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We show scattering below the ground state energy level for a class of nonlinear 3D Schrödinger equations (NLS) with mass-energy intracritical competing nonlinearities. Specifically, the NLS has a focusing leading order nonlinearity with a defocusing perturbation. Our strategy combines interaction Morawetz estimates and a new crucial bound for the Pohozaev functional of localized functions. Furthermore, we give the rate of blow-up for symmetric solutions.

Introduction

Aim of the present paper is to study long time dynamics of solutions to the following nonlinear Schrödinger equation with competing nonlinearities

i∂ t u + ∆u = λ 1 |u| q-1 u + λ 2 |u| p-1 u, (1.1) 
where u(t, x) : I × R d → C, I ⊆ R, and the parameters λ 1 , λ 2 ∈ R. Equation (1.1) is a nonlinear Schrödinger equation which arises in many physical contexts, and we refer the reader to [15,[START_REF] Gammal | Atomic Bose-Einstein condensation with threebody interations and collective excitations[END_REF]23,[START_REF] Pelinovsky | Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation[END_REF] for motivations and further discussions on the models. Since the early works by Zhang [START_REF] Zhang | On the Cauchy problem of 3D energy-critical Schrödinger equations with subcritical perturbations[END_REF], Tao, Vişan, and Zhang [34], and Miao, Xu, and Zhao [START_REF] Miao | The dynamics of the 3D radial NLS with the combined terms[END_REF], equations of the type (1.1) have attracted a lot of attention leading to a wide literature concerning different problems: local and global theory, scattering, blow-up, stability of standing waves, and so on; see [2, 3, 5, 7, 8, 16, 22, 24-27, 29, 32, 33] and references therein.

In this article, we are interested in the 3D physical case, and we consider exponents satisfying 7 3 < q < p < 5, with a positive coefficient λ 1 and a negative coefficient λ 2 . Namely, the nonlinearities are defocusing and mass supercritical, and focusing and energy subcritical, respectively. We remark that we cover the physically relevant case of focusing cubic NLS with a mass supercritical defocusing perturbation. Without loss of generality, we can normalise the coefficients, by scaling and homogeneity, as λ 1 = -λ 2 = 1. Therefore, we are primely interested in the Cauchy problem below:

i∂ t u + ∆u = |u| q-1 u -|u| p-1 u u(0, x) = u 0 ∈ H 1 (R 3 ), (1.2) 
where u(t, x) : I × R 3 → C, I ⊆ R, with 7 3 < q < p < 5. At the local level, it is well-known that (1.2) admits solutions, see [6], and by denoting I max ∋ 0 the maximal interval of existence, solutions preserve (among other quantities) mass and energy, defined by

M(u(t)) := ˆR3 |u(t)| 2 dx. (1.3) 
and

E(u(t)) := 1 2 ˆR3 |∇u(t)| 2 dx + 1 q + 1 ˆR3 |u(t)| q+1 dx - 1 p + 1 ˆR3 |u(t)| p+1 dx, (1.4) 
respectively. Hence (1.3) and (1.4) are independent of time.

We introduce the following Pohozaev functional

G(u) = ˆR3 |∇u(t)| 2 dx + 3 2 q -1 q + 1 ˆR3 |u(t)| q+1 dx - 3 2 p -1 p + 1 ˆR3 |u(t)| p+1 dx,
which will be crucial for the characterization of the dynamics of solutions to (1.2). We note in particular that solutions to (1.2) of the form u(t, x) = e iωt ψ(x), with ω being a real parameter, i.e., standing wave solutions, fulfil G(ψ) = 0. Furthermore, we introduce the action functional

S ω (φ) = E(φ) + ω 2 M(φ) = 1 2 ∇φ 2 L 2 (R 3 ) - 1 p + 1 φ p+1 L p+1 (R 3 ) + 1 q + 1 φ q+1 L q+1 (R 3 ) + ω 2 φ 2 L 2 (R 3 )
and the following ground state energy

m ω := inf S ω (φ) : φ ∈ H 1 (R 3 )\{0}, G(φ) = 0 .
Note that the action functional S ω is a conserved quantity along the time evolution of a solution to (1.2), as sum of conserved quantities.

The existence of standing waves of the form u(t, x) = e iωt ψ(x) can be proved by showing that the aforementioned ground state energy is achieved, i.e., that the infimum of the action on the constraint G = 0 is indeed a minimum. The fact that ground state energy level m ω is achieved for any ω > 0 is proved in [START_REF] Cheng | Global well-posedness and scattering for nonlinear Scdinger equations with combined nonlinearities in the radial case[END_REF] while the instability properties of the corresponding standing waves is a recent result by [16]. The question concerning the existence of ground states with an assigned mass has been addressed in [4]. Eventually, for ω > 0, we introduce

A + ω := u ∈ H 1 (R 3 ) : S ω (u) < m ω , G(u) ≥ 0 and
A - ω := u ∈ H 1 (R 3 ) : S ω (u) < m ω , G(u) < 0 , and we recall the notion of scattering: we say that a solution u(t, x) to (1.2) scatters provided that lim

t→±∞ u(t) -e it∆ u ± 0 H 1 (R 3 ) = 0, for suitable u ± 0 ∈ H 1 (R 3 )
, where e it∆ is the linear Schrödinger propagator.

Our purpose is to show that:

(1) If u 0 ∈ A + ω , then the corresponding solution exists globally in time and scatters in H 1 (R 3 ) in both directions.

(2) If u 0 ∈ A - ω , then if we assume u 0 is radially symmetric or cylindrically symmetric (with some additional restrictions on p and some relaxations on the hypothesis on q), then the corresponding solution blows up in finite time with an explicit blow-up rate.

Our first result concerns the energy scattering for (1.2) with data in A + ω .

Theorem 1.1. Let 7 3 < q < p < 5 and ω > 0. Let u 0 ∈ A + ω . Then the corresponding solution to (1.2) exists globally in time and scatters.

Our result covers the case when the defocusing term is mass supercritical without any symmetry assumption. We follow the strategy developed in and our new key ingredient is a coercivity property for solutions belonging to A + ω that we develop by a careful variational study of the functional G that we believe it is of independent interest. More precisely, we use the variational properties of the functional G, that appears in the virial-like estimates, to prove an interaction Morawetz estimate. We show that taken a suitable cut-off function χ R (x) = χ( x R ) such that χ R = 1 when |x| ≤ (1 -η)R with some η > 0 small, the Pohozaev functional fulfils, for any R sufficiently large,

G(χ R (• -z)u ξ (t, •)) ≥ δ ∇(χ R (• -z)u ξ (t, •)) 2 L 2 (R 3 )
for any space shift z ∈ R 3 , all time t ∈ R, and some ξ = ξ(t, z, R) ∈ R 3 , where u ξ (t, x) stands for the modulated function e ix•ξ u(t, x). Here δ > 0 is a constant independent of time and the translation vector. The localized coercivity result, i.e., that the coercivity is true if we localize the modulated and translated solution u(t) in a sufficiently large ball centered anywhere, as far as we know is a new property and we think that it can be relevant in other contexts. In particular we are able to bypass the difficulties related to the lack of scaling due to the presence of two competing nonlinearities. We shall underline that in the paper by Dodson-Murphy, the coercivity property needed to prove interaction Morawetz estimates comes from the refined Gagliardo-Nirenberg inequality (see [11, Lemma 2.1])

f 4 L 4 (R 3 ) ≤ C GN f L 2 (R 3 ) ∇f L 2 (R 3 ) ∇f ξ 2 L 2 (R 3 ) (1.5) 
which holds for any f ∈ H 1 (R 3 ) and any ξ ∈ R 3 , and that we are prevented to use in our setting. Indeed, due to the non-homogeneity of nonlinearities, such an inequality (1.5) is not applicable in our framework.

Let us briefly recall what is known in the literature concerning scattering for NLS with a leading focusing term. In the homogeneous case when the nonlinearity is energy subcritical and mass supercritical, the scattering below ground state energy was proved in [18] and [START_REF] Duyckaerts | Scattering for the non-radial 3D cubic nonlinear Schrödinger equation[END_REF] (the former in the radial case, the latter in the non-radial case, both for the 3D cubic equation) and then in [1,[START_REF] Bellazzini | Ground state energy threshold and blow-up for NLS with competing nonlinearities[END_REF] in the general dimension case. The argument in the these cited papers follows the Kenig-Merle road map [21] with a concentrationcompactness-rigidity scheme. An alternative recent strategy to prove scattering below the ground state energy is given by Dodson-Murphy in [11] for the Ḣ1/2 -critical focusing equation, combining interaction Morawetz estimates together with a scattering criterion. See also [START_REF] Dinh | A unified approach for energy scattering for focusing nonlinear Schrödinger equations[END_REF] for a generalisation to intracritical powers.

In the case we consider here, namely a focusing leading term and a defocusing perturbation we quote the early work by Miao, Xu, and Zhao [START_REF] Miao | The dynamics of the 3D radial NLS with the combined terms[END_REF] that considered in the radial case an energy critical focusing power with a cubic defocusing perturbation. The key argument to overcame the difficulty to treat a non-scaling invariant equation in [START_REF] Miao | The dynamics of the 3D radial NLS with the combined terms[END_REF], deeply inspired by [19], consists in a new radial profile decomposition with the scaling parameter and then apply it to the scattering theory. More recently, Cheng, Miao, and Zhao [START_REF] Cheng | Global well-posedness and scattering for nonlinear Scdinger equations with combined nonlinearities in the radial case[END_REF], and Luo [START_REF] Luo | Scattering threshold for radial defocusing-focusing mass-energy double critical nonlinear Schrödinger equation in d ≥ 5[END_REF] treated, still in the radial case, the focusing energy critical or energy subcritical power with a mass critical defocusing term. The radial assumption in dimension d ≤ 4 has been recently removed by Cheng [START_REF] Cheng | Scattering for the mass supercritical perturbations of the mass critical nonlinear Schrödinger equations[END_REF].

Remark 1.2. To the best of our knowledge, this is the first result of scattering for nonradial defocusing-focusing solutions in the range of nonlinearities as in the statement of the above Theorem (see also [34, Table 1]). Cheng in [START_REF] Cheng | Scattering for the mass supercritical perturbations of the mass critical nonlinear Schrödinger equations[END_REF] removed the radiality assumption when working with a defocusing mass-critical nonlinearity. Let us mention that we addressed the blow-up problem for (1.2) in our previous work [4]. See next paragraph.

