Van Duong 
  
Sahbi Keraani 
email: sahbi.keraani@univ-lille.fr
  
ENERGY SCATTERING FOR A CLASS OF INHOMOGENEOUS BIHARMONIC NONLINEAR SCHR ÖDINGER EQUATIONS IN LOW DIMENSIONS

Keywords: 2010 Mathematics Subject Classification. 35Q55, 35P25 Biharmonic nonlinear Schrödinger equation, Inhomogeneous nonlinearity, Global existence, Scattering, Variational analysis, Lorentz spaces

We consider a class of biharmonic nonlinear Schrödinger equations with a focusing inhomogeneous power-type nonlinearity

We first determine a region in which solutions to the equation exist globally in time. We then show that these global-in-time solutions scatter in H 2 (R d ) in three and higher dimensions. In the case of no harmonic perturbation, i.e., µ = 0, our result extends the energy scattering proved by Saanouni [Calc. Var. 60 (2021), art. no. 113] and Campos and Guzmán [Calc. Var. 61 (2022), art. no. 156] to three and four dimensions. Our energy scattering is new in the presence of a repulsive harmonic perturbation µ > 0. The proofs rely on estimates in Lorentz spaces which are properly suited for handling the weight |x| -b .

Introduction

Biharmonic (or fourth-order) nonlinear Schrödinger equations are equations of the form

i∂ t u -∆ 2 u + µ∆u = F (x, u)u, (t, x) ∈ R × R d (1.1) 
which have been introduced by Karpman [28] and in order to take into consideration the role of small fourth-order dispersion terms in the propagation of laser beams in a bulk medium with Kerr nonlinearity. The function F (x, u) can be understood as a nonlinear potential affected by electron density (see e.g. [START_REF] Bergé | Soliton stability versus collapse[END_REF]).

In the case of homogeneous power-type nonlinearity F (x, u) = ±|u| α u, biharmonic nonlinear Schrödinger equations have been studied in many works. In [21], Fibich, Ilan, and Papanicolaou showed the existence of global-in-time H 2 -solutions and gave numerical simulations supporting the existence of finite time blow-up solutions. Ben-Artzi, Koch, and Saut [7] established sharp dispersive estimates for the fourth-order Schrödinger operator. Thanks to these estimates, local well-posedness results with H 2 -initial data have been proved in [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case Dynam[END_REF] (see also [16,[START_REF] Liu | Bilinear Strichartz's type estimates in Besov spaces with an application to inhomogeneous nonlinear biharmonic Schrödinger equation[END_REF]). The energy scattering results were investigated in [START_REF] Miao | Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case[END_REF]36,[START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case Dynam[END_REF][START_REF] Pausader | The focusing energy-critical fourth-order Schrödinger equation with radial data[END_REF][41] for the energy-critical nonlinearity, in [16,22,[START_REF] An | Sobolev-Lorentz spaces with an application to the inhomogeneous biharmonic NLS equation[END_REF] for the mass and energy intercritical nonlinearity, and in [42] for the mass-critical nonlinearity. The existence of finite time blow-up radial H 2 -solutions was established in [9,16] (see also a series of works of Fibich et al. [START_REF] Baruch | Singular solutions of the L 2 -supercritical biharmonic nonlinear Schrödinger equation[END_REF][5][6] for numerical analysis of blow-up solutions). Dynamical properties such as mass-concentration and limiting profile of blow-up H 2 -solutions were studied in [44]. The existence of standing waves as well as their stability/instability were studied in [10,11,[START_REF] Feng | Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions[END_REF].

In this paper, we consider the Cauchy problem for biharmonic nonlinear Schrödinger equations with a focusing inhomogeneous power-type nonlinearity, namely

i∂ t u -∆ 2 u + µ∆u = -|x| -b |u| α u, (t, x) ∈ R × R d , u| t=0 = u 0 ∈ H 2 (R d ), (1.2) 
where d ≥ 1, u : R × R d → C, u 0 : R d → C, µ ≥ 0, and α > 0. To our knowledge, the first work addressed this type of equation belongs to Cho, Ozawa, and Wang [START_REF] Cho | Finite time blowup for the fourth-order NLS[END_REF] where the special case b = 2 and α = 4 d was considered. After proving the existence of local solutions via a regularizing argument and Strichartz estimates, they showed the existence of finite time blow-up solutions with initial data either having finite variance or being radially symmetric. The finite variance and radial symmetry conditions have been removed by the first author in a recent work [17]. Following the influential work [START_REF] Cho | Finite time blowup for the fourth-order NLS[END_REF], the inhomogeneous biharmonic nonlinear Schrödinger equation has attracted considerable interest from many researchers in the past few years. In [23], Guzmán and Pastor used the contraction mapping argument and Strichartz estimates to prove the local well-posedness (LWP) for (1.2) with µ = 0 in dimensions d ≥ 3. They also obtained conditions for the small data global existence and scattering in the mass and energy intercritical regime. These small data results were recently improved in [START_REF] Guzmán | Some remarks on the inhomogeneous biharmonic NLS equation[END_REF] for dimensions d = 6, 7 and in [12] for dimension d = 5. In [START_REF] Liu | Bilinear Strichartz's type estimates in Besov spaces with an application to inhomogeneous nonlinear biharmonic Schrödinger equation[END_REF], Liu and Zhang established the local theory for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces H s (R d ) with 0 < s ≤ 2. In particular, their result for s = 2 improves an earlier LWP of Guzmán and Pastor by removing an extra condition on α and extending it to all dimensions d ≥ 1. The proof in [START_REF] Liu | Bilinear Strichartz's type estimates in Besov spaces with an application to inhomogeneous nonlinear biharmonic Schrödinger equation[END_REF] relies on a bi-linear Strichartz estimate in Besov spaces. We also mention a recent paper of An,Ryu,and Kim [3] for another approach for the local theory using Sobolev-Lorentz spaces. From the above-mentioned works, especially [START_REF] Liu | Bilinear Strichartz's type estimates in Besov spaces with an application to inhomogeneous nonlinear biharmonic Schrödinger equation[END_REF], equation (1.2) is known to be locally well-posed. More precisely, for d ≥ 1, 0 < b < min d 2 , 4 , α > 0, and α < 8-2b d-4 if d ≥ 5, there exist T * , T * ∈ (0, ∞] and a unique solution u ∈ C((-T * , T * ), H 2 (R d ))

(q,r)∈B L q loc ((-T * , T * ), W 2,r (R d ))

to (1.2), where (q, r) ∈ B means that (q, r) is a biharmonic admissible pair (see Section 2 for the definition). The maximal time of existence satisfies the blow-up alternative: if

T * < ∞ (resp. T * < ∞), then lim tրT * u(t) H 2 (R d ) = ∞ resp. lim tց-T * u(t) H 2 (R d ) = ∞ .
In addition, there are conservation laws of mass and energy M (u(t)) = ˆ|u(t, x)| 2 dx = M (u 0 ) (Mass)

and

E µ (u(t)) = 1 2 ˆ|∆u(t, x)| 2 dx + µ 2 ˆ|∇u(t, x)| 2 dx - 1 α + 2 ˆ|x| -b |u(t, x)| α+2 dx = E µ (u 0 ).
(Energy) In the case of no harmonic term (i.e., µ = 0), equation (1.2) has a scaling invariance u λ (t, x) = λ 4-b α u(λ 4 t, λx), λ > 0.

A direct computation shows that this scaling leaves the Ḣγc -norm of initial data invariant, i.e., u λ (0) Ḣγc (R d ) = u 0 Ḣγc (R d ) , where The main purpose of this paper is to show the energy scattering for (1.2) with a masssupercritical and energy-subcritical nonlinearity, i.e., 0 < γ c < 2. For the reader convenience, we recall the notion of energy scattering as follows: a solution u(t) to (1.2) scatters in H 2 (R d ) forward in time (resp. backward in time) if there exists

γ c := d 2 - 4 -b α . ( 1 
u + ∈ H 2 (R d ) (resp. u -∈ H 2 (R d )) such that lim t→+∞ u(t) -U µ (t)u + H 2 (R d ) = 0 resp. lim t→-∞ u(t) -U µ (t)u -H 2 (R d ) = 0 , (1.4) 
where U µ (t) := e -it(∆ 2 -µ∆)

is the biharmonic Schrödinger propagator. The energy scattering in the mass and energy intercritical regime was first proved by Saanouni [START_REF] Saanouni | Energy scattering for radial focusing inhomogeneous bi-harmonic Schrödinger equations[END_REF] for radial data in dimensions d ≥ 5. The proof is based on an idea of Dodson and Murphy [START_REF] Dodson | A new proof of scattering below the ground state for the 3D radial focusing cubic NLS[END_REF] using a scattering criterion and localized virial estimates of radial solutions. The Dodson-Murphy's approach was the first attempt to give an alternative proof for the radial energy scattering of the cubic nonlinear Schrödinger equation without using the concentration-compactness-rigidity method of Kenig and Merle (see [START_REF] Holmer | A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation[END_REF]).

In Remark 1.4]). We stress that the energy scattering results in [12,[START_REF] Saanouni | Energy scattering for radial focusing inhomogeneous bi-harmonic Schrödinger equations[END_REF] are only for (1.2) with µ = 0, i.e., there is no Laplacian perturbation term. Our purpose is twofold. First, we establish the energy scattering for µ = 0 in the whole range of intercritical regime in low dimensions d = 3, 4. Second, we extend the energy scattering to all µ > 0 and dimensions d ≥ 3.

To put our work in context, we introduce the minimization problem: for ω > 0,

m µ,ω := inf S µ,ω (f ) : f ∈ H 2 (R d )\{0}, G µ (f ) = 0 , (1.5) 
where

S µ,ω (f ) := E µ (f ) + ω 2 M (f ) = 1 2 ∆f 2 L 2 + µ 2 ∇f 2 L 2 + ω 2 f 2 L 2 - 1 α + 2 ˆ|x| -b |f (x)| α+2 dx
is the action functional and

G µ (f ) := 2 ∆f 2 L 2 + µ ∇f 2 L 2 - dα + 2b 2(α + 2) ˆ|x| -b |f (x)| α+2 dx
is the Pohozaev functional. We will see in Proposition 4.1 that m µ,ω > 0 and there exists at least a minimizer for m µ,ω which solves the elliptic equation

∆ 2 Q -µ∆Q + ωQ -|x| -b |Q| α Q = 0. (1.6)
We define the sets

A + µ,ω : = f ∈ H 2 (R d ) : S µ,ω (f ) < m µ,ω , G µ (f ) ≥ 0 , A - µ,ω : = f ∈ H 2 (R d ) : S µ,ω (f ) < m µ,ω , G µ (f ) < 0 .
(1.7)

Our first result concerns the global existence and space-time estimates with initial data in A + µ,ω . Theorem 1.1 (Global existence and space-time estimates).

Let d ≥ 1, µ ≥ 0, 0 < b < min d 2 , 4 , α > 8-2b d , α < 8-2b d-4 if d ≥ 5, and ω > 0. Let u 0 ∈ A + µ,ω .
Then the corresponding solution to (1.2) exists globally in time and satisfies for any time interval

I ⊂ R, ˆI ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ C|I| 1 1+min{2,b} . (1.8)
In addition, if u 0 is radial, then we have for any time interval

I ⊂ R, ˆI ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ C|I| 1 3 . (1.9) Remark 1.1. Solutions to (1.
2) with initial data in A - µ,ω have different behaviors compared to those in A + µ,ω . It will be investigated in a forthcoming work.

Our second result deals with the energy scattering for global-in-time solutions obtained in Theorem 1.1.

Theorem 1.2 (Energy scattering).

Let u ∈ C(R, H 2 (R d )) be the global-in-time solution obtained in Theorem 1.1. Assume in addition that one of the following conditions is satisfied:

(1) d ≥ 5; or d = 4 and 1 < b < 2;

(2) d = 4 and 0 < b ≤ 1; or d = 3 and 0 < b < 3 2 ; and u 0 is radial. Then the solution scatters in H 2 (R d ) in both directions.

Remark 1.2.

(1) When µ = 0, the threshold for energy scattering in [12,[START_REF] Saanouni | Energy scattering for radial focusing inhomogeneous bi-harmonic Schrödinger equations[END_REF] was determined in terms of mass and energy of the ground state solution to

∆ 2 Q -Q -|x| -b |Q| α Q = 0.
In Appendix A, we prove that the threshold given by A + 0,ω and the one in [12,[START_REF] Saanouni | Energy scattering for radial focusing inhomogeneous bi-harmonic Schrödinger equations[END_REF] are identical. Therefore, our result is indeed an extension of those in [12,[START_REF] Saanouni | Energy scattering for radial focusing inhomogeneous bi-harmonic Schrödinger equations[END_REF] to low dimensions.

(2) When µ > 0, there are no energy scattering result available according to our knowledge.

Hence our result is new in this case.

