of a single Hamiltonian H2b. For 0 ≤ M ≤ N − 1 the sectors of H2b

only contain an irreducible block of Hn.d.. The spectral problem of H2b will be solved in the next section
by Algebraic Bethe Ansatz.
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One may wonder if we can also express the remaining blocks ρW0/Wbb
N/2−M

(H) and ρW b̄b̄
M+1−N/2

(H) in

terms of H2b to diagonalise Hn.d. completely, even for 0 ≤ M ≤ N − 1. This turns out to be possible via
the following trick. Let us introduce the involution

· : 2Bδ,yl/r,Y,N → 2Bδ,δ−yl/r,δ−yl−yr+Y,N , (ei, bl/r) 7→ (ei, b̄l/r := 1− bl/r) . (44)

From the definitions of the various weights one easily sees that it is an algebra isomorphism and moreover
that it exchanges Wbb

j with W b̄b̄
j (and also Wbb̄

j with W b̄b
j ) for 1 ≤ j ≤ N/2, while leaving W0 invariant.

Let us define

H := −µlb̄l − µr b̄r −
N−1∑

i=1

ei ∈ 2Bδ,δ−yl/r,δ−yl−yr+Y,N .

and
H2b := ρH2b

(H) = −µl − µr +H2b(αl/r → −αl/r, µl/r → −µl/r) (45)

acting on H2b := V−αl
⊗ (C2)⊗N ⊗ V−αr . Note that by (28)–(34)

yl/r(αl/r → −αl/r) =
[αl/r − 1]q

[αl/r]q
= δ − yl/r

and using (41) one easily checks that

YM (αl/r → −αl/r) =

[
N
2 −M − 1

]
q

[
αl + αr −

N
2 +M

]
q

[αl]q[αr]q
= δ − yl − yr + YN−M−1 (46)

so by Theorem 3, H2b decomposes as

H2b =
⊕

M≥0

HM ⊗ V−αl−αr−1+N−2M

where the HM are irreducible 2Bδ,δ−yl/r,δ−yl−yr+YN−M−1,N -modules given by (43). Pulling back by the
algebra isomorphism (44) we can thus generalize Corollary 1.

Corollary 2. i) For 0 ≤M ≤ N/2− 1

H
(M)
n.d. = ρW0

(H) = ρW0
(H) =


ρW0/W b̄b̄

N/2−M
(H) ∗

0 ρWbb
N/2−M

(H)


 =

(
H2b|HN−M−1

∗

0 H2b|HM

)
.

ii) For N/2 ≤M ≤ N − 1

H
(M)
n.d. = ρW0

(H) = ρW0
(H) =


ρW0/W b̄b̄

M+1−N/2
(H) ∗

0 ρWbb
M+1−N/2

(H)


 =

(
H2b|HM ∗

0 H2b|HN−M−1

)
.

iii) For M ≥ N

H
(M)
n.d. = ρW0

(H) = H2b|HM .

iv) For M ≤ −1

H
(M)
n.d. = ρW0

(H) = H2b|HN−M−1
.

Note that, because of (46), the magnon number M labelling the sectors HM of H2b is mapped to the
dual magnon number M := N −M − 1 in the H2b spin chain (and vice versa) by the involution (44). It is

this purely algebraic observation that enables us to reach the missing blocks of H
(M)
n.d. for 0 ≤M ≤ N − 1 as
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well as negative values ofM , which correspond to M ≥ N . As we will see, this will be essential to establish
a complete set of Bethe Ansatz Equations for the degenerate cases 0 ≤M ≤ N − 1.

To summarize, we have reduced the spectral problem of all the H
(M)
n.d. , M ∈ Z, satisfying the Nepomechie

condition (3) to the spectral problem of H2b.
6 This may not seem like a big step, but actually it is: H2b is

Uqsl2-invariant and as such has a natural reference state |0〉 ⊗ |↑〉
⊗N

⊗ |0〉 which will enable us to compute
its spectrum using standard Algebraic Bethe Ansatz.

2 Bethe ansatz

We now turn to the computation of the spectrum of H2b (32) using the algebraic boundary Bethe ansatz
formalism first developed by Sklyanin [3]. Here, we no longer assume that N is even. As a warm-up, we
will first treat the one-boundary Hamiltonian Hb (26).

2.1 The one-boundary system

In the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} the Uqsl2-invariant (affine) R-matrix is given by

R(u) :=




sinh(u+ h) 0 0 0
0 sinh(u) sinh(h)eu 0
0 sinh(h)e−u sinh(u) 0
0 0 0 sinh(u+ h)


 . (47)

It is easy to check that

Ři,i+1(u) := Pi,i+1Ri,i+1(u) = sinh(u+ h)− sinh(u)ei (48)

where Pi,i+1 is the operator permuting the i and (i + 1)-th sites of the spin chain. For all u, v ∈ C, the
R-matrix R(u) satisfies the Yang-Baxter equation (YBE)

R1,2(u− v)R1,3(u)R2,3(v) = R2,3(v)R1,3(u)R1,2(u− v) (49)

where Ri,j(u) denotes R(u) acting the i-th and j-th tensor factors of (C2)⊗3 or, equivalently,

Ř1,2(u− v)Ř2,3(u)Ř1,2(v) = Ř2,3(v)Ř1,2(u)Ř2,3(u − v) .

Note also that
R1,2(u)R2,1(−u) = sinh(h+ u) sinh(h− u)IdC2⊗C2 (50)

so R(u) is invertible if u 6= ±h.
For boundary Bethe ansatz, one also needs an additional ingredient: a so-called K-matrix. It is a 2× 2

matrix K(u) with entries in some (possibly non-commutative) algebra satisfying the boundary Yang-Baxter
equation (bYBE)

R1,2(u− v)K1(u)R2,1(u+ v)K2(v) = K2(v)R1,2(u + v)K1(u)R2,1(u− v) (51)

or, written differently,

Ř1,2(u − v)K1(u)Ř1,2(u+ v)K1(v) = K1(v)Ř1,2(u+ v)K1(u)Ř1,2(u− v) . (52)

For example, because
R1,2(u− v)R2,1(u+ v) = R1,2(u + v)R2,1(u− v) , (53)

K(u) = IdC2 is a solution of (51). This can also be seen directly from (48)–(52).
Although many other solutions to the bYBE (51) are known [3–5, 15], it is not always possible to find

a K-matrix yielding precisely the boundary conditions we want to impose. This of course comes from the

6Note that H2b is related to H2b by the transformation (45) so it is sufficient to consider H2b only.
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fact that not all boundary conditions preserve integrability. In our case however, it is possible to use the
symmetry of the one-boundary spin chain to find a suitable solution of the bYBE (51). Actually, there are
even two independent constructions: one based on the Bδ,y,N -module structure of the spin chain and the
other on the Uqsl2 symmetry.

The first was described in detail [15]. Namely, for any b satisfying the blob algebra relations (27) there
exists a solution of the bYBE (51) for Hb. With our choice of b this K-matrix reads

K(u) = 1−
µ

sinh(h) sinh(α̂)

(
sinh(u− hα) sinh(u) + sinh(hα) sinh(2u)b

)

= IdVα⊗C2 −
µ sinh(u) cosh(u)

sinh(h) sinh(hα)


−e−hK−1 + eu cosh(hα)

cosh(u) 2 sinh(h)F

2eh sinh(h)K−1E ehK−1 − e−u cosh(hα)
cosh(u)


 ,

(54)

where again we have written it as a 2×2 matrix with entries in End(Vα). The second construction based on
the Uqsl2 symmetry of the spin chain will be used for the the two-boundary case where it is most convenient.
For the time being, let us work with the K-matrix (54).

Let us define the transfer matrix 7

tb(u) := qtr0T (u− h/2)K(u− h/2)T̂ (u − h/2) (55)

where K is treated as a 2× 2 matrix with entries in End(Vα) acting on the auxiliary C2 space (with index
0),

T (u) := R0,N(u) · · ·R0,1(u) ,

T̂ (u) := R1,0(u) · · ·RN,0(u) ,
(56)

and qtr0(−) := tr0(q
σz
0−) denotes the partial quantum trace over the auxiliary space. This is the natural

trace for Uqsl2-invariant objects and it ensures that tb(u) commutes with Uqsl2 as it should (see [15] for
more details8).

Now by (49) and (51)
[tb(u), tb(v)] = 0

and moreover [3]

d

du

∣∣∣∣
u=h

2

tb(u) =2 sinh2N−1(h) tr0(q
σz

)

N−1∑

i=1

Ř′
i,i+1(0)

+ 2 sinh2N−1(h)qtr0(Ř
′
N,0(0))

+ sinh2N (h) tr0(q
σz

)P0,1K
′(0)P0,1

=4 sinh2N (h) coth(h)

N−1∑

i=1

cosh(h)− ei

+ 4 sinh2N (h) coth(h)

(
cosh(h)−

1

2 cosh(h)

)

+ 4 sinh2N (h) coth(h)

(
−µb+

µ

2

)

so

Hb = −µb−

N−1∑

i=1

ei =
tanh(h)

4 sinh2N (h)

d

du

∣∣∣∣
u=h

2

tb(u)−N cosh(h) +
1

2 cosh(h)
−
µ

2
. (57)

Therefore we are reduced to computing the spectrum of tb(u).
Let us now define the monodromy

T (u) := T (u− h/2)K(u− h/2)T̂ (u− h/2) =

(
A(u) B(u)
C(u) D(u)

)

7The h
2

shift is introduced to make the final result neater.
8The formalism in this paper is a bit more general with J corresponding to our qσ

z
0 .
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where the coefficients of this auxiliary space 2 × 2 matrix are in End(Hb). Repeatedly applying the YBE
(49), one finds that T (u) satisfies the RTT relation

R0,0̄(u− v)T0(u)T0̄(v) = T0̄(v)T0(u)R0,0̄(u− v) (58)

involving two different auxiliary C2 spaces with index 0 and 0̄. Note also (50) implies that T̂ (u) ∝ T (−u)−1.
By a general result [3, Proposition 2], for any T (u) satisfying (58) and any solution K(u) of the bYBE (51),
the product T (u)K(u)T (−u)−1 is also a solution of (51). Therefore, T (u + h/2) satisfies (51)9, that is,

R1,2(u− v)

(
A(u) B(u)
C(u) D(u)

)

1

R2,1(u+ v − h)

(
A(v) B(v)
C(v) D(v)

)

2

=

=

(
A(v) B(v)
C(v) D(v)

)

2

R1,2(u+ v − h)

(
A(u) B(u)
C(u) D(u)

)

1

R2,1(u − v) . (59)

From the explicit expression of R(u) (47) we can then derive the relevant commutation relations between
A, B, C and D at different values of the spectral parameter. Doing so we obtain

[B(u),B(v)] = 0 (60)

for all u, v ∈ C and moreover

A(u)B(v) =
sinh(u− v − h) sinh(u+ v − h)

sinh(u− v) sinh(u+ v)
B(v)A(u)

+
eu−v sinh(h) sinh(u+ v − h)

sinh(u− v) sinh(u+ v)
B(u)A(v)

−
eu+v−h sinh(h)

sinh(u+ v)
B(u)D(v) ,

D(u)B(v) =
sinh(u− v + h) sinh(u+ v + h)

sinh(u− v) sinh(u+ v)
B(v)D(u)

−
ev−u sinh(h) sinh(u+ v + h)

sinh(u− v) sinh(u+ v)
B(u)D(v)

+
e−u−v+h sinh(h) sinh(u− v + 2h)

sinh(u− v) sinh(u+ v)
B(u)A(v)

−
2e−2u+h sinh2(h) cosh(h)

sinh(u− v) sinh(u+ v)
B(v)A(u) .