Our second result concerns the blow-up for (1.2) with initial data in A - ω . In [4], we proved that if 7 3 < p < 5, 1 < q < p, and ω > 0, for u 0 ∈ A - ω , if one of the following conditions is satisfied:

• u 0 ∈ Σ(R 3 ) := H 1 (R 3 ) ∩ L 2 (R 3 , |x| 2 dx), • u 0 ∈ H 1 (R 3 ) is radial, • u 0 ∈ Σ 3 (R 3
) and p ≤ 3, where

Σ 3 (R 3 ) := f ∈ H 1 (R 3 ) : f (x) = f (x, x 3 ) = f (|x|, x 3 ), f ∈ L 2 (R 3 , x 2 3 dx) , x = (x 1 ,
x 2 ), then the corresponding solution to (1.2) blows up in finite time.

Here we show that we have the following blow-up rate for (1.2).

Theorem 1.3. Let 7 3 < p < 5, 1 < q < p, ω > 0, and u 0 ∈ A - ω . (i) Assume that one of the following conditions is fulfilled:

(1)

u 0 ∈ H 1 (R 3 ) is radial, (2) u 0 ∈ Σ 3 (R 3
) and p < 3. Then the corresponding solution to (1.2) blows up in finite time, i.e., T * < +∞, and for

t close to T * , ˆT * t (T * -τ ) ∇u(τ ) 2 L 2 (R 3 ) dτ ≤ C(T * -t) 2(5-p) p+3 if (1) holds, C(T * -t) 4(3-p) 5-p if (2) holds. (1.6) 
In addition, there exists a time sequence t n ր T * such that

∇u(t n ) L 2 (R 3 ) ≤ C(T * -t n ) -2(p-1) p+3 if (1) holds, C(T * -t n ) -p-1 5-p if (2) holds.
(1.7)

(ii) If we do not assume any symmetry on the solution (nor any restriction on the exponents), then either T * < ∞ or u grows up in infinite time, namely T * = ∞ and lim sup t→∞ ∇u(t

) L 2 (R 3 ) = ∞.
The Theorem above is based on the results we obtained in [4], jointly with a Merle, Raphaël, and Szeftel argument [30]. Moreover, the grow-up result follows by means of the Du, Wu, and Zhang approach [START_REF] Du | On blow-up criterion for the nonlinear Schrödinger equation[END_REF]. All of these results come from virial estimates for suitable localization functions.

Notations. In the rest of the paper, we will use the notations below.

Given two quantities A and B, we denote A B if there exists a positive constant C such that A ≤ CB. For 1 ≤ p ≤ ∞, the L p = L p (Ω; C) are the classical Lebesgue spaces endowed with norm

f L p (Ω) = ´Ω |f (x)| p dx 1/p if p = ∞ or f L ∞ (Ω) = ess sup x∈Ω |f (x)|
for p = ∞. We denote by H 1 = H 1 (R 3 ; C) the usual Sobolev space of L 2 functions with gradient in L 2 . Here • stands for the Japanese brackets

• = (1 + | • | 2 ) 1/2
. Given an interval I ⊆ R, bounded or unbounded, we define by L p t X x = L p t (I, X x ) the Bochner space of vector-valued functions f : I → X endowed with the norm ´I f (s) p X ds 1/p for 1 ≤ p < ∞, with similar modification as above for p = ∞. (In what follows, f ∈ L p t X x means that f = f (t, x) is a function depending on the time variable t ∈ I ⊆ R and the space variable x ∈ R 3 , with finite L p t X x -norm). For any p ∈ [1, ∞], p ′ denotes its dual defined by p ′ = p p-1 . As we work in the 3D case, we omit the R 3 notation when no confusion may arise.

Variational analysis

In this section, we recall and prove some crucial variational tools used along the paper, used in particular to define the scattering/blow-up dichotomy regions of initial data for the Cauchy problem (1.2). Furthermore, some of the results illustrated below will be also essential in proving a new coercivity property that we need to prove scattering by means of suitable interaction Morawetz estimates.

Let ω > 0. We consider the minimization problem

m ω := inf S ω (φ) : φ ∈ H 1 \{0}, G(φ) = 0 , where S ω (φ) = E(φ) + ω 2 M(φ) = 1 2 ∇φ 2 L 2 - 1 p + 1 φ p+1 L p+1 + 1 q + 1 φ q+1 L q+1 + ω 2 φ 2 L 2
is the action functional and

G(φ) = ∇φ 2 L 2 - 3(p -1) 2(p + 1) φ p+1 L p+1 + 3(q -1) 2(q + 1) φ q+1 L q+1
is the Pohozaev functional.

Proposition 2.1. Let 7 3 < p < 5, 1 < q < p, and ω > 0. Then m ω > 0 and there exists at least a minimizer for m ω .

Before giving the proof of Proposition 2.1, let us start with the following observation.

Lemma 2.2. Let φ ∈ H 1 \{0}. Then there exists a unique λ 0 > 0 such that

G(φ λ )    > 0 if 0 < λ < λ 0 , = 0 if λ = λ 0 , < 0 if λ > λ 0 , where φ λ (x) := λ 3 2 φ(λx), λ > 0.
(2.1)

Proof. We have

G(φ λ ) = λ 2 ∇φ 2 L 2 - 3(p -1) 2(p + 1) λ 3 2 (p-1) φ p+1 L p+1 + 3(q -1) 2(q + 1) λ 3 2 (q-1) φ q+1 L q+1 = λ 2 ∇φ 2 L 2 - 3(p -1) 2(p + 1) λ 3 2 (p-1)-2 φ p+1 L p+1 + 3(q -1) 2(q + 1) λ 3 2 (q-1)-2 φ q+1 L q+1 =: λ 2 f (λ).
Consider f (λ) = a -bλ α + cλ β with a, b, c > 0, α > 0, and β < α. We have

f ′ (λ) = λ β-1 (cβ -bαλ α-β ).
In particular, there exists a unique λ 1 > 0 such that

f (λ 1 ) = max λ>0 f (λ).
Drawing the graph of f , we see that there exists a unique λ 0 > 0 such that f (λ 0 ) = 0. Moreover, f (λ) > 0 for 0 < λ < λ 0 and f (λ) < 0 for λ > λ 0 . This shows the lemma.

Proof of Proposition 2.1. We proceed in several steps, illuminated by the works of Ibrahim, Masmoudi, and Nakanishi [19], and Akahori, Ibrahim, Kikuchi, and Nawa [2].

Step 1. An auxiliary minimization problem. Denote

I ω (φ) := S ω (φ) - 2 3(q -1) G(φ) = 3q -7 6(q -1) ∇φ 2 L 2 + p -q (p + 1)(q -1) φ p+1 L p+1 + ω 2 φ 2 L 2
and consider mω :

= inf I ω (φ) : φ ∈ H 1 \{0}, G(φ) ≤ 0 . (2.2)
We claim that m ω = mω > 0. In fact, it is clear that mω ≤ m ω . Now let φ ∈ H 1 \{0} be such that G(φ) ≤ 0. By Lemma 2.2, there exists λ 0 ∈ (0, 1] such that G(φ λ 0 ) = 0. Thus

m ω ≤ S ω (φ λ 0 ) = I ω (φ λ 0 ) ≤ I ω (φ),
where we have used λ 0 ≤ 1 in the last inequality. Taking the infimum, we get m ω ≤ mω , hence m ω = mω .

To see that mω > 0, we take a minimizing sequence {φ n } n for mω , i.e., φ n ∈ H 1 \{0}, G(φ n ) ≤ 0, and I ω (φ n ) → mω . As I ω is non-negative, there exists

C = C(ω) > 0 such that φ n 2 L 2 ≤ C, ∀n ≥ 1. On the other hand, since G(φ n ) ≤ 0, we have ∇φ n 2 L 2 ≤ 3(p -1) 2(p + 1) φ n p+1 L p+1
which together with the standard Gagliardo-Nirenberg inequality yield

∇φ n 2 L 2 ≤ C ∇φ n 3(p-1) 2 L 2 φ n 5-p 2 L 2 ≤ C ∇φ n 3(p-1) 2 L 2
. This shows that

∇φ n 2 L 2 ≥ C > 0, ∀n ≥ 1, (2.3) 
hence mω > 0.

Step 2. Minimizers for mω . Let {φ n } n be a minimizing sequence for mω . Observe that if φ * n is the Schwarz symmetrization of φ n , then {φ * n } n is still a minimizing sequence for mω . Thus without loss of generality, we can assume that φ n is radially symmetric. As I ω is non-negative, we see that {φ n } n is a bounded sequence in H 1 . Passing to a subsequence if necessary, there exists φ ∈ H 1 such that φ n ⇀ φ weakly in H 1 and φ n → φ strongly in L r for all 2 < r < 6. As G(φ n ) ≤ 0, using (2.3), we have

φ n p+1 L p+1 ≥ 2(p + 1) 3(p -1) ∇φ n 2 L 2 ≥ 2(p + 1) 3(p -1) C > 0, ∀n ≥ 1
which shows φ = 0. We also have

G(φ) ≤ lim inf n→∞ G(φ n ) = 0, thus mω ≤ I ω (φ) ≤ lim inf n→∞ I ω (φ n ) = mω .
This shows that φ is a minimizer for mω .

Step 3. Minimizers for m ω . We now show that there exists at least a minimizer for m ω . Let φ be a minimizer for mω . By Lemma 2.2, there exists λ 0 ∈ (0, 1] such that G(φ λ 0 ) = 0. Thus

m ω ≤ S ω (φ λ 0 ) = I ω (φ λ 0 ) ≤ I ω (φ) = mω = m ω .
This shows that λ 0 = 1, G(φ) = 0, and S ω (φ) = m ω . In particular, φ is a minimizer for m ω .

Scattering criterion

In this section, we state and prove the key dispersive/Strichartz estimates which will enable us to state a scattering criterion. The results contained in this section are inspired by the recent techniques developed in the paper by Dodson and Murphy [11].

We start by reporting the well-known 3D dispersive estimate, see [6] for a proof. Lemma 3.1. We have, for all r ∈ [2, ∞] and for any t = 0,

e it∆ f L r x |t| -3 2 (1-2 r ) f L r ′ x (3.1)
for any f ∈ L r ′ .
The next ones are the well-known Strichartz estimates, arising from the dispersive estimate above. See [6,[START_REF] Keel | Endpoint Strichartz estimates[END_REF].

Proposition 3.2. The following space-time bounds hold true.