(3) The condition µ ≥ 0 is essential for the energy scattering since for µ < 0, Strichartz estimates for U µ (t) only hold locally in time. if d ≥ 5. This together with some variational arguments, we are able to show the existence of minimizers for m µ,ω (see Proposition 4.1). From this, we deduce that the set A + µ,ω is invariant under the flow of (1.2). Moreover, solutions to (1.2) with initial data in A + µ,ω enjoy a uniform bound of H 2 -norm which together with the blow-up alternative yield the global existence. The proof of space-time estimates (1.8) and (1.9) are more involved. The first step is to prove a coercivity property of A + µ,ω which is stated in Proposition 4.2. The second step is to show that for solutions u(t) with initial data in A + µ,ω , the multiplication χ R u(t) still remains in A + µ,ω for large R, where χ R is a smooth cutoff which equals to 1 on the ball centered at zero and of radius R/2. This allows us to exhibit the coercivity property for χ R u(t) for R large, namely

G µ (χ R u(t)) ≥ C ˆRd |x| -b |χ R (x)u(t, x)| α+2 dx, ∀t ∈ R.
The last step is to perform a localized virial estimate and insert the cutoff into Pohozaev functional. Here we make intensive use of the decay property of |x| -b outside a large ball. The proof of Theorem 1.2 is inspired by an idea of Arora, Dodson, and Murphy [START_REF] Arora | Scattering below the ground state for the 2d radial nonlinear Schrödinger equation[END_REF] which is outlined as follows. After some reductions, the problem is reduced to prove that for ε > 0 small, there exist T = T (ε) > 0 sufficiently large and t 1 ∈ (0, T ) so that

ˆt1 0 U µ (t -τ )(|x| -b |u| α u)(τ )dτ L k ([t 1 ,+∞),L r,2 (R d )) ≤ Cε γ (1.10)
for a suitable pair (k, r) and some γ > 0, where L r,2 (R d ) stands for the Lorentz space (see Section 2 for the definition). To show this, we first use the space-time estimates to find t 0 ∈ T 4 , T 2 so that

ˆt0 +εT 1-̺ t 0 ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ Cε, (1.11) 
where ̺ = 1 1+min{2,b} for general solutions and ̺ = 1 3 for radial solutions. By choosing t 1 = t 0 + εT 1-̺ , we split the integral in the left hand side of (1.10) into two parts: the distant past

F 1 (t) = ˆt0 0 U µ (t -τ )(|x| -b |u| α u)(τ )dτ
and the recent past

F 2 (t) = ˆt1 t 0 U µ (t -τ )(|x| -b |u| α u)(τ )dτ.
To estimate the distant past, we use dispersive estimates in Lorentz spaces. For d ≥ 5, the decay rate (t -τ ) -d 4 is integrable for τ ∈ [t 1 , +∞) which allows us to pick T = T (ε) large to ensure the smallness of the distant past. For d = 3, 4, the above decay is no longer integrable on [t 1 , +∞). Thus we have to find suitable nonlinear estimates to control this decay in higher Lebesgue norm on [t 1 , +∞). This requires the growth of space-time estimate is not too big. In particular, we need ̺ < 1 2 in four dimensions which leads to the restriction 1 < b < 2 for the non-radial scattering. In three dimensions, we need ̺ even smaller which prevents us to show the same non-radial scattering for 0 < b < 3 2 . However, for radial solutions, the growth ̺ = 1 3 is enough to make the distant past small. To estimate the recent past, we prove a nonlinear estimate which allows us to insert the smallness (1.11) to control the recent past. To make the above argument possible, we provide some new features which are elaborated as follows. First, instead of working on Lebesgue spaces where nonlinear estimates were proved by considering separately two regions inside and outside a ball (see [23,[START_REF] Guzmán | Some remarks on the inhomogeneous biharmonic NLS equation[END_REF]), we use Lorentz spaces which are well suitable for estimating the weighted term |x| -b . By using these spaces, we are able to prove nonlinear estimates in a unified way (see Lemmas 3.1 and 3.2) which contains much simpler proofs than those in [23,[START_REF] Guzmán | Some remarks on the inhomogeneous biharmonic NLS equation[END_REF]. In the context of inhomogeneous nonlinear Schrödinger equation, Lorentz spaces were first used in [1] to show the local well-posedness in Sobolev spaces. These Lorentz spaces were also exploited recently in [3] to prove the local theory for inhomogeneous fourth-order Schrödinger equation. Second, we prove Strichartz estimates for the biharmonic Schrödinger operator in Lorentz spaces. By interpolating between the L 2 -isometry and the L 1 -L ∞ estimate of the linear operator, we obtain dispersive estimates in Lorentz spaces. The homogeneous and inhomogeneous Strichartz estimates follow from an abstract argument of Keel and Tao [30]. However, to treat lower dimensions, we also need Strichartz estimates with a gain of derivatives in Lorentz spaces which are proved in Lemma 2.10.

Finally, we remark that the argument developed in this paper can be applied to show the energy scattering for the defocusing inhomogeneous biharmonic nonlinear Schrödinger equations IBNLS (i.e., the plus sign in front of the nonlinearity in (1.2)). In particular, we have the following result. Proposition 1.3 (Energy scattering for defocusing IBNLS).

Let d ≥ 1, µ ≥ 0, 0 < b < min d 2 , 4 , α > 8-2b d , α < 8-2b d-4 if d ≥ 5, and u 0 ∈ H 2 (R d ).
Then the corresponding solution to the defocusing IBNLS exists globally in time. Assume in addition that one of the following conditions is satisfied:

(1) d ≥ 5; or d = 4 and 1 < b < 2;

(2) d = 4 and 0 < b ≤ 1; or d = 3 and 0 < b < 3 2 ; and u 0 is radial. Then the solution scatters in H 2 (R d ) in both directions.

Remark 1.3. Proposition 1.3 improves a previous work of Saanouni [START_REF] Saanouni | Scattering for radial defocusing inhomogeneous bi-harmonic Schrödinger equations[END_REF] where the energy scattering for the defocusing IBNLS with µ = 0 was proved for radial solutions in dimensions d ≥ 5.

The paper is organized as follows. In Section 2, we first recall the definition as well as basic properties of Lorentz spaces. We then prove dispersive and Strichartz estimates in Lorentz spaces. In Section 3, we show some nonlinear estimates which are needed in our analysis. In Section 4, we study the variational problem m µ,ω and establish the coercivity property of the set A + µ,ω . Section 5 is devoted to the proofs of our main theorems. Finally, an equivalent characterization of thresholds will be given in Appendix A. Let 0 < r < ∞ and 0 < ρ ≤ ∞. The Lorentz space L r,ρ (R d ) is defined by

Preliminary

L r,ρ (R d ) := f measurable on R d : f L r,ρ < ∞ ,
where

f L r,ρ :=    ρ r ˆ∞ 0 s 1/r f * (s) ρ 1 s ds 1/ρ if ρ < ∞, sup s>0 s 1/r f * (s) if ρ = ∞.
We collect the following basic properties of L r,ρ (R d ) in the following lemma (see e.g., [START_REF] Grafakos | Classical Fourier analysis[END_REF]).

Lemma 2.1 (Properties of Lorentz spaces).

• For 1 < r < ∞, L r,r (R d ) ≡ L r (R d ) and by convention, L ∞,∞ (R d ) = L ∞ (R d ). • For 0 < r < ∞ and 0 < ρ ≤ ∞, L r,ρ (R d ) is a quasi-Banach space. • For 0 < r < ∞ and 0 < ρ 1 < ρ 2 ≤ ∞, L r,ρ 1 (R d ) ⊂ L r,ρ 2 (R d ) and there exists C > 0 such that f L r,ρ 2 ≤ C f L r,ρ 1 for all f ∈ L r,ρ 1 (R d ). • For 0 < r < ∞, 0 < ρ ≤ ∞, and θ > 0, |f | θ L r,ρ = f θ L θr,θρ . • For 1 < r < ∞ and 1 ≤ ρ ≤ ∞, L r,ρ (R d ) can be normed to become a Banach space. More precisely, (L r,ρ (R d ), • * L r,ρ ) is a Banach space with f * L r,ρ :=    ρ r ˆ∞ 0 s 1/r f * * (s) ρ 1 s ds 1/ρ if ρ < ∞, sup s>0 s 1/r f * * (s) if ρ = ∞,
where

f * * (t) := 1 t ˆt 0 f * (s)ds, t > 0.
Moreover, we have the norm equivalence

f L r,ρ ≤ f * L r,ρ ≤ r r -1 f L r,ρ . • For b > 0, |x| -b ∈ L d b ,∞ (R d ) and |x| -b L d b ,∞ = |B(0, 1)| b d
, where B(0, 1) is the unit ball of R d .

Lemma 2.2 (Hölder's inequality [38]).

• Let

1 < r, r 1 , r 2 < ∞ and 1 ≤ ρ, ρ 1 , ρ 2 ≤ ∞ be such that 1 r = 1 r 1 + 1 r 2 , 1 ρ ≤ 1 ρ 1 + 1 ρ 2 .
Then there exists C > 0 such that

f g L r,ρ ≤ C f L r 1 ,ρ 1 g L r 2 ,ρ 2 for any f ∈ L r 1 ,ρ 1 (R d ) and g ∈ L r 2 ,ρ 2 (R d ). • Let 1 < r 1 , r 2 < ∞ and 1 ≤ ρ 1 , ρ 2 ≤ ∞ be such that 1 = 1 r 1 + 1 r 2 , 1 ≤ 1 ρ 1 + 1 ρ 2 .
Then there exists C > 0 such that

f g L 1 ≤ C f L r 1 ,ρ 1 g L r 2 ,ρ 2 for any f ∈ L r 1 ,ρ 1 (R d ) and g ∈ L r 2 ,ρ 2 (R d ). Lemma 2.3 (Convolution inequality [38]). • Let 1 < r, r 1 , r 2 < ∞ and 1 ≤ ρ, ρ 1 , ρ 2 ≤ ∞ be such that 1 + 1 r = 1 r 1 + 1 r 2 , 1 ρ ≤ 1 ρ 1 + 1 ρ 2 .
Then there exists C > 0 such that

f * g L r,ρ ≤ C f L r 1 ,ρ 1 g L r 2 ,ρ 2 for any f ∈ L r 1 ,ρ 1 (R d ) and g ∈ L r 2 ,ρ 2 (R d ). • Let 1 < r 1 , r 2 < ∞ and 1 ≤ ρ 1 , ρ 2 ≤ ∞ be such that 1 = 1 r 1 + 1 r 2 , 1 ≤ 1 ρ 1 + 1 ρ 2 .
Then there exists C > 0 such that

f * g L ∞ ≤ C f L r 1 ,ρ 1 g L r 2 ,ρ 2 for any f ∈ L r 1 ,ρ 1 (R d ) and g ∈ L r 2 ,ρ 2 (R d ).
Let s ≥ 0, 1 < r < ∞, and 1 ≤ ρ ≤ ∞. We define the Sobolev-Lorentz spaces

W s L r,ρ (R d ) = f ∈ S ′ (R d ) : (I -∆) s/2 f ∈ L r,ρ (R d ) , Ẇ s L r,ρ (R d ) = f ∈ S ′ (R d ) : (-∆) s/2 f ∈ L r,ρ (R d ) ,
where S ′ (R d ) is the space of tempered distributions on R d and

(I -∆) s/2 f = F -1 (1 + |ξ| 2 ) s/2 F(f ) , (-∆) s/2 f = F -1 (|ξ| s F(f ))
with F and F -1 the Fourier and its inverse Fourier transforms respectively. The spaces W s L r,ρ (R d ) and Ẇ s L r,ρ (R d ) are endowed respectively with the norms

f W s L r,ρ = f L r,ρ + (-∆) s/2 f L r,ρ , f Ẇ s L r,ρ = (-∆) s/2 f L r,ρ . Corollary 2.4 (Sobolev embedding). Let 1 < r < ∞, 1 ≤ ρ ≤ ∞, and 0 < s < d r . Then there exists C > 0 such that f L dr d-sr ,ρ ≤ C (-∆) s/2 f L r,ρ for any f ∈ Ẇ s L r,ρ (R d ).
In particular, we have

W s L r,ρ (R d ) ⊂ L n,ρ (R d ), r ≤ n ≤ dr d -sr .
Proof. We have

(-∆) -s/2 f (x) = C(d, s) ˆRd f (y) |x -y| d-s dy = C(d, s)(| • | -(d-s) * f )(x).

By the convolution inequality in Lorentz spaces and the fact that |x|

-(d-s) ∈ L d d-s ,∞ (R d ), we get (-∆) -s/2 f L dr d-sr ,ρ ≤ C f L r,ρ
which proves the desired estimate.

Corollary 2.5 (Hardy's inequality

). Let 1 < r < ∞, 1 ≤ ρ ≤ ∞, and 0 < s < d r . Then there exists C > 0 such that |x| -s f L r,ρ ≤ C (-∆) s/2 f L r,ρ for any f ∈ Ẇ s L r,ρ (R d ).
Proof. By Hölder's inequality and Sobolev embedding in Lorentz spaces, we have

|x| -s f L r,ρ ≤ |x| -s L d s ,∞ f L dr d-sr ,ρ ≤ C (-∆) s/2 f L r,ρ .
This gives the result.

Lemma 2.6 (Product rule [14]). Let s ≥ 0, 1 < r, r 1 , r 2 , r 3 , r 4 < ∞, and 1 ≤ ρ, ρ 1 , ρ 2 , ρ 3 , ρ 4 ≤ ∞ be such that 1 r = 1 r 1 + 1 r 2 = 1 r 3 + 1 r 4 , 1 ρ = 1 ρ 1 + 1 ρ 2 = 1 ρ 3 + 1 ρ 4 .
Then there exists C > 0 such that

(-∆) s/2 (f g) L r,ρ ≤ C (-∆) s/2 f L r 1 ,ρ 1 g L r 2 ,ρ 2 + f L r 3 ,ρ 3 (-∆) s/2 g L r 4 ,ρ 4 for any f ∈ Ẇ s L r 1 ,ρ 1 (R d ) ∩ L r 3 ,ρ 3 (R d ) and g ∈ Ẇ s L r 4 ,ρ 4 (R d ) ∩ L r 2 ,ρ 2 (R d ). Lemma 2.7 (Chain rule [1]). Let 0 ≤ s ≤ 1, F ∈ C 1 (C, C), 1 < r, r 1 , r 2 < ∞, and 1 ≤ ρ, ρ 1 , ρ 2 < ∞ be such that 1 r = 1 r 1 + 1 r 2 , 1 ρ = 1 ρ 1 + 1 ρ 2 .
Then there exists C > 0 such that

(-∆) s/2 F (f ) L r,ρ ≤ C F ′ (f ) L r 1 ,ρ 1 (-∆) s/2 f L r 2 ,ρ 2 .