Introducing

D̄(u) =
e−h sinh(2u)

sinh(2u− h)
D(u)−

e−2u sinh(h)

sinh(2u− h)
A(u) (61)

these equations become

A(u)B(v) =
sinh(u− v − h) sinh(u+ v − h)

sinh(u− v) sinh(u+ v)
B(v)A(u)

+ f1(u, v)B(u)A(v) + f2(u, v)B(u)D̄(v) ,

(62)

D̄(u)B(v) =
sinh(u− v + h) sinh(u+ v + h)

sinh(u− v) sinh(u+ v)
B(v)D̄(u)

+ g1(u, v)B(u)D̄(v) + g2(u, v)B(u)A(v) ,

(63)

where

f1(u, v) =
eu−v sinh(h) sinh(2v − h)

sinh(u− v) sinh(2v)
, f2(u, v) = −

eu+v sinh(h) sinh(2v − h)

sinh(u+ v) sinh(2v)
(64)

9This statement can also be proved by induction on N using only the YBE (49) and (53).
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and

g1(u, v) =
sinh(2u+ h)

sinh(2u− h)
f1(u, v) , g2(u, v) =

sinh(2u+ h)

sinh(2u− h)
f2(u, v) . (65)

We will actually never need the explicit expressions of f1, f2, g1 and g2 (64) but only the relations (65).
The transfer matrix reads

tb(u) = qtr0T (u) = ehA(u) + e−hD(u) =
sinh(2u+ h)

sinh(2u)
A(u) +

sinh(2u− h)

sinh(2u)
D̄(u) . (66)

Let us now look for eigenvectors of tb(u) of the form

∣∣{vm}
〉
= B(v1) · · · B(vM ) |⇑〉 (67)

where |⇑〉 := |0〉 ⊗ |↑〉
⊗N

is our reference state (recall that |0〉 is the highest-weight vector of the Verma
module Vα (20)), M ≥ 0 is the magnon number and {vm}1≤m≤M are some complex numbers that we
want to determine. Note that because of (60), the order of the vm is irrelevant. Also B(u) decreases the
Uqsl2-weight by q−2 so

KHb

∣∣{vm}
〉
= q−2MB(v1) . . .B(vM )KHb

|⇑〉 = qα−1+N−2M
∣∣{vm}

〉
(68)

meaning that
∣∣{vm}

〉
has weight qα−1+N−2M .

The first step is to compute the eigenvalues of A(u) and D̄(u) when acting on |⇑〉. Rewrite (54)–(56)

T (u−h/2) =

(
A(u) B̃(u)
C(u) D(u)

)
, T̂ (u−h/2) =

(
A(u) B(u)

C̃(u) D(u)

)
, K(u−h/2) =

(
a(u) b(u)
c(u) d(u)

)
(69)

as 2× 2 matrices acting on the auxiliary space with coefficients in End(Hb) such that

T (u) =

(
A(u) B(u)
C(u) D(u)

)
=

(
A(u) B̃(u)
C(u) D(u)

)(
a(u) b(u)
c(u) d(u)

)(
A(u) B(u)

C̃(u) D(u)

)
(70)

Knowing that C(u) |⇑〉 = C̃(u) |⇑〉 = 0 we have

A(u) |⇑〉 = a(u)A(u)2 |⇑〉 ,

D(u) |⇑〉 = (a(u)C(u)B(u) + d(u)D(u)2) |⇑〉 .
(71)

Introducing a basis {|↑0〉 , |↓0〉} of the auxiliary space and the matrix entries rij := R(u−h/2)ij, 1 ≤ i, j ≤ 4,
we obtain

A(u) |⇑〉 = 〈↑0|R0,N (u − h/2) · · ·R0,1(u − h/2) |↑0〉 ⊗ |⇑〉 = rN11 |⇑〉 = sinh
(
u+ h/2

)N
|⇑〉 ,

D(u) |⇑〉 = 〈↓0|R0,N (u − h/2) . . .R0,1(u − h/2) |↓0〉 ⊗ |⇑〉 = rN33 |⇑〉 = sinh
(
u− h/2

)N
|⇑〉

and
B(u) |⇑〉 = 〈↑0|R1,0(u − h/2) . . .RN,0(u − h/2) |↓0〉 ⊗ |⇑〉

= 〈↑0|R1,0(u − h/2) . . .RN−1,0(u− h/2)
(
r22 |↓0〉 ⊗ |⇑〉+ r32 |↑0〉 ⊗ σ−

N |⇑〉
)

= r22 〈↑0|R1,0(u− h/2) . . . RN−1,0(u− h/2) |↓0〉 ⊗ |⇑〉+ rN−1
11 r32 |↑0〉 ⊗ σ−

N |⇑〉

=

N−1∑

k=0

rN−1−k
11 r32r

k
22σ

−
N−k |⇑〉 ,
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so

C(u)B(u) |⇑〉 =

N−1∑

k=0

rN−1−k
11 r32r

k
22 〈↓0|R0,N (u− h/2) . . . R0,1(u− h/2) |↑0〉 ⊗ σ−

N−k |⇑〉

=

N−1∑

k=0

rN−1−k
11 r32r

k
33r

k
22r32r

N−1−k
11 |⇑〉

= sinh2(h)e−2u+h
N−1∑

k=0

sinh
(
u+ h/2

)2N−2k−2
sinh

(
u− h/2

)2k
|⇑〉

=
sinh2N (u+ h/2)− sinh2N (u− h/2)

sinh2(u+ h/2)− sinh2(u− h/2)
sinh2(h)e−2u+h |⇑〉 .

Using the explicit expression of K(u) (54) and D̄(u) (61) as well as (71) we obtain

A(u) |⇑〉 = sinh2N (u + h/2)∆(u) |⇑〉 , (72)

D̄(u) |⇑〉 = sinh2N (u − h/2)∆(−u) |⇑〉 , (73)

where

∆(u) = 1− µ
sinh

(
u− h/2

)
sinh

(
u+ hα− h/2

)

sinh(h) sinh(hα)
. (74)

Finally, following the standard algebraic Bethe ansatz procedure [3], we use the commutation relations
(62)–(63) to compute tb(u)

∣∣{vm}
〉
. We have from (62) and (72)

A(u)
∣∣{vm}

〉
= A(u)B(v1) · · · B(vM ) |⇑〉

=




M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)
B(vk)


A(u) |⇑〉

+
M∑

k=1

f1(u, vk)B(u)



∏

m 6=k

sinh(vk − vm − h) sinh(vk + vm − h)

sinh(vk − vm) sinh(vk + vm)
B(vk)


A(vk) |⇑〉

+
M∑

k=1

f2(u, vk)B(u)


∏

m 6=k

sinh(vk − vm + h) sinh(vk + vm + h)

sinh(vk − vm) sinh(vk + vm)
B(vk)


 D̄(vk) |⇑〉

= sinh2N (u+ h/2)∆(u)

M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

∣∣{vm}
〉

+
M∑

k=1

f1(u, vk) sinh
2N (vk + h/2)∆(vk)

∏

m 6=k

sinh(vk − vm − h) sinh(vk + vm − h)

sinh(vk − vm) sinh(vk + vm)
|ψk〉

+

M∑

k=1

f2(u, vk) sinh
2N (vk − h/2)∆(−vk)

∏

m 6=k

sinh(vk − vm + h) sinh(vk + vm + h)

sinh(vk − vm) sinh(vk + vm)
|ψk〉

(75)
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and similarly from (63) and (73)

D̄(u)
∣∣{vm}

〉
= D̄(u)B(v1) · · · B(vM ) |⇑〉

= sinh2N (u − h/2)∆(−u)

M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)

∣∣{vm}
〉

+

M∑

k=1

g1(u, vk) sinh
2N (vk − h/2)∆(−vk)

∏

m 6=k

sinh(vk − vm + h) sinh(vk + vm + h)

sinh(vk − vm) sinh(vk + vm)
|ψk〉

+

M∑

k=1

g2(u, vk) sinh
2N (vk + h/2)∆(vk)

∏

m 6=k

sinh(vk − vm − h) sinh(vk + vm − h)

sinh(vk − vm) sinh(vk + vm)
|ψk〉

(76)

where
|ψk〉 := B(u)

∏

m 6=k

B(vk) |⇑〉 .

Therefore, using (66),

tb(u)
∣∣{vm}

〉
=

(
sinh(2u+ h)

sinh(2u)
A(u) +

sinh(2u− h)

sinh(2u)
D̄(u)

) ∣∣{vm}
〉
= Λb(u)

∣∣{vm}
〉
+ |ψ〉

where

Λb({vm};u) = sinh2N (u+ h/2)∆(u)
sinh(2u+ h)

sinh(2u)

M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

+ sinh2N (u − h/2)∆(−u)
sinh(2u− h)

sinh(2u)

M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)

(77)

and |ψ〉 is a linear combination of the vectors {|ψk〉}1≤k≤M . Moreover (75)–(76) together with (65) imply
that |ψ〉 vanishes if and only if {vm}1≤m≤M satisfy the Bethe ansatz equations (BAE)

∆(vm)

∆(−vm)

(
sinh

(
vm + h/2

)

sinh
(
vm − h/2

)
)2N

=

M∏

k=1
k 6=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(78)

for all 1 ≤ m ≤M . Thus
∣∣{vm}

〉
is an eigenvector of tb(u) with eigenvalue Λb({vm};u) for any solution of

(78). Note the additional factor of ∆(vm)/∆(−vm) compared to the BAE of the usual open Uqsl2-invariant
XXZ spin chain. It contains all the contribution of the new boundary coupling.

From (57) and (77), the energy corresponding to a solution {vm}1≤i≤M is then given by

Eb({vm}) = −µ+

M∑

m=1

sinh2(h)

sinh
(
vm − h/2

)
sinh

(
vm + h/2

) . (79)

It is also possible to introduce the variables x :=
sinh(u+h/2)
sinh(u−h/2)

and λ := x+ x−1 to rewrite the BAE (78)

as (recall that δ := [2]q and y :=
[α+1]q
[α]q

)

λm − δ + µ((δ − y)x−1
m − 1)

λm − δ + µ((δ − y)xm − 1)
x2Nm =

M∏

k=1
k 6=m

λm + λk − δxm(λk − δ)− 2δ

λm + λk − δx−1
m (λk − δ)− 2δ

=

M∏

k=1
k 6=m

(1− δxm + xmxk)(1 − δxk + xkx
−1
m )

(1− δx−1
m + x−1

m xk)(1 − δxk + xkxm)

(80)
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for 1 ≤ m ≤M . The associated energy (79) is then simply

Eb({λm}) = −µ+

M∑

m=1

(λm − δ) .

These equations were already derived in [16] using coordinate Bethe ansatz.
A natural question is whether they “completely” describe the spectrum of Hb. To clarify what this

means, we have to factor out the obvious redundancies of these equations. First, equations (78) as well
as the corresponding eigenvalues (77) are invariant under permutations of the vk, so we should consider
solutions as unordered tuples {vk}1≤k≤M . This of course is just a direct consequence of the commutation
relation (60) and of the definition of

∣∣{vm}
〉
in (67). Second, note that if {vk} is a solution, then so is

{v1, . . . ,−vl, . . . , vM} and with the same energy for any 1 ≤ l ≤ M . This means that we can look for
non-zero solutions in the “positive” half-space S+ := {vk|Re vk > 0} ∪ {vk|Re vk = 0, Im vk > 0} for all
1 ≤ k ≤ M .10 Finally, note that if {v1, . . . , vM} is a solution with then so is {v1, . . . , vM ,∞} and they
both have the same energy. This is actually a consequence of the Uqsl2 symmetry. Indeed one can show
that B(∞) ∝ FHb

, either by direct computation or more easily using the construction of R(u) from the
universal R-matrix of Uqsl2, as will be explained later on at the end of Section 2.2.1. Since tb(u) commutes
with Uqsl2, if

∣∣{vm}
〉
is an eigenvector then so is B(∞)

∣∣{vm}
〉
∝ FHb

∣∣{vm}
〉
, and moreover it has the same

energy Eb because of (79). Finite solutions {v1, . . . , vM} provide eigenstates, which we therefore expect to
be Uqsl2 highest-weight vectors of weight qα−1+N−2M (68).