• (Homogeneous Strichartz estimates) For any f ∈ L 2 and any Schrödinger admissible pair (a, b), i.e.,

2 a + 3 b = 3 2 , b ∈ [2, 6], then e it∆ f L a t (R,L b x ) f L 2 x . • (Inhomogeneous Strichartz estimates) Let I ⊂ R be an interval containing 0. Then ˆt 0 e i(t-s)∆ F (s)ds L a t (I,L b x ) F L ρ ′ t (I,L γ ′ x )
for any F ∈ L ρ ′ t (I, L γ ′ x ) and any Schrödinger admissible pairs (a, b) and (ρ, γ). • (Strichartz estimates for non-admissible pairs) Let I ⊂ R be an interval containing 0 and (a, b) be a Schrödinger admissible pair with b > 2. Fix m > a 2 and define n by

1 m + 1 n = 2 a .
Then ˆt 0 e i(t-s)∆ F (s)ds

L m t (I,L b x ) F L n ′ t (I,L b ′ x ) for any F ∈ L n ′ t (I, L b ′ x
). Let us introduce some notations.

a 1 := 4(p + 1) 3(p -1) , m 1 := 2(p -1)(p + 1) 5 -p , n 1 := 2(p -1)(p + 1) 3p 2 -5p -2 , a 2 := 4(q + 1) 3(q -1)
, m 2 := 2(q -1)(q + 1) 5 -q , n 2 := 2(q -1)(q + 1) 3q 2 -5q -2 , and

b 1 := p + 1, r 1 := 6(p -1)(p + 1) 3p 2 + 2p -13 , b 2 := q + 1, r 1 := 6(q -1)(q + 1) 3q 2 + 2q -13 .
We readily check that (a 1 , b 1 ), (a 2 , b 2 ), (m 1 , r 1 ), (m 2 , r 2 ) are Schrödinger admissible pairs,

1 m 1 + 1 n 1 = 2 a 1 , 1 m 2 + 1 n 2 = 2 a 2 , and 1 b 1 = 1 r 1 - σ 1 3 , 1 b 2 = 1 r 2 - σ 2 3 ,
where

σ 1 := 3p -7 2(p -1)
, σ 2 := 3q -7 2(q -1) .

The following Lemma follows directly from the above choices, Hölder's inequality, and Sobolev embeddings. Lemma 3.3. Let I ⊂ R be an interval. We have

|u| p-1 u L n ′ 1 t (I,L b ′ 1 x ) u p L m 1 t (I,L b 1 x ) , |u| q-1 u L n ′ 2 t (I,L b ′ 2 x ) u q L m 2 t (I,L b 2 x )
,

∇ (|u| p-1 u) L a ′ 1 t (I,L b ′ 1 x ) u p-1 L m 1 t (I,L b 1 x ) ∇ u L a 1 t (I,L b 1 x ) , ∇ (|u| q-1 u) L a ′ 2 t (I,L b ′ 2 x ) u q-1 L m 2 t (I,L b 2 x ) ∇ u L a 2 t (I,L b 2 x ) , u L m 1 t (I,L b 1 x ) |∇| σ 1 u L m 1 t (I,L r 1 x ) ∇ u L m 1 t (I,L r 1 x ) , u L m 2 t (I,L b 2 x ) |∇| σ 2 u L m 2 t (I,L r 2 x ) ∇ u L m 2 t (I,L r 2 x ) .
We next prove a global existence result for small data. Lemma 3.4. Let 7 3 < q < p < 5 and T > 0 be such that u(T ) ∈ H 1 . Then there exists δ > 0 sufficiently small such that if

e i(t-T )∆ u(T ) L m 1 t ([T,∞),L b 1 x )∩L m 2 t ([T,∞),L b 2 x ) < δ, then there exists a unique solution to (1.2) with initial datum u(T ) satisfying u L m 1 t ([T,∞),L b 1 x )∩L m 2 t ([T,∞),L b 2 x ) ≤ 2 e i(t-T )∆ u(T ) L m 1 t ([T,∞),L b 1 x )∩L m 2 t ([T,∞),L b 2 x ) and ∇ u L a 1 t ([T,∞),L b 1 x )∩L a 2 ([T,∞),L b 2 x ) ≤ C u(T ) H 1 x
for some constant C > 0.

Proof. We consider

X T := u : u L m 1 t (I,L b 1 x )∩L m 2 t (I,L b 2 x ) ≤ M, ∇ u L a 1 t (I,L b 1 x )∩L a 2 t (I,L b 2 x ) ≤ L equipped with the distance d(u, v) := u -v L a 1 t (I,L b 1 x )∩L a 2 t (I,L b 2 x ) ,
where I = [T, ∞) and M, L > 0 will be chosen later. By the persistence of regularity (see e.g., [6, Theorem 1.2.5]), we readily see that (X T , d) is a complete metric space. Our purpose is to show that the Duhamel functional

Φ T (u(t)) := e i(t-T )∆ u(T ) + i ˆt T e i(t-s)∆ |u(s)| p-1 u(s) -|u(s)| q-1 u(s) ds (3.2)
is a contraction on (X T , d). By Strichartz estimates and Lemma 3.3, we have

Φ T (u) L m 1 t (I,L b 1 x ) ≤ e i(t-T )∆ u(T ) L m 1 t (I,L b 1 x ) + ˆt T e i(t-s)∆ |u(s)| p-1 u(s)ds L m 1 t (I,L b 1 x ) + ˆt T e i(t-s)∆ |u(s)| q-1 u(s)ds L m 1 t (I,L b 1 x ) ≤ e i(t-T )∆ u(T ) L m 1 t (I,L b 1 x ) + C |u| p-1 u L n ′ 1 t (I,L b ′ 1 x ) + ∇ ˆt T e i(t-s)∆ |u(s)| q-1 u(s)ds L m 1 t (I,L r 1 x ) ≤ e i(t-T )∆ u(T ) L m 1 t (I,L b 1 x ) + C |u| p-1 u L n ′ 1 t (I,L b ′ 1 x ) + C ∇ (|u| q-1 u) L a ′ 2 t (I,L b ′ 2 x ) ≤ e i(t-T )∆ u(T ) L m 1 t (I,L b 1 x ) + C u p L m 1 t (I,L b 1 x ) + u q-1 L m 2 t (I,L b 2 x ) ∇ u L a 2 t (I,L b 2 x ) . Similarly, we have Φ T (u) L m 2 t (I,L b 2 x ) ≤ e i(t-T )∆ u(T ) L m 2 t (I,L b 2 x ) + C u p-1 L m 1 t (I,L b 1 x ) ∇ u L a 2 t (I,L b 2 x ) + C u q L m 2 t (I,L b 2 x )
.

We next estimate

∇ Φ T (u) L a 1 t (I,L b 1 x ) ≤ C u(T ) H 1 x + C ∇ (|u| p-1 u) L a ′ 1 t (I,L b ′ 1 x ) + C ∇ (|u| q-1 u) L a ′ 2 t (I,L b ′ 2 x ) ≤ C u(T ) H 1 x + C u p-1 L m 1 t (I,L b 1 x ) ∇ u L a 1 t (I,L b 1 x ) + C u q-1 L m 2 t (I,L b 2 x ) ∇ u L a 2 t (I,L b 2 x )
and

∇ Φ T (u) L a 2 t (I,L b 2 x ) ≤ C u(T ) H 1 x + C u p-1 L m 1 t (I,L b 1 x ) ∇ u L a 1 t (I,L b 1 x ) + C u q-1 L m 2 t (I,L b 2 x ) ∇ u L a 2 t (I,L b 2 x ) . Next we have Φ T (u) -Φ T (v) L a 1 t (I,L b 1 x )∩L a 2 t (I,L b 2 x ) ≤ C |u| p-1 u -|v| p-1 v L n ′ 1 t (I,L b ′ 1 x ) + C |u| q-1 u -|v| q-1 v L n ′ 2 t (I,L b ′ 2 x ) ≤ u p-1 L m 1 t (I,L b 1 x ) + v p-1 L m 1 t (I,L b 1 x ) u -v L a 1 t (I,L b 1 x ) + u q-1 L m 2 t (I,L b 2 x ) + v q-1 L m 2 t (I,L b 2 x ) u -v L a 2 t (I,L b 2 x ) .
Thus there exists C > 0 independent of T such that for any u, v ∈ X T , we have

Φ T (u) L m 1 t (I,L b 1 x )∩L m 2 t (I,L b 2 x ) ≤ e i(t-T )∆ u(T ) L m 1 t (I,L b 1 x )∩L m 2 t (I,L b 2 x ) + C(M q + M p ) + C(M q-1 + M p-1 )L, ∇ Φ T (u) L a 1 t (I,L b 1 x )∩L a 2 t (I,L b 2 x ) ≤ C u(T ) H 1 x + C(M q-1 + M p-1 )L, and d(Φ T (u), Φ T (v)) ≤ C(M q-1 + M p-1 )d(u, v). By choosing M = 2 e i(t-T )∆ u(T ) L m 1 t (I,L b 1 x )∩L m 2 t (I,L b 2 x ) and L = 2C u(T ) H 1
x and taking M sufficiently small, we see that Φ T is a contraction on (X T , d). This completes the proof.

The next Lemma is a small data scattering result.

Lemma 3.5. Let 7 3 < q < p < 5. Suppose that u(t) is a global solution to (1.2) satisfying u L ∞ t (R,H 1 x ) < ∞. Then there exists δ > 0 sufficiently small such that if e i(t-T )∆ u(T ) L m 1 t ([T,∞),L b 1 
x ) < δ for some T > 0, then u scatters forward in time.

Proof. We first observe that for any interval

I ⊂ R, u L m 2 t (I,L b 2 x ) ≤ u θ L m 1 t (I,L b 1 x ) u 1-θ L ρ t (I,L γ x ) , where θ = (3q -7)(p -1) (3p -7)(q -1) , ρ = (1 -θ)m 1 m 2 m 1 -θm 2 , γ = (1 -θ)b 1 b 2 b 1 -θb 2 .
We readily check that for 7 3 < q < p < 5,

θ ∈ (0, 1), 2 ρ + 3 γ = 3 2 , γ ∈ [2, 6],
namely (ρ, γ) is a Schrödinger admissible pair. It follows that

e i(t-T )∆ u(T ) L m 2 t ([T,∞),L b 2 x ) ≤ e i(t-T )∆ u(T ) θ L m 1 t ([T,∞),L b 1 
x ) e i(t-T )∆ u(T ) 1-θ

L ρ t ([T,∞),L γ x ) ≤ δ θ u(T ) 1-θ H 1 x . Thus e i(t-T )∆ u(T ) L m 1 t ([T,∞),L b 1 x )∩L m 2 t ([T,∞),L b 2 
x ) < ε(δ) for some ε(δ) > 0 small depending on δ. By Lemma 3.4, we have

u L m 1 t ([T,∞),L b 1 x )∩L m 2 t ([T,∞),L b 2 x ) ≤ 2 e i(t-T )∆ u(T ) L m 1 t ([T,∞),L b 1 x )∩L m 2 t ([T,∞),L b 2 x ) (3.3) and ∇ u L a 1 t ([T,∞),L b 1 x )∩L a 2 ([T,∞),L b 2 x ) ≤ C u(T ) H 1 x (3.4)
for some constant C > 0.