2.2.

Dispersive and Strichartz estimates in Lorentz spaces.

Lemma 2.8 (Dispersive estimates).

Let d ≥ 1, µ ≥ 0, 2 < r < ∞, and 1 ≤ ρ ≤ ∞. Then there exists C > 0 such that

U µ (t)f L r,ρ x ≤ C|t| -d 4 (1-2 r ) f L r ′ ,ρ x , t = 0 (2.1)
for any f ∈ L r ′ ,ρ (R d ).
Proof. We first have the unitary property

U µ (t)f L 2 x = f L 2 x , ∀t ∈ R.
We also recall the following standard dispersive estimates (see [7])

U µ (t)f L ∞ x ≤ C|t| -d 4 f L 1 x , ∀t = 0. (2.2)
Note that (2.2) holds for all time provided that µ ≥ 0. When µ < 0, such an estimate only holds for short time. The desired estimate (2.1) follows by applying the interpolation theorem (see e.g., [START_REF] Grafakos | Classical Fourier analysis[END_REF]Theorem 1.4.19]) with

T = U µ (t), q 0 = 2, q 1 = ∞, p 0 = 2, p 1 = 1, θ = 1 -2 r so that 1 r = 1 -θ q 0 + θ q 1 , 1 r ′ = 1 -θ p 0 + θ p 1 and M 0 = 1, M 1 = C|t| -d 4 .
Definition 2.2 (Admissibility).

• A pair (q, r) is said to be biharmonic admissible, for short (q, r) ∈ B, if

4 q + d r = d 2 ,      r ∈ 2, 2d d-4 if d ≥ 5, r ∈ [2, ∞) if d = 4, r ∈ [2, ∞] if d = 1, 2, 3. • A pair (p, n) is said to be Schödinger admissible, for short (p, n) ∈ S, if 2 p + d n = d 2 ,      n ∈ 2, 2d d-2 if d ≥ 3, n ∈ [2, ∞) if d = 2, n ∈ [2, ∞] if d = 1.
Thanks to dispersive estimates (2.1), the T T * -argument yields the following Strichartz estimates (see [30]). Proposition 2.9 (Strichartz estimates). Let d ≥ 1 and µ ≥ 0.

• Let (q, r) ∈ B with r < ∞. Then there exists C > 0 such that

U µ (t)f L q t (R,L r,2 x ) ≤ C f L 2 x (2.3) for any f ∈ L 2 (R d ). • Let (q 1 , r 1 ), (q 2 , r 2 ) ∈ B with r 1 , r 2 < ∞, t 0 ∈ R, and I ⊂ R be an interval containing t 0 .
Then there exists C > 0 such that

ˆt t 0 U µ (t -τ )F (τ )dτ L q 1 t (I,L r 1 ,2 x ) ≤ C F L q ′ 2 t (I,L r ′ 2 ,2 x ) (2.4) for any F ∈ L q ′ 2 (I, L r ′ 2 ,2 (R d )).
Lemma 2.10 (Strichartz estimates with a gain of derivatives).

Let d ≥ 1, µ ≥ 0, (p 1 , n 1 ), (p 2 , n 2 )
∈ S, t 0 ∈ R, and I ⊂ R be an interval containing t 0 . Then there exists C > 0 such that

∆ ˆt t 0 U µ (t -τ )F (τ )dτ L p 1 t (I,L n 1 ,2 x ) ≤ C |∇| 2-2 p 1 -2 p 2 F L p ′ 2 t (I,L n ′ 2 ,2 x ) (2.5) for any F ∈ L p ′ 2 (I, Ẇ 2-2 p 1 -2 p 2 L n ′ 2 ,2 (R d ))
, where |∇| := (-∆) 1/2 . In particular, for (q, r) ∈ B with r < ∞ and (p, n) ∈ S with n < ∞, we have

∆ ˆt t 0 U µ (t -τ )F (τ )dτ L q t (I,L r,2 x ) ≤ C |∇| 2-2 p F L p ′ t (I,L n ′ ,2 x ) (2.6) for any F ∈ L p ′ (I, Ẇ 2-2 p L n ′ ,2 (R d )).
Proof. We first show how to get (2.6) from (2.5). We take r such that d r = d r + 2 q . By Sobolev embedding in Lorentz spaces (Corollary 2.4), we have

f L r,2 x ≤ C |∇| 2 q f L r,2 x .
Since (q, r) ∈ S, we apply (2.5) with |∇| 2 q F in place of F and get

∆ ˆt t 0 U µ (t -τ )F (τ )dτ L q t (I,L r,2 x ) ∆ ˆt t 0 U µ (t -τ )|∇| 2 q F (τ )dτ L q t (I,L r,2 x ) |∇| 2-2 p F L p ′ t (I,L n ′ ,2 x )
which is (2.6).

To see (2.5), we need some preliminaries.

Let η ∈ C ∞ 0 (R d ) be a non-negative function sup- ported in {1/2 < |ξ| < 2} satisfying j∈Z η(2 j ξ) = 1, ∀ξ ∈ R d \{0}.
Define the Fourier multiplier

Q j f := η(2 -j •) * f, j ∈ Z
and the square function

Sf (x) := j∈Z |Q j f (x)| 2 1/2 , x ∈ R d .
It was proved (see [1, Lemma 2.5]) that for 1 < r < ∞ and 1 ≤ ρ < ∞,

f L r,ρ x ∼ Sf L r,ρ x (2.7)
and for s ≥ 0,

j∈Z |Q j (-∆) s/2 f | 2 1/2 ∼ j∈Z 2 2js | Qj f | 2 1/2 , (2.8) 
where

Qj f = η(2 -j •) * f with η ∈ C ∞ 0 (R d ) a non-negative function supported in {1/2 < |ξ| < 2} and satisfying ηη = η. Now, for j ∈ Z, we denote V µ,j (t) := d j P j U µ (t), where d j f (x) := 2 j d 2 f (2 j x)
is the rescaling operator and

P j f = √ η(2 -j ) * f . By Plancherel's theorem, the isometry of d j on L 2 (R d ) implies V µ,j (t) L 2 x →L 2 x ≤ C, ∀t ∈ R.
In addition, we have from [39, (3.16)] that

V µ,j (t)V µ,j (τ ) * L 1 x →L ∞ x ≤ C|t -τ | -d 2 , ∀t = τ.
Applying the result of Keel and Tao [30], we obtain

ˆt t 0 d j Qj U µ (t -τ )d * j F (τ )dτ L p 1 t (I,L n 1 ,2 x ) = ˆt t 0 V µ,j (t)V µ,j (τ ) * F (τ )dτ L p 1 t (I,L n 1 ,2 x ) ≤ C F L p ′ 2 t (I,L n ′ 2 ,2 x ) . As d * j L n 1 ,2 x →L n 1 ,2 x ≤ C2 j d n 1 -d 2 and d j L n ′ 2 ,2 x →L n ′ 2 ,2 x ≤ C2 j d 2 -d n ′
2 , we infer that

ˆt t 0 Qj U µ (t -τ )F (τ )dτ L p 1 t (I,L n 1 ,2 x ) ≤ C2 j d n 1 -d 2 ˆt t 0 d j Qj U µ (t -τ )F (τ )dτ L p 1 t (I,L n 1 ,2 x ) = C2 j d n 1 -d 2 ˆt t 0 d j Qj U µ (t -τ )d * j d j F (τ )dτ L p 1 t (I,L n 1 ,2 x ) ≤ C2 j d n 1 -d 2 d j F L p ′ 2 t (I,L n ′ 2 ,2 x ) ≤ C2 j d n 1 -d n ′ 2 F L p ′ 2 t (I,L n ′ 2 ,2 x ) .
Applying this inequality with Qj F in place of F , we get

ˆt t 0 Qj U µ (t -τ )F (τ )dτ L p 1 t (I,L n 1 ,2 x ) ≤ 2 j d n 1 -d n ′ 2 Qj F L p ′ 2 t (I,L n ′ 2 ,2 x ) , where Qj f := η(2 -j •) * f with η ∈ C ∞ 0 (R d ) supported in {1/2 < |ξ| < 2}
and satisfying η η = η. By (2.7), (2.8), and Minkowski's inequality, we have

∆ ˆt t 0 U µ (-τ )F (τ )dτ L p 1 t (I,L n 1 ,2 x ) ∼ j∈Z Q j ∆ ˆt t 0 U µ (-τ )F (τ )dτ 2 1/2 L p 1 t (I,L n 1 ,2 x ) ∼ j∈Z 2 4j Qj ˆt t 0 U µ (-τ )F (τ )dτ 2 1/2 L p 1 t (I,L n 1 ,2 x ) j∈Z 2 4j Qj ˆt t 0 U µ (-τ )F (τ )dτ 2 L p 1 t (I,L n 1 ,2 x ) 1/2 j∈Z 2 4j+2j d n 1 -d n ′ 2 Qj F 2 L p ′ 2 t (I,L n ′ 2 ,2 x ) 1/2 j∈Z 2 2j 2+ d n 1 -d n ′ 2 | Qj F | 2 1/2 L p ′ 2 t (I,L n ′ 2 ,2 x ) ∼ j∈Z |Q j |∇| 2-2 p 1 -2 p 2 F | 2 1/2 L p ′ 2 t (I,L n ′ 2 ,2 x ) ∼ |∇| 2-2 p 1 -2 p 2 F L p ′ 2 t (I,L n ′ 2 , 2 x 
) which is (2.5).

Lemma 2.11 (Strichartz estimates for non biharmonic admissible pairs).

Let d ≥ 1, µ ≥ 0, (q, r) ∈ B with 2 < r < ∞, and 1 ≤ ρ ≤ ∞. Fix k > q
2 and define m by

1 k + 1 m = 2 q .
(2.9)

Then there exists C > 0 such that for all interval I ⊂ R with 0 ∈ I,

ˆt 0 U µ (t -τ )F (τ )dτ L k t (I,L r,ρ x ) ≤ C F L m ′ t (I,L r ′ ,ρ x )
(2.10)

for any F ∈ L m ′ (I, L r ′ ,ρ (R d )).
Proof. Using (2.1), we have for t ∈ I,

ˆt 0 e i(t-τ )∆ F (τ )dτ L r,ρ x ≤ C ˆt 0 |t -τ | -d 4 (1-2 r ) F (τ ) L r ′ ,ρ x dτ = C ˆt 0 |t -τ | -2 q F (τ ) L r ′ ,ρ x dτ ≤ C ˆI |t -τ | -2 q F (τ ) L r ′ ,ρ x dτ = C(| • | -2 q * G)(t),
where

G(t) = 1 I (t) F (t) L r ′ ,ρ x
. The result follows by the standard Hardy-Littlewood-Sobolev inequality using (2.9).

Nonlinear estimates

Let d ≥ 1, 0 < b < min d 2 , 4 , α > 8-2b d , and α < 8-2b d-4 if d ≥ 5. Denote q = 8(α + 2) dα + 2b , r = d(α + 2) d -b , k = 4α(α + 2) 8 -2b -(d -4)α , m = 4α(α + 2) dα 2 + (d -4 + 2b)α -8 + 2b . (3.1)
We readily check that (q, r) ∈ B, 2 < r < ∞, k > q 2 , and

1 k + 1 m = 2 q .
Lemma 3.1 (Nonlinear estimates 1).

Let d ≥ 1, 0 < b < min d 2 , 4 , α > 8-2b d , and α < 8-2b d-4 if d ≥ 5.
Let q, r, k, m be as in (3.1) and I ⊂ R be an interval. Then we have

|x| -b |u| α u L m ′ t (I,L r ′ ,2 x ) u α+1 L k t (I,L r,2 x ) , (3.2) |x| -b |u| α u L q ′ t (I,L r ′ ,2 x ) u α L k t (I,L r,2 x ) u L q t (I,L r,2
x ) .

(3.3)

Proof. By Hölder's inequality in Lorentz spaces, we have

|x| -b |u| α u L r ′ ,2 x ≤ |x| -b L d b ,∞ x |u| α u L r,2 x |u| α L r α ,∞ x u L r,2 x u α L r,∞ x u L r,2 x u α+1 L r,2 x , where 1 < r < ∞ is such that 1 r ′ = b d + 1 r , 1 r = α + 1 r or r = d(α + 2) (d -b)(α + 1)
.

As 1 m ′ = α+1 k , the standard Hölder inequality in time yields

|x| -b |u| α u L m ′ t L r ′ ,2 x u α+1 L k t ,L r,2
x which is (3.2). Estimate (3.3) is treated similarly using the fact that 1 q ′ = α k + 1 q .

Lemma 3.2 (Nonlinear estimates 2).

Let d ≥ 3, 0 < b < min d 2 , 4 , α > 8-2b d , and α < 8-2b d-4 if d ≥ 5.
Let k, r be as in (3.1) and I ⊂ R be an interval. Then there exist (p, n) ∈ S and (β, ν) ∈ B with n, ν < ∞ such that

|∇| 2-2 p [|x| -b |u| α u] L p ′ t (I,L n ′ ,2 x ) u α L k t (I,L r,2 x ) ∆u L β t (I,L ν,2
x ) .