For qα /∈ ±qZ, using the fusion rule (21) repeatedly, we know that the Hilbert space Hb decomposes into
irreducible Uqsl2-modules as

Hb =

N⊕

M=0

(
N

M

)
Vα+N−2M

so there is exactly
(
N
M

)
linearly independent highest-weight vectors in the M -magnon sector.11 Therefore,

we conjecture that the system ofM equations (78) on an unordered set ofM complex numbers {vk}1≤k≤M ,

such that vk ∈ S+ for all 1 ≤ k ≤ M , has exactly
(
N
M

)
distinct solutions, at least for generic values of

α and µ, and that the corresponding eigenvectors
∣∣{vm}

〉
are linearly independent and highest-weight for

the Uqsl2 symmetry. Then an eigenbasis of Hb is given by the vectors Fk
Hb

∣∣{vm}
〉
, k ∈ N. Establishing

such statements is usually quite challenging and rigorous proofs are known only for very few integrable spin
chains [30–34].

Let us also note that all the results above carry through mutatis mutandis to the root of unity cases
without any obstacle.

Example. When M = 1 the BAE (80) becomes

x+ x−1 − δ + µ((δ − y)x− 1)

x+ x−1 − δ + µ((δ − y)x−1 − 1)
= x2N ,

which can be rewritten as

UN (λ/2)− (µ+ δ)UN−1(λ/2) + (1 + µ(δ − y))UN−2(λ/2) = 0 , (81)

where Un is the n-th Chebyshev polynomial of the second kind. The corresponding eigenvalue of Hb is

E = −µ+ λ− δ .

Equation (81) has exactly
(
N
1

)
= N solutions as it should.

When δ = 0 (q = i) we recover the spectral equation from [2]. Note also that for δ = 0 the “interaction
term” on the RHS of (80) is always equal to unity12, and so the BAE will just be M copies of the same

10Solutions with vk = 0 for some k have to be excluded too because they correspond to “double roots” of the BAE. For
generic values of the parameters this situation does not occur.

11This can also be seen from the Schur-Weyl decomposition (29) and the dimensions of standard blob modules (9).
12This simplification is of course not surprising as for δ = 0 the system reduces to free fermions.
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equation (81) for all M . Denoting (λi)1≤i≤N the N solutions of (81) at δ = 0, any choice of M pairwise
distinct13 λi will then be a solution of the BAE. Therefore the eigenvalues of Hb in the M -magnon sector
are given by

ES = −µ−
∑

i∈S

λi

for all sets S ⊂ {1, . . . , N} of cardinality |S| = M , in accordance with the results of [2]. Since there are(
N
M

)
such sets S, this also means that the BAE (80) have exactly

(
N
M

)
solutions for this special value of δ,

as we conjectured.

2.2 The two-boundary system

We now turn to the two-boundary Hamiltonian H2b. In principle, this case can also be treated using
Sklyanin’s boundary Bethe ansatz formalism. For this, in addition to the “left” K-matrix (54) one also
needs a “right” K-matrix satisfying an analogue of the bYBE (51) and implementing the desired integrable
boundary conditions on the right. It is possible to find such a K-matrix by brute force but let us instead
present an alternative and conceptually better approach. To this end, we first start by giving another
construction of the left K-matrix (54) and then extend this approach to the two-boundary case.

2.2.1 An alternative construction of K(u)

The basic idea is to put the boundary site carrying the Vα representation on an equal footing with the
bulk sites, each of which carries a C2 representation, by making apparent that their contribution to the
transfer matrix (66) just comes from the same same universal affine R-matrix, but evaluated in different
representations of Uqsl2.

14

Computing such an evaluation in full generality is a hard task, complicated by the fact that we have to
choose the correct gauge so that it is compatible with our conventions [35]. However, if one of the factors
of the affine R-matrix is evaluated in the fundamental C2-representation — as will always be the case in
our construction — then there is a simpler procedure using the so-called “baxterisation” trick [36].

Concretely, recall that Uqsl2 admits a universal (non-affine) R-matrix given by [37] (see also [23, Ch. 6.4])

R = q
H⊗H

2

∑

k≥0

{1}2k

{k}!
qk(k−1)/2

E
k ⊗ F

k , (82)

where

{n}! :=

n∏

k=1

{k} .

Although strictly speaking R /∈ Uqsl2 ⊗Uqsl2, it can be evaluated on the tensor product of any pair (X ,Y)
of representations of Uqsl2 as long as at least one of them is finite-dimensional. We denote this evaluation
by RX ,Y . One of the essential properties of R is that for any two such representations X and Y, the two
operators

PX ,Y ◦ RX ,Y and R
−1
Y,X ◦ PX ,Y ,

where
PX ,Y : X ⊗ Y → Y ⊗ X

x⊗ y 7→ y ⊗ x

is the operator permuting the two tensor factors, commute with the action of Uqsl2. In other words, R
generates two (a priori different) Uqsl2-intertwiners between X ⊗ Y and Y ⊗ X . These are precisely the

13This condition is needed to ensure that the BAE are not degenerate.
14More precisely, in evaluation representations of the affine quantum group Uqŝl2 corresponding to different representations

of Uqsl2.
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building blocks we need to evaluate the affine R-matrix. Indeed, introducing, for any representation X of
Uqsl2,

RX ,C2(u) :=
eu+

h
2

2
RX ,C2 −

e−u−h
2

2
PC2,X ◦ R−1

C2,X ◦ PX ,C2,

RC2,X (u) :=
eu+

h
2

2
RC2,X −

e−u−h
2

2
PX ,C2 ◦ R−1

X ,C2 ◦ PC2,X ,

(83)

as well as
ŘX ,C2(u) := PX ,C2 ◦RX ,C2(u) , ŘC2,X (u) := PC2,X ◦RC2,X (u)

one checks that

i) RC2,C2(u) = R(u) from (47),

ii) ŘX ,C2(u) and ŘC2,X (u) are Uqsl2-intertwiners,

iii) For any three representations X1, X2, X3 of Uqsl2 with at least two of them isomorphic to C2 the
generalisation of the YBE (49)

RX1,X2
(u − v)RX1,X3

(u)RX2,X3
(v) = RX2,X3

(v)RX1,X3
(u)RX1,X2

(u− v) (84)

is satisfied.

This means that RX ,C2(u) and RC2,X (u) are precisely the evaluations of the universal affine R-matrix we
are looking for. Note also that

RC2,X (u)RX ,C2(−u) =
1

4

(
CX − 2 cosh(2u)IdX

)
⊗ IdC2 (85)

where CX is the Casimir (35) of X . In particular, for X = Vα, by (37)

RC2,Vα
(u)RVα,C2(−u) = sinh

(
hα

2
+ u

)
sinh

(
hα

2
− u

)
IdX ⊗ IdC2 (86)

so RC2,Vα
(u) and RC2,Vα

(u) are invertible for u 6= ±hα/2.
Now going back to the construction in (55)–(56), we see that the simplest transfer matrix with an

integrable Uqsl2-invariant boundary coupling to some Uqsl2-module X one can construct is of the form

tb(u) ∝ qtr0Tb(u− h/2)T̂b(u− h/2) (87)

with
Tb(u) := R0,N (u) · · ·R0,1(u)R0,X (u− ζ)

T̂b(u) := RX ,0(u+ ζ)R1,0(u) · · ·RN,0(u)
(88)

where the index i ∈ {0, . . . , N} stands for the i-th C2-site, and ζ ∈ C is some inhomogeneity parameter.
Taking X = Vα and comparing (55) with (87) we see that we should have

K(u) ∝ R0,Vα(u− ζ)RVα,0(u + ζ) . (89)

From this form of the K-matrix one can easily show that it satisfies the bYBE (51) using the YBE (84)
and (53). This is actually another instance of the general result [3, Proposition 2], simply because the YBE
(84) implies that R0,Vα(u − ζ) satisfies the RTT relation (58), RVα,0(u + ζ) ∝ R0,Vα(−u − ζ)−1 by (86),
and IdC2 is a solution of the bYBE (51) by (53).

It only remains to fix the normalisation factor in (89) and to express the coupling constant µ in terms
of the inhomogeneity ζ. Computing (89) explicitly using (82)–(83) and matching the result with (54) we
obtain

K(u) =
RC2,Vα

(u− ζ)RVα,C2(u+ ζ)

sinh
(

hα
2 − ζ

)
sinh

(
hα
2 + ζ

) (90)
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with

µ =
sinh(h) sinh(hα)

sinh
(
ζ − hα

2

)
sinh

(
ζ + hα

2

) .

A fruitful consequence of this formalism is that we are now able to compute B(∞) very easily. Indeed,
define

T (∞) =

(
A(∞) B(∞)
C(∞) D(∞)

)
:= lim

u→+∞
e−(2N+2)uT (u) . (91)

Then by (83) and (88) this limit is finite and

T (∞) ∝ R0,N · · ·R0,1R0,VαRVα,0R1,0 · · ·RN,0 . (92)

But for any representations X and Y of Uqsl2

RC2,YRC2,X =

(
K
1/2
Y {1}K

1/2
Y FY

0 K
−1/2
Y

)(
K
1/2
X {1}K

1/2
X FX

0 K
−1/2
X

)

=


K

1/2
X K

1/2
Y {1}K

1/2
X K

1/2
Y

(
FX + K

−1
X FY

)

0 K
−1/2
X K

−1/2
Y




=

(
K
1/2
X⊗Y {1}K

1/2
X⊗YFX⊗Y

0 K
−1/2
X⊗Y

)
= RC2,X⊗Y ,

(93)

where we used the coproduct formula (18). Similarly

RX ,C2RY,C2 = RX⊗Y,C2 . (94)

Finally

RC2,XRX ,C2 =

(
K
1/2
X {1}K

1/2
X FX

0 K
−1/2
X

)(
K
1/2
X 0

{1}K
−1/2
X EX K

−1/2
X

)
=

(
KX + q−1{1}2FXEX q−1{1}FX

{1}K−1E K−1

)
,

(95)
where we used the defining relations of Uqsl2 (17). Therefore, using (93)–(94) iteratively on (92) we have

T (∞) ∝ R0,N · · ·R0,1R0,VαRVα,0R1,0 · · ·RN,0 = R0,Vα⊗(C2)⊗NRVα⊗(C2)⊗N ,0 = R0,Hb
RHb,0

and so from (95) applied to X = Hb, we obtain B(∞) ∝ FHb
. The proportionality constant can easily be

fixed but we will not need it. Note that the reasoning above applies to any integrable Uqsl2-invariant spin
chain as long as we renormalise the corresponding monodromy T (u) by an appropriate power of e−u in (91)
to make the u→ +∞ limit finite.

The result that B(∞) ∝ FHb
, which we have now established, was used in the arguments given towards

the end of Section 2.1.

2.2.2 Bethe ansatz for H2b

From all the above, it is now clear how to proceed to construct the transfer matrix for the two-boundary
system. We simply take

t2b(u) :=
qtr0T2b(u− h/2)T̂2b(u − h/2)

sinh
(

hαl

2 − ζl

)
sinh

(
hαl

2 + ζl

)
sinh

(
hαr

2 − ζr

)
sinh

(
hαr

2 + ζr

) (96)

with
T2b(u) := R0,Vαr

(u− ζr)R0,N (u) · · ·R0,1(u)R0,Vαl
(u− ζl) ,

T̂2b(u) := RVαl
,0(u + ζl)R1,0(u) · · ·RN,0(u)RVαr ,0(u+ ζr) .