For T < t 1 < t 2 , we use the Duhamel formula (3.2), (3.3), and (3.4) to have

e -it 2 ∆ u(t 2 ) -e -it 1 ∆ u(t 1 ) H 1 x ≤ C ∇ (|u| p-1 u) L a ′ 1 t ((t 1 ,t 2 ),L b ′ 1 x ) + C ∇ (|u| q-1 u) L a ′ 2 t ((t 1 ,t 2 ),L b ′ 2 x ) ≤ C u p-1 L m 1 t ((t 1 ,t 2 ),L b 1 x ) ∇ u L a 1 t ((t 1 ,t 2 ),L b 1 x ) + C u q-1 L m 2 t ((t 1 ,t 2 ),L b 2 x ) ∇ u L a 2 t ((t 1 ,t 2 ),L b 2 
x ) → 0 as t 1 , t 2 → ∞. This shows that {e -it∆ u(t)} t→∞ is a Cauchy sequence in H 1 x . Thus there exists

u + = e -iT ∆ u(T ) + i ˆ∞ T e -is∆ |u(s)| p-1 u(s) -|u(s)| q-1 u(s) ds ∈ H 1 x
such that e -it∆ u(t) → u + strongly in H 1 x as t → ∞. By the unitary property of the propagator, we obtain u(t) -e it∆ u + H 1 x → 0 as t → ∞. The proof is complete.

We are now ready to state the following scattering criterion. As explained in [11], the criterion infers that if on any time interval which is large enough, one can find a large interval where the scattering norm is small, then the global solution scatters. Lemma 3.6. Let 7 3 < q < p < 5. Suppose that u(t) is a global solution to

(1.2) satisfying u L ∞ t (R,H 1 x ) < ∞.
Then there exist ε > 0 and T 0 = T 0 (ε) > 0 such that if for any a > 0, there exists t 0 ∈ (a, a

+ T 0 ) such that [t 0 -ε -σ , t 0 ] ⊂ (a, a + T 0 ) and u L m 1 t ([t 0 -ε -σ ,t 0 ],L b 1 x ) ε (3.5)
for some σ > 0, then the solution scatters forward in time.

Proof. By Lemma 3.5, it suffices to prove that there exists T > 0 such that

e i(t-T )∆ u(T ) L m 1 t ([T,∞),L b 1 x ) ε µ (3.6)
for some µ > 0. To show (3.6), we write e i(t-T )∆ u(T ) = e it∆ u 0 + i ˆT 0 e i(t-s)∆ |u(s)| p-1 u(s) -|u(s)| q-1 u(s) ds.

By Sobolev embedding and Strichartz estimate, we have

e it∆ u 0 L m 1 t (R,L b 1 
x )

u 0 H 1 x . By the monotone convergence theorem, there exists T 1 > 0 sufficiently large such that for all T > T 1 ,

e it∆ u 0 L m 1 t ([T,∞),L b 1 x ) ε. (3.7) 
Taking a = T 1 and T = t 0 with a and t 0 as in (3.5), we write

ˆT 0 e i(t-s)∆ |u(s)| p-1 u(s) -|u(s)| q-1 u(s) ds = ˆI1 ∪I 2 e i(t-s)∆ |u(s)| p-1 u(s) -|u(s)| q-1 u(s) ds
where

I 1 = [T -ε -σ , T ] and I 2 = [0, T -ε -σ ]
. By using the linearity, we denote by F 1 (t) and F 2 (t) the integrals over I 1 and I 2 , respectively.

To estimate F 1 , we start with the following observation:

u L qn ′ 1 t (I 1 ,L qb ′ 1 x ) ≤ u θ L m 1 t (I 1 ,L b 1 x ) u 1-θ L ρ t (I 1 ,L γ x ) , (3.8) 
where

θ = 3pq -3q -4p q(3p -7) , ρ = (1 -θ)qm 1 n ′ 1 m 1 -θqn ′ 1 , γ = (1 -θ)qb 1 b ′ 1 b 1 -θqb ′ 1 .
Since 7 3 < q < p < 5, we see that

θ ∈ (0, 1), 2 ρ + 3 γ = 3 2 , γ ∈ [2, 6].
In particular, (ρ, γ) is a Schrödinger admissible pair. Using (3.8), we have

F 1 L m 1 t (([T,∞)L b 1 x ) ≤ C |u| p-1 u L n ′ 1 t (I 1 ,L b ′ 1 x ) + C |u| q-1 u L n ′ 1 t (I 1 ,L b ′ 1 x ) ≤ C u p L m 1 t (I 1 ,L b 1 x ) + C u q L qn ′ 1 t (I 1 ,L qb ′ 1 x ) ≤ C u p L m 1 t (I 1 ,L b 1 x ) + C u qθ L m 1 t (I 1 ,L b 1 x ) u q(1-θ) L ρ t (I 1 ,L γ x ) ≤ C u p L m 1 t (I 1 ,L b 1 x ) + C|I 1 | q ρ (1-θ) u qθ L m 1 t (I 1 ,L b 1 x ) u q(1-θ) L ∞ t (I 1 ,H 1 x ) . Since u L ∞ t (R,H 1 x ) < ∞, we infer from (3.5) that F 1 L m 1 t ([T,∞),L b 1 x ) ≤ Cε p + Cε qθ-q ρ σ(1-θ) .
Taking σ > 0 small, we have

F 1 L m 1 t ([T,∞),L b 1 x ) ≤ Cε µ (3.9)
for some µ > 0.

To estimate F 2 , we use Hölder's inequality to have

F 2 L m 1 t ([T,∞),L b 1 x ) ≤ F 2 r 1 b 1 L m 1 t ([T,∞),L r 1 x ) F 2 b 1 -r 1 b 1 L m 1 t ([T,∞),L ∞ x )
. As (m 1 , r 1 ) is a Schrödinger admissible pair and

F 2 (t) = e i(t-T +ε -σ )∆ u(T -ε -σ ) -e it∆ u 0 , we have F 2 L m 1 t ([T,∞),L r 1 
x )

1.

On the other hand, by the dispersive estimates (3.1) and Sobolev embedding, and noting that m 1 > 2, we have for all t ≥ T ,

F 2 (t) L ∞ x ˆT-ε -σ 0 (t -s) -3 2 |u(s)| p-1 u(s) L 1 x + |u(s)| q-1 u(s) L 1 x ds = ˆT-ε -σ 0 (t -s) -3 2 u(s) p L p x + u(s) q L q x ds ˆT-ε -σ 0 (t -s) -3 2 u(s) p H 1 x + u(s) q H 1 x ds (t -T + ε -σ ) -1 2 . It follows that F 2 L m 1 t ([T,∞),L ∞ x ) ˆ∞ T (t -T + ε -σ ) -m 1 2 dt 1 m 1 ε σ 1 2 -1 m 1 .
In particular, we get

F 2 L m 1 t ([T,∞),L b 1 x ) ε σ 1 2 -1 m 1 r 1 -b 1 r 1 . (3.10) 
Collecting (3.7), (3.9), (3.10), and choosing σ > 0 sufficiently small, we prove (3.6). The proof is complete.

Energy Scattering

This section is the bulk of the paper and contains the main novelty. Specifically, we will prove a coercivity property, see Lemma 4.2 below, and the interaction Morawetz estimates that will allow to prove the scattering for large data global solutions to (1.2). 4.1. A cutoff function. Let η ∈ (0, 1) be a small constant. Let χ be a smooth decreasing radial function satisfying

χ(x) = χ(r) = 1 if r ≤ 1 -η, 0 if r > 1, |χ ′ (r)| 1 η , r = |x|. (4.1)
For R > 0 large, we define the functions

φ R (x) := 1 ω 3 R 3 ˆχ2 R (x -z)χ 2 R (z)dz and φ p,R (x) : = 1 ω 3 R 3 ˆχ2 R (x -z)χ p+1 R (z)dz, φ q,R (x) : = 1 ω 3 R 3 ˆχ2 R (x -z)χ q+1 R (z)dz,
where χ R (z) := χ(z/R), and ω 3 is the volume of the unit ball in R 3 . We see that φ R , φ p,R , and φ q,R are radial functions. We next define the radial function

ψ R (x) = ψ R (r) := 1 r ˆr 0 φ R (τ )dτ, r = |x|. (4.2)
We collect some basic properties of φ R , φ p,R , φ q,R , and ψ R as follows (see [START_REF] Dinh | Non-radial scattering theory for nonlinear Schrödinger equations with potential[END_REF] for a proof.).

Lemma 4.1. We have

|ψ R (x)| min 1, R |x| , ∂ j ψ R (x) = x j |x| 2 (φ R (x) -ψ R (x)) , j = 1, 2, 3 and ψ R (x) -φ R (x) ≥ 0, φ R (x) -φ q,R (x) ≥ 0, |φ R (x) -φ p,R (x)| η (4.3) and |∇φ R (x)| 1 ηR , |ψ R (x) -φ R (x)| 1 η min |x| R , R |x| , |∇ψ R (x)| 1 η min 1 R , R |x| 2 (4.4)
for all x ∈ R 3 .

A coercivity property.

The following is the essential new ingredient that will be exploited to prove suitable interaction Morawetz estimates. As already mentioned in the introduction, the scaling invariant equation with one nonlinearity is treated by taking advantage of the refined Gagliardo-Nirenberg inequality (1.5), that we cannot use in the present paper.

Lemma 4.2. Let 7 3 < q < p < 5 and ω > 0. Then A + ω is invariant under the flow of (1.2), i.e., if u 0 ∈ A + ω , then u(t) ∈ A + ω for all t ∈ I max . In particular, the solution to (1.2) with initial data u 0 exists globally in time. In addition, there exists R 0 > 0 sufficiently large such that for all R ≥ R 0 , all z ∈ R 3 , and all t ∈ R,

G(χ R (• -z)u ξ (t)) ≥ δ ∇(χ R (• -z)u ξ (t)) 2 L 2 , (4.5) 
where u ξ (t, x) := e ix•ξ u(t, x) with ξ = ξ(t, z, R) and

ξ(t, z, R) :=              - ˆIm(χ 2 R (x -z)u(t, x)∇u(t, x))dx ˆχ2 R (x -z)|u(t, x)| 2 dx if ˆχ2 R (x -z)|u(t, x)| 2 dx = 0, 0 if ˆχ2 R (x -z)|u(t, x)| 2 dx = 0, (4.6)
and χ R (x) = χ(x/R) with χ as in (4.1)

Proof. Let u 0 ∈ A + ω . We will show that u(t) ∈ A + ω for all t ∈ I max . By the conservation of mass and energy, we have S ω (u(t)) = S ω (u 0 ) < m ω for all t ∈ I max . Assume by contradiction that there exists t 0 such that G(u(t 0 )) < 0. As u : I max → H 1 is continuous, there exists t 1 such that G(u(t 1 )) = 0. By the definition of m ω , we have S ω (u(t 1 )) ≥ m ω which is a contraction. Thus G(u(t)) ≥ 0 for all t ∈ I max or A + ω is invariant under the flow of (1.2).

