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Overview ' General principle of non-local denoisers
\. 4

We propose a unified view to reconcile state-of-the-art un-
supervised non-local denoisers. We derive NL-Ridge algorithm

Repositioning

which leverages local linear combinations of noisy similar patches. 44
Local
> We show that non-local denoisers are characterized by the denoising
—

family of functions (fg) used to process groups of similar
noisy image patches.

> The optimal parameters ©* for each group are found by min-
imizing an approximation of the Ly risk via a two-step algo-
rithm.

> NL-Ridge linearly combines noisy similar patches. Our closed- 4/‘ \

form aggregation weights are computed, in the second step,

S : ) BM3D [1] assumes a locally sparse NL-Bayes [2] was established in ~ NL-Ridge denoises each patch by
through multivariate Ridge regressions.

representation in a transform domain:  the Bayesian setting: linearly combining the most similar
noisy patches:

> NL-Ridge outperforms well established state-of-the-art unsu-
pervised denoisers, including BM3D [1] and NL-Bayes [2], as
well as recent unsupervised deep learning methods [5, 6, 7],
while being simpler conceptually.

foY)=P (00 (PYQ)Q', fo,s(Y)=0Y +pu’,
foe(Y)=Y06
P and () are orthogonal matrices. u denotes a m-dimensional vector
with all entries equal to one.

Parameter optimization
R

| StePt:SURE

Step 2: Internal adaptation
. M

The optimal parameters ©* for the local de- Proposition 1 Proposition 2
noiser fo are found by minimizing the Lo risk: Llet Y = X + W where Y, X, W € R"™™ and W; ; ~ The quadratic risk Re(X) is:
, N(0,0?) are independent along each row. An unbiased , , R
Ro(X) = E| fo(Y) - X[} estimate of the risk Ro(X) = E||fo(Y) — X]|2 is Stein’s E|lfo(X + W) — X|[2 = [|X0 — X% + no?| 012
. i isk estimat RE):
As OF requires the knowledge of X which is unbiased risk estimate (SURE) which is minimal for:
unknown, we use the following two-step algorithm: SUREa (V) = —nma?2 + V) — Y12 & 202 di %
o(Y) 02 fo(Y) 2HF ;7 v fo(Y) @*:(XTX+nJ2Im)_1XTX
e Step 1: Minimize Stein’s unbiased risk es- = —nmo- + [|[YO —Y||% 4+ 2no” tr(0)
timate (SURE) [3] to approximate ©*, repo- (solution of the multivariate Ridge regression).
sition all the denoised patches and compute - _ _ _ _ )
the I; image aggregating estimators at each > Substituting this estimate for the risk Rg(X) yields: > Substituting X; for X in the risk expression yields:
pixel. , : A A .
arg min Ro(X) =~ arg min SUREe(Y) = 61 arg min Rg(X) ~ argmin Rg(X;1) = 05
e Step 2: © is improved via "internal adap- © ©

tation” [4] with the pilot image I;.
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Fig. 1: Denoising results after step 1 and 2 (left), number of estimates by pixel
before aggregation (middle) and standard deviation (right).

Methods Set12 BSD6] Urbanl00 Fig. 2: PSNR results on Barbara corrupted with Gaussian noise (o = 20).
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