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Abstract

The wave-based computational method named Variational Theory of Complex Rays (VTCR) is revisited in order to improve
ts robustness and its efficiency to solve transient dynamic problems including medium frequencies. The first problem addressed
n the paper concerns the ill-conditioning of wave-based computational approaches. We introduce the concept of “effective
ortrait” which provides a new framework to the VTCR with a strong reduction of the conditioning number. The second issue
eals with the computation over a large frequency bandwidth for which the Proper Generalised Decomposition (PGD) has been
etained. A thorough analysis of the efficiency and the limitations of the PGD-VTCR is given. The last issue concerns the
ynergy between the PGD-VTCR and the exponential window method for solving transient problems.

2022 Elsevier B.V. All rights reserved.

eywords: VTCR; Model reduction; PGD; Dynamic transient response; Exponential window method

1. Introduction

Simulation of dynamic structural response is an important part of industrial design. Numerical methods were
esigned to deal with the transient response but they remain ineffective when medium frequencies should be taken
nto account to properly describe the energetic response. This is the case of the simulation of pyrotechnic shocks
hich motives this work. In dynamics the Finite Element Method (FEM) [1] associated with time integration is, by

ar, the most widely used approach. FEM allows the low frequency range to be easily processed. Reduced basis with
ibration modes are also very used. Processing higher frequencies involves a significant refinement of the spatial
nd temporal meshes. This is mainly due to the pollution error [2]. This error increases as ( h

qλ
)2q , where h is the

ize of the element, λ the wavelength and q the degree of interpolation. To preserve accuracy, h should decrease
ccordingly to the wavelength. This increases the computational cost drastically in the case of medium and high
requencies.
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Fig. 1. Frequency spectrum associated with the acoustic response of a cavity to a short impulse (computed with the approach developed in
this paper).

The definition of what is low, medium or high frequency is merely qualitative. Fig. 1 illustrates the conventional
resentation of the different frequency domains based on the peak overlap due to damping. For us, the medium
requency range is more a region for which the conventional FE computational approach starts to not work well
o deal with transient or vibration responses involving medium or high frequencies, a first set of enhancements
EM approaches have been proposed. Among them one can cite: higher-order methods [3], Galerkin least squares
ethod [4], predefined reduced bases [5], the Partition of Unity Method (PUM) [6], the generalised finite element
ethod [7] and the Discontinuous Petrov Galerkin method [8]. Another set of quite different methods are wave-

ased methods working on the frequency-space domain originally designed for medium frequency forced vibration
roblems. They are particular Trefftz methods using shape functions verifying the inner equations at a given
requency. They allow to drastically reduce the number of shape functions. In fact, for a given accuracy they present
weak dependence to the wavelenght One of this method is the Variational Theory of Complex Rays (VTCR) [9]

tudied in this paper. Others Trefftz methods have been proposed in the literature. Among them the Wave Based

ethod [10], the Discontinuous Enrichment Method [11], the Wave Boundary Element Method [12]. A survey of
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these methods can be find in [13] and in [14]. Compared to usual FEM approaches, their efficiencies have been
clearly demonstrated.

Wave-based methods are today mature. For example, the VTCR has been applied to 3D plate assemblies [15],
to shell structures [16], and to acoustic problems [17]. First applications to transient dynamics involving medium
frequencies has been done in [18] for 3D plate assemblies and in [19] for civil engineering structures.

The objective of this paper is to improve the robustness and the efficiency of the VTCR. The goal is to enable
with the VTCR large bandwidth reduced modelling approaches in order to computing transient response involving
medium frequencies. For the sake of simplicity, only acoustic problems are considered.

For this, a fundamental question is re-analysed in this paper. It concerns the ill-conditioning of wave-based
methods due to the presence in the solution of zero-energy modes. This has a very small impact on the true solution
(displacement, pressure, energy) but not on the VTCR solution called “portrait” which is quite erratic. First answers
to reduce the conditioning number have been given in [20,21]. Here, we introduced a simpler way with the concept
of “effective portrait” which is no more erratic; zero-energy modes are eliminated thank to a SVD.

The second aspect of the paper concerns large frequency band computational techniques. Such approaches are
which is useful for both vibration and transient problems. Several techniques have been already introduced as
Padé approximants [22,23]. [19], frequency-polynomial approximation [18], Proper Generalised Decomposition
with frequency/space separation [24]. Here, the PGD in the new VTCR framework involving “effective portraits”
is revisited. A thorough analysis of this new PGD version is given in terms of damping and bandwidths. It shows
the interest but also the limits of this technique when the damping is low.

Based on this last remark the VTCR-PGD approach is coupled to the exponential window approach (EMW)
introduced in Ref. [25]. The interest of the EMW here is to allow the damping to be artificially increased. A basic
example is used to define the range of parameters that are appropriated for the EMW in the context of the paper.
Finally, the PGD-VTCR coupled to the EMW is applied to a shock propagation in an acoustic cavity over a long
period of time. This allows illustrating the interest and potentialities of this technique and proposing perspectives
for further researches.

2. The acoustic reference problem

In a preamble, let us recall that we are interested in solving the mid-frequency response of the problem. In
this band with a high modal density the question of damping is crucial. The damping is often modelled through
information coming from experiments in the frequency domain. Those models, as for the hysteretic model of
damping, do not have a counterpart in the time domain. Nevertheless, the description of the problem in the frequency
domain is probably easier to understand starting from the one in the time domain. Then the model of damping is
adapted to incorporate the information relating the wave number and the frequency. This is the approach we follow
hereafter.

