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\ Overview y General principle of non-local denoisers

We propose a unified view to reconcile state-of-the-art un-
supervised non-local denoisers. We derive NL-Ridge algorithm
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while being simpler conceptually.

— NL-Ridge

| Step1:SIRE

Parameter optimization

Fig. 2: Denoised images after each step (o = 15) and PSNR colormaps
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Step 2: Internal adaptation

with the pilot image I;.
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N y (in dB) of denoised similarity matrices associated with each noisy patch.
The optimal parameters ©* for the local denoiser are .. .
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found by minimizing the /5 risk:
An unbiased estimate of the risk Rg(X) is The quadratic risk Rg(X) is: Methods Set12 BSD68 Urban100
Reo(X) =E|fo(Y) — X||% | Stein’s unbiased risk estimate SUREg (Y): 5 5 5 Noisy 24.61/20.17/14.15  24.61/20.17/14.15  24.61/20.17/ 14.15
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(SURE) [3] t ot O -+ I the d . DIP 30.12/27.54/24.67  28.83/26.59/24.13 -l - -
O approximate , FEposItion 4 € de- FIN : - : . S §  Noise2Self  31.01/28.64/25.30 29.46 /27.72 / 24.77 -l - ] -
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estimators at each pixel. : ~ - _ £ . . . DnCNN 32.86 / 30.44 / 27.18 31.73/29.23 / 26.23 32.68 /29.97 / 26.28
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. e . e e Z LIDIA 32.85/30.41/27.19  31.62/29.11/26.17  32.80/30.12/26.51
e Step 2: O is improved via "internal adaptation” [4]

Table. 1: PSNR (dB) results on various datasets corrupted with Gaussian
noise (o = 15, 25, 50). Best among each category is in bold. Best among
each subcategory is underlined.

References

NI-Ridee (ﬁurs) 32. _ _ o N _ _
) ] v 1 [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative
// \g N 7 filtering,” in IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080-2095, 2007.

! VY [2] A. Buades, M. Lebrun, and J.-M. Morel, “A non-local bayesian image denoising algorithm,” SIAM Journal on Imaging
- | Science, vol. 6, no. 3, pp. 1665-1688, 2013.
,, [3] C. Stein, “Estimation of the mean of a multivariate normal distribution,” Annals of Statistics, vol. 9, no. 6, pp.
| 1135-1151, 1981.

[4] G. Vaksman, M. Elad, and P. Milanfar, “LIDIA: Lightweight learned image denoising with instance adaptation,” Con-

ference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[5] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, p. 9446-9454, 2018.

[6] J. Batson and L. Royer, “Noise2self: Blind denoising by self-supervision,” Proceedings of the 36th International Confer-

ence on Machine Learning, vol. 97, pp. 524-533, 20109.

[7] Y. Quan, M. Chen, T. Pang, and H. Ji, “Self2self with dropout: Learning self-supervised denoising from single image,”

CVPR, 2020.

[8] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: residual learning of deep CNN for

image denoising,” in I[EEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, 2017.

[9] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted Nuclear Norm Minimization with Application to Image Denoising,”

in IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 2862-2869.

Fig. 1: PSNR results on Barbara corrupted with additive white Gaussian noise (o = 20).