As G(u(t)) ≥ 0, we have 3q -7 6(q -1)

∇u(t) 2 L 2 + p -q (p + 1)(q -1) u(t) p+1 L p+1 + ω 2 u(t) 2 L 2 = I ω (u(t)) = S ω (u(t)) - 2 3(q -1) G(u(t)) ≤ S ω (u(t)) < m ω , ∀t ∈ I max .
This shows that

∇u(t) 2 L 2 ≤ 6(q -1) 3q -7 m ω , ∀t ∈ I max . (4.7)
The blow-up alternative shows that the solution must exist globally in time.

Next we prove (4.5). To this end, we observe that

I ω (u(t)) = S ω (u(t)) - 2 3(q -1) G(u(t)) ≤ S ω (u(t)) = S ω (u 0 ) = m ω -ν, ∀t ∈ I max , (4.8) 
for some ν > 0 as S ω (u 0 ) < m ω . Using

ˆ|∇(χu)| 2 dx = ˆχ2 |∇u| 2 dx -ˆχ∆χ|u| 2 dx, (4.9) 
we have

ˆ|∇(χu ξ )| 2 dx = |ξ| 2 ˆχ2 |u| 2 dx + ˆχ2 |∇u| 2 dx -ˆχ∆χ|u| 2 dx + 2ξ • ˆIm(χ 2 u∇u)dx.
By the definition of ξ, we have

I ω (χ R (• -z)u ξ (t)) = 3q -7 6(q -1) ˆχ2 R (• -z)|∇u(t)| 2 dx -ˆχR (• -z)∆χ R (• -z)|u(t)| 2 dx - 3q -7 6(q -1) ˆIm(χ 2 R (• -z)u(t, x)∇u(t, x))dx 2 ˆχ2 R (• -z)|u(t, x)| 2 dx + p -q (p + 1)(p -1) ˆχp+1 R (• -z)|u(t)| p+1 dx + ω 2 ˆχ2 R (• -z)|u(t)| 2 dx ≤ I ω (u(t)) + O(R -2 ).
Thus, by (4.8), there exists R 0 > 0 sufficiently large such that

I ω (χ R (• -z)u ξ (t)) ≤ m ω - ν 2 , ∀R ≥ R 0 , ∀z ∈ R 3 , ∀t ∈ R. (4.10)
We claim that

G(χ R (• -z)u ξ (t)) > 0, ∀R ≥ R 0 , ∀z ∈ R 3 , ∀t ∈ R. (4.11) Suppose now that there exists R 1 ≥ R 0 , z 1 ∈ R 3 , t 1 ∈ R, and ξ 1 = ξ(t 1 , z 1 , R 1 ) ∈ R 3 such that G(χ R 1 (• -z 1 )u ξ 1 (t 1 )) ≤ 0.
Using the definition of mω (see (2.2)) and the fact that m ω = mω , we have

I ω (χ R 1 (• -z 1 )u ξ 1 (t 1 )) ≥ m ω
which contradicts (4.10).

For R ≥ R 0 , z ∈ R 3 , t ∈ R, and ξ = ξ(t, z, R) ∈ R 3 , we denote Θ := χ R (x -z)u ξ (t). We consider two cases.

Case 1. Assume that 4 ∇Θ 2 L 2 - 3(p -1)(3p + 1) 4(p + 1) Θ p+1 L p+1 + 3(q -1)(3q + 1) 4(q + 1) Θ q+1 L q+1 ≥ 0.
Then we have

G(Θ) = ∇Θ 2 L 2 - 3(p -1) 2(p + 1) Θ p+1 L p+1 + 3(q -1) 2(q + 1) Θ q+1 L q+1 ≥ 3p -7 3p + 1 ∇Θ 2 L 2 + 9(q -1)(p -q) 2(q + 1)(3p + 1) Θ q+1 L q+1 ≥ 3p -7 3p + 1 ∇Θ 2 L 2 .
This proves (4.5).

Case 2. We now assume that

4 ∇Θ 2 L 2 - 3(p -1)(3p + 1) 4(p + 1) Θ p+1 L p+1 + 3(q -1)(3q + 1) 4(q + 1) Θ q+1 L q+1 < 0. (4.12)
We first observe that as I ω (Θ) < m ω (see (4.10)), an argument leading to (4.7) yields

∇Θ 2 L 2 ≤ 6(q -1) 3q -7 m ω . (4.13)
Now set f (λ) := S ω (Θ λ ), with Θ λ as in the rescaling (2.1). We have

f ′ (λ) = λ ∇Θ 2 L 2 - 3(p -1) 2(p + 1) λ 3(p-1) 2 -1 Θ p+1 L p+1 + 3(q -1) 2(q + 1) λ 3(q-1) 2 -1 Θ q+1 L q+1 = G(Θ λ ) λ and (λf ′ (λ)) ′ = 2λ ∇Θ 2 L 2 - 9(p -1) 2 4(p + 1) λ 3(p-1) 2 -1 Θ p+1 L p+1 + 9(q -1) 2 4(q + 1) λ 3(q-1) 2 -1 Θ q+1 L q+1 .
We write

(λf ′ (λ)) ′ = -2f ′ (λ) + λ 4 ∇Θ 2 L 2 - 3(p -1)(3p + 1) 4(p + 1) λ 3p-7 2 Θ p+1 L p+1 + 3(q -1)(3q + 1) 4(q + 1) λ 3q-7 2 Θ q+1 L q+1 =: -2f ′ (λ) + λh(λ).
Thanks to (4.12), we have

h ′ (λ) = λ 3q-7 2 - 3(p -1)(3p + 1)(3p -7) 8(p + 1) λ 3(p-q) 2 Θ p+1 L p+1 + 3(q -1)(3q + 1)(3p -7) 8(q + 1) Θ q+1 L q+1 ≤ λ 3q-7 2 - 3(p -1)(3p + 1)(3p -7) 2(p + 1) λ 3(p-q) 2 ∇Θ 2 L 2 + 3(q -1)(3q + 1) 4(q + 1) - 3p -7 2 λ 3(p-q) 2 + 3q -7 2 Θ q+1 L q+1 ≤ λ 3q-7 2 - 3(p -1)(3p + 1)(3p -7) 2(p + 1) λ 3(p-q) 2 ∇Θ 2 L 2 - 9(q -1)(3q + 1)(p -q) 8(q + 1) Θ q+1 L q+1
< 0 for all λ ≥ 1. This shows that h(λ) ≤ h(1) < 0 for all λ ≥ 1. In particular, we have

(λf ′ (λ)) ′ ≤ -2f ′ (λ), ∀λ ≥ 1. (4.14)
As G(Θ) > 0 due to (4.11), Lemma 2.2 shows G(Θ λ 0 ) = 0 for some λ 0 > 1. Integrating (4.14) over (1, λ 0 ), we get

G(Θ) ≥ 2(S ω (Θ λ 0 ) -S ω (Θ)) = 2 I ω (Θ λ 0 ) -I ω (Θ) - 2 3(q -1) G(Θ) .
It follows that

G(Θ) ≥ 6(q -1) 3q + 1 (I ω (Θ λ 0 ) -I ω (Θ)) ≥ 6(q -1) 3q + 1 (m ω -I ω (Θ)) ≥ 6(q -1) 3q + 1 1 - I ω (Θ) m ω m ω ≥ (3q -7)ν 2(3q + 1)m ω ∇Θ 2 L 2 ,
where we have used (4.10) and (4.13) to get the last inequality. This also proves (4.5).

4.3.

An interaction Morawetz estimate. We next define the interaction Morawetz action

M ⊗2 R (t) := 2 ¨|u(t, y)| 2 ψ R (x -y)(x -y) • Im(u(t, x)∇u(t, x))dxdy, (4.15)
where ψ R is as in (4.2). We start by the following interaction Morawetz identity.

Lemma 4.3. Let u be a solution to (1.2) satisfying

sup t∈[0,T * ) u(t) H 1 x ≤ A
for some constant A > 0. Let M R (t) be as in (4.15). Then we have

sup t∈[0,T * ) |M ⊗2 R (t)| A R. (4.16)
Moreover, we have

d dt M ⊗2 R (t) = -4 j,k ¨∂j (Im(u(t, y)∂ j u(t, y))) × ψ R (x -y)(x k -y k ) Im(u(t, x)∂ k u(t, x))dxdy (4.17) -4 j,k ¨|u(t, y)| 2 ψ R (x -y)(x j -y j ) × ×∂ k (Re(∂ j u(t, x)∂ k u(t, x))) dxdy (4.18) + ¨|u(t, y)| 2 ψ R (x -y)(x -y) • ∇∆(|u(t, x)| 2 )dxdy (4.19) + 2(p -1) p + 1 ¨|u(t, y)| 2 ψ R (x -y)(x -y) • ∇(|u(t, x)| p+1 )dxdy (4.20) - 2(q -1) q + 1 ¨|u(t, y)| 2 ψ R (x -y)(x -y) • ∇(|u(t, x)| q+1 )dxdy (4.21)
for all t ∈ [0, T * ).

Proof. By the support property of χ, we have φ R (τ ) = 0 for all |τ | ≥ 2R. Thus we get

ψ R (x)|x| ≤ ˆ2R 0 φ R (τ )dτ = R ω 3 ˆ2 0 ˆχ2 (x -z)χ 2 (z)dzdτ = CR (4.22)
for some constant C > 0 independent of R. The estimate (4.16) follows directly from Hölder's inequality and (4.22). The identities (4.17)-(4.21) follow from a direct computation using

∂ t (|u| 2 ) = -2 j ∂ j (Im(u∂ j u))
and

∂ t (Im(u∂ j u)) = - k ∂ k 2 Re(∂ j u∂ k u) - 1 2 δ jk ∆(|u| 2 ) + p -1 p + 1 ∂ j (|u| p+1 ) - q -1 q + 1 ∂ j (|u| q+1 ),
for j = 1, 2, 3, where δ jk is the Kronecker symbol.

We are now in position to prove our interaction Morawetz estimates, that jointly to the scattering criterion of the previous section will yield to the main result of the paper. The coercivity result in Lemma 4.2 is essential for the proof of the estimates below.