2.1. The reference problem in the time domain

Let us consider the general 2D interior dynamics problem of a bounded acoustic domain Ω , filled with a fluid
characterised by celerity c, density ρ and a viscosity µ. The boundary ∂Ω is divided into three parts: ∂pΩ where
he pressure pd is imposed, ∂vΩ where the velocity is imposed vd and ∂hΩ the mixed loading hd is imposed. The
roblem is studied over a time interval It = [0, T ]. The initial conditions are considered to be zero. The problem
o be solved is: find the pressure field p such:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆p + µ∆
∂p
∂t

−
1
c2

∂2 p
∂t2 = 0 in Ω × It

∂p
∂t

+
z
ρ

∂p
∂n

=
∂hd

∂t
over ∂hΩ × It

p = pd over ∂dΩ × It

−
∂p
∂n

= ρ
∂vd

∂t
over ∂vΩ × It

(1)
here ∆ is the Laplacian operator, n is the outward normal to ∂Ω and z the impedance coefficient.

3
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Fig. 2. A general 2D bounded acoustic problem.

2.2. The reference problem in the frequency domain

The treatment of the reference problem in the frequency domain will concern only the mid-frequency range. The
low-frequency one is assumed to be treated in the time domain. The criterion splitting the frequencies into low and
mid-frequency domains is discussed in [26].

We therefore consider that {Hd , Pd , Vd , Vd} are not null only for ω ∈ Iω = [ω0 −
∆ω

2 , ω0 +
∆ω

2 ]. The acoustic
problem (1) is written in the frequency domain by making use of the Fourier Transform (FT):

P(ω) = FT (p)(ω) =

∫
+∞

t=0
p(t)eiωt dt (2)

Denoting k2
=

ω2

c2(1+iωµ)
, the reference problem can be reformulated as to find the pressure field P such that:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆P + k2 P = 0 in Ω × Iω

P − Z
i

ωρ

∂ P
∂n

= Hd over ∂hΩ × Iω

P = Pd over ∂dΩ × Iω

−
∂ P
∂n

= iωρVd over ∂vΩ × Iω

(3)

n the paper the following description of the damping is chosen:

k =
ω

c
(1 − iη), (4)

here the damping coefficient η is small and assumed to be constant. To rebuild the time response, the inverse of
he Fourier Transform is used:

p(t) = FT −1(P)(t) =
1

2π

∫
∞

ω=−∞

P(ω)e−iωt dω (5)

umerically, the problem is treated for a discrete number of frequencies and the Discrete Fourier Transform (DFT)
nd Inverse Discrete Fourier Transform (IDFT) are used. When FT is used to construct the time response from
frequency resolution, there may be an error called time overlap (see [25]). This occurs when the signal is not

amped at the end of the time interval. To deal with this problem, the frequency step is defined by δω =
2π
Td

with
Td the time required to damp the signal. Thereafter, we will denote the corresponding Nω frequencies as follows:

Iω = {ω0 −
∆ω

2 , ω0 −
∆ω

2 + δω, . . . , ω0 +
∆ω

2 }.

3. Resolution of the acoustic problems frequency by frequency using the VTCR

3.1. The variational formulation

Let us consider a partition of Ω into NΩ non overlapping sub-cavities (Fig. 2), called VTCR elements. In order
to simplify, the following notations are used in the paper:
4
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• ΩE is the generic name used in what follows for the subcavity E .
• ΓE E ′ denotes the common interfaces between subcavity E and E ′.

With these notations, the reference problem (3) becomes, in the sub-structured version, find, in each sub-structure
E, the pressure field PE such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆PE + k2 PE = 0 in ΩE × Iω

PE − Z
i

ρω

∂ PE

∂nE
= Hd over ∂hΩE × Iω

PE = Pd over ∂pΩE × Iω

−
∂ P
∂nE

= iωρVd over ∂vΩE × Iω

PE = PE ′ over ΓE,E ′ × Iω
∂ PE

∂nE
= −

∂ PE ′

∂nE ′

over ΓE,E ′ × Iω

(6)

The two last equations correspond to the pressure and velocity continuity equations between the different
sub-cavities.

Let us introduce the space SE of pressure fields that satisfy the homogeneous acoustic equation:

SE = {PE / ∆PE + k2 PE = 0 ∀x ∈ ΩE × Iω} (7)

he following energetic norm will be used throughout the paper:

∥PE∥
2
SE

=
1

2ρc2

∫
ΩE

1
|k|

2 |∇ PE |
2
+ |PE |

2dΩ (8)

he VTCR verify the border equations through a variational formulation. The VTCR formulation of the problem
6) leads to find in each substructure E the pressure field PE such that ∀QE ∈ SE :

NE∑
E=1

1
2

∫
∂hΩE

(
PE −

i Z
ωρ

∂ PE

∂nE
− Hd E

) (
ωρ

i Z
Q∗

E −
∂ Q∗

E

∂nE

)
d∂Ω

+

NE∑
E=1

∫
∂pΩE

(PE − Pd E )
∂ Q∗

E

∂nE
d∂Ω +

∑
ΩE

∫
∂vΩE

(
∂ PE

∂nE
+ iωρVd E

)
Q∗

E d∂Ω+

+

∑
E,E ′<E

1
2

∫
ΓE E ′

[
(PE − PE ′ )

(
∂ Q∗

E

∂nE
−

∂ Q∗

E ′

∂nE ′

)
+(

∂ PE

∂nE
+

∂ PE ′

∂nE ′

)
(Q∗

E + Q∗

E ′ )
]

d S = 0

(9)

here the symbol * is used to designate the imaginary conjugate quantity. In [20], this formulation was shown to
e equivalent to the reference problem, provided there is damping.

