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\ Overview y General principle of non-local denoisers

We propose a unified view to reconcile state-of-the-art un-
supervised non-local denoisers. We derive NL-Ridge algorithm
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while being simpler conceptually.
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Fig. 2: Denoised images after each step (o = 15) and PSNR colormaps
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Step 2: Internal adaptation

with the pilot image I;.
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N y (in dB) of denoised similarity matrices associated with each noisy patch.
The optimal parameters ©* for the local denoiser are .. .
P P . ) fe Proposition 1 Proposition 2
found by minimizing the /5 risk:
An unbiased estimate of the risk Rg(X) is The quadratic risk Rg(X) is: Methods Set12 BSD68 Urban100
Reo(X) =E|fo(Y) — X||% | Stein’s unbiased risk estimate SUREg (Y): 5 5 5 Noisy 24.61/20.17/14.15  24.61/20.17/14.15  24.61/20.17/ 14.15
Ro(X) = [ X0 — X| +no”|[OF
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AS O reﬂw;eﬁ th_e Knowiedge Olf X ;’]Vh'Ch s unknown, kno” + | fe(Y) = Y|F + 207 div fo (Y) minimized for (multivariate Ridge regression ): - £Y  NL-Ridge  3246/3000/2673  31.20/28.67/2567  32.53/29.90/26.29
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noised patches and compute the I; image aggregating (X) > Substituting X7 for X in the risk expression: 2 Self2Self 32.07 / 30.02 / 26.49 30.62 / 28.60 / 25.70 -/ -] -
estimators at each pixel. : ~ - _ £ . . . DnCNN 32.86 / 30.44 / 27.18 31.73/29.23 / 26.23 32.68 /29.97 / 26.28
P arg uh Ro(X) ~ arg Hn SUREe(Y) = 01 arg min Rg (X) ~ argmin Rg(X;) = 65 fg‘-g FFDnet 32.75/3043/27.32  31.63/29.19/2629  32.43/29.92/26.52
. e . e e Z LIDIA 32.85/30.41/27.19  31.62/29.11/26.17  32.80/30.12/26.51
e Step 2: O is improved via "internal adaptation” [4]

Table. 1: PSNR (dB) results on various datasets corrupted with Gaussian
noise (o = 15, 25, 50). Best among each category is in bold. Best among
each subcategory is underlined.
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Fig. 1: PSNR results on Barbara corrupted with additive white Gaussian noise (o = 20).