(3.4)

Proof. We consider two cases:

Case 1. Let d ≥ 3, 0 < b < min d 2 , 4 , α > 8-2b d , and α < 8-2b d-4 if d ≥ 5. Assume in addition that b > 1 if d = 3. In this case, we take (p, n) = 2, 2d d-2 ∈ S, hence 2 -2 p = 1.
We introduce the following exponents:

δ : = 2d d + 2 -2b , σ : = 2d(α + 2) 2d + 4 -2b -(d -2)α , β : = 4(α + 2) (d -2)α -4 + 2b , ν : = 2d(α + 2) 2(d + 4 -2b) -(d -4)α .
Since α > 8-2b d , the condition b > 1 when d = 3 is needed to ensure (d -2)α -4 + 2b > 0, hence β has positive value. One readily check that (β, ν) ∈ B, 1 < δ < d, and

d + 2 2d = b d + 1 δ , 1 δ = α r + 1 σ , 1 σ = 1 ν - 1 d , 1 2 = α k + 1 β .
We have

∇[|x| -b |u| α u] L 2 t L 2d d+2 ,2 x ≤ |x| -b ∇(|u| α u) L 2 t L 2d d+2 ,2 x + ∇(|x| -b )|u| α u L 2 t L 2d d+2 ,2 x = (A) + (B).
By Hölder's inequality, the chain rule, and Sobolev embedding in Lorentz spaces, we have

|x| -b ∇(|u| α u) L 2d d+2 ,2 x ≤ |x| -b L d b ,∞ x ∇(|u| α u) L δ,2 x |u| α L r α ,∞ x ∇u L σ,2 x u α L r,∞ x ∆u L ν,2 x u α L r,2 x ∆u L ν,2
x , which, by Hölder's inequality in time, yields

(A) u α L k t L r,2 x ∆u L β t L ν,2
x .

We next write

∇(|x| -b )|u| α u ∼ |x| -b |x| -1 (|u| α u)
and use Hardy's inequality in Lorentz spaces with 1 < δ < d to get

∇(|x| -b )|u| α u L 2d d+2 ,2 x ≤ |x| -b L d b ,∞ x |x| -1 (|u| α u) L δ,2 x ∇(|u| α u) L δ,2 x .
Repeating the same estimates as above, we prove as well that

(B) u α L k t L r,2 x ∆u L β t L ν,2
x .

This shows (3.4) in this case.

Case 2. Let d = 3, 0 < b ≤ 1, and α > 8-2b 3 . We take (p, n) = 7-b 3 , 14-2b 3-b ∈ S, hence 2 -2 p = 4-b 7-b . We define δ : = 6(7 -b) 33 -17b + 2b 2 , σ : = 6(7 -b)(α + 2) 66 -34b + 4b 2 -(9 -3b)α , β : = 4(7 -b)(α + 2) (9 -3b)α + 14b -2b 2 -24 , ν : = 6(7 -b)(α + 2) 90 -34b + 4b 2 + (3 + 3b)α , θ : = 6(7 -b) 25 -15b + 2b 2 .
We have the following properties: (β, ν) ∈ B, 1 < δ < 3 2-2 p , and

1 n ′ = b 3 + 1 δ = b + 2 -2 p 3 + 1 θ , 1 δ = α r + 1 σ , 1 σ = 1 ν - 2 3p , 1 p ′ = α k + 1 β .
By the product rule, Sobolev embedding, and the chain rule in Lorentz spaces, we estimate

|∇| 2-2 p [|x| -b |u| α u] L n ′ ,2 x |x| -b L 3 b ,∞ x |∇| 2-2 p (|u| α u) L δ,2 x + |∇| 2-2 p (|x| -b ) L 3 b+2-2 p ,∞ x |u| α u L θ,2 x |∇| 2-2 p (|u| α u) L δ,2 x |u| α L r α ,∞ x |∇| 2-2 p u L σ,2 x u α L r,∞ x ∆u L ν,2 x u α L r,2 x ∆u L ν,2
x , Hölder's inequality in time yields

|∇| 2-2 p [|x| -b |u| α u] L p ′ t L n ′ ,2 x u α L k t L r,2 x ∆u L β t L ν,2
x . This is the desired estimate. (3.5)

In addition, we have for d = 4, 0 < b < d 2 , and α > 8-2b d ,

|x| -b |u| α u L 1 1-θ ,2 x u α 2 H 2 x ˆRd |x| -b |u(x)| α+2 dx 1 2
(3.6)

provided that θ > 0 is taken sufficiently small. Furthermore, we have for d = 3, 0 < b < d 2 , and α > 8-2b d ,

|x| -b |u| α u L 1 1-θ ,2 x u 3α-2 8 H 2 x ˆRd |x| -b |u(x)| α+2 dx 5 8
(3.7)

provided that θ > 0 is taken sufficiently small.

Proof. Let d ≥ 5. We estimate

|x| -b |u| α u L n,2 x ≤ |x| -b L d b ,∞ x |u| α u L δ,2 x u α+1 L δ(α+1),2(α+1) x ∆ u α+1 L 2,2(α+1) x u α+1 H 2 x provided that 1 n = b d + 1 δ and 2 ≤ δ(α + 1) ≤ 2d d -4 . (3.8)
Here we have used the Sobolev embedding

W 2 L 2,ρ (R d ) ⊂ L n,ρ (R d ) for 2 ≤ n ≤ 2d d-4 , and 1 ≤ ρ ≤ ∞. Condition (3.8) is equivalent to 2 ≤ dn(α + 1) d -bn ≤ 2d d -4 . As 8-2b d < α < 8-2b d-4
, and 2d d+8 ≤ n ≤ 2d d+4 , the above condition is satisfied and (3.5) follows. We now consider the case d = 4. We estimate

|x| -b |u| α u L 1 1-θ ,2 x ≤ |x| -b 2 L 2d b ,∞ x |u| α 2 L δ,∞ x |x| -b 2 |u| α+2 2 L 2,2 x u α 2 L δα 2 ,∞ x ˆRd |x| -b |u(x)| α+2 dx 1 2 u α 2 H 2 x ˆRd |x| -b |u(x)| α+2 dx 1 2 provided that 1 -θ = b 2d + 1 δ + 1 2 , δα 2 > 2.
Here we have used the embedding

H 2 (R 4 ) ⊂ L δα 2 (R 4 ) ⊂ L δα 2 ,∞ (R 4 ) for 2 < δα 2 < ∞. In particular, we need dα d -b -2dθ > 2 or dα -2d + 2b + 4dθ > 0
which is satisfied due to d = 4, α > 8-2b d , and θ > 0 sufficiently small.

Finally, for d = 3, we have

|x| -b |u| α u L 1 1-θ ,2 x ≤ |x| -3b 8 L 8d 3b ,∞ x |u| 3α-2 8 L δ,∞ x |x| -5b 8 |u| 5(α+2) 8 L 8 5 ,2 x u 3α-2 8 L δ(3α-2) 8 ,∞ x ˆRd |x| -b |u(x)| α+2 dx 5 8 u 3α-2 8 H 2 x ˆRd |x| -b |u(x)| α+2 dx 5 8
provided that

1 -θ = 3b 8d + 1 δ + 5 8 , δ(3α -2) 8 > 2.
Here we have used the embedding

H 2 (R 3 ) ⊂ L δ(3α-2) 8 (R 3 ) ⊂ L δ(3α-2) 8 ,∞ (R 3 ) for 2 < δ(3α-2) 8 < ∞ and L 8 5 (R 3 ) ⊂ L 8 5 ,2 (R 3 ). In particular, we need d(3α -2) 3d -3b -8dθ > 2 or 3dα -8d + 6b + 16dθ > 0
which is satisfied as d = 3, α > 8-2b d , and θ > 0 sufficiently small. A direct consequence of the above nonlinear estimates is the following scattering condition.

Lemma 3.4 (Scattering condition). Let d ≥ 3, µ ≥ 0, 0 < b < min d 2 , 4 , α > 8-2b d , and α < 8-2b d-4 if d ≥ 5. Suppose that u is a global-in-time solution to (1.2) satisfying sup t∈R u(t) H 2 x ≤ E for some constant E > 0. If u L k t (R,L r,2
x ) < ∞, (3.9)

where k, r is as in (3.1), then the solution scatters in H 2 (R d ) in both directions.

Proof. Let ε > 0 to be chosen shortly. Thanks to (3.9), there exist an integer J = J(ε) > 0 and disjoint intervals

I j , j = 1, • • • , J such that u L k t (I j ,L r,2 x ) < ε, j = 1, • • • , J. (3.10)
For t ∈ I j = [t j , t j+1 ], we have the Duhamel formula

u(t) = U µ (t -t j )u(t j ) + i ˆt t j U µ (t -τ )(|x| -b |u| α u)(τ )dτ.
By Strichartz estimates (2.4), (2.6) and nonlinear estimates (3.3), (3.4), we have

∆ u L q t (I j ,L r,2 x ) ≤ ∆ U µ (t -t j )u(t j ) L q t (I j ,L r,2 x ) + ˆt t j U µ (t -τ )(|x| -b |u| α u)(τ )dτ L q t (I j ,L r,2 x ) + ˆt t j U µ (t -τ )∆[|x| -b |u| α u](τ )dτ L q t (I j ,L r,2 x ) u(t j ) H 2 x + |x| -b |u| α u L q ′ t (I j ,L r ′ ,2 x ) + |∇| 2-2 p [|x| -b |u| α u] L p ′ t (I j ,L n ′ ,2 x ) u(t j ) H 2 x + u α L k t (I j ,L r,2 x ) u L q t (I j ,L r,2 x ) + u α L k t (I j ,L r,2 x ) ∆u L β t (I j ,L ν,2 x ) E + ε α ∆ u L q t (I j ,L r,2 x ) + ∆ u L β t (I j ,L ν,2 x ) ,
where p, n, β, ν are as in Lemma 3.2. A similar estimate goes for ∆ u L β t (I j ,L ν,2

x ) and we get

∆ u L q t (I j ,L r,2 x ) + ∆ u L β t (I j ,L ν,2 x ) E + ε α ∆ u L q t (I j ,L r,2 x ) + ∆ u L β t (I j ,L ν,2
x ) . Taking ε > 0 small, there exists C > 0 such that

∆ u L q t (I j ,L r,2 x ) + ∆ u L β t (I j ,L ν,2 x ) ≤ CE, ∀j = 1, • • • , J.
Summing over all sub-intervals I j , we obtain

∆ u L q t (R,L r,2 x ) + ∆ u L β t (R,L ν,2
x ) < ∞.

(3.11)

We now prove the scattering for positive times (the one for negative times is treated similarly). Let t 2 > t 1 > 0. We have

U µ (-t 2 )u(t 2 ) -U µ (-t 1 )u(t 1 ) H 2 x ≤ ˆt2 t 1 U µ (-τ )(|x| -b |u| α u)(τ )dτ L 2 x + ˆt2 t 1 U µ (-τ )∆[|x| -b |u| α u](τ )dτ L 2 x u α L k t ((t 1 ,t 2 ),L r,2 x ) ∆ u L q t ((t 1 ,t 2 ),L r,2 x ) + ∆ u L β t ((t 1 ,t 2 ),L ν,2 x )
Thanks to (3.9) and (3.11), we see that

U µ (-t 2 )u(t 2 ) -U µ (-t 1 )u(t 1 ) H 2 x → 0 as t 1 , t 2 → +∞. This shows that (U µ (-t)u(t)) t→+∞ is a Cauchy sequence in H 2 (R d ). Thus the limit u + := u 0 + i ˆ+∞ t U µ (-τ )(|x| -b |u| α u)(τ )dτ exists in H 2 (R d ).
Estimating as above, we prove that

u(t) -U µ (t)u + H 2
x → 0 as t → +∞. The proof is complete.

Variational analysis

In this section, we study the minimization problem (1.5) and we have the following existence of minimizers for m µ,ω .

Proposition 4.1 (Existence of minimizers). Let d ≥ 1, µ ≥ 0, 0 < b < min{d, 4}, α > 8-2b d , α < 8-2b d-4 if d ≥ 5
, and ω > 0. Then m µ,ω > 0 and there exists at least a minimizer for m µ,ω which solves the elliptic equation (1.6). In addition,

m µ,ω = inf S µ,ω (f ) : f ∈ H 2 (R d )\{0}, f solves (1.6) . (4.1)
Before giving the proof of Proposition 4.1, we have the following observation.

Observation 4.1. Let f ∈ H 2 (R d )\{0}.
Then there exists a unique λ 0 > 0 such that

G µ (f λ )    > 0 if 0 < λ < λ 0 , = 0 if λ = λ 0 , < 0 if λ > λ 0 , where f λ (x) := λ d 2 f (λx), λ > 0 is the mass-critical scaling.
Proof of Observation 4.1. We have

G µ (f λ ) = 2λ 4 ∆f 2 L 2 + µλ 2 ∇f 2 L 2 - dα + 2b 2(α + 2) λ dα+2b 2 ˆ|x| -b |f (x)| α+2 dx = λ 4 φ(λ)
where φ(λ) = a + bλ -2 -cλ δ with a, c > 0, b ≥ 0, and δ > 0. As φ(λ) is strictly decreasing on (0, +∞), lim λ→0 φ(λ) ≥ a > 0, and lim λ→+∞ φ(λ) = -∞, there exists a unique λ 0 > 0 such that φ(λ 0 ) = 0, φ(λ) > 0 for 0 < λ < λ 0 , and φ(λ) < 0 for λ > λ 0 . This proves the observation.

Proof of Proposition 4.1. Let (f n ) n be a minimizing sequence for m µ,ω , i.e., S µ,ω

(f n ) → mu µ,ω as n → ∞ and G µ (f n ) = 0 for all n ≥ 1.
We first show that m µ,ω > 0. To see this, we observe that

m µ,ω ←-S µ,ω (f n ) = S µ,ω (f n ) - 2 dα + 2b G µ (f n ) = dα + 2b -8 2(dα + 2b) ∆f n 2 L 2 + (dα + 2b -4)µ 2(dα + 2b) ∇f n 2 L 2 + ω 2 f n 2 L 2 . (4.2)
As µ ≥ 0, ω > 0, and α > 8-2b d , we infer that (

f n ) n is a bounded sequence in H 2 (R d ). As G µ (f n ) = 0, we use (A.1) to get 2 ∆f n 2 L 2 + µ ∇f n 2 L 2 = dα + 2b 2(α + 2) ˆ|x| -b |f n (x)| α+2 dx ≤ C ∆f n dα+2b 4 L 2 f n 8-2b-(d-4)α 4 L 2 ≤ C 2 ∆f n 2 L 2 + µ ∇f n 2 L 2 dα+2b 8 
.