.2. Approximation spaces and associated problem to be solved

In the VTCR the unknowns, per subdomain, are the amplitude distribution aE (θ ). Several discretisations strategies
or the amplitude have been proposed for VTCR: continuous piece-wise functions, truncated Fourier series [27] and
irac distributions. This last approach is adopted because it facilitates the integration of the variational formulation

9). In fact the integration is then analytical for straight borders [16]. The amplitude distribution is thus expressed
s follows:

aE (θ ) =

NE∑
AE

n δθn (θ ) (10)

n=1

5
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Fig. 3. VTCR resolution of a quadrilateral cavity, η = 10−2, (from up to down): pressure field, amplitude distribution (in Pa), for different
frequencies (from left to right): 2300 Hz, 2433 Hz, 2567 Hz and 2700 Hz.

leading to a plane wave approximation for the pressure field:

pE =

NE∑
i=1

AE
E,i e

ikn(θi )·(x−xE ) (11)

here AE,i is the complex plane wave amplitude, the vector AE being called the amplitude portrait for the element
.

The injection of these shape functions into the Galerkin variational formulation leads to the following set of
inear systems to be solved at each frequency ω:

K (ω)(ω)A = F(ω) (12)

with A the unknown amplitude vector, K the squared matrix operator, and F the right hand side vector. Moreover,

K =

⎛⎜⎜⎝
...

. . . KE E ′ . . .
...

⎞⎟⎟⎠ (13)

where KE E ′ is the block corresponding to the coupling between element E and E’.

4. The concept of effective amplitude portrait

4.1. Description of the difficulties

Ill-conditioning of Trefftz formulations, such as the VTCR, is well-known. Its impact on the true solution, here the
pressure, is weak excepted for large scale problems. On the contrary, its impact is very important on the amplitude
portrait which is erratic. This is because the amplitude portrait takes into account nearly zero energy modes. This
phenomenon, which can be seen in Fig. 3, is a serious drawback for all model reduction method based on the
portrait.

The goal of the effective portrait is to eliminate, a priori, the nearly zero-energy mode.

4.2. Relation between the portrait and the energy: energy matrix

Let us consider the element E and a NE uniform discretisation of [0, 2π ] with ∆θ =
2π
NE

. The starting point to

onstruct the effective amplitude portrait is to consider the energy over the element E . From Eq. (11), one obtains

6
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Fig. 4. Eigenvalues in terms of the index for a rectangular cavity.

the following expression which is proportional to the energy:∫
ΩE

|pE |
2dΩE =

∫
ΩE

NE∑
i=1

NE∑
j=1

A∗

E, j AE,i ei(kn(θi )−k∗n(θ j ))·(x−xE )dΩE

=

NE∑
i=1

NE∑
j=1

A∗

E, j AE,i (ME ) j i = A∗T
E ME AE

(14)

here ME is a NE × NE real, symmetric and positive matrix.
Let us consider the typical case of a rectangular domain (2H1 × 2H2) in the case of interest where η is small.

he expression of the coefficient of the matrix ME is the following:

(ME )i j = H1 H2
exp(αi j H1) − exp(−αi j H1)

αi j H1

exp(βi j H1) − exp(−βi j H2)
βi j H2

(15)

with:

i(kn(θi ) − k∗n(θ j )) = αi j n(0) + βi j n(
π

2
) (16)

The eigenvalues of the Matrix ME have been computed for a rectangular cavity (c = 340 m s−1, ρ = 1.3 kg m−2,
η = 10−4, H1 = 0.5 m, H2 = 0, 85 m) using NE = 126. One can notice a rather large plateau of eigenvalues
corresponding to more or less the same energy and, after, an exponential decrease of the eigenvalues corresponding
nearly zero-value energy modes Fig. 4). The later being excited in the classical portrait. This situation is typical of
the subdomains used in practice (see .

4.3. Effective portrait definition and fundamental associated properties

To analyse the fundamental properties of the effective portrait and its relation to the energy, it is interesting to
consider the continuous case. The continuous formulation can be defined as:

pE =

∫ 2π

0
AE,θeikn(θ )·(x−xE )dθ (17)

Thus:∫
ΩE

|pE |
2dΩE =

∫ 2π

0
dθ

∫ 2π

0
dθ ′ A∗

E,θ ′ AE,θ z(θ, θ ′) (18)

with:

z(θ, θ ′) =

∫
ei(kn(θ )−k∗n(θ ′))·(x−xE )dΩE (19)
ΩE

7
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Therefore:

(ME )i j = z(θi , θ j ) (20)

The effective portrait is defined from the eigenmodes of the following eigenvalue problem, find (λ̃, ÃEθ ) such that:

