

DCT2net: a DCT-based interpretable shallow CNN method for efficient and fast image denoising

Sébastien Herbreteau, Charles Kervrann

▶ To cite this version:

Sébastien Herbreteau, Charles Kervrann. DCT2net: a DCT-based interpretable shallow CNN method for efficient and fast image denoising. IS 2022 - SIAM Conference on Imaging Science, Mar 2022, Berlin, Germany. hal-03926530

HAL Id: hal-03926530 https://hal.science/hal-03926530

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SERPICO Project-Team

E-mail: sebastien.herbreteau@inria.fr, charles.kervrann@inria.fr Github: https://github.com/sherbret/DCT2net/

Inria Rennes – Bretagne Atlantique Campus universitaire de Beaulieu, 35042 Rennes Cedex France

DCT2net: a DCT-Based Interpretable Shallow CNN **Method for Efficient and Fast Image Denoising**

Sébastien Herbreteau and Charles Kervrann

Inria Centre Rennes - Bretagne Atlantique, UMR144 CNRS Institut Curie, PSL Research University, Sorbonne Université, France

OVERVIEW

We propose an interpretable shallow convolutional neural network that generalizes the popular DCT image denoising algorithm [1]:

- \triangleright We show that a DCT denoiser [1] can be seen as a shallow CNN whose weights correspond to the underlying linear transform. Fine-tuning the weights improves considerably the denoising performance.
- ▷ The resulting CNN (DCT2net) is able to handle a wide range of noise levels effectively with a single network thanks to a σ -dependent activation function.
- ▷ Displaying the learned transform gives a direct visual intuition of what the network has learned.
- \triangleright To deal with remaining artifacts induced by DCT2net, an original hybrid solution between DCT and DCT2net is proposed.

DISCRETE COSINE TRANSFORM (DCT) DENOISING

A DCT denoiser [1] projects each noisy overlapping patch $y \in \mathbb{R}^n$ to the **2D**-**DCT** basis, and reconstructs the denoised signal with the transform coefficients higher than the threshold 3σ , in absolute value:

Formally, it amounts to estimating every overlapping patch $x \in \mathbb{R}^n$ by:

 $\hat{x} = P\varphi_{\lambda}(P^{-1}y)$ with $\lambda = 3\sigma$

where $\varphi_{\lambda}(t) = t \cdot \mathbb{1}_{\mathbb{R} \setminus [-\lambda, \lambda]}(t)$ is a hard shrinkage function and the columns of $P \in \mathbb{R}^{n \times n}$ are the basis vectors for the 2D-DCT. The *n* estimates of a same pixel are finally aggregated through a weighted average, with respective weight:

> $w = (1 + \|\varphi_{\lambda}(P^{-1}y)\|_{0})^{-1}$ DCT2NET PRINCIPLE

All operations in DCT algorithm [1] can be interpreted in terms of convolutions with a hard shrinkage function as σ -dependent activation function (See Fig. 1). The weights of two first convolutions are to be found in matrices P and P^{-1} while the last ones are composed of 0 and 1 for the aggregation step.

To improve the underlying transform, we train our DCT2net on an external dataset composed of N pairs of noise-free and noisy images $(x_i, y_i)_{i \in \{1, \dots, N\}}$ corrupted with white Gaussian noise of variance σ_i^2 . Training solves:

$$P^* = \arg\min_{P} \sum_{i=1}^{N} \|F_P(y_i, \sigma_i) - x_i\|_2^2$$

where F_P denotes DCT2net.

Fig. 1: Architecture of DCT2net for a patch size $n = 5 \times 5$ *. Note that the number* of learnable parameters is equal to n^2 : the weights of the first two convolutions being linked by inverse transformation and the last convolutions being frozen with weights in $\{0, 1\}$ for the aggregation step.

To ease gradient descent c differentiable function:	luring training only, $t\mapsto 1_{\mathbb{R}\setminus[-\lambda]}$ $t\mapsto \frac{t^{64}}{t^{64}+\lambda^{64}}$	$_{,\lambda]}(t)$ is replaced with the	
DISPLA	Y OF THE LEARNED TRANS	FORM	
Original DCT basis Fig. 2: Different basis	DCT2net learned basis es of projection for patches	Orthonormal learned of size $n = 9 \times 9$.	basi
A F	AST AND SHALLOW NETWO	RK	

Image size	BM3D[2]	PEWA[3]	DnCNN[4]	$LKSVD_{1,8,256}[5]$	DCT2net
256×256	1.73	38.85	0.87 / 0.010	1.15 / 0.020	$0.39 \ / \ 0.005$
512×512	6.65	190.82	3.47 / 0.037	5.78 / 0.082	$1.56 \ / \ 0.027$
$1,024 \times 1,024$	26.90	803.76	18.35 / 0.145	25.78 / 0.332	$5.88 \ / \ 0.112$

Table 1: Running time in seconds on CPU (left) and GPU (right) when possible.

Methods	DnCNN[4]	$LKSVD_{1,8,256}[5]$	DCT2net
Number of layers	17	5	2
Number of parameters	556,096	$35,\!138$	28,561

Table 2: Model complexities comparison of DCT2net with two popular networks.

Fig. 3: Denoising results on Castle corrupted with white Gaussian noise and $\sigma = 25$

				+0.8 GB			
Methods	BM3D[2]	PEWA[3]	DnCNN[4]	$LKSVD_{1,8,256}[5]$	DCT[1]	DCT2net	DCT/DCT2net
$\sigma = 15$	31.07	31.04	31.72	31.33	30.32	31.09	30.97
$\sigma = 25$	28.57	28.52	29.23	28.76	27.76	28.64	28.53
$\sigma = 50$	25.62	25.53	26.23	25.68	24.86	25.68	25.59

Table 3: The average PSNR (dB) results on BSD68 corrupted with Gaussian noise.

References

Processing On Line, vol. 1, pp. 292-296, 2011. Information Processing Systems, Montreal, Canada, 2014, pp. 2150-2158. vol. 30, pp. 5944 - 5955, 2021. Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986

DCT2NET MIXED WITH DCT TO REDUCE ARTIFACTS

- \odot : pixel-wise multiplication
- \oplus : pixel-wise addition

RESULTS

[1] G. Yu and G. Sapiro, "DCT image denoising: a simple and effective image denoising algorithm," in Image

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3D transform-domain collaborative filtering," in IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007. [3] C. Kervrann, "PEWA : Patch-based exponentially weighted aggregation for image denoising," in Neural

[4] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: residual learning of deep CNN for image denoising," in *IEEE Transactions on Image Processing*, vol. 26, no. 7, pp. 3142–3155, 2017.
M. Scetbon, M. Elad, and P. Milanfar, "Deep K-SVD Denoising," in *IEEE Transactions on Image Processing*

[6] J. Canny, "A computational approach to edge detection," in IEEE Transactions on Pattern Analysis and