(97)
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One can then check that (compare with (57))

H2b =
tanh(h)

4 sinh2N (h)

d

du

∣∣∣∣
u=h

2

t2b(u)−N cosh(h) +
1

2 cosh(h)
−
µl + µr

2
(98)

with

µl/r =
sinh(h) sinh

(
hαl/r

)

sinh
(
ζl/r −

hαl/r

2

)
sinh

(
ζl/r +

hαl/r

2

) . (99)

To find the BAE one does not need to redo all the computations of the previous section. Indeed, using
the YBE (84) with appropriate choices of representations X1, X2, X3 and spectral parameters u, v we have

R0,Vαr
(u− ζr)R0,i(u)RVαr ,i(ζr) = RVαr ,i(ζr)R0,i(u)R0,Vαr

(u− ζr) ,

Ri,0(u)RVαr ,0(u + ζr)RVαr ,i(ζr) = RVαr ,i(ζr)RVαr ,0(u+ ζr)Ri,0(u) ,
(100)

which we can use to bring the sites Vαl
and Vαr together to the left by means of a similarity transformation.

Concretely (100) for i = N implies that

T2b(u)T̂2b(u)RVαr ,N (ζr) = R0,Vαr
(u− ζr)R0,N (u) · · ·RN,0(u)RVαr ,0(u+ ζr)RVαr ,N(ζr)

= R0,Vαr
(u− ζr)R0,N (u) · · ·RVαr ,N (ζr)RVαr ,0(u+ ζr)RN,0(u)

= R0,Vαr
(u− ζr)R0,N (u)RVαr ,N(ζr) · · ·RVαr ,0(u+ ζr)RN,0(u)

= RVαr ,N(ζr)R0,Vαr
(u − ζr)R0,N (u) · · ·RVαr ,0(u+ ζr)RN,0(u)

so setting
R := RVαr ,N (ζr)RVαr ,N−1(ζr) · · ·RVαr ,2(ζr)RVαr ,1(ζr)

we have15

R−1T2b(u)T̂2b(u)R = T (u)R0,Vαr
(u− ζr)R0,Vαl

(u− ζl)RVαl
,0(u+ ζl)RVαr ,0(u+ ζr)T̂ (u) (101)

with T (u), T̂ (u) from (56). Introducing the new K-matrix

K̃(u) =
R0,Vαr

(u− ζr)R0,Vαl
(u− ζl)RVαl

,0(u+ ζl)RVαr ,0(u+ ζr)

sinh
(

hαl

2 − ζl

)
sinh

(
hαl

2 + ζl

)
sinh

(
hαr

2 − ζr

)
sinh

(
hαr

2 + ζr

) (102)

satisfying the bYBE (51) (again as a consequence of the YBE (84) and (53) or [3, Proposition 2]), the
corresponding monodromy

T̃ (u) := T (u− h/2)K̃(u− h/2)T̂ (u − h/2) ,

and transfer matrix
t̃2b(u) := qtr0T̃ (u) ,

we have by (101)
t2b(u) = Rt̃2b(u)R

−1 ,

so t̃2b(u) has the same spectrum as t2b(u). But diagonalising t̃2b(u) is straightforward. Indeed, to implement
ABA for the one-boundary system we only needed the commutation relations (62)–(63) and the eigenvalues
of A(u) (72) and D̄(u) (73) when acting on the reference state |⇑〉. Replacing K(u) by K̃(u) does not
change the commutation relations (62)–(63) because they were solely derived from the bYBE (59) which
the new monodromy T̃ (u) equally satisfies as K̃(u) is also a solution of the bYBE (51). Therefore, we
only need to compute the new eigenvalues of A(u) and D̄(u) when acting on the new reference state

|⇑〉 := |0〉 ⊗ |0〉 ⊗ |↑〉⊗N .16 This amounts to replacing the diagonal coefficients a(u) and d(u) of K(u)

15Note that by (86) R is invertible if and only if ζr 6= ±hαr/2, but this is just equivalent to requiring that µr (99) is finite.
16We use the same notations as for the one-boundary case for the entries of the new monodromy T̃ (u) and the new reference

state |0〉 ⊗ |0〉 ⊗ |↑〉⊗N .
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in (69)–(70)–(71) by the diagonal coefficients ã(u) and d̃(u) of K̃(u) (which are now operators acting on
Vαl

⊗ Vαr) in all the computations of Section 2.1.17 Doing so we obtain, instead of (72)–(73),

A(u) |⇑〉 = sinh2N (u + h/2)∆l(u)∆r(u) |⇑〉 ,

D̄(u) |⇑〉 = sinh2N (u − h/2)∆l(−u)∆r(−u) |⇑〉 ,

while (74) is replaced by

∆l/r(u) = 1− µl/r

sinh
(
u− h/2

)
sinh

(
u+ h(αl/r − 1/2)

)

sinh(h) sinh
(
hαl/r

)

=
sinh

(
u+ h

αl/r−1

2 − ζl/r

)
sinh

(
u+ h

αl/r−1

2 + ζl/r

)

sinh
(

hαl/r

2 − ζl/r

)
sinh

(
hαl/r

2 + ζl/r

) .

(103)

Thus ∣∣{vm}
〉
= B(v1) · · · B(vM ) |⇑〉

is an eigenvector of t̃2b(u) — or, equivalently, R
∣∣{vm}

〉
is an eigenvector of t2b(u) — with eigenvalue

(compare with (77))

Λ2b({vm};u) = sinh2N (u+ h/2)∆l(u)∆r(u)
sinh(2u+ h)

sinh(2u)

M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

+ sinh2N (u− h/2)∆l(−u)∆r(−u)
sinh(2u− h)

sinh(2u)

M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)

(104)
if and only if {vm}1≤m≤M satisfy the Bethe ansatz equations (compare with (78))

∆l(vm)∆r(vm)

∆l(−vm)∆r(−vm)

(
sinh

(
vm + h/2

)

sinh
(
vm − h/2

)
)2N

=

M∏

k=1
k 6=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(105)

for all 1 ≤ m ≤M . The corresponding eigenvalue of H2b is (compare with (79))

E2b({vm}) = −µl − µr +

M∑

m=1

sinh2(h)

sinh
(
vm − h/2

)
sinh

(
vm + h/2

) .

Of course we could have guessed this result on physical grounds by interpreting ∆(u)/∆(−u) as the phase
acquired by a quasi-particle of rapidity u reflected at the boundary. For periodic integrable spin chains,
this heuristic can actually be mathematically justified using the representation theory of the affine quantum
group Uqŝl2 (the algebra defined by the RTT relation (58)), establishing that the form of the eigenvalues of
the transfer matrix and the BAE are completely fixed by the choice of a (trigonometric) Drinfeld polynomial,

which uniquely specifies (up to isomorphism) an irreducible highest-weight representation of Uqŝl2 for the
physical space [38]. This allows to implement ABA for any such choice of representation without almost
any computation. To the best of our knowledge, a similar formalism has not been fully developed for
open Uqsl2-invariant spin chains, especially for infinite-dimensional highest-weight representations, so for
the sake of completeness we perform ABA for all open integrable Uqsl2-invariant highest-weight spin chains
in Appendix B. This also provides an alternative derivation of eigenvalues (104) and BAE (105) which does
not require K-matrices nor the similarity transformation (101).

17The trick we just used is not essential to implement ABA in the two-boundary case and we could have equally worked
with t2b(u) directly (see Appendix B).
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Coming back to the two-boundary case, we have B(∞) ∝ FH2b
,18 and we expect the finite (permutation

invariant) solutions {vk}1≤k≤M of the BAE (105) belonging to the positive half-space S+ to provide all the
Uqsl2 highest-weight eigenstates of weight qαl+αr−2+N−2M of H2b. Recalling the decomposition (39), valid
for qαl/r , qαl+αr 6= ±qZ,

H2b =
⊕

M≥0

HM ⊗ Vαl+αr−1+N−2M

and the dimensions (40), there are dM such linearly independent vectors and so for generic values of the
parameters we conjecture that the BAE (105) have dM such solutions. Note in particular that the number
of magnons M is not bounded as in the one-boundary case.

The BAE (105) are exactly the ones found in [1, 7] for Hn.d. (1) under the Nepomechie condition (3),

which is not surprising: indeed, by Corollary 1 (for N even), H2b|HM is an irreducible subblock of H
(M)
n.d.

for 0 ≤M ≤ N − 1 and H2b|HM = H
(M)
n.d. for M ≥ N . Note however that our derivation of the BAE is fully

rigorous and relies on no additional assumptions. Also, we are now able to pinpoint the algebraic origin
of the Nepomechie condition: it is just a direct consequence of the fusion rules (21) and more importantly
(38), yielding the Uqsl2-decomposition of H2b (39) and restricting the generator Y (36) of the two-boundary
TL algebra to take exactly the values YM (41) of the Nepomechie condition in its irreducible sectors HM .

Another interesting consequence of our formalism is the question of completeness of the BAE for Hn.d..

For M ≥ N , H2b|HM = H
(M)
n.d. so it is equivalent for both Hamiltonians. For 0 ≤ M ≤ N − 1, however,

H2b|HM is only an irreducible subblock of H
(M)
n.d. by Corollary 1, but both Hamiltonians still have the same

BAE. This means that for 0 ≤ M ≤ N − 1, the BAE (105) cannot possibly provide all the eigenvalues of

H
(M)
n.d. , as is already quite clear forM = 0 (see also [39]). But thanks to Corollary 2, we know exactly which

additional BAE we have to write to diagonalise the remaining block of H
(M)
n.d. for 0 ≤M ≤ N−1: we simply

need to replace H2b by H2b, which just amounts to the replacement (45), namely αl/r, µl/r → −αl/r,−µl/r

up to an irrelevant additive constant, and by (46) the simultaneous replacement of the magnon number M
by the dual magnon number M := N −M − 1. Thus (103) is now replaced by

∆̄l/r(u) =: 1− µl/r

sinh
(
u− h/2

)
sinh

(
u− h(αl/r + 1/2)

)

sinh(h) sinh
(
hαl/r

)

=
sinh

(
u− h

αl/r+1

2 − ζl/r

)
sinh

(
u− h

αl/r+1

2 + ζl/r

)

sinh
(

hαl/r

2 − ζl/r

)
sinh

(
hαl/r

2 + ζl/r

) ,

and we obtain the BAE

∆l(vm)∆r(vm)

∆l(−vm)∆r(−vm)

(
sinh

(
vm + h/2

)

sinh
(
vm − h/2

)
)2N

=
M∏

k=1
k 6=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(106)

for M Bethe roots {vm}1≤m≤M . Together with (105) we expect (106) to provide the complete spectrum

of H
(M)
n.d. for 0 ≤ M ≤ N − 1. Note also that by Corollary 2 iv), (106) are also the BAE for H

(M)
n.d. with

M ≤ −1. Thus (105) and (106) taken together cover all the possible values of the parameters satifying the
Nepomechie constraint (3) for M ∈ Z.

Finally, let us also mention that there exists a different set of BAE for the two-boundary which can be
established using functional relations between various Q-functions [8] or separation of variables [9]. These
equations are rather different from (105) and it is therefore quite surprising that they should yield the same
spectrum. We discuss this question in more detail in Appendix C.