∫ 2π

0
dθ ′z(θ, θ ′) ÃEθ = λ̃ ÃEθ ; θ ∈ [0, 2π ] (21)

The eigenmodes Ãi
Eθ being chosen such that:∫ 2π

0
dθ

∫ 2π

0
dθ ′ Ãi∗

Eθ ′ z(θ, θ ′) Ãi
Eθ = 1 (22)

For a circular domain the eigen modes Ãi
Eθ are equal to eirθ . The effective portrait is then defined as a combination

of the eigenmodes:

Ae f f
θ =

+∞∑
i=1

ai Ãi
Eθ (23)

the ai being such that:

pE =

∫ 2π

0
eikn(θ )·(x−xE ) Ae f f

θ dθ (24)

and one has:∫
ΩE

|pE |
2dΩE = ||Ae f f

||
2

= 2π

+∞∑
i=1

∫ 2π

0
|ai |

2 (25)

It follows the fundamental property that p small leads to ||Ae f f
|| small and reciprocally. Thus the effective portrait

is not polluted by nearly zero energy-modes.

4.4. On the use of the effective portrait and comparison with the original portrait

The use of the effective portrait implies the computation of the first eigen-modes Ãi
Eθ for each element. This

computation can be done off line and does not imply large computational costs because the number of VTVR
elements is usually not large.

In order to illustrate the property of the effective portrait and compare it to the original one a simple example is
used. One considers an acoustic cavity with a celerity c = 340 m s−1 subjected to a pressure p(x) =

1−cos(2πx)
2 on

the left edge, where x is the curvilinear abscissa. Zero Dirichlet boundary is applied on the other edges.
The solution is built with 1 VTCR element and 127 rays for 4 frequencies: f = [2300, 2433, 2567, 2700] Hz. The

pressure field, the original amplitude distribution and the effective one are reported in Figs. 5 and 6 for two levels of
damping. The standard amplitude portrait presents strong oscillations characteristic of the presence of nearly zero
energy mode. On the contrary the effective portrait reflects the privileged directions of the pressure field. One can
also remark the great influence of the damping. Let us note that the two different amplitude distributions have not
the same unit, one is expressed in Pa and the other in J1/2. For the comparison the amplitude distribution should and
has be multiplied by a scalar depending on the domain: V (ΩE )

√
2ρc , with V (ΩE ) the surface of the 2D ΩE sub-domain.

An interesting feature of the effective portrait is that it allows visualising the direction and intensity of the
ropagation of energy which ensures the dynamic equilibrium at a given frequency. The example of presented
ig. 7 corresponds to a 2D analysis of a car at a high frequency equal to 10 kHz.

. A posteriori reduction using the SVD of the solution over a frequency band

The objective here is to study whether it is possible or not to approximate the solution using a low rank
pproximation over a frequency band. Let us consider frequency dependency on of the VTCR pressure solution

11). It is sought as a two-scale description. In fact, the effective amplitude is expected to be a slow varying term

8
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Fig. 5. VTCR resolution of a quadrilateral cavity, η = 10−3, (from up to down): pressure field, classic amplitude distribution (expressed in
a), and effective amplitude distribution (expressed in J1/2) for different frequencies (from left to right): 2300 Hz, 2433 Hz, 2567 Hz and
700 Hz.

Fig. 6. VTCR resolution of a quadrilateral cavity, η = 10−2, (from up to down): pressure field, classic amplitude distribution (expressed in
a), and effective amplitude distribution (expressed in J1/2) for different frequencies (from left to right): 2300 Hz, 2433 Hz, 2567 Hz and
700 Hz.

ith respect to the exponential which is a rapid varying term in mid-frequency. This is why a reduced solution
s sought in terms of the effective amplitude distribution only. In each VTCR element E , the later distribution is
earched as:

aM−e f
E (ω) =

M∑
Λ

e f f
E−mλ

e f f
E−m(ω) (26)
m=1

9
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Fig. 7. VTCR resolution and effective portrait for a 2D model of the interior of a car for a frequency of 10 kHz.

where Λm is a vector which contains the portrait of all the elements. The associated modulation λm(ω) is a scalar
function. The question is to see whether the pressure field may be approximate over the frequency range Iω by
means of a few modes M of the effective amplitude distribution.

The pressure field computed frequency per frequency is taken as a reference. The problem to be solved is to find
the different modes that minimise the following quantity:∫

Iω
∥pre f E − pM

E ef ∥
2
SE

dω (27)

Thanks to the relation (25) this minimisation may be performed, whatever M, using a Singular Value Decomposition
(SVD) of the following matrix:

AE ef =

⎛⎜⎝ AE ef (θ1, ω1) ... AE ef (θ1, ωNω )
...

...

AE ef (θNθ
, ω1) ... AE ef (θNθ

, ωNω )

⎞⎟⎠ (28)

The result provides, for AE ef , the following decomposition AE = U DV H with U and V a set of orthonormal
vectors and D a diagonal matrix. The amplitude distribution ΛE ef m and the functions λE ef m are given by the M
columns of U D and the M lines of V H associated to the highest singular values of D.

In order to obtain a means of comparison for the study of reducibility, we also construct a more classical low rank
approximation of the solution. Thus the pressure field p(x, ω) is also approximated as ≈ p̃M

=
∑M

m=1 φm(x) fm(ω)
using a SVD. Such a decomposition is efficient for the low frequency range. It has been extended to the mid-
frequency range, for example in the Padé approach [22], but the efficiency of this approach remains limited when
the modal density is high.