Proposition 4.4. Let 7 3 < q < p < 5 and ω > 0. Let u 0 ∈ A + ω and u(t) be the corresponding solution to (1.2). Define M ⊗2 R (t) as in (4.15). Then for ε > 0 sufficiently small, there exist T 0 = T 0 (ε), J = J(ε), R 0 = R 0 (ε, u 0 ) sufficiently large, and η = η(ε) > 0 sufficiently small such that for any a ∈ R,

1 JT 0 ˆa+T 0 a ˆR0 e J R 0 1 R 3 ˚|χ R (y -z)u(t, y)| 2 |∇(χ R (x -z)u ξ (t, x))| 2 dxdydz dR R dt ε, (4.23)
where χ R (x) = χ(x/R) with χ as in (4.1) and u ξ (t, x) = e ix•ξ u(t, x) with some ξ = ξ(t, z, R) ∈ R 3 .

Proof. Denote

P jk (x) := δ jk - x j x k |x| 2 . As ∂ j (ψ R x k ) = δ jk ψ R + x j x k |x| 2 (φ R -ψ R ),
the integration by parts yields (4.17

) = 4 j,k ¨Im(u(t, y)∂ j u(t, y))∂ y j (ψ R (x -y)(x k -y k )) Im(u(t, x)∂ k u(t, x))dxdy = -4 j,k ¨Im(u(t, y)∂ j u(t, y))δ jk φ R (x -y) Im(u(t, x)∂ k u(t, x))dxdy (4.24) -4 j,k
¨Im(u(t, y)∂ j u(t, y))P jk (x -y)

× (ψ R -φ R )(x -y) Im(u(t, x)∂ k u(t, x))dxdy, (4.25)
where ∂ y j is ∂ j with respect to the y-variable. Similarly, we have

(4.18) = 4 j,k ¨|u(t, y)| 2 ∂ x k (ψ R (x -y)(x j -y j )) Re(∂ j u(t, x)∂ k u(t, x))dxdy = 4 j,k ¨|u(t, y)| 2 δ jk φ R (x -y) Re(∂ j u(t, x)∂ k u(t, x))dxdy (4.26) -4 j,k ¨|u(t, y)| 2 P jk (x -y)(ψ R -φ R )(x -y) Re(∂ j u(t, x)∂ k u(t, x))dxdy, (4.27) 
where ∂ x k is ∂ k with respect to the x-variable. We have

(4.25) + (4.27) = 4 ¨|u(t, y)| 2 | / ∇ y u(t, x)| 2 (ψ R -φ R )(x -y)dxdy -4 ¨Im(u(t, y) / ∇ x u(t, y)) • Im(u(t, x) / ∇ y u(t, x))(ψ R -φ R )(x -y)dxdy,
where

/ ∇ y u(t, x) := ∇u(t, x) - x -y |x -y| x -y |x -y| ∇u(t, x)
is the angular derivative centered at y, and similarly for / ∇ x u(t, y). As ψ R -φ R ≥ 0, the Cauchy-Schwarz inequality yields (4.25) + (4.27) ≥ 0.

Next, using the fact that

φ R (x -y) = 1 ω 3 R 3 ˆχ2 R (x -y -z)χ 2 R (z)dz = 1 ω 3 R 3 ˆχ2 R (x -z)χ 2 R (y -z)dz,
we have

(4.24) + (4.26) = 4 ¨φR (x -y) |u(t, y)| 2 |∇u(t, x)| 2 -Im(u(t, y)∇u(t, y)) • Im(u(t, x)∇u(t, x))) dxdy = 4 ω 3 R 3 ˚χ2 R (x -z)χ 2 R (y -z) |u(t, y)| 2 |∇u(t, x)| 2 -Im(u(t, y)∇u(t, y)) • Im(u(t, x)∇u(t, x))) dxdydz.
For z ∈ R 3 fixed, we consider the quantity defined by

¨χ2 R (x -z)χ 2 R (y -z) |u(t, y)| 2 |∇u(t, x)| 2 -Im(u(t, y)∇u(t, y)) • Im(u(t, x)∇u(t, x))) dxdy.
It is not hard to see that the above quantity is invariant under the Galilean transformation u(t, x) → u ξ (t, x) for all ξ ∈ R 3 due to the symmetry of χ. We will choose a suitable

ξ ∈ R 3 such that ˆIm(χ 2 R (x -z)u ξ (t, x)∇(u ξ (t, x)))dx = 0.
Specifically, we select ξ as follows (compare with (4.6)):

ξ = ξ(t, z, R) = - ˆIm(χ 2 R (x -z)u(t, x)∇u(t, x))dx ˆχ2 R (x -z)|u(t, x)| 2 dx ,
provided that the denominator is non-zero (otherwise ξ = 0 suffices). With this ξ, we get

(4.24) + (4.26) = 4 ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)∇(u ξ (t, x))| 2 dxdydz.
By integration by parts twice and using

j ∂ j (ψ R x j ) = 3ψ R + j x j ∂ j ψ R = 3φ R + 2(ψ R -φ R ), we have (4.19) = j,k ¨|u(t, y)| 2 ψ R (x -y)(x j -y j )∂ j ∂ 2 k (|u(t, x)| 2 )dxdy = - j,k ¨|u(t, y)| 2 ∂ x j (ψ R (x -y)(x j -y j ))∂ 2 k (|u(t, x)| 2 )dxdy = k ¨|u(t, y)| 2 ∂ x k (3φ R (x -y) + 2(ψ R -φ R )(x -y))∂ k (|u(t, x)| 2 )dxdy.
We also have

(4.20) = - 2(p -1) p + 1 j ¨|u(t, y)| 2 ∂ x j (ψ R (x -y)(x j -y j ))|u(t, x)| p+1 dxdy = - 6(p -1) p + 1 ¨|u(t, y)| 2 φ p,R (x -y)|u(t, x)| p+1 dxdy (4.28) - 6(p -1) p + 1 ¨|u(t, y)| 2 (φ R -φ p,R )(x -y)|u(t, x)| p+1 dxdy - 4(p -1) p + 1 ¨|u(t, y)| 2 (ψ R -φ R )(x -y)|u(t, x)| p+1 dxdy.
We can rewrite (4.28) as

(4.28) = - 6(p -1) (p + 1)ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)u(t, x)| p+1 dxdydz.
Similarly, we have

(4.21) = 6(q -1) (q + 1)ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)u(t, x)| q+1 dxdydz + 6(q -1) q + 1 ¨|u(t, y)| 2 (φ R -φ q,R )(x -y)|u(t, x)| q+1 dxdy + 4(q -1) q + 1 ¨|u(t, y)| 2 (ψ R -φ R )(x -y)|u(t, x)| q+1 dxdy.
Collecting the above identities, we obtain

d dt M ⊗2 R (t) ≥ 4 ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)∇(u ξ (t, x))| 2 dxdydz + ¨|u(t, y)| 2 ∇(3φ R (x -y) + 2(ψ R -φ R )(x -y)) • ∇(|u(t, x)| 2 )dxdy - 6(p -1) (p + 1)ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)u(t, x)| p+1 dxdydz - 6(p -1) p + 1 ¨|u(t, y)| 2 (φ R -φ p,R )(x -y)|u(t, x)| p+1 dxdy - 4(p -1) p + 1 ¨|u(t, y)| 2 (ψ R -φ R )(x -y)|u(t, x)| p+1 dxdy + 6(q -1) (q + 1)ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)u(t, x)| q+1 dxdydz + 6(q -1) q + 1 ¨|u(t, y)| 2 (φ R -φ q,R )(x -y)|u(t, x)| q+1 dxdy + 4(q -1) q + 1 ¨|u(t, y)| 2 (ψ R -φ R )(x -y)|u(t, x)| q+1 dxdy. As ψ R -φ R ≥ 0 and φ R -φ q,R ≥ 0, we get 4 ω 3 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)∇(u ξ (t, x))| 2 - 3(p -1) 2(p + 1) |χ R (x -z)u(t, x)| p+1 + 3(q -1) 2(q + 1) |χ R (x -z)u(t, x)| q+1 dxdydz ≤ d dt M ⊗2 R (t) -¨|u(t, y)| 2 ∇ (3φ R (x -y) + 2(ψ R -φ R )(x -y)) • ∇(|u(t, x)| 2 )dxdy + 6(p -1) p + 1 ¨|u(t, y)| 2 (φ R -φ p,R )(x -y)|u(t, x)| p+1 dxdy + 4(p -1) p + 1 ¨|u(t, y)| 2 (ψ R -φ R )(x -y)|u(t, x)| p+1 dxdy.
By (4. 16), we see that

1 JT 0 ˆa+T 0 a ˆR0 e J R 0 d dt M ⊗2 R (t) dR R dt ≤ 1 JT 0 ˆR0 e J R 0 sup t∈[a,a+T 0 ] |M ⊗2 R (t)| dR R 1 JT 0 ˆR0 e J R 0 dR R 0 e J JT 0 . (4.29) As |∇φ R (x)| 1 ηR and sup t∈R u(t) H 1 < ∞, we see that 1 JT 0 ˆa+T 0 a ˆR0 e J R 0 ¨|u(t, y)| 2 ∇φ R (x -y) • ∇(|u(t, x)| 2 )dxdy dR R dt 1 ηJT 0 ˆa+T 0 a ˆR0 e J R 0 u(t) 3 L 2 ∇u(t) L 2 dR R 2 dt 1 ηJT 0 ˆa+T 0 a ˆR0 e J R 0 dR R 2 dt 1 ηJR 0 . (4.30) Similarly, as |∇(ψ R -φ R )(x)| 1 η min 1 R , R |x| 2 < 1 ηR , we have 1 JT 0 ˆa+T 0 a ˆR0 e J R 0 ¨|u(t, y)| 2 ∇(ψ R -φ R )(x -y) • ∇(|u(t, x)| 2 )dxdy dR R dt 1 ηJR 0 . (4.31) 
Using (4.4), we see that

1 JT 0 ˆa+T 0 a ˆR0 e J R 0 ¨|u(t, y)| 2 (ψ R -φ R )(x -y)|u(t, x)| p+1 dxdy dR R dt 1 ηJT 0 ˆa+T 0 a ˆR0 e J R 0 ¨|u(t, y)| 2 min |x -y| R , R |x -y| |u(t, x)| p+1 dxdy dR R dt 1 ηJT 0 ˆa+T 0 a ¨|u(t, y)| 2 |u(t, x)| p+1 ˆR0 e J R 0 min |x -y| R , R |x -y| dR R dxdydt 1 ηJ . (4.32)
Here we have used the fact that sup t∈R u(t) H 1 < ∞ and