18As was mentioned at the end of Section 2.2.1, this is true for any integrable Uqsl2-invariant spin chain. Note also that for
H2b we need to renormalise the monodromy T (u) by e−(2N+4)u in (91) to make the limit u → +∞ finite.
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Remark. If q is a 2p-th root of unity, the fusion rule (38) becomes

Vαl
⊗ Vαr

∼=

p−1⊕

n=0

Vαl+αr+p−1−2n

so we have

H2b =

N+p−1⊕

M=0

d′MVαl+αr+p−1+N−2M

with the magnon number 0 ≤ M ≤ N + p − 1 now bounded and some different multiplicities d′M whose
explicit expression can be found in [2]. Thus we see that contrary to the one-boundary case where we
expect the same number of solutions to the BAE (78) for generic and root of unity q, in the two-boundary
case the BAE (105) should apparently behave quite differently in these two situations. This must also be
related to the fact that the representation theory of 2Bδ,yl/r,Y,N changes significantly at roots of unity and
in particular the structure of the vacuum module W0 — which is still not fully known — becomes much
more complicated than for generic q as in Theorem 2 (see also Conjecture 2 in [2]). This requires further
study.

Outlook

In this paper, we have constructed a Uqsl2-invariant realisation H2b of the open XXZ Hamiltonian with
non-diagonal boundary termsHn.d. for all values of the parameters satisfying (3) by using the representation
theory of the two-boundary Temperley-Lieb algebra 2Bδ,yl/r,Y,N . This enabled us to rigorously derive the
BAE equations (105) for Hn.d. by ABA and to understand the algebraic origin of the Nepomechie condition
(3) from the point of view of Uqsl2 fusion rules (21)–(38), restricting the possible values of the weight Y of
2Bδ,yl/r,Y,N to the discrete set {YM ,M ∈ Z} (41).

Although the BAE we derived were previously known in the literature, a direct construction of the
eigenstates by standard algebraic Bethe ansatz had never been performed until now and could be most useful
in the computation of finer observables of the system, such as correlation functions and form factors, and in
the study of some closely related models such as the asymmetric simple exclusion process (ASEP) [40]. It is
also worth mentioning that the algebraic Bethe ansatz formalism we presented generalises straightforwardly
to open XXZ spin chains with additional inhomogeneity parameters at every site. Finally, our construction
admits a well-defined q → 1 limit, giving rise to non-compact boundary conditions for the open XXX spin
chain.

It would be very interesting to construct an even more general Uqsl2-invariant spin chain which could
reach arbitrary values of Y and not just the discrete set subject to the Nepomechie condition (3). The
weights yl/r are entirely determined by the value of the Casimir CVαl/r

and the possible values of Y by the

values C can take on the tensor product Vαl
⊗Vαr . Therefore, to find such a generalisation, one would need

to construct two new one-parameter families of boundary Uqsl2-modules Xαl/r
, with αl/r parametrising yl/r

through the Casimir CXαl/r
, and more crucially such that C can take any value on Xαl

⊗Xαr . This implies

that the Uqsl2-decomposition of Xαl
⊗Xαr should no longer be discrete as in (38) but continuous. For the

q → 1 XXX case, such fusion rules are known to arise in the context of principal series representations
of SL(2,C) [41]. For the general XXZ spin chain a natural guess would be to use their Uqsl2 q-deformed
analogues. Such spin chains could shed light on the origin of the general BAE for Hn.d. (see Appendix C).
Continuous fusion rules are also a central feature of Liouville CFT and the celebrated DOZZ formula for its
3-point function constants, which was recently proved [42], including in the imaginary case [43] where its
relevance for lattice models has been established [44]. A well-defined lattice model with similar properties
would certainly be of great help to further our understanding of the challenging questions still surrounding
this theory. We will explore these ideas in future work.

Finally, it is known that in the critical domain |q| = 1, the boundary loop model defined by H (16) is
conformally invariant in the large-N scaling limit, with some explicit conjectures for its conformal spec-
trum based on the Coulomb gas approach [45, 46] including for generalisations to anisotropic boundary
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conditions in the dilute O(n) model [47, 48]. Using the explicit spin chain Hamiltonians Hb and H2b and
the corresponding BAE (78)–(105) one can now hope to establish these results rigorously. This will be the
subject of a forthcoming paper. Also, since from a physical perspective the two-boundary system can be
seen as the fusion of two one-boundary systems, the representation theory of the discrete lattice algebras
Bδ,y,N and 2Bδ,yl/r,Y,N may provide new insight into the fusion of Virasoro primary fields.
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A Proof of Theorem 3

The goal of this section is to prove the isomorphisms (43). By Theorem 2 this would imply that all the HM

appearing in the decomposition (42) are irreducible representations of 2Buni
δ,yl/r,N

and therefore that Uqsl2

and 2Buni
δ,yl/r,N

are indeed mutual centralisers on H2b.

The main idea is to follow a more abstract approach to Schur-Weyl duality and rewrite the decomposition
into irreducible Uqsl2-modules (39) as

H2b =
⊕

M≥0

HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
⊗ Vαl+αr−1+N−2M

where HomUqsl2(X ,Y) denotes the space of Uqsl2-intertwiners between two Uqsl2-modules X and Y. Of
course HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
and HM are isomorphic as vector spaces: a Uqsl2-intertwiner

f : Vαl+αr−1+N−2M → H2b is uniquely determined by the image of the highest-weight vector |0〉 of
Vαl+αr−1+N−2M (20), that is the choice of a highest-weight vector f |0〉 ∈ H2b of the same weight. Since
the subspace of all such vectors is HM by definition

HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
∼= HomC

(
C |0〉 ,HM

)
∼= HM . (107)

Actually, this isomorphism is even an isomorphism of 2Bδ,yl/r,YM ,N -modules. Indeed, the Uqsl2-
invariant action of 2Bδ,yl/r,YM ,N on H2b induces an action on the target space of intertwiners f ∈

HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
which is equivalent to the action 2Bδ,yl/r,YM ,N on HM via the isomor-

phism (107).
The advantage of this rewriting is that we can construct morphisms19 between standard 2Bδ,yl/r,YM ,N -

modules and HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
in a much more canonical way. The idea is to use the

diagrammatical calculus for Uqsl2-intertwiners to map well-chosen 2Buni
δ,yl/r,N

-modules to some bigger spaces

of Uqsl2-intertwiners in a way compatible with the lattice algebra action and then to appropriately specialise
these maps to the spaces HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
.

Let us first recall a few basic facts about this diagrammatical formalism and explain how it can be used
to rederive Schur-Weyl duality for the simpler case of the TL algebra (24). To any TL diagram, that is
a planar configuration of non-intersecting strings between two sets of N points, one can assign a Uqsl2-
intertwiner from H := (C2)⊗N to itself, that is an element of EndUqsl2(H), by mapping the elementary
generators of TL diagrams ei, 1 ≤ i ≤ N − 1, to the corresponding Uqsl2-intertwiners (22). Since their
composition rules are the same as the defining relations of the TL algebra (4), this provides a Uqsl2-invariant
representation ρTL : TLδ,N → EndUqsl2(H).

19We shall use the term “morphism” instead of “homomorphism” to lighten the exposition.
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More generally, let us denote W≤j the vector space spanned by all planar configurations of non-
intersecting strings between a set of 2j ≤ N points (at the bottom) and a set of N points (at the top).
Although W≤j is not an algebra, (except for j = N/2 where we recover the TL algebra), TLδ,N naturally
acts on W≤j by stacking TL diagrams on top of elements of W≤j . Moreover, using the elementary building
blocks20

Ci =

. .i i+ 1

= q1/2 |↑↓〉 − q−1/2 |↓↑〉 ∈ HomUqsl2

(
C,C2 ⊗ C2

)
, 1 ≤ i ≤ N − 1 ,

C̄i = . .
i i+ 1

= q1/2 〈↑↓| − q−1/2 〈↓↑| ∈ HomUqsl2

(
C2 ⊗ C2,C

)
, 1 ≤ i ≤ N − 1 ,

any diagram of W≤j can be mapped to an element of HomUqsl2

(
(C2)⊗2j ,H

)
. As these diagrams suggest,

CiC̄i = ei, C̄iCi = q+ q−1 = δ and more generally one can check that Ci, C̄i, 1 ≤ i ≤ N − 1 satisfy all the
natural diagrammatical rules inherited from the TL algebra. This means that the mapping

ΨTL

j : W≤j → HomUqsl2

(
(C2)⊗2j ,H

)
(108)

is a morphism of TLδ,N -modules, where TLδ,N acts on the target space of intertwiners f ∈
HomUqsl2

(
(C2)⊗2j ,H

)
via the representation map ρTL.

21

Evaluating all f ∈ HomUqsl2

(
(C2)⊗2j ,H

)
at |↑〉

⊗2j
we obtain a morphism of TLδ,N -modules

ψTL

j : W≤j → HTL

j , ℓ 7→ ΨTL

j (ℓ) |↑〉
⊗2j

(109)

where HTL
j ⊂ H is the subspace of highest-weight vectors of weight q2j . Indeed, since ΨTL

j (ℓ) ∈

HomUqsl2

(
(C2)⊗2j ,H

)

EHψ
TL

j (ℓ) = EHΨTL

j (ℓ) |↑〉⊗2j = ΨTL

j (ℓ)E(C2)⊗2j |↑〉⊗2j = 0

KHψ
TL

j (ℓ) = KHΨTL

j (ℓ) |↑〉⊗2j = ΨTL

j (ℓ)K(C2)⊗2j |↑〉⊗2j = q2jψTL

j (ℓ)
(110)

for all ℓ ∈ W≤j so ImψTL

j ⊂ HTL

j . Equivalently, ψTL

j can be seen as a map from W≤j to

HomUqsl2

(
C2j+1,H

)
∼= HTL

j obtained by precomposing ΨTL

j (ℓ) ∈ HomUqsl2

(
(C2)⊗2j ,H

)
by the unique

(up to normalisation) Uqsl2-intertwiner from the spin-j representation C2j+1 of Uqsl2 to (C2)⊗2j .
Finally, W≤j contains a stable TLδ,N -subspace W<j spanned by all diagrams of W≤j containing strictly

less than than 2j through lines (recall that the action of the TL algebra can only decrease the number of
through lines). By definition, the quotient W≤j/W<j is isomorphic, as a TLδ,N -module, to the standard
module Wj . For all ℓ ∈ W<j , ψ

TL

j (ℓ) contains one or more caps ∩ linking bottom points and moreover at

least one of these caps has to connect two neighbouring sites. This means that ΨTL

j (ℓ) is of the form A⊗ C̄i

for some 1 ≤ i ≤ 2j − 1 and some A ∈ HomUqsl2

(
(C2)⊗2(j−1),H

)
. Since C̄i |↑↑〉 = 0, ψTL

j (ℓ) = 0, and so

ℓ ∈ Ker ψTL

j . Therefore W<j ⊆ Ker ψTL

j which implies that ψTL

j induces a morphism of TLδ,N -modules

ψ̃TL

j : W≤j/W<j
∼= Wj → HTL

j . (111)

It is clearly non-zero as

. .
. . .
. ..

. . . .
.
. 7→ |↑〉

⊗2j
⊗
⊗N−1

i=j C2i+1 6= 0

20There is a more abstract categorical construction of these morphisms in terms of evaluation and coevaluation maps which
we will not present here (see [2] for more details).

21One can also construct the morphisms ΨTL

j by first embedding W≤j into TLδ,N by adding N/2− j “spectator” caps ∩ at

the bottom of all diagrams, then mapping it to EndUqsl2 (H) via ρTL and finally removing the spectator caps by precomposing

with δj−N/2Id(C2)⊗2j ⊗
⊗N−1

i=j C2i+1. This method will be used for the two-boundary case.
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and since Wj is irreducible ψ̃TL

j must be injective. But by (5), dimWj = dimHTL

j so HTL

j
∼= Wj . This

proves Schur-Weyl duality (24) between the actions of TLδ,N and Uqsl2 on H := (C2)⊗N .