The example concerns, once again, a quadrangular geometry and a frequency range Iω: [ω0 − ∆ω, ω0 + ∆ω]
with ω0 = 2π.2500 and ∆ω = αω0 for various values of α ranging between 5% and 30%. This means that, for
30%, the frequency bandwidth which is considered is [1750, 3250]H z. The energy response is illustrated in Fig. 8
for a bandwidth of 10%.

The reference solution is built with the VTCR method with one VTCR element and 127 rays. One can notice
that the response of the structure strongly depends on the level of damping.

In order to estimate whether the problem could be reduced efficiently, we look at the number of modes necessary
to obtain the error ϵIω (Eq. (29)) less than 5%. In addition we compare the solution associated to the reduced the
effective amplitude distribution to the reduced pressure field decomposition.

ϵ2
Iω (pM ) =

∫
Iω

∑NΩ
E=1 ∥pre f E − pM

E ∥
2
SE

dω∫
Iω

∑NΩ
E=1 ∥pre f E∥

2
SE

dω
(29)

In Fig. 9 the number of modes in function of the damping η and in function of the band width ∆ω at the bottom,
at the right for the quadrilateral are presented.

We observe from Fig. 9 (a) and (b) that the decomposition using the effective portrait performs better than the
one based on the solution, especially for large bandwidths. The main remark, which will be exploited later is the
strong influence of the damping. For example for a η = 10−2, less than 15 modes of the effective portrait are
sufficient in order to represent accurately the solution over the frequency domain [1750, 3250] Hz. On the contrary,

for very small damping coefficients, a large number of modes is needed.

10
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O
λ

Fig. 8. Energy in the acoustic cavity as a function of frequency for different damping.

Fig. 9. Number of modes required for an error less than 5% for the pressure and for the effective amplitude distribution: (a) in function of
the damping, (b) in function of the bandwidth for η = 10−2 and η = 10−3.

6. A priori reduction using the PGD method

In the previous part we studied the reducibility by constructing a low rank approximation of the solution knowing
it. The challenge is to be able to compute directly, that is without knowing the solution, a reduced approximation
of the solution which could lead to cost savings. Here, the reduced solution obtained using the SVD in the previous
paragraph serves as reference.

6.1. Principle and method

The a priori reduction method called Proper Generalised Decomposition (in short PGD) [28] is used to search
directly a low rank approximation of the solution. An approximate solution AM (ω) of the VTCR problem is sought
as:

AM (ω) =

M∑
m=1

λm(ω)Λm (30)

nce again Λm is a vector which contains a contribution to the portrait of all the elements. The associated modulation
(ω) is a scalar function. The best decomposition is sought through the minimisation of a norm over I of the
m ω

11
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following residue:

RM (ω) = K (ω)AM (ω) − F(ω) (31)

Different choice of the norm can be made. Considering the properties of the operator K (ω) (non-symmetrical and
non-Hermitian matrix) we opt here for an L2 norm.

∥R∥
2
2 =

∫
Iω

RH Rdω (32)

Petrov–Galerkin version of the PGD, as proposed in [29], would be probably more efficient but is technically
ore demanding. The best possible approximation using the L2 norm is defined as:

AM
= argmin

(
∥RM (ω)∥2

2

)
(33)

he direct resolution of the problem (33) is particularly expensive and does not allow for calculation savings.
he classic approach to build the modes (Λm, λm(ω)) is iterative and makes use of a greedy approach. In such an
pproach the couples (Λm, λm(ω))[1...M−1] being assumed known, the couple (ΛM , λM (ω)) is determined such that:

(ΛM , λM (ω)) = argmin(∥K (ω)λM (ω)ΛM (ω) − RM−1(ω)∥2
2) (34)

n order to have a problem with only one unknown, either ΛM or λM (ω), the problem is solved iteratively. A uniform
nitialisation on the amplitude distribution is applied. This initialisation is denoted ΛM−0. From it the best associated

odulation λM−0(ω) is determined minimising the residue. From the value of λM−0(ω) the best possible associated
alue of ΛM−1 of the associated portrait is computed and so on. The process is stopped when two consecutive
terates are closed enough. Then, depending on the value of ∥RM

∥2, a new couple is added or the procedure is
onsidered to be converged. In order to improve the convergence of this algorithm, different strategies are possible.
n what follows we compare the results of the PGD obtained using 3 strategies:

• Strategy 1: the Greedy one described previously.
• Strategy 2: Strategy 1 + update of frequency functions previously determined after each new mode computa-

tion. This is the most classical approach for the PGD.
• Strategy 3: The strategy 2 is first applied to update the different modulations. From this new modulation, the

different associated portrait is recomputed globally. Such a strategy is no more greedy.

The different strategies are illustrated for the quadrilateral at η = 10−2 and η = 10−3 over the frequency band
Iω defined by ω0 = 2π.2500 with ∆ω = 10% ω0.

The case η = 10−2, illustrated in Fig. 10, corresponds to a relative low modal density. The case η = 10−3,
llustrated in Fig. 11, corresponds to a much higher modal density.

It appears that the strategy 3 performs well with a ratio of modes around 1.5 compared to the SVD. This ratio
ends to increase when seeking to very high precision.