ˆ∞ 0 min |x -y| R , R |x -y| dR R 1.
Using (4.3), we have 

1 JT 0 ˆa+T 0 a ˆR0 e J R 0 ¨|u(t, y)| 2 (φ R -φ p,R )(x -y)|u(t, x)| p+1 dxdy dR R dt 1 JT 0 ˆa+T 0 a ˆR0 e J R 0 η dR R dt η. ( 4 
ˆa+T 0 a ˆR0 e J R 0 1 R 3 ˚|χ R (y -z)u(t, y)| 2 |χ R (x -z)∇(u ξ (t, x))| 2 - 3(p -1) 2(p + 1) |χ R (x -z)u(t, x)| p+1 + 3(q -1) 2(q + 1) |χ R (x -z)u(t, x)| q+1 dxdydz dR R dt η + R 0 e J ηJT 0 + 1 ηJ + 1 ηJR 0 . (4.34)
Now, for fixed z, ξ ∈ R 3 , we have from (4.9

) that ˆ|χ R (x -z)∇(u ξ (t, x))| 2 dx = ˆ|∇[χ R (x -z)u ξ (t, x)]| 2 dx + O(R -2 u(t) 2 L 2 ).
From the conservation of mass and (4.5) that for R ≥ R 0 with R 0 sufficiently large,

ˆ|χ R (x -z)∇(u ξ (t, x))| 2 - 3(p -1) 2(p + 1) |χ R (x -z)u(t, x)| p+1 + 3(q -1) 2(q + 1) |χ R (x -z)u(t, x)| q+1 dx = G(χ R (• -z)u ξ (t)) + O(R -2 ) ≥ δ ∇(χ R (• -z)u ξ (t)) 2 L 2 + O(R -2
). The term O(R -2 ) can be treated analogously to (4.30). We thus infer from (4.34) that

1 JT 0 ˆa+T 0 a ˆR0 e J R 0 1 R 3 ˚|χ R (y -z)u(t, y)| 2 |∇(χ R (x -z)u ξ (t, x))| 2 dxdydz dR R dt η + R 0 e J ηJT 0 + 1 ηJ + 1 ηJR 0 . (4.35)
This proves (4.23) by taking η = ε, J = ε -3 , R 0 = ε -1 and T 0 = e ε -3 . The proof is complete.

4.4. Proof of the main result. We can now proceed with the proof of the main result.

Proof of Theorem 1.1. The global existence is proved in Lemma 4.2. It remains to prove the scattering. We only consider the positive times since the one for negative times is similar. Our purpose is to check the scattering criteria given in Lemma 3.6. To this end, we fix a ∈ R and let ε > 0 sufficiently small and T 0 > 0 sufficiently large to be determined later. We will show that there exists t 0 ∈ (a, a + T 0 ) such that [t 0 -ε -σ , t 0 ] ⊂ (a, a + T 0 ) and

u L m 1 t ([t 0 -ε -σ ,t 0 ],L b 1 x ) ε µ (4.36)
for some σ, µ > 0 to be determined later. By (4.23), there exist

T 0 = T 0 (ε), J = J(ε), R 0 = R 0 (ε, u 0 ) and η = η(ε) such that 1 JT 0 ˆa+T 0 a ˆR0 e J R 0 1 R 3 ˚|χ R (y -z)u(t, y)| 2 |∇(χ R (x -z)u ξ (t, x))| 2 dxdydz dR R dt ε.
It follows that there exists

R 1 ∈ [R 0 , R 0 e J ] such that 1 T 0 ˆa+T 0 a 1 R 3 1 ˚|χ R 1 (y -z)u(t, y)| 2 |∇(χ R 1 (x -z)u ξ (t, x))| 2 dxdydzdt ε hence 1 T 0 ˆa+T 0 a 1 R 3 1 ˆ χ R 1 (• -z)u(t) 2 L 2 x ∇(χ R 1 (• -z)u ξ (t)) 2 L 2
x dzdt ε.

By the change of variable z = R 1 4 (w + θ) with w ∈ Z 3 and θ ∈ [0, 1] 3 , we deduce that there exists

θ 1 ∈ [0, 1] 3 such that 1 T 0 ˆa+T 0 a w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 2 x ∇ χ R 1 (• - R 1 4 (w + θ 1 ) u ξ (t) 2 L 2 x dt ε.
Let σ > 0 to be chosen later. By dividing the interval a + T 0 2 , a + 3T 0 4 into T 0 ε σ intervals of length ε -σ , we infer that there exists t 0 ∈ a, T 0 2 , a

+ 3T 0 4 such that [t 0 -ε -σ , t 0 ] ⊂ (a, a + T 0 ) and ˆt0 t 0 -ε -σ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 2 x ∇ χ R 1 • - R 1 4 (w + θ 1 ) u ξ (t) 2 L 2 x dt ε 1-σ .
This, together with the Gagliardo-Nirenberg inequality

u 4 L 3 x u 2 L 2 x ∇u ξ 2 L 2 x , implies that ˆt0 t 0 -ε -σ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 4 L 3 x dt ε 1-σ . (4.37)
On the other hand, by Hölder's inequality, Cauchy-Schwarz inequality, and Sobolev embedding, we have

w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 3 x ≤ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) L 2 x χ R 1 • - R 1 4 (w + θ 1 ) u(t) L 6 x ≤ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 2 x 1/2 w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 6 x 1/2 u(t) L 2 x u(t) H 1 x 1. (4.38)
Here we have used the following estimate to get the last line:

w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 6 x w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) ∇u(t) 2 L 2 x + 1 R 2 1 (∇χ) R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 2 x ∇u(t) 2 L 2 x + 1 R 2 1 η 2 u(t) 2 L 2 x u(t) 2 H 1 x as R 1 > R 0 = ε -1 = η -1 (see after (4. 35 
)). Note that |∇χ| η -1 by the choice of χ. Combining (4.37) and (4.38), we get from the property of χ R 1 , in conjunction with the Hölder and the Cauchy-Schwarz inequalities, that

u 3 L 3 t,x ([t 0 -ε -σ ,t 0 ]×R 3 ) ˆt0 t 0 -ε -σ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 3 L 3 x dt ˆt0 t 0 -ε -σ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 4 L 3 x 1 2 × w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 3 x 1 2 dt ˆt0 t 0 -ε -σ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 4 L 3 x dt 1 2 × ˆt0 t 0 -ε -σ w∈Z 3 χ R 1 • - R 1 4 (w + θ 1 ) u(t) 2 L 3 x dt 1 2 ε 1-σ 2 ε -σ 2 = ε 1 2 -σ , which implies that u L 3 t,x ([t 0 -ε -σ ,t 0 ]×R 3 ) ε 1 3 ( 1 2 -σ) . (4.39) 
Let θ ∈ (0, 1) to be chosen shortly. We define (γ, ρ) by

1 m 1 = θ 3 + 1 -θ γ , 1 b 1 = θ 3 + 1 -θ ρ . Pick β, s > 0 such that 1 ρ = 1 β - s 3 , 2 γ + 3 β = 3 2 .
We readily check that

2 m 1 + 3 b 1 = 2 p -1 = 5θ 3 + (1 -θ) 3 2 -s .
In particular,

s = 3 2 - 1 1 -θ 2 p -1 - 5θ 3 .
As 7/3 < p < 5, we can take θ > 0 sufficiently small so that 0 < s < 1. In particular, (γ, β) is a Schrödinger admissible pair. By Hölder's inequality, Sobolev embedding, and (4.39), we have

u L m 1 t ([t 0 -ε -σ ,t 0 ],L b 1 x ) ≤ u θ L 3 t,x ([t 0 -ε -σ ,t 0 ]×R 3 ) u 1-θ L γ t ([t 0 -ε -σ ,t 0 ],L ρ x ) u θ L 3 t,x ([t 0 -ε -σ ,t 0 ]×R 3 ) |∇| s u 1-θ L γ t ([t 0 -ε -σ ,t 0 ],L β x ) u θ L 3 t,x ([t 0 -ε -σ ,t 0 ]×R 3 ) ∇ s u 1-θ L γ t ([t 0 -ε -σ ,t 0 ],L β x ) ε θ 3 ( 1 2 -σ) ε -σ γ (1-θ) ε θ 6 -( θ 3 + 1-θ γ )σ .
Here we have used the fact that

∇ u L γ t (I,L β x ) I 1 γ
which follows from the local theory. This proves (4.36) by choosing σ > 0 small enough. The proof is complete.

Blow-up

In this last section, we prove the blow-up rate results as stated in Theorem 1.3. We start with the following upper bound for the Pohozaev functional for solutions arising from initial data in A - ω . The result of the next Lemma is also contained in [4, 16], but we report the short proof for sake of completeness. Lemma 5.1. Let 7 3 < p < 5, 1 < q < p, and ω > 0. Then A - ω is invariant under the flow of (1.2), i.e., if u 0 ∈ A - ω , then u(t) ∈ A - ω for all t ∈ I max . In addition, we have

G(u(t)) ≤ - 3(p -1) 2 (m ω -S ω (u 0 )), ∀t ∈ I max . (5.1) 
Furthermore, there exists δ > 0 small such that

G(u(t)) + δ ∇u(t) 2 L 2 ≤ - 3(p -1) 4 (m ω -S ω (u 0 )), ∀t ∈ I max . ( 5 

.2)

Proof. Let u 0 ∈ A - ω . We will show that u(t) ∈ A - ω for all t ∈ I max . By the conservation of mass and energy, we have

S ω (u(t)) = S ω (u 0 ) < m ω , ∀t ∈ I max . (5.3) 
Assume by contradiction that there exists t 0 such that G(u(t 0 )) ≥ 0. As u : I max → H 1 is continuous, there exists t 1 such that G(u(t 1 )) = 0. By the definition of m ω , we have S ω (u(t 1 )) ≥ m ω which contradicts (5.3). Thus G(u(t)) < 0 for all t ∈ I max or A - ω is invariant under the flow of (1.2).

For simplicity, we denote u := u(t) and set f (λ) := S ω (u λ ), where u λ is the scaling (2.1). We have

f ′ (λ) = λ ∇u 2 L 2 - 3(p -1) 2(p + 1) λ 3(p-1) 2 -1 u p+1 L p+1 + 3(q -1) 2(q + 1) λ 3(q-1) 2 -1 u q+1 L q+1 = G(u λ ) λ and (λf ′ (λ)) ′ = 2λ ∇u 2 L 2 - 9(p -1) 2 4(p + 1) λ 3(p-1) 2 -1 u p+1 L p+1 + 9(q -1) 2 4(q + 1) λ 3(q-1) 2 -1 u q+1 L q+1 .
We then write

(λf ′ (λ)) ′ = 3(p -1) 2 f ′ (λ) - 3p -7 2 λ ∇u 2 L 2 - 9(q -1)(p -q) 2(q + 1) u q+1 L q+1 .
A first application of the above virial identities is the following virial identity for finite variance solutions. More precisely, if u 0 ∈ Σ, then the corresponding solution to (1.2) satisfies

V ′′ |x| 2 (t) = 8G(u(t)), ∀t ∈ I max .