We would now like to extend this formalism to the actions of 2Buni
δ,yl/r,N

and Uqsl2 on H2b := Vαl
⊗

(C2)⊗N ⊗ Vαr , in particular to construct (universal) two-boundary analogues of the morphisms ΨTL

j (108),

ψTL
j (109) and ψ̃TL

j (111).

Let us define W2b
≤j , the vector space spanned by all two-boundary TL diagrams from 2j ≤ N points (at

the bottom) to N points (at the top), that is TL diagrams of W≤j decorated by left/right blobs/anti-blobs
in all admissible ways. 2Bδ,yl/r,Y,N naturally acts on W2b

≤j by stacking two-boundary TL diagrams on top

of elements of W2b
≤j . Since we will be working with the universal two-boundary TL algebra 2Buni

δ,yl/r,N
, we

need to slightly extend this definition by promoting W2b
≤j to a free C[Y]-module W2b

≤j [Y] of rank dimW2b
≤j ,

generated by the basis elements of W2b
≤j . Then W2b

≤j [Y] admits an action of 2Buni
δ,yl/r,N

, where the additional

Y generator simply acts by multiplication.
We would now like to define a morphism of 2Buni

δ,yl/r,N
-modules Ψj from W2b

≤j [Y] to

HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
. For j = N/2 this is straightforward: W2b

≤N/2[Y] and 2Buni
δ,yl/r,N

are

isomorphic as (left) 2Buni
δ,yl/r,N

-modules and so we can just take the representation map

ρH2b
: 2Buni

δ,yl/r,N
→ EndUqsl2(H2b)

constructed in [2]. To build Ψj for 0 ≤ j ≤ N/2−1, let us take advantage of this simpler case by embedding
W2b

≤j [Y] into 2Buni
δ,yl/r,N

.

Define Ij the subspace of all two-boundary TL diagrams ℓ of the form ℓ′ ⊗ ∩⊗(N/2−j) where ℓ′ ∈ W2b
≤j

is a two-boundary TL diagram from 2j points labelled {1, . . . , 2j} (at the bottom) to N points (at the top)
and ∩⊗(N/2−j) are N/2 − j caps linking the remaining pairs of points (2j + 1, 2j + 2), (2j + 3, 2j + 4),...,
(N − 1, N) at the bottom. For example, for N = 4 and j = 1

ℓ′ =
.
.◦

. . .
.� 7→

.

.
◦

. .

.

.
�

. .
= ℓ = ℓ′ ⊗ ∩ .

1 2

1 2 3 4

Clearly
{0} ( I0 ( I1 ( · · · ( IN/2 := 2Bδ,yl/r,Y,N

and since the left action of 2Bδ,yl/r,Y,N on Ij preserves the ∩⊗(N/2−j) part, Ij is a left 2Bδ,yl/r,Y,N ideal.

We can extend this construction to the universal two-boundary TL algebra 2Buni
δ,yl/r,N

by promoting Ij to

a free C[Y]-module Ij [Y] of rank dim Ij generated by the basis diagrams of Ij . Then

{0} ( I0[Y] ( I1[Y] ( · · · ( IN/2[Y] := 2Buni
δ,yl/r,N

is an increasing sequence of ideals of 2Buni
δ,yl/r,N

. Obviously, W2b
≤j [Y] and Ij [Y] are isomorphic as (left)

2Buni
δ,yl/r,N

-modules via the map ℓ′ 7→ ℓ := ℓ′ ⊗ ∩⊗(N/2−j) so we can (and will) identify them.

Now the restriction map
ρH2b

|Ij [Y] : Ij [Y] → EndUqsl2(H2b)

is a 2Buni
δ,yl/r,N

-module morphism (because ρH2b
is a representation of 2Buni

δ,yl/r,N
on H2b) and

its image consists of elements of EndUqsl2(H2b) of the form A⊗C̄2j+1 ⊗ · · · ⊗ C̄N−1 with A ∈
HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
. Let us define the map

πj : Im
(
ρH2b

|Ij [Y]

)
→ HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
, A⊗ C̄2j+1 ⊗ · · · ⊗ C̄N−1 7→ A .
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Concretely, using the fact that C̄iCi = δ 6= 0,22

πj(X) = δj−N/2X ◦
(
IdVαl

⊗(C2)⊗2j ⊗ C2j+1 ⊗ · · · ⊗ CN−1 ⊗ IdVαr

)

for all X ∈ Im
(
ρH2b

|Ij [Y]

)
, from which it is clear that

• πj is well-defined,

• πj(X) is a Uqsl2-intertwiner as the composition of two Uqsl2-intertwiners,

• πj is a 2Buni
δ,yl/r,N

-module morphism as 2Buni
δ,yl/r,N

acts only on the target space of the Uqsl2-

intertwiner X .

Thus, for all 0 ≤ j ≤ N/2 we have constructed a 2Buni
δ,yl/r,N

-module morphism

Ψj := πj ◦ ρH2b
|Ij[Y] : W

2b
≤j [Y]

∼= Ij [Y] → HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
(112)

as we wanted.
This abstractly-defined map Ψj has actually a very natural diagrammatical interpretation. Indeed,

two-boundary TL diagrams of W2b
≤j are just decorated TL diagrams of W≤j so constructing Ψj amounts

to implementing these decorations in terms of Uqsl2-intertwiners (and mapping Y to (36)). Concretely, one
can introduce the diagrams

.

.

.

.

bl

C2

C2

Vαl

Vαl

.

.

.

.

b̄l

C2

C2

Vαl

Vαl

.

.

.

.

br

C2

C2

Vαr

Vαr

.

.

.

.

b̄r

C2

C2

Vαr

Vαr

and decorate the TL of strings a Uqsl2-intertwiner belonging to HomUqsl2

(
(C2)⊗2j ,H

)
by deform-

ing them until they are in contact with the left (red line) or right (blue line) boundary and
then inserting the diagrams bl/r, b̄l/r above to obtain a two-boundary Uqsl2-intertwiner belonging to

HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
. Of course such a deformation is only possible if one never intersects

any other string while doing so. But this is consistent with the decoration rules for two-boundary diagrams
because a string can acquire a left/right blob/anti-blob only when touching the left/right boundary.

Using the above procedure, we can uniquely map diagrams of W2b
≤j to

HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
. For example, for N = 4 and j = 0,

. . . .
◦ • �

7→

. .

. . . .

. .

. .. .

.

bl

b̄l

br

.

. .

VαrVαl

VαrVαl C2 C2 C2 C2

= b̄l(C1C̄1)(blC2C̄2br)(C1C3) .

22Recall that δ = 0 corresponds to q = i, whereas we have assumed that q is not a root of unity
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For all ℓ ∈ W2b
≤j , it is technically possible to write an explicit expression of the corresponding Uqsl2-

intertwiner Ψj(ℓ) ∈ HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
in terms of the Ci, C̄i, 1 ≤ i ≤ N − 1, bl/r and

b̄l/r, but the shortcut we took by adding the “spectator” part ∩⊗N/2−j to embed them into 2Buni
δ,yl/r,N

and

mapping them to intertwiners using the representation map ρH2b
achieves the same goal faster while also

providing a direct proof that Ψj commutes with the action of 2Buni
δ,yl/r,N

.

Coming back to our proof, let us first consider the morphism of 2Buni
δ,yl/r,N

-modules

Ψ0 : W2b
≤0[Y]

∼= I0[Y] → HomUqsl2

(
Vαl

⊗ Vαr ,H2b

)
. (113)

Note that, by definition, W2b
≤0[Y] = W0[Y], the universal vacuum module of 2Buni

δ,yl/r,N
.

Recalling the fusion rule (38), rewritten in a convenient way,

Vαl
⊗ Vαr

∼=
⊕

M≥N/2

Vαl+αr−1+N−2M (114)

we have maps ϕM ∈ HomUqsl2

(
Vαl+αr−1+N−2M ,Vαl

⊗ Vαr

)
, M ≥ N/2, which are unique up to normali-

sation. They induce maps

Ψ
(M)
0 : W0[Y] → HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
, ℓ 7→ Ψ0(ℓ) ◦ ϕM

which are also morphisms of 2Buni
δ,yl/r,N

-modules. Moreover, for any f ∈ HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
,

M ≥ 0,
YH2b

f(−) = f(YVαl+αr−1+N−2M−) = YMf(−) . (115)

In other words, Y acts as the scalar YM on HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
which means that

(Y − YM )W0[Y] ⊆ Ker Ψ
(M)
0 and so, for all M ≥ N/2, Ψ

(M)
0 induces a morphism of 2Bδ,yl/r,YM ,N -modules

between W0[Y]/(Y − YM )W0[Y] ∼= W0 and HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
∼= HM , which we still denote

Ψ
(M)
0 .

Note that, concretely, for all ℓ ∈ W0, Ψ
(M)
0 (ℓ) ∈ HM is simply the evaluation of the Uqsl2-intertwiner

Ψ0(ℓ) ∈ HomUqsl2

(
Vαl

⊗ Vαr ,H2b

)
at the highest-weight vector |wM 〉 of the Vαl+αr−1+N−2M summand of

Vαl
⊗ Vαr in (114). This evaluation Ψ

(M)
0 (ℓ) = Ψ0(ℓ) |wM 〉 is indeed an element of HM — the subspace of

highest-weight vectors of weight qαl+αr−2+N−2M — simply because for all ℓ ∈ W0[Y] ,

EH2b
Ψ

(M)
0 (ℓ) = EH2b

Ψ0(ℓ) |wM 〉 = Ψ0(ℓ)EVαl
⊗Vαr

|wM 〉 = 0

KH2b
Ψ

(M)
0 (ℓ) = KH2b

Ψ0(ℓ) |wM 〉 = Ψ0(ℓ)KVαl
⊗Vαr

|wM 〉 = qαl+αr−2+N−2MΨ0(ℓ) |wM 〉 .
(116)

Clearly Ψ
(M)
0 6= 0 as, for example,

. .
. . .
. .

7→
⊗N/2

i=1 C2i−1 6= 0 .

By Theorem 2 iii), the 2Bδ,yl/r,YM ,N -module W0 is irreducible for all M ≥ N , so Ψ
(M)
0 must be injective.

Since dimW0 = dimHM = 2N by (12) and (40), Ψ
(M)
0 is an isomorphism and so HM

∼= W0 for all M ≥ N .

Now for N/2 ≤ M ≤ N − 1, Ker Ψ
(M)
0 is a 2Bδ,yl/r,YM ,N -submodule of W0 and so by Theorem 2 ii) it

must be equal to either {0}, W b̄b̄
M+1−N/2 or W0. It cannot be equal to W0 because Ψ

(M)
0 6= 0. It cannot

be equal to {0} because dM = dimHM < dimW0 = 2N by (40). Therefore Ker Ψ
(M)
0 = W b̄b̄

M+1−N/2

and so Ψ
(M)
0 induces a non-zero injective 2Bδ,yl/r,YM ,N -module morphism between W0/W

b̄b̄
M+1−N/2 and

HM . Since by (12) and (40) dimW0/W
b̄b̄
M+1−N/2 = dimHM = dM we have HM

∼= W0/W
b̄b̄
M+1−N/2 for all

N/2 ≤M ≤ N − 1.
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It remains to deal with the cases 0 ≤ M ≤ N/2− 1. Here we can no longer use Ψ0 because the tensor
product Vαr ⊗ Vαr (114) does not contain summands Vαl+αr−1+N−2M for 0 ≤ M ≤ N/2− 1. The idea is
then to consider the above-constructed 2Buni

δ,yl/r,N
-module morphisms (112)

Ψj : Ij [Y] → HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)

now with 1 ≤ j ≤ N/2. Evaluating the elements of HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
at |0〉⊗|↑〉⊗2j⊗|0〉

or, equivalently, pre-composing them with the only (up to normalisation) Uqsl2-intertwiner

χj : Vαl+αr−1+2j → Vαl
⊗ (C2)⊗2j ⊗ Vαr ,

we obtain, for each 1 ≤ j ≤ N/2, a morphism of 2Buni
δ,yl/r,N

-modules23

ψj : Ij [Y] → HomUqsl2

(
Vαl+αr−1+2j ,Hb

)
∼= HN/2−j

ℓ 7→ Ψj(ℓ) ◦ χj
∼= Ψj(ℓ) |0〉 ⊗ |↑〉

⊗2j
⊗ |0〉 .