From Figs. 10(a) and 11(b) it appears that, even for a quite important level of error, the quality of the reconstructed
olution is quite satisfactory. This indicates that the error defined in Eq. (32) is severe. In fact this norm is sensitive
o a small shift in frequency, which, in fact, has a low impact on the quality of the solution. This aspect should
ead in the future to seek for better indication of the quality of low-rank approximation.

As for the SVD of the solution the number of mode needed for the PGD to approximate properly the solution
s very sensitive to the damping coefficient. This is why we have sought for a computational strategy based on the
xponential window method for which the calculations are performed with an artificial damping having a higher
alue than the real one.

. The exponential window method applied to the VTCR

The exponential window method (EWM) was initially introduced in [25] to eliminate the free-vibration interval
hat appears in the standard DFT approach. It consists in searching for the Fourier transform of the time response

ultiplied by an exponential window. This method leads to the resolution of a frequency problem in which a
amping is artificially added. Applying the EWM within in the context of the TVRC does not present difficulties.
he main issue is elsewhere, the quality of the reconstructed solution is sensitive to the “damping parameter” of the

ethod. To tune this parameter comparison between a resolution performed with VTCR in the classical frequency

12
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t

Fig. 10. Convergence of the different strategies for η = 10−2: (a) error with respect to the number of mode (b) approximation of the energy
of the cavity for ten modes.

domain and in the modified frequency domain are performed. The comparisons concern the reconstructed solution
in the time domain. Here, the objective is to compute the transient response over a given period of time of the order
of several wave round trips. It is therefore necessary to reconstruct the frequency content that contributes to the
initial response only.

7.1. Development of the method

In the context of the paper the method may be summarised as follows. Rather than searching for the Fourier
transform of the p field, the Fourier transform of the field pα = e−αt p where α ∈ R+ is searched.

Pα(ω) = T F(pα)(ω) = T F(e−αt p)(ω) =

∫
∞

−∞

p(t)e−i(ω−iα)t dt = P(ω − iα) (35)

hus the problem to be solved in the frequency domain consists in solving the problem with modified inner and
order equations. The problem (6) becomes: find, in each element E, the pressure field Pα

E such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆Pα
E + k2

α Pα
E = 0 in ΩE × Iω

z
∂ Pα

E

∂nE
+ i(ω − iα)ρ Pα

E = Hα
d over ∂hΩE × Iω

Pα
E = Pα

d over ∂pΩE × Iω

−
∂ Pα

E

∂nE
= i(ω − iα)ρV α

d over ∂vΩE × Iω

Pα
E = Pα

E ′ over ΓE,E ′ × Iω
∂ Pα

E

∂nE
= −

∂ Pα
E ′

∂nE ′

over ΓE,E ′ × Iω

(36)

where:

kα =
ω − iα

c
(1 − iη) =

ω − αη

c

(
1 − i

(
η + α/ω

1 − αη/ω

))
(37)

When comparing to the original formulation where:

k =
ω

c
(1 − iη) (38)

he method introduces a modified damping coefficient and a modified celerity as follows:

ηα =
η + α/ω

1 − αη/ω

cα =
c (39)
1 − αη/ω

13
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Fig. 11. Convergence of the different strategies for η = 10−3: (a) error with respect to the number of mode (b) approximation of the energy
of the cavity for thirty modes.

Solving this problem with the VTCR therefore consists in modifying the shape functions which become:
eikαn(θ )·(x−x0), and the modified Neumann and Robin border conditions defined by Eq. (36).

To recover the original solution from the modified frequency one applies the following inverse transform:

p(t) = eαt pα(t) = eαt T F−1(Pα)(t) (40)

In [25] the author has proposed and justified the use of the following value for α denoted αr

αr =
ln(100)

T
≈

4.6
T

(41)

his explains why the method is mostly adapted to transient analysis, the shorter T the larger α. Moreover, for
his a choice, the frequency step can be taken as δω ≈

2π
T and is therefore much larger than the one used for the

original formulation.
The resolution requires to multiply the time signals by the exponential window, then to apply the Fourier

Transform and perform the calculations in the modified frequency domain with the VTCR (frequency by frequency)
and, finally, to return to the time domain.

In order to validate this approach, a transient problem of a quadrilateral acoustic cavity is solved. The fluid is
characterised by its celerity c = 340 m s−1 and its damping coefficient η = 1.10−3. The edge conditions are zero

irichlet conditions everywhere except on the left wall where the pressure is imposed as:

pd (t, x) =
1 − cos(2πx)

2
∗ e

−(t−tdepa.)
2

∆t2 cos(2π fcent.t) (42)

In Eq. (42) x is the curvilinear abscissa of the left edge. The following values are used: tdepa. = 2.2 ms,
∆t = 0.59 ms and fcent. = 2500 Hz. This signal has a frequency content centred on 2500 Hz and which expands
between 1000 Hz and 4000 Hz as shown in Fig. 12.

The problem is studied over a time range IT = [0; 6 L
c ] = [0; 23] ms, with L the characteristic cavity dimension.

Several values of α have been tested around the proposal of Hall [25]: αr
4 = 50 rad s−1, αr = 200 rad s−1 and

αr = 800 rad s−1. The energy in the modified frequency domain is shown in Fig. 13. We clearly see the influence
f α on the apparent damping.