(5.5) Provided u 0 ∈ A - ω , by Lemma 5.1 G(u(t)) -1 for any t ∈ I max . Then (5.5) implies finite time blow-up for solutions in Σ via a convexity argument.

Another applications are virial estimates for radial and cylindrical solutions [4]. To state these estimates, we let θ : [0, ∞) → [0, 2] a smooth function satisfying For ̺ > 0, we define the radial function φ ̺ : R 3 → R by

θ(r) = 2 if 0 ≤ r ≤ 1, 0 if r ≥ 2. ( 5 
φ ̺ (x) = φ ̺ (r) := ̺ 2 ϑ(r/̺), r = |x|. (5.7) 
Then the following virial estimate for radial solutions: If u 0 ∈ H 1 is radial, then the corresponding solution to (1.2) satisfies

V ′′ φ̺ (t) ≤ 8G(u(t)) + C̺ -2 + C̺ -(p-1) ∇u(t) p-1 2 L 2 , ∀t ∈ I max . (5.8) 
To state virial estimates for cylindrical solutions, we define, for ̺ > 0, the function

φ ̺ (x) := ̺ 2 ϑ(r/̺) + x 2 3 , r := |x|, x = (x 1 , x 2 ). (5.9) 
If u 0 ∈ Σ 3 , then the corresponding solution to (1.2) satisfies

V ′′ φ̺ (t) ≤ 8G(u(t)) + C̺ -2 + C̺ -p-1 2 ∇u(t) p-1 L 2 , ∀t ∈ I max .
(5.10)

We refer the readers to [4] for a proof of (5.8) and (5.10). We are now able to prove our blow-up result for (1.2).

Proof of Theorem 1.3. Let us start with the point (i). The proof is based on an idea of Merle,Raphaël,and Szeftel [30].

(1) Let us consider the radial case. Using

G(u) = 3(p -1) 2 E(u) - 3p -7 4 ∇u 2 L 2 - 3(p -q) 2(q + 1) u q+1 L q+1 ,
we infer from (5.8) that V ′′ φ̺ (t) ≤ 12(p -1)E(u(t)) -2(3p -7) ∇u(t) 2 L 2 -12(p -q) q + 1 u(t) q+1 L q+1

+ C̺ -2 + C̺ -(p-1) ∇u(t)

p-1 2

L 2 , ∀t ∈ I max , where φ ̺ is as in (5.7). As p < 5, by Young's inequality, we have for any ε > 0, V ′′ φ̺ (t) ≤ 12(p -1)E(u(t)) -2(3p -7) ∇u(t) 2 L 2 + C̺ -2 + ε ∇u(t) 2 L 2 + Cε -p-1 5-p ̺ -4(p-1) 5-p , ∀t ∈ I max . Taking ε = 3p -7, we get V ′′ φ̺ (t) ≤ 12(p -1)E(u(t)) -(3p -7) ∇u(t) 2 L 2 + C̺ -2 + C̺ -4(p-1) 5-p , ∀t ∈ I max . By the conservation of energy and 2 < 4(p-1) 5-p , we obtain (3p -7) ∇u(t) 2 L 2 + V ′′ φ̺ (t) ≤ C̺ -4(p-1) 5-p , (5.11) ∀t ∈ I max provided that ̺ > 0 is taken sufficiently small. Let 0 < t 0 < t < T * . We integrate (5.11) twice on (t 0 , t) and get (3p -7) ˆt t 0 ˆs t 0 ∇u(τ ) 2 L 2 dτ ds + V φ̺ (t) ≤ C̺ -4(p-1) 5-p (t -t 0 ) 2 + (t -t 0 )V ′ φ̺ (t 0 ) + V φ̺ (t 0 )

≤ C̺ -4(p-1) 5-p (t -t 0 ) 2 + C̺(t -t 0 ) ∇u(t 0 ) L 2 + C̺ 2 , where we have used the conservation of mass and (T * -τ ) ∇u(τ ) 2 L 2 dτ ≤ C̺ -4(p-1) 5-p (T * -t 0 ) 2 + C̺(T * -t 0 ) ∇u(t 0 ) L 2 + C̺ 2 .

V φ̺ (t 0 ) ≤ C̺ 2 u(t 0 ) 2 L 2 ≤ C̺ 2 , V ′ φ̺ (
Optimizing in ̺ by choosing ̺ -4(p-1) 5-p (T * -t 0 ) 2 = ̺ 2 or equivalently ̺ = (T * -t 0 ) for t close to T * .

In particular, we have g(t) ≤ C(T * -t) .

(5.13) Take T n ր T * . For a fixed n, g defined in (5.12) is a continuous function on [T n , T * ] and differentiable on (T n , T * ). By the mean value theorem, there exists t n ∈ (T n , T * ) such that

-(T * -t n ) ∇u(t n ) 2 L 2 = g ′ (t n ) = g(T * ) -g(T n ) T * -T n = - ˆT * Tn (T * -τ ) ∇u(τ ) 2 L 2 dτ T * -T n .
Using (5.13), we have

(T * -t n ) ∇u(t n ) 2 L 2 ≤ C (T * -T n ) 3p-7 p+3 ≤ C (T * -t n ) 3p-7 p+3 hence ∇u(t n ) 2 L 2 ≤ C (T * -t n ) 4(p-1) p+3 
.

This proves (1.7).

(2) We now consider the cylindrical case. By (5.10), we have +C̺ -2 + C̺ -p-1 2 ∇u(t) p-1 L 2 , ∀t ∈ I max , where φ ̺ is as in (5.9). By Young's inequality with p < 3 and q < p, we have V ′′ φ̺ (t) ≤ 12(p -1)E(u(t)) -2(3p -7) ∇u(t) 2 L 2 + C̺ -2 + ε ∇u(t) 2 L 2 + Cε -p-1 3-p ̺ -p-1 3-p ≤ 12(p -1)E(u(t)) -(3p -7) ∇u(t) 2 L 2 + C̺ -2 + C̺ -p-1 3-p , ∀t ∈ I max , where we have chosen ε = 3p -7 to get the second line. The energy conservation and 2 < p-1 3-p yield (3p -7) ∇u(t) 2 L 2 + V ′′ φ̺ (t) ≤ C̺ -p-1 3-p , ∀t ∈ I max provided that ̺ > 0 is taken sufficiently small. By the same reasoning as above, we prove (1.6) and (1.7).

V
Point (ii). The result is a straightforward application of the estimate in Lemma 5.1 yielding G(u(t)) -1 uniformly in time in the maximal time of existence, and the Du, Wu, and Zhang scheme [START_REF] Du | On blow-up criterion for the nonlinear Schrödinger equation[END_REF]. Indeed, with respect to the NLS equation with one focusing nonlinearity, the extra defocusing term accounts for negative contributions in the virial estimates. Hence by repeating the argument in [START_REF] Du | On blow-up criterion for the nonlinear Schrödinger equation[END_REF] jointly with the uniform negative upper bound for G, the proof is complete.

. 6 )

 6 We define the function ϑ : [0, ∞) → [0, ∞) by ϑ(r) := ˆr 0 ˆs 0 θ(τ )dτ ds.

  t 0 ) ≤ C̺ ∇u(t 0 ) L 2 u(t 0 ) L 2 ≤ C̺ ∇u(t 0 ) L 2 .Note that the constant C > 0 may vary from line to line. By Fubini's Theorem, we haveˆt t 0 ˆs t 0 ∇u(τ ) 2 L 2 dτ ds = ˆt t 0 ˆt τ ds ∇u(τ ) 2 L 2 dτ = ˆt t 0 (t -τ ) ∇u(τ ) 2 L 2 dτ.As V φ̺ is non-negative, we getˆt t 0 (t -τ ) ∇u(τ ) 2 L 2 dτ ≤ C̺ -4(p-1) 5-p (t -t 0 ) 2 + C̺(t -t 0 ) ∇u(t 0 ) L 2 + C̺ 2 .

Letting t ր T * , we obtain ˆT * t 0

  -t 0 ) 2 ∇u(t 0 ) 2 L 2 , for any 0 < t 0 < T * . Now set -t) 2 (g(t) + (T * -t)g ′ (t)) ≤

	which yields				
			g(t) T * -t	≤	C (T * -t)	3p-7 p+3
							5-p p+3 , we
	have					
	ˆT *	(T 2(5-p) p+3	+ C(T 5-p p+3 +1 ∇u(t 0 ) L 2
	t 0					
					2(5-p) p+3 + C(T g(t) := ˆT * t (T * -τ ) ∇u(τ ) 2 L 2 dτ.	(5.12)
	We have	g(t) ≤ C(T * -t)	2(5-p) p+3	-(T * -t)g ′ (t), ∀0 < t < T *
	which is rewritten as				
		g(t) T * -t	′	=	1 (T C (T * -t)	p+3 4(p-1)	.
	Integrating it over (0, t), we obtain
			g(t) T * -t	≤	g(0) T 3p-7 p+3	-	C 3p-7 (T * ) p+3

* -τ ) ∇u(τ ) 2 L 2 dτ ≤ C(T * -t 0 ) * -t 0 ) ≤ C(T * -t 0 ) * * * + C (T * -t)

  ′′ φ̺ (t) ≤ 8G(u(t)) + C̺ -2 + C̺ -p-1

	2	∇u(t) p-1 L 2	
	≤ 12(p -1)E(u(t)) -2(3p -7) ∇u(t) 2 L 2 -	12(p -q) q + 1	u(t) q+1 L q+1

As 7 3 < p < 5 and 1 < q < p, we get (λf ′ (λ)) ′ ≤ 3(p -1) 2 f ′ (λ), ∀λ > 0.

(5.4)

On the other hand, as G(u) < 0, by Lemma 2.2, there exists λ 0 ∈ (0, 1) such that G(u λ 0 ) = 0. In particular, we have λ 0 f ′ (λ 0 ) = 0 and f (λ 0 ) = S ω (u λ 0 ) ≥ m ω . Integrating (5.4) over (λ 0 , 1), we obtain

which is (5.1).

Finally, we prove (5.2). Observe that

It follows that

as ω > 0 and q < p. By the energy and mass conservation laws, and (5.1), we get

∀t ∈ I max . By taking δ > 0 sufficiently small, we obtain (5.2).

We are now ready to give the proof of the blow-up results in Theorem 1.3. They are based on virial identities/estimates. We classically introduce a sufficiently smooth and decaying function φ : R 3 → R. We denote the virial quantity

The following identities are nowadays standard (see e.g., [6]):

Re ˆ∂2 jk φ∂ j u(t)∂ k u(t)dx + 2(q -1) q + 1 ˆ∆φ|u(t)| q+1 dx -2(p -1) p + 1 ˆ∆φ|u(t)| p+1 dx.