By (115) Y acts as the scalar YM on HomUqsl2

(
Vαl+αr−1+N−2M ,H2b

)
∼= HM and so for all 1 ≤ j ≤ N/2,

ψj induces a morphism of 2Bδ,yl/r,YM ,N -modules, M = N/2 − j, between Ij [Y]/(Y − YM )Ij [Y] ∼= Ij and

HomUqsl2

(
Vαl+αr−1+2j ,H2b

)
which we still denote ψj .

Now consider the subspace Uj ⊂ Ij spanned by all two-boundary TL diagrams ℓ of the form ℓ′⊗∩⊗N/2−j

where ℓ′ ∈ W2b
≤j is a two-boundary TL diagram from 2j to N points such that it has either

i) Strictly less than 2j through lines,

ii) Or exactly 2j through lines with the leftmost or rightmost through line of ℓ′ carrying a left/right
anti-blob.

The left action of 2Bδ,yl/r,YM ,N on Ij can only decrease the number of through lines and can never change the
left/right blob/anti-blob decoration of the leftmost/rightmost through line of a diagram with 2j through
lines,24 which implies that Uj is a stable 2Bδ,yl/r,YM ,N subspace. Moreover, by definition of standard
modules, the quotient Ij/Uj — which is exactly the space of two-boundary TL diagrams with 2j through
lines with leftmost and rightmost through lines both carrying left and right blobs — is isomorphic to Wbb

j

as a 2Bδ,yl/r,YM ,N -module.
Let us show the following.

Lemma 1. For all 1 ≤ j ≤ N/2, Uj ⊆ Ker ψj.

Proof. First consider ℓ ∈ Uj of the form i). This means that ℓ = ℓ′ ⊗ ∩⊗N/2−j with ℓ′ ∈ W2b
≤j containing

at least one cap at the bottom. Moreover, at least one of these caps connects neighbouring sites: if that
was not the case, it would be impossible to fill the bottom 2j points of ℓ′ with non-intersecting caps and
through lines. If j = 1, ℓ′ contains no through lines and the bottom of ℓ′ has a single cap linking points 1
and 2 which can carry any left/right blob/anti-blob configuration. Therefore Ψ1(ℓ) is of the form AC̄1blbr,
or AC̄1blb̄r, or AC̄1b̄lbr, or AC̄1b̄lb̄r for some A ∈ HomUqsl2

(
Vαl

⊗ Vαr ,H2b

)
and so

ψ1(ℓ) = Ψ1(ℓ) |0〉 ⊗ |↑↑〉 ⊗ |0〉 = 0

because C̄1blbr |0〉 ⊗ |↑↑〉 ⊗ |0〉 = C̄1 |0〉 ⊗ |↑↑〉 ⊗ |0〉 = 0 and b̄l |0〉 ⊗ |↑〉 = b̄r |↑〉 ⊗ |0〉 = 0.
Now take j ≥ 2 and first suppose ℓ′ contains through lines. We have the following cases:

• Either the bottom points 1 and 2j of ℓ′ are both occupied by through lines. Then the caps in between
cannot carry blobs/anti-blobs and so ℓ′ contains an undecorated cap linking points i and i + 1 for
some 2 ≤ i ≤ 2j − 2.

23Using the same reasoning as in (110) and (116) we easily see that EH2b
Ψj(ℓ) |0〉 ⊗ |↑〉⊗2j ⊗ |0〉 = 0 and KH2b

Ψj(ℓ) |0〉 ⊗

|↑〉⊗2j ⊗ |0〉 = qαl+αr−2+2jΨj(ℓ) |0〉 ⊗ |↑〉⊗2j ⊗ |0〉 for all ℓ ∈ Ij [Y] so indeed Imψj ⊆ HN/2−j for all 1 ≤ j ≤ N/2.
24It is actually this property that makes the standard modules Wbb

j , Wbb̄
j , W b̄b

j , W b̄b̄
j well-defined.
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• Or the bottom point 1 is connected to some other bottom point 2 ≤ k ≤ 2j− 2 by a cap (for k even).
If k 6= 2, then the points strictly between 1 and k can only contain undecorated caps, at least one
of them linking neighbouring points i and i + 1 for some 2 ≤ i ≤ k − 2. If k = 2, ℓ′ contains a cap
linking points 1 and 2 which can only carry a left blob/anti-blob, because it is separated from the
right boundary by a through line.

• Or the bottom point 2j is connected to some other bottom point 3 ≤ k ≤ 2j− 1 by a cap (for k odd).
If k 6= 2j − 1, then the points strictly between k and 2j can only contain undecorated caps, at least
one of them linking neighbouring points i and i + 1 for some k + 1 ≤ i ≤ 2j − 2. If k = 2j − 1, ℓ′

contains a cap linking points 2j − 1 and 2j which can only carry a right blob/anti-blob, because it is
separated from the left boundary by a through line.

On the other hand if ℓ′ contains no through lines and j ≥ 2 then:

• Either the bottom of ℓ′ contains some “long” cap linking points 1 ≤ k < k′ ≤ 2j with k + 3 ≤ k′

(for k and k′ of opposite parities) so there is an undecorated cap linking points i and i + 1 for some
k + 1 ≤ i ≤ k′ − 1.

• Or the bottom of ℓ′ contains only nearest-neighbour caps. Then either the leftmost cap (linking points
1 and 2) is undecorated or carries only a left blob/antiblob, or the rightmost cap (linking points 2j−1
and 2j) is undecorated or carries only a right blob/antiblob. Indeed, the leftmost and rightmost caps
cannot both carry left and right blobs/anti-blobs as they would both need to touch the two boundaries
of the system, which is impossible without them crossing.

To summarise, if j ≥ 2, the bottom of ℓ′ contains

• Either an undecorated cap linking neighbouring points i and i+ 1 for some 1 ≤ i ≤ 2j,

• Or a cap linking points 1 and 2 and carrying only a left blob/anti-blob,

• Or a cap linking points 2j − 1 and 2j and carrying only a right blob/anti-blob.

This means that Ψj(ℓ) is of the form AC̄i, for some 1 ≤ i ≤ 2j, or AC̄1bl, or AC̄1b̄l, or AC̄2j−1br, or

AC̄2j−1 b̄r for some A ∈ HomUqsl2

(
Vαl

⊗ (C2)⊗2(j−1) ⊗ Vαr ,H2b

)
. Therefore

ψj(ℓ) = Ψj(ℓ) |0〉 ⊗ |↑〉
⊗2j

⊗ |0〉 = 0 .

Finally, if ℓ is of the form ii), Ψj(ℓ) is of the form Ab̄l or Ab̄r with some A ∈
HomUqsl2

(
Vαl

⊗ (C2)⊗2j ⊗ Vαr ,H2b

)
and since b̄l |0〉 ⊗ |↑〉 = b̄r |↑〉 ⊗ |0〉 = 0, ψj(ℓ) = 0.

Now Uj ⊆ Ker ψj implies that ψj induces a morphism of 2Bδ,yl/r,YM ,N -modules

ψ̃j : Ij/Uj
∼= Wbb

j → HM

for all 1 ≤ j ≤ N/2, with M = N/2− j. Clearly, ψ̃j is non-zero as, for example,

.

.•
. .

. . .
. ..

. . . .
.
.
.
.� 7→ |0〉 ⊗ |↑〉

⊗2j
⊗
(⊗N−1

i=j C2i+1

)
⊗ |0〉 6= 0 .

By Theorem 2, the 2Bδ,yl/r,YM ,N -module Wbb
N/2−M is irreducible for all 1 ≤M ≤ N/2− 1 so ψ̃j is injective.

Since dimWbb
N/2−M = dimHM by (12) and (40), we have Wbb

N/2−M
∼= HM for all 0 ≤ M ≤ N/2− 1 which

completes the proof.
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B ABA for a general Uqsl2-invariant highest-weight spin chain

Consider a tensor product X :=
⊗n

i=1 Xi of irreducible highest-weight Uqsl2-modules of weight qαi−1 (that
is, Xi is a spin-αi−1

2 representation if αi ∈ N
∗ and a Verma module otherwise) and define the monodromy

T (u) := T (u− h/2)T̂ (u− h/2) =

(
A(u) B(u)
C(u) D(u)

)

with

T (u− h/2) :=

(
A(u) B(u)
C(u) D(u)

)
= R0,Xn(u− h/2− ζn) · · ·R0,X1

(u− h/2− ζ1) ,

T̂ (u− h/2) :=

(
Â(u) B̂(u)

Ĉ(u) D̂(u)

)
= RX1,0(u− h/2 + ζ1) · · ·RXn,0(u − h/2 + ζn) ,

for some inhomogeneity parameters ζi ∈ C, 1 ≤ i ≤ n, and the transfer matrix

t(u) := qtr0T (u) = ehA(u) + e−hD(u) .

By [3, Proposition 2] T (u) is a solution of the bYBE (59) : using the YBE (84) one checks that T (u)
satisfies the RTT relation (58), T̂ (u) ∝ T (−u)−1 because of (85), and IdC2 is a solution of the bYBE (51)
by (53), so the product T (u + h/2) := T (u)IdC2

T̂ (u) is also one.25 Therefore, the commutation relations
(62)–(63) remain the same.

It remains to compute the eigenvalues of A(u) and D̄(u) when acting on the reference state

|0〉 :=

n⊗

i=1

|0i〉

where |0i〉 is the highest-weight vector of Xi. To do so, first write

R0,Xi(u− h/2− ζi) =
eu−ζi

2
RC2,Xi

−
e−u+ζi

2
PXi,C2 ◦ R−1

Xi,C2 ◦ PC2,Xi

=
eu−ζi

2

(
K
1/2
i {1}K

1/2
i Fi

0 K
−1/2
i

)
−
e−u+ζi

2

(
K
−1/2
i 0

−{1}EiK
−1/2
i K

1/2
i

)

=

(
sinh

(
u− ζi + hHi/2

)
sinh(h) exp

(
u− ζi + hHi/2

)
Fi

sinh(h)Ei exp
(
−u+ ζi − hHi/2

)
sinh

(
u− ζi − hHi/2

)
)

:=

(
ai bi

ci di

)

where qHi = ehHi := Ki. Similarly

RXi,0(u− h/2 + ζi) =
eu+ζi

2
RXi,C2 −

e−u−ζi

2
PXi,C2 ◦ R−1

C2,Xi
◦ PXi,C2

=

(
sinh

(
u+ ζi + hHi/2

)
sinh(h)Fi exp

(
−u− ζi + hHi/2

)

sinh(h) exp
(
u+ ζi − hHi/2

)
Ei sinh

(
u+ ζi − hHi/2

)
)

:=

(
âi b̂i

ĉi d̂i

)
.

Since C(u) |0〉 = Ĉ(u) |0〉 = 0 we have

A(u) |0〉 = A(u)Â(u) |0〉 ,

D(u) |0〉 =
(
C(u)B̂(u) +D(u)D̂(u)

)
|0〉 .