Since dα + 2b > 8, there exists C > 0 such that for all n ≥ 1,

2 ∆f n 2 L 2 + µ ∇f n 2 
L 2 ≥ C which together with (4.2) imply m µ,ω > 0. We also have

ˆ|x| -b |f n (x)| α+2 dx ≥ C. (4.3)
We next show the existence of a minimizer for m µ,ω . Since (f n ) n is a bounded sequence in H 2 (R d ), there exists f ∈ H 2 (R d ) such that up to a subsequence,

•

f n ⇀ f weakly in H 2 (R d ); • f n → f a.e. in R d ; • f n → f strongly in L r loc (R d ) for all r ≥ 1 and r < 2d d-4 if d ≥ 5. We claim that ˆ|x| -b |f n (x)| α+2 dx → ˆ|x| -b |f (x)| α+2 dx as n → ∞.
This combined with (4.3) imply f = 0. To see the claim, we take ε > 0. For R > 0 to be chosen later depending on ε, we write

ˆ|x| -b |f n (x)| α+2 dx -ˆ|x| -b |f (x)| α+2 dx ≤ ˆ|x|≤R |x| -b ||f n (x)| α+2 -|f (x)| α+2 |dx + ˆ|x|>R |x| -b ||f n (x)| α+2 -|f (x)| α+2 |dx =: (I) + (II).
We estimate

(II) ≤ R -b f n α+2 L α+2 + f α+2 L α+2 ≤ R -b f n α+2 H 2 + f α+2 H 2 ≤ CR -b < ε 2
provided that R = aε -1 b with a > 0 sufficiently large. Here we have α

+ 2 < 2d d-4 if d ≥ 5 (as α < 8-2b d-4 ) which ensures H 2 (R d ) ⊂ L α+2 (R d ).
To estimate (I), we pick γ = d b -δ and r = d-δb d-b-δb with some δ > 0 small and estimate

(I) ≤ |x| -b L γ (|x|≤R) |f n | α+2 -|f | α+2 L r (|x|≤R) ≤ CR δb f n α+1 L (α+2)r + f α+1 L (α+2)r f n -f L (α+2)r (|x|≤R) ≤ CR δb f n α+1 H 2 + f α+1 H 2 f n -f L (α+2)r (|x|≤R) ≤ CR δb f n -f L (α+2)r (|x|≤R) ,
where (α + 2)r > 2 and (α + 2)r < 2d d-4 if d ≥ 5. The later comes from the assumption α < 8-2b d-4

and δ > 0 small. As f n → f strongly in L (α+2)r (|x| ≤ R), there exists n 0 ∈ N large such that for all n ≥ n 0 , (I) < ε 2 . Collecting the above estimates, we prove the claim. By the weak convergence in H 2 (R d ) and the above claim, we have

G µ (f ) ≤ lim inf n→∞ G µ (f n ) = 0.
By Observation (4.1), there exists λ 0 ∈ (0, 1] such that G µ (f λ 0 ) = 0. Thus

m µ,ω ≤ S µ,ω (f λ 0 ) = S µ,ω (f λ 0 ) - 2 dα + 2b G µ (f λ 0 ) = dα + 2b -8 2(dα + 2b) ∆f λ 0 2 L 2 + (dα + 2b -4)µ 2(dα + 2b) ∇f λ 0 2 L 2 + ω 2 f λ 0 2 L 2 ≤ dα + 2b -8 2(dα + 2b) ∆f 2 L 2 + (dα + 2b -4)µ 2(dα + 2b) ∇f 2 L 2 + ω 2 f 2 L 2 ≤ lim inf n→∞ dα + 2b -8 2(dα + 2b) ∆f n 2 L 2 + (dα + 2b -4)µ 2(dα + 2b) ∇f n 2 L 2 + ω 2 f n 2 L 2 = lim inf n→∞ S µ,ω (f n ) - 2 dα + 2b G µ (f n ) = m µ,ω ,
where we have used the fact λ 0 ≤ 1 to get the third line. This shows that λ 0 = 1 or G µ (f ) = 0 and S µ,ω = m µ,ω . In particular, f is a minimizer for m µ,ω . We now show that f is a solution to (1.6). As f is a minimizer for m µ,ω , there exists a Lagrange multiplier ν ∈ R such that S ′ µ,ω (f ) = νG ′ µ (f ). In particular, we have

(1 -4ν)∆ 2 f -µ(1 + 2ν)∆f + ωf -1 - dα + 2b 2 ν |x| -b |f | α f = 0 (4.4) in H -2 (R d ).
Multiplying both sides of (4.4) with f and integrating over R d , we get

(1 -4ν) ∆f 2 L 2 + µ(1 + 2ν) ∇f 2 L 2 + ω f 2 L 2 -1 - dα + 2b 2 ν ˆ|x| -b |f | α+2 dx = 0. (4.5)
Multiplying both sides of (4.4) with x • ∇f , integrating over R d , and taking the real part, we have

(1 -4ν) 2 - d 2 ∆f 2 L 2 + µ(1 + 2ν) 1 - d 2 ∇f 2 L 2 -ω d 2 f 2 L 2 -1 - dα + 2b 2 ν b -d α + 2 ˆ|x| -b |f | α+2 dx = 0. (4.6)
Here we have used the following identity (see [15, (3.12)])

Re ˆ(-∆) γ f x • ∇f dx = γ - d 2 (-∆) γ/2 f 2 L 2
and also Re ˆ|x|

-b |f | α f x • ∇f dx = b -d α + 2 ˆ|x| -b |f | α+2 dx.
Combining (4.5), (4.6), and G µ (f ) = 0, we have

(dα + 2b -8)ν ∆f 2 L 2 + µ 2 (dα + 2b + 4)ν ∇f 2 L 2 =
0, hence ν = 0 due to dα + 2b > 8 and µ ≥ 0. In particular, f is a solution to (1.6).

Finally, we prove (4.1). Denote

n µ,ω := inf S µ,ω (f ) : f ∈ H 2 (R d )\{0}, f solves (1.6) .
Let f be a minimizer for m µ,ω . In particular, f is a solution to (1.6), hence n µ,ω ≤ S µ,ω (f ) = m µ,ω . Let f be a solution to (1.6). Arguing as in (4.5) and (4.6), we deduce that G µ (f ) = 0. Thus m µ,ω ≤ S µ,ω (f ) which, by taking the infimum over all non-trivial solutions to (1.6), yields m µ,ω ≤ n µ,ω . The proof of Proposition 4.1 is now complete.

Let A + µ,ω be as in (1.7). Our next aim is to show the following coercivity property of

A + µ,ω . Proposition 4.2 (Coercivity). Let d ≥ 1, µ ≥ 0, 0 < b < min{d, 4}, α > 8-2b d , α < 8-2b d-4 if d ≥ 5
, and ω > 0. Then there exists C > 0 such that for any f ∈ A + µ,ω ,

G µ (f ) ≥ max C ˆ|x| -b |f (x)| α+2 dx, 2 (m µ,ω -S µ,ω (f )) . (4.7)
Before giving the proof of Proposition 4.2, we give the following observation.

Observation 4.2. We have that A + µ,ω is an open set of H 2 (R d ). Proof of Observation 4.2. We observe that

A + µ,ω = f ∈ H 2 (R d ) : S µ,ω (f ) < m µ,ω , G µ (f ) > 0 ∪ {0}. In fact, if S µ,ω (f ) < m µ,ω and G µ (f ) = 0,
then by the definition of m µ,ω , we must have f ≡ 0.

To see that

A + µ,ω is an open set of H 2 (R d ), it suffices to prove that 0 is an interior point of A + µ,ω . That is there exists δ > 0 small such that if f ∈ H 2 (R d )\{0} satisfying f H 2 < δ, then f ∈ A + µ,ω . As m µ,ω > 0, we have S µ,ω (f ) ≤ 1 2 ∆f 2 L 2 + µ 2 ∇f 2 L 2 + ω 2 f 2 L 2 ≤ C(µ, ω) f 2 H 2 ≤ C(µ, ω
)δ < m µ,ω provided that δ > 0 is taken sufficiently small. On the other hand, by (A.1), we have

G µ (f ) = 2 ∆f 2 L 2 + µ ∇f 2 L 2 - dα + 2b 2(α + 2) ˆ|x| -b |f (x)| α+2 dx ≥ 2 ∆f 2 L 2 + µ ∇f 2 L 2 -C ∆f dα+2b 4 L 2 f 8-2b-(d-4)α 4 L 2 ≥ 2 ∆f 2 L 2 + µ ∇f 2 L 2 -C ∆f 2 L 2 f α H 2 ≥ (2 -Cδ α ) ∆f 2 L 2 + µ ∇f 2 L 2 ≥ 0
for δ > 0 small. The proof is complete.

Proof of Proposition 4.2. We only consider f = 0 since the case f = 0 is trivial. We consider two cases. Case 1. Assume that

12 ∆f 2 L 2 + 4µ ∇f 2 L 2 - (dα + 2b + 4)(dα + 2b) 4(α + 2) ˆ|x| -b |f (x)| α+2 dx ≥ 0. It follows that 12 ∆f 2 L 2 + 4µ ∇f 2 L 2 ≥ (dα + 2b + 4)(dα + 2b) 4(α + 2) ˆ|x| -b |f (x)| α+2 dx.
Hence

G µ (f ) = 2 ∆f 2 L 2 + µ ∇f 2 L 2 - dα + 2b 2(α + 2) ˆ|x| -b |f (x)| α+2 dx ≥ 2(dα + 2b -8) dα + 2b + 4 ∆f 2 L 2 + (dα + 2b -4)µ dα + 2b + 4 ∇f 2 L 2 ≥ C ˆ|x| -b |f (x)| α+2 dx. Case 2. Assume that 12 ∆f 2 L 2 + 4µ ∇f 2 L 2 - (dα + 2b + 4)(dα + 2b) 4(α + 2) ˆ|x| -b |f (x)| α+2 dx < 0. (4.8) Denote φ(λ) := E µ,ω (f λ ) = λ 4 2 ∆f 2 L 2 + µλ 2 2 ∇f 2 L 2 + ω 2 f 2 L 2 - λ dα+2b 2 α + 2 ˆ|x| -b |f (x)| α+2 dx.
We have

φ ′ (λ) = 2λ 3 ∆f 2 L 2 + µλ ∇f 2 L 2 - dα + 2b 2(α + 2) λ dα+2b-2 2 ˆ|x| -b |f (x)| α+2 dx = G µ (f λ ) λ and (λφ ′ (λ)) ′ = 8λ 3 ∆f 2 L 2 + 2µλ ∇f 2 L 2 - (dα + 2b) 2 4(α + 2) λ dα+2b-2 2 ˆ|x| -b |f (x)| α+2 dx = -2φ ′ (λ) + λ 3 ψ(λ),
where

ψ(λ) := 12 ∆f 2 L 2 + 4µλ -2 ∇f 2 L 2 - (dα + 2b + 4)(dα + 2b) 4(α + 2) λ dα+2b-8 2 ˆ|x| -b |f (x)| α+2 dx.
Note that ψ(1) < 0 due to (4.8). As ψ(λ) is strictly decreasing on (0, +∞), we have ψ(λ) ≤ ψ(1) < 0 for all λ ≥ 1, hence

(λφ ′ (λ)) ′ ≤ -2φ ′ (λ), ∀λ ≥ 1. ( 4 

.9)

As f = 0, we have G µ (f ) > 0. By Observation (4.1), there exists λ 0 > 1 such that G µ (f λ 0 ) = 0 or λ 0 φ ′ (λ 0 ) = 0. By the definition of m µ,ω , we have φ(λ 0 ) = S µ,ω (f λ 0 ) ≥ m µ,ω . Integrating (4.9) over (1, λ 0 ), we obtain

G µ (f ) ≥ 2 (S µ,ω (f λ 0 ) -S µ,ω (f )) ≥ 2 (m µ,ω -S µ,ω (f )) .
Collecting the above cases, we finish the proof of Proposition 4.2.

Global existence and energy scattering

In this section, we give the proofs of the global existence and the energy scattering given in Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. We first show the invariance of A + µ,ω under the flow of (1.2). By the conservation of mass and energy, we have S µ,ω (u(t)) = S µ,ω (u 0 ) < m µ,ω for all t ∈ I max , where I max is the maximal time interval of existence. We now prove that G µ (u(t)) ≥ 0 for all t ∈ I max . Assume by contradiction that there exists t 0 ∈ I max such that G µ (u(t 0 )) < 0. By the continuity, there exists t 1 ∈ I max such that G µ (u(t 1 )) = 0, which, by the definition of m µ,ω , yields S µ,ω (u(t 1 )) ≥ m µ,ω which is a contradiction. This shows that u(t) ∈ A + µ,ω for all t ∈ I max . We also have dα

+ 2b -8 2(dα + 2b) ∆u(t) 2 L 2 + (dα + 2b -4)µ 2(dα + 2b) ∇u(t) 2 L 2 + ω 2 u(t) 2 L 2 = S µ,ω (u(t)) - 2 dα + 2b G µ (u(t)) ≤ S µ,ω (u(t)) < m µ,ω , ∀t ∈ I max which implies u(t) H 2 ≤ C, ∀t ∈ I max .
(5.1)

The blow-up alternative ensures that the solution exists globally in time.