In Fig. 14 the reference value of the pressure in a representative point of the cavity is presented at the top. The
ifference between the reference and the obtained value of the pressure is presented at the bottom as a function of
.

As expected, there is an almost perfect superposition of the different temporal responses of the signal for α = 50
ad s−1 and α = 200 rad s−1. For α = 800 s−1 the difference with the reference diverges exponentially. This allows
o understand the compromise that has to be done for the method to work. One wishes to chose α as large as
ossible. Nevertheless, for α too large, the multiplication by eαt in the inverse transform (Eq. (40)) renders the
ethod unstable. A numerical study was conducted in order to determine the value of α, denoted by αlim for which
he solution starts to diverge. Due to the relation between T and α, the results may also be interpreted as the value
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Fig. 12. Input signal pd in time domain (top) and frequency domain (bottom).

Fig. 13. Energy of the solution in the modified frequency domain for different values of the α parameter.

of Tlim of T for which the solution starts to diverge. The results are presented Fig. 15. For both cases we obtain
the heuristic relation:

αlim ≈
9.5
Tlim

≈ 2αr (43)

As can be seen in Fig. 15 two discretisation steps have been used. The first one corresponding to δω ≈
2π
T

and the other is about four times finer. In this range of values, the discretisation steps do not seem to play a role
regarding the instability.

8. Coupling of the VTCR wide frequency band resolution method and the exponential window method

8.1. Preliminary remarks on the applicability of the approach

In this section the PGD model reduction method is applied to the VTCR in the modified frequency domain. The
objective is to construct, at a lower cost, an approximation of the transient response in the time domain. Rather
15
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Fig. 14. Top: classical frequency resolution approach, bottom: difference between the reference and the coupled VTCR-exponential window
approach.

Fig. 15. Relation between Tlim and αlim .

han solving the modified frequency problem frequency by frequency, like presented in Section 7, the PGD large
and resolution method is applied. The approach is expected to benefit from the fact that the exponential window
ethod leads to the resolution of a highly damped problem in the frequency domain. This is a range of problems

n which the PGD model reduction applied to the VTCR is effective. The previous paragraph allows trying to a
16
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Fig. 16. Energies of the different solution: the reference and the PGD solution. (a): solution with respect to the number of modes for a
frequency band of 500 Hz. (b): solution with respect to the bandwidth for 10 modes.

priori tune the method. In fact, its is expected that the PGD would lead to a precise solution using between 5 modes
(η = 10−2) up to 20 modes (η = 5.10−2). Moreover, choosing α of the order of αr we have, for η = 10−3 and
T of the order of a tenth of millisecond 10 ms, and for a frequency of the order of 2000, the following valuable
pproximation of ηα is obtained.

ηα =
η + α/ω

1 − αη/ω
≈ α/ω ≈

1
f T

(44)

Leading to the following estimate of ηα over the frequency band [ fmin, fmax ]:

ηα ∈ [
1

fmax T
,

1
fminT

] (45)

or the previous example one therefore has ηα ∈ [10−2, 4.10−2] a range for which the PGD reduction is, a priori,
nteresting. Moreover, due to the Parseval relationship, t the quality of the reconstruction is expected to decrease
ith the time. Indeed:∫

∞

t=−∞

| f |
2dt =

∫
∞

ω=−∞

|F |
2dω (46)

here F is the Fourier transform of f . In the modified frequency domain this becomes:∫
∞

−∞

| f |
2e−2αt dt =

∫
∞

−∞

|Fα|
2dω (47)

hus the larger α, the more the PGD algorithm will privilege short times.

.2. First example

We consider once again the case studied in Section 7. The PGD broadband resolution method is applied on
requency bands with a width of ∆ω = 500 Hz. In Fig. 16 the mechanical energy ∥.∥2

E in function of the time for
he reference solution and the PGD approximation are presented. The results have been obtained using a value of
= 170 rad/s a little bit smaller than αr = 200 rad/s. The idea is to potentially compensate for the additional error

nduced by the PGD approximation.
These results are in agreement with what was expected and commented in Section 8.1. This gives us confidence

hat the method could be well mastered and automatised in the near future. Let us consider the first instance, that
he computational costs are proportional to the total number of modes M (sum of modes over all frequency bands).
t appears, from the previous figures, that the most interesting strategy is to take wide frequency bandwidths.

In order to quantify the gains brought by the coupling, the transient response using the PGD without the artificial

amping on 500 Hz frequency bands has been applied. :In this case 80 modes were needed to reconstruct the
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transient response with an error of about 5%. This is about 5 times more modes than when α = 170 rad s−1.
n Fig. 17, the reconstructed solution with only ten modes is plotted (with 20 modes it is not possible to see any
ifferences). Once again one notice that the error is concentrated at the last instant. Once again the measure of
rror, in this case 19.8% seems quite severe with respect to the quality of the reconstructed field.

. PGD-VTCR applied to a shock propagation in an acoustic cavity over a long period of time

We consider here a problem mimicking a shock on an acoustic cavity illustrated in Fig. 18.
The example involves two challenges. First, to properly evaluate the energy of the response, one has to consider

large frequency content (up to 15 KHz). Moreover the solution is searched over a long period of time involving
bout 10 return trips, i.e. 200 ms. This example will serve both to illustrate the method but also to understand the
ifficulties we will have to take into account in future applications.