(117)

25This statement can also be proved by induction on n using only the YBE (84) and (53).

36



Introducing a basis {|↑〉 , |↓〉} of the auxiliary space, we have, similarly to the one-boundary computation
in Section 2.1,

A(u) |0〉 = 〈↑|T (u) |↑〉 ⊗ |0〉 =

n∏

i=1

ai |0〉 =

n∏

i=1

sinh

(
u− ζi + h

αi − 1

2

)
|0〉 ,

Â(u) |0〉 = 〈↑| T̂ (u) |↑〉 ⊗ |0〉 =

n∏

i=1

âi |0〉 =

n∏

i=1

sinh

(
u+ ζi + h

αi − 1

2

)
|0〉 ,

D(u) |0〉 = 〈↓|T (u) |↓〉 ⊗ |0〉 =

n∏

i=1

di |0〉 =

n∏

i=1

sinh

(
u− ζi − h

αi − 1

2

)
|0〉 ,

D̂(u) |0〉 = 〈↓| T̂ (u) |↓〉 ⊗ |0〉 =
n∏

i=1

d̂i |0〉 =
n∏

i=1

sinh

(
u+ ζi − h

αi − 1

2

)
|0〉 .

(118)

and
C(u)B̂(u) |0〉 = 〈↓|T (u) |↑〉 〈↑| T̂ (u) |↓〉 ⊗ |0〉

= 〈↓|T (u) |↑〉 ⊗
n∑

k=1




k−1∏

i=1

âi


 b̂k




n∏

i=k+1

d̂i


 |0〉

=

n∑

k=1




n∏

i=k+1

di


 ck




k−1∏

i=1

ai






k−1∏

i=1

âi


 b̂k




n∏

i=k+1

d̂i


 |0〉

=

n∑

k=1




k−1∏

i=1

aiâi






n∏

i=k+1

did̂i


 ckb̂k |0〉 .

(119)

Note also that
ckb̂k = sinh2(h)e−2u

EkK
−1/2
k FkK

1/2
k

= sinh2(h)e−2u+h
EkFk

=
e−2u+h

2

(
cosh(hαk)− cosh(hHk − h)

)

= e−2u+h sinh

(
hαk + hHk − h

2

)
sinh

(
hαk − hHk + h

2

)
(120)

where we used (35)–(37) to write

CXk
= 4 sinh2(h)EkFk + 2 cosh(hHk − h) = 2 cosh(hαk) .

Define

Dn := e−2u sinh(h)




n∏

i=1

did̂i −
n∏

i=1

aiâi


 + e−h sinh(2u)

n∑

k=1




k−1∏

i=1

aiâi






n∏

i=k+1

did̂i


 ckb̂k .

Let us show by induction on n ≥ 1 that Dn |0〉 = 0. For n = 1, using (120), we can check by direct
computation that

D1 |01〉 =

(
e−2u sinh(h)

(
d1d̂1 − a1â1

)
+ e−h sinh(2u)c1b̂1

)
|01〉 = 0 . (121)

Now assume that Dn−1 |0〉 = 0. We have

anânDn−1 = Dn −

(
e−2u sinh(h)

(
dnd̂n − anân

)
+ e−h sinh(2u)cnb̂n

) n−1∏

i=1

did̂i
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so by (121) and the induction hypothesis Dn |0〉 = 0. By (61)–(117)–(118)–(119)

Dn |0〉 = sinh(2u− h)


D̄(u)−

n∏

i=1

did̂i


 |0〉 = 0

so finally

A(u) |0〉 =

n∏

i=1

aiâi |0〉 =

n∏

i=1

sinh

(
u− ζi + h

αi − 1

2

)
sinh

(
u+ ζi + h

αi − 1

2

)
|0〉 ,

D̄(u) |0〉 =

n∏

i=1

did̂i |0〉 =

n∏

i=1

sinh

(
u− ζi − h

αi − 1

2

)
sinh

(
u+ ζi − h

αi − 1

2

)
|0〉 .

(122)

Therefore, using the commutation relations (62)–(63) and performing exactly the same computations
(75)–(76) as in the one-boundary case but with the new eigenvalues of A(u) and D̄(u) (122), we find that

∣∣{vm}
〉
= B(v1) · · · B(vM ) |0〉

is an eigenvector of the transfer matrix t(u) with eigenvalue

Λ({vm};u) =
sinh(2u+ h)

sinh(2u)




n∏

i=1

∆αi,ζi(u)




M∏

m=1

sinh(u− vm − h) sinh(u+ vm − h)

sinh(u− vm) sinh(u+ vm)

+
sinh(2u− h)

sinh(2u)




n∏

i=1

∆αi,ζi(−u)




M∏

m=1

sinh(u− vm + h) sinh(u+ vm + h)

sinh(u− vm) sinh(u+ vm)

where

∆αi,ζi(u) := sinh

(
u+ h

αi − 1

2
− ζi

)
sinh

(
u+ h

αi − 1

2
+ ζi

)

if and only if {vm}1≤m≤M satisfy the Bethe ansatz equations

n∏

i=1

∆αi,ζi(vm)

∆αi,ζi(−vm)
=

M∏

k=1
k 6=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)
(123)

for all 1 ≤ m ≤M . As before B(∞) := limu→+∞ e−2nuB(u) ∝ FX and so we expect the finite (permutation
invariant) solutions {vk}1≤k≤M of the BAE (123) belonging to the positive half-space S+ to provide all the

Uqsl2 highest-weight eigenstates of weight q(
∑n

i=1
αi)−n−2M of t(u).

Note that for Xi = C2, that is αi = 2, ∆2,0(u) = sinh
(
u− h/2

)2
, and for Xi = Vαl/r

, ∆αl/r,ζl/r(u) ∝

∆l/r(u) (103). Thus for n = N + 2, X1 = Vαl
, ζ1 = ζl, XN+2 = Vαr , ζN+2 = ζr and Xi = C

2, ζi = 0 for all
2 ≤ i ≤ N + 1, we recover (104)–(105) (up to normalisation of t2b(u)) as we should.

C A different set of BAE for the two-boundary system

Following [8] it is possible to find the general form of the eigenvalues of t2b(u) solely from the knowledge of
some functional relations it satisfies and their analytic properties. The end result is that for any eigenvalue
Λ2b({vm};u) of t2b(u) one can write a TQ relation of the form

Λ2b({vm};u) = sinh2N (u+ h/2)∆l(u)∆r(u)
sinh(2u+ h)

sinh(2u)

Q(u− h)

Q(u)

+ sinh2N (u− h/2)∆l(−u)∆r(−u)
sinh(2u− h)

sinh(2u)

Q(u+ h)

Q(u)

+ c
sinh2N (u + h/2) sinh2N (u− h/2) sinh(2u+ h) sinh(2u− h)

Q(u)

(124)
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where

Q(u) =

N∏

m=1

sinh(u− vm) sinh(u+ vm)

for some Bethe roots vm, 1 ≤ m ≤ N and c some constant. The Bethe ansatz equations are obtained by
imposing that Λ2b({vm};u) has no poles at all the vm, that is

sinh2N (vm + h/2)∆l(vm)∆r(vm)
N∏

k=1
k 6=m

sinh(vm − vk − h) sinh(vm + vk − h)

− sinh2N (vm − h/2)∆l(−vm)∆r(−vm)
N∏

k=1
k 6=m

sinh(vm − vk + h) sinh(vm + vk + h)

= c sinh2N (vm + h/2) sinh2N (vm − h/2) (125)

for all 1 ≤ m ≤ N . If c 6= 0, then the trigonometric polynomial Q(u) has to be of degree 2N for the BAE
(125) to admit at least one solution. The RHS of (125) is sometimes known as the ”inhomogeneous term”
and it provides the most general set of BAE for Hn.d. (1) for arbitrary parameters h, δr/l, κr/l and Θ, even
if they do not satisfy the Nepomechie condition (3) (c is then some explicit function of these parameters).

The BAE (105) actually correspond to the special case c = 0 of (125). Indeed, if c = 0, then a subset
of the vm can be sent to ∞ and we obtain

Λ2b({vm};u) = sinh2N (u+ h/2)∆l(u)∆r(u)
sinh(2u+ h)

sinh(2u)

Q(u− h)

Q(u)

+ sinh2N (u− h/2)∆l(−u)∆r(−u)
sinh(2u− h)

sinh(2u)

Q(u+ h)

Q(u)

(126)

with

Q(u) =

M∏

m=1

sinh(u− vm) sinh(u+ vm)

for some magnon number 0 ≤M ≤ N as in (104) and the BAE (125) then reduce to the form (105)

∆l(vm)∆r(vm)

∆l(−vm)∆r(−vm)

(
sinh

(
vm + h/2

)

sinh
(
vm − h/2

)
)2N

=

M∏

k=1
k 6=m

sinh(vm − vk + h) sinh(vm + vk + h)

sinh(vm − vk − h) sinh(vm + vk − h)

for all 1 ≤ m ≤M . Thus the BAE from [8] are consistent with (105) as long as 0 ≤M ≤ N . However, we
have seen that in the two-boundary case the magnon number M can take any (positive) integer value. The
question is then what happens for M > N .

For this we need to come back to the general c 6= 0 case. It turns out that the constant c can be entirely
fixed from the knowledge of the large u asymptotic. Indeed, if c 6= 0, then

Λ2b({vm};u) ∼
u→∞

4−N−2e2(N+2)u

(
2µlµr cosh

(
hαl + hαr − (N + 1)h

)

sinh(h)
2
sinh(hαl) sinh(hαr)

+ 4c

)
. (127)

On the other hand we can compute the large u limit of t2b(u) directly. We have (83)

RX ,C2(u) ∼
u→∞

eu+
h
2

2
RX ,C2 RC2,X (u) ∼

u→∞

eu+
h
2

2
RC2,X
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for any Uqsl2 module X and so, using (96)–(97) and then (93)–(94)–(95)

t2b(u) ∼
u→∞

4−N−2e2(N+2)uµlµrqtr0R0,Vαr
R0,N . . .R0,1R0,Vαl

RVαl
,0R1,0 . . .RN,0RVαr ,0

sinh(h)
2
sinh(hαl) sinh(hαr)

=
4−N−2e2(N+2)uµlµrqtr0R0,H2b

RH2b,0

sinh(h)
2
sinh(hαl) sinh(hαr)

=
4−N−2e2(N+2)uµlµr

(
q
(
KH2b

+ q−1{1}2FH2b
EH2b

)
+ q−1

K
−1
H2b

)

sinh(h)
2
sinh(hαl) sinh(hαr)

=
4−N−2e2(N+2)uµlµrCH2b

sinh(h)
2
sinh(hαl) sinh(hαr)

where CH2b
is the Casimir element (35) evaluated in the representation H2b. Recalling that C is constant

on any irreducible Uqsl2 module, in particular (37)

CVα = qα + q−α = 2 cosh(hα) ,

and the Uqsl2 decomposition (39)

H2b =
⊕

M≥0

HM ⊗ Vαl+αr−1+N−2M

it is then clear that

t2b(u)|HM ∼
u→∞

4−N−2e2(N+2)u 2µlµr cosh
(
hαl + hαr + h(N − 2M − 1)

)

sinh(h)
2
sinh(hαl) sinh(hαr)

. (128)

Now comparing (127) and (128) we finally arrive at

c =
µlµr sinh

(
h(N −M)

)
sinh

(
hαl + hαr − h(M + 1)

)

sinh(h)
2
sinh(hαl) sinh(hαr)

. (129)

We are thus led to conjecture that for M ≥ N , the BAE (105) on M Bethe roots are equivalent to the
BAE (125) with only N Bethe roots and c as in (129). Note that the case M = N is trivial since c vanishes
precisely for M = N .
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