Step 2. We next show that there exists R 0 > 0 sufficiently large such that χ R u(t)

∈ A + µ,ω for all R ≥ R 0 and all t ∈ R, where χ R (x) = χ(x/R) with χ ∈ C ∞ 0 (R d ) satisfying 0 ≤ χ ≤ 1, χ(x) = 1 on |x| ≤ 1/2, and χ(x) = 0 on |x| ≥ 1. In particular, Proposition 4.2 implies that G µ (χ R u(t)) ≥ C ˆ|x| -b |χ R (x)u(t, x)| α+2 dx, ∀R ≥ R 0 , ∀t ∈ R.
(

To this end, we recall the following useful identities: (see [START_REF] Dodson | A new proof of scattering below the ground state for the 3D radial focusing cubic NLS[END_REF] for (5.3) and [16] for (5.4))

ˆ|∇(χf )| 2 dx = ˆχ2 |∇f | 2 dx -ˆχ∆χ|f | 2 dx (5.3) and ˆ|∆(χf )| 2 dx = ˆχ2 |∆f | 2 dx + ˆ(∆χ) 2 |f | 2 dx -4 k,l Re ˆχ∂ k f ∂ 2 kl χ∂ l f dx + 2 ˆ|∇χ| 2 |∇f | 2 dx + 2 ˆχ∆χ|∇f | 2 dx + 2 Re ˆχ∆f ∆χfdx + 4 Re ˆ∇χ • ∇f ∆χfdx. (5.4)
From this and (5.1), we have

∆(χ R u(t)) 2 L 2 = ˆχ2 R |∆u(t)| 2 dx + O(R -2 ), ∇(χ R u(t)) 2 L 2 = ˆχ2 R |∇u(t)| 2 dx + O(R -2 ),
for all t ∈ R. In particular, we have

S µ,ω (χ R u(t)) = ˆχ2 R 1 2 |∆u(t)| 2 + µ 2 |∇u(t)| 2 + ω 2 |u(t)| 2 dx - 1 α + 2 ˆ|x| -b |χ R u(t)| α+2 dx + O(R -2 + R -b ) ≤ S µ,ω (u(t)) + O(R -2 + R -b ) = S µ,ω (u 0 ) + O(R -2 + R -b ), ∀t ∈ R,
where we have used that

ˆ|x| -b |χ R u(t)| α+2 dx -ˆ|x| -b |u(t)| α+2 dx ≤ C ˆ|x|≥R/2 |x| -b |u(t)| α+2 dx ≤ CR -b u(t) α+2 L α+2 ≤ CR -b u(t) α+2 H 2 ≤ CR -b , ∀t ∈ R.
Thus we get

S µ,ω (χ R u(t)) < m µ,ω -δ/2, ∀R ≥ R 0 , ∀t ∈ R (5.5) provided that R 0 > 0 is taken large so that O(R -2 0 + R -b 0 ) < δ/2, where δ := m µ,ω -S µ,ω (u 0 ) > 0.
By increasing R 0 if necessary, it suffices to prove that G µ (χ R u(t)) ≥ 0 for all R ≥ R 0 and all t ∈ R. Suppose by contradiction that there exist

R 1 ≥ R 0 and t 1 ∈ R such that G µ (χ R 1 u(t 1 )) < 0. Note that lim R→∞ G µ (χ R u(t 1 )) = G µ (u(t 1 )) > 0 (here we can assume u 0 = 0, so is u(t 1 ), otherwise the claim is trivial). Let R 2 > R 1 be the smallest value such that G µ (χ R 2 u(t 1 )) = 0, that is, G µ (χ R u(t 1 )) < 0 for all R ∈ [R 1 , R 2 ). Since G µ (χ R 2 u(t 1 )) = 0 and S µ,ω (χ R 2 u(t 1 )) < m µ,ω (see (5.5)), we have χ R 2 u(t 1 ) ∈ A + µ,ω . Because A + µ,ω is open in H 2 (R d ),
we deduce, by the continuity, that G µ (χ R u(t 1 )) ≥ 0 for R < R 2 and R close to R 2 . This contradicts to the choice of R 2 . We therefore prove that χ R u(t) ∈ A + µ,ω for all R ≥ R 0 and all t ∈ R. To see (5.2), we apply Proposition 4.2 to get

G µ (χ R u(t)) ≥ max C ˆ|x| -b |χ R u(t)| α+2 dx, 2 (m µ,ω -S µ,ω (χ R u(t)))
for all R ≥ R 0 and all t ∈ R. This gives (5.2) since

2 (m µ,ω -S µ,ω (χ R u(t))) > δ and ˆ|x| -b |χ R u(t)| α+2 dx ≤ u(t) α+2 H 2 ≤
C for all R > 0 and all t ∈ R due to (5.1).

Step 3. We prove the space-time estimates (1.8) and (1.9). To do this, we introduce ζ : [0, ∞) → [0, 2] a smooth function satisfying

ζ(r) = 2 if 0 ≤ r ≤ 1, 0 if r ≥ 2,
and define

ϑ(r) := ˆr 0 ˆs 0 ζ(τ )dτ ds.
For R > 0, we define a radial function

ϕ R (x) = ϕ R (r) := R 2 ϑ(r/R), r = |x|.
One readily check that

0 ≤ ϕ ′′ R (r) ≤ 2, 0 ≤ ϕ ′ R (r) r ≤ 2, 2d -∆ϕ R (x) ≥ 0, ∀r ≥ 0, ∀x ∈ R d .
We define the virial quantity

M ϕ R (t) := 2 Im ˆ∇ϕ R • ∇u(t, x)u(t, x)dx.
By (5.1), we have

|M ϕ R (t)| ≤ ∇ϕ R L ∞ u(t) L 2 ∇u(t) L 2 ≤ CR, ∀t ∈ R.
(5.6) Moreover, we have the following virial identity due to [17, Lemma 2.3]:

d dt M ϕ R (t) = ˆ∆3 ϕ R |u(t)| 2 dx -2 ˆ∆2 ϕ R |∇u(t)| 2 dx -4 k,l ˆ∂2 kl ∆ϕ R ∂ k u(t)∂ l u(t)dx -µ ˆ∆2 ϕ R |u(t)| 2 dx + 8 ˆϕ′ R r k |∇∂ k u(t)| 2 + ϕ ′′ R r 2 - ϕ ′ R r 3 k |x • ∇∂ k u(t)| 2 dx + 4µ ˆϕ′ R r |∇u(t)| 2 + ϕ ′′ R r 2 - ϕ ′ R r 3 |x • ∇u(t)| 2 dx - 1 α + 2 ˆ 2αϕ ′′ R + (2(d -1)α + 4b) ϕ ′ R r |x| -b |u(t)| α+2 dx (5.7) for all t ∈ R. As ϕ R (x) = |x| 2 for |x| ≤ R, we have d dt M ϕ R (t) = 4 2 ˆ|x|≤R |∆u(t)| 2 + µ ˆ|x|≤R |∇u(t)| 2 - dα + 2b 2(α + 2) ˆ|x|≤R |x| -b |u(t)| α+2 dx + ˆ∆3 ϕ R |u(t)| 2 dx -2 ˆ∆2 ϕ R |∇u(t)| 2 dx -4 k,l ˆ∂2 kl ∆ϕ R ∂ k u(t)∂ l u(t)dx -µ ˆ∆2 ϕ R |u(t)| 2 dx + 8 ˆ|x|>R ϕ ′ R r k |∇∂ k u(t)| 2 + ϕ ′′ R r 2 - ϕ ′ R r 3 k |x • ∇∂ k u(t)| 2 dx + 4µ ˆ|x|>R ϕ ′ R r |∇u(t)| 2 + ϕ ′′ R r 2 - ϕ ′ R r 3 |x • ∇u(t)| 2 dx - 1 α + 2 ˆ|x|>R 2αϕ ′′ R + (2(d -1)α + 4b) ϕ ′ R r |x| -b |u(t)| α+2 dx.
By integration by parts, we note that

k ˆ|∇∂ k u(t)| 2 dx = k,l ˆ∂2 kl u(t)∂ 2 kl u(t)dx = k,l ˆ∂2 k u(t)∂ 2 l u(t)dx = ˆ|∆u(t)| 2 dx.
By the choice of ϕ R , we infer from (5.1) that

ˆ∆3 ϕ R |u(t)| 2 dx R -4 , ˆ∆2 ϕ R |∇u(t)| 2 dx + k,l ˆ∂2 k,l ∆ϕ R ∂ k u(t)∂ l u(t)dx + ˆ∆2 ϕ R |u(t)| 2 dx R -2 ,
for all t ∈ R. By Cauchy-Schwarz' inequality, we have

ϕ ′ R r |∇∂ k u| 2 + ϕ ′′ R r 2 - ϕ ′ R r 3 |x • ∇∂ k u| 2 = ϕ ′′ R r |x • ∇ k u| 2 + ϕ ′ R r |∇∂ k u| 2 - ϕ ′ R r 3 |x • ∇∂ k u| 2 ≥ ϕ ′′ R r |x • ∇ k u| 2 ≥ 0 as ϕ ′ R , ϕ ′′ R ≥ 0. Similarly, we have ϕ ′ R r |∇u| 2 + ϕ ′′ R r 2 - ϕ ′ R r 3 |x • ∇u| 2 ≥ ϕ ′′ R r 2 |x • ∇u| 2 ≥ 0.
Moreover, since ϕ ′′ R and ϕ ′ R r are bounded on R d , we infer from Sobolev embedding and (5.1) that

ˆ|x|>R 2αϕ ′′ R + (2(d -1)α + 4b) ϕ ′ R r |x| -b |u(t)| α+2 dx R -b .
Thus we arrive at

d dt M ϕ R (t) ≥ 4 2 ˆ|x|≤R |∆u(t)| 2 + µ ˆ|x|≤R |∇u(t)| 2 - dα + 2b 2(α + 2) ˆ|x|≤R |x| -b |u(t)| α+2 dx + O(R -2 + R -b )
for all t ∈ R. On the other hand, we have from (5.3) and (5.4) that

ˆ|∇(χ R u)| 2 dx = ˆχ2 R |∇u| 2 dx + O(R -2 ) = ˆ|x|≤R |∇u| 2 dx - ˆR/2≤|x|≤R (1 -χ 2 R )|∇u| 2 dx + O(R -2 ), ˆ|∆(χ R u)| 2 dx = ˆχ2 R |∆u| 2 dx + O R -2 = ˆ|x|≤R |∆u| 2 dx - ˆR/2≤|x|≤R (1 -χ 2 R )|∆u| 2 dx + O(R -2 ).
We also have

ˆ|x| -b |χ R u| α+2 dx = ˆ|x|≤R |x| -b |u| α+2 - ˆR/2≤|x|≤R (1 -χ α+2 R )|x| -b |u| α+2 dx = ˆ|x|≤R |x| -b |u| α+2 + O(R -b ).
This implies that 2

ˆ|x|≤R |∆u| 2 dx + µ ˆ|x|≤R |∇u(t)| 2 dx - dα + 2b 2(α + 2) ˆ|x|≤R |x| -b |u| α+2 dx = 2 ˆ|∆(χ R u)| 2 dx + µ ˆ|∇(χ R u)| 2 dx - dα + 2b 2(α + 2) ˆ|x| -b |χ R u| α+2 dx + 2 ˆ(1 -χ 2 R )|∆u| 2 dx + µ ˆ(1 -χ 2 R )|∇u| 2 dx + O(R -2 + R -b ) ≥ G µ (χ R u) + O(R -2 + R -b ) as 0 ≤ χ R ≤ 1 and µ ≥ 0. We obtain d dt M ϕ R (t) ≥ 4G µ (χ R u(t)) + O(R -2 + R -b ), ∀t ∈ R.
Thanks to (5.2), we have for all R ≥ R 0 ,

C ˆ|x| -b |χ R u(t)| α+2 dx ≤ d dt M ϕ R (t) + O(R -2 + R -b ), ∀t ∈ R.
Thus for any interval I ∈ R, we infer from (5.6) that

ˆI ˆRd |x| -b |χ R u(t)| α+2 dxdt R + (R -2 + R -b )|I|.
By the choice of χ R , we deduce

ˆI ˆ|x|≤R/2 |x| -b |u(t)| α+2 dxdt R + (R -2 + R -b )|I|.
On the other hand, we have

ˆ|x|≥R/2 |x| -b |u(t)| α+2 dx R -b u(t) α+2 H 2 R -b which yields ˆI ˆRd |x| -b |u(t)| α+2 dxdt R + (R -2 + R -b )|I| R + R -min{2,b} |I|.
If |I| is sufficiently large depending on R 0 , we take R = |I| Finally, if we assume in addition that the solution is radially symmetric, then we can improve the space-time estimate (1.8). More precisely, by using the radial Sobolev embedding (see e.g., [34]):

for d ≥ 2, |x| d-1 2 f L ∞ f H 1 , ∀f ∈ H 1 rad (R d ) and (5.1), we have ˆ|x|≥R/2 |x| -b |u(t, x)| α+2 dx sup |x|>R/2 |x| -b |u(t, x)| α u(t) 2 L 2 R -(d-1)α+2b 2 u(t) α H 1 u(t) 2 L 2 R -(d-1)α+2b 2 R -2 .
Note that (d-1)α+2b 2 > 2 due to α > 8-2b d and d ≥ 2. In particular, we have

d dt M ϕ R (t) ≥ 4G µ (χ R u(t)) + O(R -2 ), ∀t ∈ R.
Arguing as above, we conclude (1.9). The proof is complete.

Proof of Theorem 1.2. Let a ∈ R and (k, r) be as in (3.1). By Sobolev embedding and Strichartz estimates in Lorentz spaces, and (5.1), there exists a constant E such that

U µ (t -a)u(a) L k t (R,L r,2 x ) ≤ C ∆ U µ (t -a)u(a) L k t (R,L r,2 x ) ≤ C u(a) H 2 x ≤ E, where r = 2dα(α + 2) dα 2 + 4(d -2)α -16 + 4b with (k, r) ∈ B.
Given a small constant ε > 0. There exist an integer number J = J(ε, E) and disjoint intervals I j , j = 1, ..., J such that

U µ (t -a)u(a) L k t (I j ,L r,2
x ) < ε, ∀j = 1, ..., J. In the following, the constant C may vary but it depends only on E. We will show that there exists T = T (ε) > 0 large such that

u k L k t (I j ,L r,2
x ) ≤ CT, ∀j = 1, ..., J.