The damping is η = 0.001. The cavity is loaded by a triangular short time signal as shown in Fig. 19, imposed
s a Dirichlet condition, see Fig. 18.

.1. A first attempt to apply the method for a long period of time and a large frequency spectrum

The first aspect is to separate the low and high frequency contributions such as described in [26]: the low
requencies are considered belonging to [0, 900] Hz. To deal with the low frequencies a modal base considering
ll modes with an eigenfrequency up to 1800 Hz is used. The high-frequency part is solved using the large-band
TCR PGD resolution coupled with the exponential window method. For the duration considered 200 ms and for
close to alphar the value of ηalpha would be around 2.10−3. Obtaining a precise solution with such a low value

would be very costly, leading either using a lot of modes or dealing with very small bandwidths.
Yet a precise estimation of the solution in the first instant after the shock is very important. Moreover the times

going on the solution becomes more and more diffuse and not deterministic. Numerically this reflects in the fact
that it is nearly impossible to achieve a precise solution due to the phase shift. To compare the temporal response
over such a long period of time is neither meaningful nor interesting. This is why a common practice, especially in
industry, is to characterise the long term response by its hock Response Spectrums (SRS). The SRS corresponds to
the maximum in acceleration of the response of a single degree of freedom system with quality factor Q subjected
to the signal in function of the natural frequency of that system. To address the previous issue the time domain is
divided into two subdomains. The first one, [0, 25] ms], where one wishes to compute quite accurately the solution.
For the second one [25, 200] ms] for which a correct approximation of the SRS is looked for.

9.1.1. The transient response on a short time
As the response must be reconstructed on a duration of 0.025 s, α = 160 rad s−1

≈ 4/T is chosen. As the PGD
is efficient for important damping, wide frequency bands are used, of the order of 30%. Moreover the computation
make use, a priori, of 20 modes. To simplify the resolution we will take regular size bands: 13 bands of 1185 Hz,
which corresponds about to a 30% bandwidth at 2000 Hz. The response is shown in Fig. 20 at points 1, 2 and 3.
The answer near the source (at point 1) shows the arrival of the wave in the cavity at the instant t = 1.05 ms.
This portion of the signal is similar to the source signal, which makes it possible to validate the reconstruction of
the response. The error in L2 norm with respect to the reference is 2.24%, 13.9% and 16.1% at nodes 1, 2 and 3
respectively. The reference is reconstructed from a point-to-point frequency resolution.

In order to obtain a better solution we should adapt the number of mode or the bandwidth depending on the
frequency. In fact if ηα ≈ 0.02 at 2000 Hz it is only of the order of ηα ≈ 0.005 at 10 000 Hz. Hence the use of 20
modes is not sufficient for the high part of the spectrum where one should probably use around 40 modes.

9.1.2. The transient response on a long time
As we consider a much larger value of T, this induces much lower artificial damping than before ηα ≈ 0.0026

at 2000 Hz. Since the PGD reduction is less efficient on this damping range, bandwidths of around 5% are chosen.
This leads to introduce 80 regular bands of 192 Hz. Once again the solution is approximated using 20 modes per
band.

The SRS of the reduced model approach and of the reference are constructed and represented Fig. 21 with

quality factor Q = 10. SRS curves have a classic appearance. They are asymptotically divided into two parts: a
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Fig. 17. Pressure fields in time domain at different time steps. At the left, the reference fields, at the middle, the PGD fields (10 modes,
α = 170 rad s−1 and frequency band of 500 Hz), at the right the difference between the two fields.
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Fig. 18. Acoustic cavity (length in m) submitted to the shock.

Fig. 19. Shock signal decomposed into a low-frequency part and a high-frequency part.

0db/decade slope and a plateau. Moreover, one notices some reasoning due to certain excited eigenmodes. Let us
ompare the SRS from the reduced model approach with those from the reference. At point X1 (left) we notice a

very good agreement between the model reduction approach and the reference in low frequency and high frequency.
At point X3 differences are present around 1000 Hz, the answer is slightly underestimated by the reduced model.

Conclusion

In this paper a model reduction strategy in the frequency domain for the reconstruction of the transient response
of dynamics problems has been proposed. The concept of effective portraits has allowed to improve the efficiency of
the reduced approach. The reducibility of the problem in function of the frequency bandwidth and of the damping
has been studied. A key point is that the greater the damping, the more reducible the problem is. This leads to

introducing the exponential window method (EMW), which allows to artificially add a configurable damping. The
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a

Fig. 20. Time response at points X1, X2 and X3 (respectively from top to bottom) of the 18 cavity computed with the reduced model
pproach.

Fig. 21. SRS (quality factor of the SRS Q = 10) at point X1 (left) and point X3 (right) of the 18 cavity built from a resolution over a
long period of time.

coupling of the EMW and the TVRC has allowed studying the influence of the artificial damping parameters. The
whole study has allowed mastering the coupling between the PGD-VTCR broadband resolution and the EMW.
Illustrations concerning the approximation of the transient response of a dynamic problem has been proposed. In
particular it has allowed to deal with the response of a simple 2D acoustic cavity to a shock problem including a
large frequency content and over a long period of time. The efficiency of the method is still to be assessed on more
representative examples and will probably lead to optimised the different steps of the approach with respect to their
costs.
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