(5.8)

Summing over all sub-intervals I j , we get the boundedness of u L k t (R,L r,2

x ) which, by Lemma 3.4, yields the energy scattering.

By the H 2 -boundedness (see (5.1)), Sobolev inequality in space, and Hölder inequality in time, we have

u k L k t (I,L r,2
x ) ≤ C|I|.

(5.9)

From this, it suffices to show (5.8) for sub-intervals I j with |I j | > 2T . Fix such an interval I = (a, c) with |I| > 2T . We will show that

u k L k t (I,L r,2
x ) ≤ CT.

(5.10)

The proof of (5.10) is reduced to show that there exists t 1 ∈ (a, a + T ) so that

ˆt1 a U µ (t -τ )(|x| -b |u| α u)(τ )dτ L k t ([t 1 ,+∞),L r,2 x ) ≤ Cε γ (5.11)
for some constant γ > 0. Assume (5.11) for the moment, let us prove (5.10). We write

U µ (t -t 1 )u(t 1 ) = U µ (t -a)u(a) + i ˆt1 a U µ (t -τ )(|x| -b |u| α u)(τ )dτ
and have

U µ (t -t 1 )u(t 1 ) L k t ([t 1 ,c],L r,2 x ) ≤ U µ (t -a)u(a) L k t ([t 1 ,c],L r,2 x ) + ˆt1 a U µ (t -τ )(|x| -b |u| α u)(τ )dτ L k t ([t 1 ,c],L r,2 x ) ≤ U µ (t -a)u(a) L k t (I,L r,2 x ) + ˆt1 a U µ (t -τ )(|x| -b |u| α u)(τ )dτ L k t ([t 1 ,+∞),L r,2 x ) ≤ ε + Cε γ .
On the other hand, using

u(t) = U µ (t -t 1 )u(t 1 ) + i ˆt t 1 U µ (t -τ )(|x| -b |u| α u)(τ )dτ
and Strichartz estimate (2.10), we have

u L k t ([t 1 ,c],L r,2 x ) ≤ U µ (t -t 1 )u(t 1 ) L k t ([t 1 ,c],L r,2 x ) + ˆt t 1 U µ (t -τ )(|x| -b |u| α u)(τ )dτ L k t ([t 1 ,c],L r,2 x ) ≤ ε + Cε γ + C |x| -b |u| α u L m ′ t ([t 1 ,c],L r ′ ,2 x ) ≤ ε + Cε γ + C u α+1 L k t ([t 1 ,c],L r,2 x )
.

Taking ε > 0 small, the continuity argument yields

u L k t ([t 1 ,c],L r,2 x ) ≤ Cε + Cε γ . Thus we get u k L k t (I,L r,2 x ) ≤ u k L k t ([a,t 1 ],L r,2 x ) + u k L k t ([t 1 ,c],L r,2
x ) ≤ (Cε + Cε γ ) k + CT which proves (5.10), where we have used (5.9) with |t 1 -a| < T .

We now prove (5.11). To do this, we recall the following space-time estimate (see (1.8) and (1.9))

ˆI ˆRd

|x| -b |u(t, x)| α+2 dxdt ≤ C|I| ̺ , (5.12)

where

̺ := 1 1+min{2
,b} for general solutions,

1 3
for radial solutions.

From (5.12), we deduce that there exists t 0 ∈ a + T 4 , a + T 2 such that

ˆt0 +εT 1-̺ t 0 ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ Cε.
(5. [START_REF] Cho | Finite time blowup for the fourth-order NLS[END_REF] In fact, we split a + T 4 , a + T 2 into L = ε -1 T ̺ sub-intervals J l of length εT 1-̺ . Thanks to (5.12), we have

L min 1≤l≤L ˆJl ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ L l=1 ˆJl ˆRd |x| -b |u(t, x)| α+2 dxdt = ˆa+T/2 a+T /4 ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ CT ̺ .
Thus there exists l 0 such that

ˆJl 0 ˆRd |x| -b |u(t, x)| α+2 dxdt ≤ CT ̺ L -1 = Cε.
This shows the observation by setting t 0 = inf J l 0 . Now we take t 1 = t 0 + εT 1-̺ . As t 0 < a + T /2, we have t 1 < a + T . To show (5.11), we write

ˆt1 a U µ (t -τ )(|x| -b |u| α u)(τ )dτ = ˆt0 a U µ (t -τ )(|x| -b |u| α u)(τ )dτ + ˆt1 t 0 U µ (t -τ )(|x| -b |u| α u)(τ )dτ =: F 1 (t) + F 2 (t).
We refer F 1 and F 2 to as the distant past and recent past terms respectively.

The distant past

To estimate F 1 , we consider several cases.

d ≥ 5

For θ > 0 small to be fixed later, we pick (e, n) satisfying In particular, (e, n) ∈ B provided that θ > 0 is taken sufficiently small. We estimate

1 k = 2 -γ c 2e + θ γ c 2 , 1 r = 2 -γ c 2n + d -4 -8θ 2d γ c .
F 1 L k t ([t 1 ,+∞),L r,2 x ) ≤ F 1 2-γc 2 L e t ([t 1 ,+∞),L n,2 x ) F 1 γc 2 L 1 θ t ([t 1 ,+∞),L 2d d-4-8θ , 2 x 
) .

By Strichartz estimates with (e, n) ∈ B and the fact that

F 1 (t) = U µ (t -t 0 )u(t 0 ) -U µ (t -a)u(a).
we have

F 1 L e t ([t 1 ,+∞),L n,2 x ) ≤ C. To estimate F L 1 θ t ([t 1 ,+∞),L 2d d-4-8θ ,2 x )
, we first use dispersive estimates in Lorentz spaces (2.1) to have for t > t 1 ,

F 1 (t) L 2d d-4-8θ ,2 x ≤ C ˆt0 a (t -τ ) -1-2θ (|x| -b |u| α u)(τ ) L 2d d+4+8θ ,2 x dτ ≤ C ˆt0 a (t -τ ) -1-2θ u(τ ) α+1 H 2 x dτ ≤ C ˆt0 a (t -τ ) -1-2θ dτ = C 2θ (t -t 0 ) -2θ -(t -a) -2θ ≤ C 2θ (t -t 0 ) -2θ ,
where we have used (3.5) to get the second line. It follows that

F 1 L 1 θ t ([t 1 ,+∞),L 2d d-4-8θ ,2 x ) ≤ C 2θ ˆ+∞ t 1 (t -t 0 ) -2 dt θ ≤ C 2θ (t 1 -t 0 ) -θ ≤ C 2θ (εT 1-̺ ) -θ .
In particular, we get

F 1 L k t ([t 1 ,+∞),L r,2 x ) ≤ C 2θ (εT 1-̺ ) -θ γc 2
.

(5.14)

d = 3, 4
We estimate

F 1 L k t ([t 1 ,+∞),L r,2 x ) ≤ F 1-ν L e t ([t 1 ,+∞),L n,2 x ) F ν L 1 θ t ([t 1 ,+∞),L 1 θ , 2 x ) 
,

where 1 k = 1 -ν e + νθ, 1 r = 1 -ν n + νθ, ν := dα -8 + 2b dα -2(d + 4)αθ . Since d = 3, 4 and α > 8-2b d , it is readily seen that 4 e + d n = d 2 
and ν ∈ (0, 1) for θ > 0 small. Moreover, we have

e = (1 -ν)k 1 -kνθ → 16(4 -b)α(α + 2) dα(8 -2b -(d -4)α)
> 2 as θ → 0 which implies (e, n) ∈ B for θ > 0 small. In particular, Strichartz estimates give

F 1 L e t ([t 1 ,+∞),L n,2 x ) ≤ C. To estimate F 1 L 1 θ t ([t 1 ,+∞),L 1 θ , 2 
x )

, we consider separately two cases: d = 4 and d = 3.

• For d = 4, we use dispersive estimates in Lorentz spaces (2.1) and (3.6) to have for t > t 1 ,

F 1 (t) L 1 θ ,2 x ≤ C ˆt0 a (t -τ ) -1+2θ (|x| -b |u| α u)(τ ) L 1 1-θ ,2 x dτ ≤ C ˆt0 a (t -τ ) -1+2θ u(τ ) α 2 H 2 x ˆRd |x| -b |u(τ, x)| α+2 dx 1/2 dτ ≤ C ˆt0 a (t -τ ) -1+2θ ˆRd |x| -b |u(τ, x)| α+2 dx 1/2 dτ ≤ C ˆt0 a (t -τ ) -2+4θ dτ 1/2 ˆt0 a ˆRd |x| -b |u(τ, x)| α+2 dxdτ 1/2 ≤ C(t -t 0 ) -1-4θ 2 (t 0 -a) ̺ 2 ≤ CT ̺ 2 (t -t 0 ) -1-4θ 2 ,
where we have used (5.12) and |t 0 -a| ∼ T . It follows that

F 1 L 1 θ t ([t 1 ,+∞),L 1 θ ,2 x ) ≤ CT ̺ 2 ˆ+∞ t 1 (t -t 0 ) -1-4θ 2θ dt θ ≤ CT ̺ 2 (t 1 -t 0 ) -1-6θ 2 ≤ CT ̺ 2 (εT 1-̺ ) -1-6θ 2 ≤ C εT 1-̺-̺ 1-6θ -1-6θ 2 .
In particular, we have

F 1 L k t ([t 1 ,+∞),L r,2 x ) ≤ C εT 1-̺-̺ 1-6θ -(1-6θ)ν 2 .
(5.15)

• For d = 3, we use (3.7) to have for t > t 1 ,

F 1 (t) L 1 θ ,2 x ≤ C ˆt0 a (t -τ ) -3 4 (1-2θ) (|x| -b |u| α u)(τ ) L 1 1-θ ,2 x dτ ≤ C ˆt0 a (t -τ ) -3 4 (1-2θ) u(τ ) 3α-2 8 H 2 x ˆRd |x| -b |u(τ, x)| α+2 dx 5/8 dτ ≤ C ˆt0 a (t -τ ) -3 4 (1-2θ) ˆRd |x| -b |u(τ, x)| α+2 dx 5/8 dτ ≤ C ˆt0 a (t -τ ) -2+4θ dτ 3/8 ˆt0 a ˆRd |x| -b |u(τ, x)| α+2 dxdτ 5/8 ≤ C(t -t 0 ) -3(1-4θ) 8 (t 0 -a) 5̺ 8 ≤ CT 5̺ 8 (t -t 0 ) -3(1-4θ) 8
.

Thus we get

F 1 L 1 θ t ([t 1 ,+∞),L 1 θ ,2 x ) ≤ CT 5̺ 8 ˆ+∞ t 1 (t -t 0 ) -3(1-4θ) 8θ dt θ ≤ CT 5̺ 8 (t 1 -t 0 ) -3-20θ 8 ≤ CT 5̺ 8 (εT 1-̺ ) -3-20θ 8 ≤ C εT 1-̺-5̺ 3-20θ -3-20θ 8 .
In particular, we have

F 1 L k t ([t 1 ,+∞),L r,2 x ) ≤ C εT 1-̺-5̺ 3-20θ -(3-20θ)ν 8 .
(5.16)

The recent past By the same argument as in the proof of Lemma 2.11, we have

F 2 L k t ([t 1 ,+∞),L r,2 x ) ≤ C |x| -b |u| α u L m ′ t ([t 0 ,t 1 ],L r ′ ,2 x ) ≤ C |x| -b |u| α u L m ′ t ([t 0 ,t 1 ],L r ′ x )
as r ′ < 2. For ϑ, δ > 1 to be chosen later, we estimate

|x| -b |u| α u L r ′ x (A) ≤ |x| -b m ′ |u| α+2 m ′ L m ′ x |x| -b(1-1 m ′ ) L ϑ x (A) |u| α+1-α+2 m ′ L δ
x , where A is either the unit ball B(0, 1) or its complement B c (0, 1). We pick

1 ϑ = b 1 -1 m ′ d ± θ (5.17)
with the plus sign for A = B(0, 1) and the minus one for A = B c (0, 1). This ensures that

|x| -b(1-1 m ′ ) L ϑ x (A) < ∞. Thus we have |x| -b |u| α u L r ′ x (A) ≤ |x| -b |u| α+2 1 m ′ L 1 x u α+1-α+2 m ′ L δ ( α+1-α+2 m ′ ) x hence |x| -b |u| α u L m ′ t ([t 0 ,t 1 ],L r ′ x ) ≤ C ˆt1 t 0 ˆRd |x| -b |u(t, x)| α+2 dxt 1 m ′ u α+1-α+2 m ′ L ∞ t ([t 0 ,t 1 ],L δ ( α+1-α+2 m ′ ) x )
.

With the choice of ϑ in (5.17), we have

1 δ = 1 r ′ - 1 m ′ - 1 ϑ = 1 m - 1 r - b dm ∓ θ hence δ α + 1 - α + 2 m ′ = α+2 m -1 1 m -1 r -b dm ∓ θ → d(α + 2) d -b .
As α > 

L ∞ t ([t 0 ,t 1 ],L δ ( α+1-α+2 m ′ ) x ) ≤ C.
Using (5.13), we obtain

F 2 L k t ([t 1 ,+∞),L r,2 x ) ≤ C ˆt1 t 0 ˆRd |x| -b |u(t, x)| α+2 dxt 1 m ′ ≤ Cε 1 m ′ .
(5.18)

Collecting (5.14), (5.15), (5.16), and (5.18), we prove (5.11) with γ = 1 m ′ provided that T = T (ε) > 0 is taken sufficiently large so that

           (εT 1-̺ ) -θ γc 2 < ε γ if d ≥ 5, εT 1-̺-̺ 1-6θ - (1-6θ)ν 2 < ε γ if d = 4, εT 1-̺-5̺ 3-20θ - (3-20θ)ν 8 < ε γ if d = 3.
(5. 19) For general solutions, we have ̺ = 1 1+min{2,b} with 0 < b < d 2 . When d ≥ 5, as ̺ < 1, we can take θ > 0 small and then choose T = T (ε) sufficiently large so that (5.19) holds. When d = 4 and 1 < b < 2, we have ̺ = 1 1+b < 1 2 . Thus we can take θ > 0 small enough so that 1 -̺ -̺ 1-6θ > 0. Then (5. 19) is fulfilled if T = T (ε) is taken large enough.

For radial solutions, we have ̺ = 1 3 . When d = 4 and 0 < b ≤ 1, we have 1 -̺ -̺ 1-6θ > 0 provided that θ > 0 is small. When d = 3 and 0 < b < 3 2 , we have 1 -̺ -5̺ 3-20θ > 0 by taking θ > 0 small. We are then able to choose T = T (ε) large so that (5.19) holds.

The proof of Theorem 1.2 is now complete.

Proof of Proposition 1.3. The proof is similar (even simpler) to the focusing nonlinearity. First, due to the defocusing nature, H 2 -solutions exist globally in time and satisfy

sup t∈R u(t) H 2 x ≤ E
for some constant E > 0 depending on mass and energy. Second, by performing localized virial estimates as in Step 3 of the proof of Theorem 1.1 and using the trivial bound

G µ (χ R u(t)) ≥ C ˆ|x| -b |χ R (x)u(t, x)| α+2 dx, ∀t ∈ R,
we prove the same space-time estimates as in (1.8) and (1.9). Finally, the energy scattering follows by the same argument as in the proof of Theorem 1.2.

Proof of Lemma A.2. Due to the appearance of an biharmonic operator, the method using the Schwarz symmetrization to reduce the problem to the radial setting as in [19] does not work. We proceed differently. Denote Thanks to (A.3) and C opt > 0, we have g = 0. By the weak convergence in H 2 (R d ), we have

C opt ≥ W (g) ≥ lim inf n→∞ W (f n ) = C opt .
This shows that g is an optimizer for C opt . In particular, we have .

Replacing χ by iχ, we have the same identity with the imaginary part instead of the real part.

In particular, we have A∆ 2 g + Bg -C|x| -b |g| α g = 0 in the weak sense. By a change of variable g(x) = λf (ζx) with

ζ 4 = B A , λ α = B 4-b 4 A b 4
C , we see that C opt = W (f ) and f is a non-trivial solution to (A.2). The proof is complete.

Lemma A.3. Let Q 1 be a minimizer for m 0,1 . Then Q 1 is an optimizer for (A.1).

Proof of Lemma A.3. By Lemma A.2, there exists an optimizer f for (A.1) which is a non-trivial solution to (A.2). We have the following Pohozaev identities In the third line, we have used (4.1) to get S 0,1 (f ) ≥ m 0,1 = S 0,1 (Q 1 ).

In the last line, we use the fact that Q 1 is a solution to (A.2). This shows that Q 1 is an optimizer for (A.1).

Remark A.1. In the definition of B + , the terms E 0 (Q 1 )(M (Q 1 )) σc and ∆Q 1 L 2 Q 1 σc L 2 are independent from the choice of Q 1 . In fact, since Q 1 is a non-trivial solution to (A.2), we can use the Pohozaev identities (A.4) to express E 0 (Q 1 ), M (Q 1 ), and ∆Q 1 2 in terms of S 0,1 (Q 1 ) = m 0,1 .

We are now able to prove the equivalent threshold given in Proposition A.1.

Proof of Proposition A.1. We follow an idea of Hamano [START_REF] Hamano | Global dynamics below the ground state for the quadratic Schrödinger system in 5d[END_REF]Appendix]. Let Q ω be a minimizer for m 0,ω and set

Q ω (x) = ω 4-b 4α Q 1 ω 1 4
x . We observe that Q 1 is a minimizer for m 0,1 . In fact, it follows directly from the fact that S 0,ω (Q ω ) = ω 

E 0 (f )(M (f )) σc ≥ 1 2 ∆f L 2 f σc L 2 2 - C opt α + 2 ∆f L 2 f σc L 2 dα+2b 4 =: G ∆f L 2 f σc L 2 , where G(λ) = 1 2 λ 2 - Copt α+2 λ dα+2b 4
. As Q 1 is an optimizer for the Gagliardo-Nirenberg inequality (see Lemma A.3), we infer from (A.4) that

C opt = ˆ|x| -b |Q 1 (x)| α+2 dx ÷ ∆Q 1 dα+2b 4 L 2 Q 1 8-2b-(d-4)α 4 L 2 = 4(α + 2) dα + 2b ∆Q 1 L 2 Q 1 σc L 2 -dα-8+2b 4 .
In particular, G attains its maximum at

λ 0 = ∆Q 1 L 2 Q 1 σc L 2 .
Similarly, we have . Observe that H(λ) = λG ′ (λ), hence

G 0 (f )(M (f )) σc ≥ ∆f L 2 f σc
H(λ)    > 0 if 0 < λ < λ 0 , = 0 if λ = λ 0 , < 0 if λ > λ 0 .
If f ∈ B + , then we have λ := ∆f L 2 f σc L 2 < ∆Q 1 L 2 Q 1 σc L 2 = λ 0 . We infer that H(λ) ≥ 0 or G µ (f ) ≥ 0. This combined with (A.5) show that f ∈ ω>0 A + 0,ω . If f ∈ A + 0,ω for some ω > 0, then we have G 0 (f ) ≥ 0. It follows that

0 ≤ G 0 (f )(M (f )) σc = dα + 2b 4 E 0 (f )(M (f )) σc - dα -8 + 2b 4 ∆f L 2 f σc L 2 2 which implies dα -8 + 2b 4 ∆f L 2 f σc L 2 2 = dα + 2b 4 E 0 (f )(M (f )) σc -G 0 (f )(M (f )) σc ≤ dα + 2b 4 E 0 (f )(M (f )) σc < dα + 2b 4 E 0 (Q 1 )(M (Q 1 )) σc = dα -8 + 2b 4 ∆Q 1 L 2 Q 1 σc L 2 2 .
This shows that ∆f

L 2 f σc L 2 < ∆Q 1 L 2 Q 1 σc L 2

. 3 )

 3 When γ c = 0 or α = 8-2b d , equation (1.2) is called mass-critical. When γ c = 2 or α = 8-2b d-4 and d ≥ 5, equation (1.2) is called energy-critical.

( 4 )

 4 When d = 4 and 0 < b ≤ 1; or d = 3 and 0 < b < 3 2 , the growth of non-radial space-time estimate (1.8) is too strong in comparison to the decay |t| -d 4 of the linear operator and we are not able to show the smallness of the distance past (see below). The problem is resolved if we restrict to radial solutions. The non-radial energy scattering for d = 4 and 0 < b ≤ 1 as well as for d = 1, 2, 3 still remains an open question. Let us briefly describe the strategy of our proofs. To prove Theorem 1.1, we first study the variational problem m µ,ω . By making use of the spatial decay of the weight |x| -b , we show a compact embedding H 2 (R d ) ֒→ L α+2 (|x| -b dx) for d ≥ 1, 0 < b < min{d, 4}, α > 0, and α < 8-2b d-4

2. 1 .Definition 2 . 1 (

 121 Lorentz spaces. Let f be a measurable function on R d . The distribution function of f is defined by d f (λ) := |{x ∈ R d : |f (x)| > λ}|, λ > 0, where |A| is the Lebesgue measure of a set A in R d . The decreasing rearrangement of f is defined by f * (s) := inf {λ > 0 : d f (λ) ≤ s} , s > 0. Lorentz spaces).

Lemma 3. 3 (

 3 Nonlinear estimates 3). Let d ≥ 5, 0 < b < min d 2 , 4 , 8-2b d < α < 8-2b d-4 , and 2d d+8 ≤ n ≤ 2d d+4 . Then we have |x| -b |u| α u L n,

2 -γ c )k 2 -

 22 k γ c θ → α + 2 as θ → 0.

W 4 L 2 f 8 - 4 L 2 the

 42842 (f ) := ˆ|x| -b |f (x)| α+2 dx ÷ ∆f dα+2b 2b-(d-4)α Weinstein functional. In particular, we haveC opt = sup W (f ) : f ∈ H 2 (R d )\{0} > 0.Let (f n ) n be an optimizing sequence for C opt . As W (f ) is invariant under the scaling f λ,ζ (x) = λf (ζx) for all λ, ζ > 0, we can assume that∆f n L 2 = f n L 2 = 1, ˆ|x| -b |f n (x)| α+2 dx = W (f n ) → C opt . (A.3) Since (f n ) n is bounded in H 2 (R d ),the same argument as in the proof of Proposition 4.1 shows the existence of g ∈ H 2 (R d ) such that up to a subsequence, f n ⇀ g weakly in H 2 (R d ) and ˆ|x| -b |f n (x)| α+2 dx → ˆ|x| -b |g(x)| α+2 dx as n → ∞.

  εχ) = 0, ∀χ ∈ C ∞ 0 (R d ). A direct computation shows Re ˆ A∆ 2 g + Bg -C|x| -b |g| α g χdx = 0,whereA = (dα + 2b)C opt 2 ∆g L 2 , B = (8 -2b -(d -4)α)C opt 2 g L 2

L 2 . (A. 4 ) 8 4 2 . 2 ( 2 =

 248222 ˆ|x| -b |f (x)| α+2 dx = dα + 2b 8 -2b -(d -4)α f 2In particular, we haveS 0,1 (f ) = α 2(α + 2) ˆ|x| -b |f (x)| α+2 dxandW (f ) = 4(α + 2) dα + 2b dα+2b (α + 2) 8 -2b -(d -4)α 8-2b-(d-4)α 8 ˆ|x| -b |f (x)| α+2 dx -αWe haveW (Q 1 ) ≤ C opt = W (f S 0,1 (Q 1 )) -α W (Q 1 ).

8 - 2 M 2 M- 2 M⇐⇒ ( 8 -

 82228 2b-(d-4)α 4α S 0,1 (Q 1 ), and Q ω solves∆ 2 f + ωf -|x| -b |f | α f = 0 if and only if Q 1 solves (A.2).Now we considerF (ω) := S 0,ω (Q ω ) -S 0,ω (f ) = ω 8-2b-(d-4)α 4α S 0,1 (Q 1 ) -ω (f ) -E 0 (f ).We haveF ′ (ω) = 8 -2b -(d -4)α 4α ω -dα-8+2b 4α S 0,1 (Q 1 ) -1 (f ). As α > 8-2b d and α < 8-2b d-4 if d ≥ 5, the equation F ′ (ω) = 0 admits a unique positive solution ω 0 = (8 -2b -(d -4)α) 2α S 0,1 (Q 1 ) M (f ) 4α dα-8+2band F (ω 0 ) = max ω>0 F (ω). We see that∃ω > 0 : F (ω) > 0 ⇐⇒ F (ω 0 ) > 0 ⇐⇒ ω 0 ω (f ) -E 0 (f ) > 0 2b -(d -4)α) 2α S 0,1 (Q 1 ) M (f ) 4α dα-8+2b dα -8 + 2b 2(8 -2b -(d -4)α) M (f ) -E 0 (f ) > 0 ⇐⇒ dα -8 + 2b 4α S 0,1 (Q 1 ) 8 -2b -(d -4)α 2α S 0,1 (Q 1 ) σc > E 0 (f )(M (f )) σc ⇐⇒ E 0 (Q 1 )(M (Q 1 )) σc > E 0 (f )(M (f )) σc .Here we have used (A.4) to getE 0 (Q 1 ) = dα -8 + 2b 2(8 -2b -(d -4)α) M (Q 1 ), S 0,1 (Q 1 ) = 2α 8 -2b -(d -4)α M (Q 1 ) = 4α dα -8 + 2b E 0 (Q 1 ).Thus we have proved thatω>0 {f ∈ H 2 (R d ) : S 0,ω (f ) < m 0,ω } = f ∈ H 2 (R d ) : E 0 (f )(M (f )) σc < E 0 (Q 1 )(M (Q 1 )) σc .(A.5) Next, by (A.1), we have

4 =

 4 : H ∆f L 2 f σc L 2 , where H(λ) = λ 2 -

  [12], Campos and Guzmán improved Saanouni's result by removing the radial assumption, but still in dimensions d ≥ 5. Their proof relies on Murphy's idea[37] which is a combination of scattering criterion and Virial-Morawetz type estimates. Here instead of relying on the radial assumption, they exploited the spatial decay at infinity of nonlinearity. As mentioned in [12], the restriction d ≥ 5 comes from the decay of linear biharmonic operator |t| -d 4 which is not integrable on [1, ∞) when d ≤ 4. Therefore, the energy scattering for (1.2) in dimensions d ≤ 4 was raised as an open problem (see[12, 

Acknowledgments V. D. D. was supported in part by the European Union's Horizon 2020 Research and Innovation Programme (Grant agreement CORFRONMAT No. 758620, PI: Nicolas Rougerie). S. K. was supported by Labex CEMPI grant (ANR-11-LABX-0007-01) and ANR grant ODA (ANR-18-CE40-0020-01).

which together with (A.5) imply that f ∈ B + . The proof is complete.

Appendix A. Equivalent thresholds

Let µ = 0, ω > 0, and Q ω be a minimizer of m 0,ω . We introduce

The main purpose of this appendix is to prove the following equivalent threshold.

, and ω > 0. Then we have

Before proving this result, we need some preparations.

Then the following sharp Gagliardo-Nirenberg inequality holds true

The optimal constant is obtained by a non-trivial solution to