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Abstract
We consider the simplest case of two nonlinear quantum eigenstates whose overlap integral

defined by their inner product is non-zero. We propose to regard this system as a mixed-state
quantum system obtained by statistically combining the two nonlinear eigenstates with appropriate
normalized probabilities. Since this description in terms of the density operator is unambiguous
only if the quantum states of the mixture are orthonormal, we use Löwdin’s change of basis to
symmetrically orthonormalize the original pair of non-orthogonal eigenstates and to define the
corresponding density matrix. We show by simple examples that this mixed-state description is in
good agreement with exeprimental and/or numerical results.

PACS numbers: 73.21.La 71.10.Li 71.90+q

∗Electronic address: Gilbert.Reinisch@oca.eu

1



Nonlinear quantum theory in its simplest form concerns N-particle interacting systems
whose mean-field description allows a single-particle approximation at the price of loosing
the fundamental linear structure of the theory. Perhaps the earliest such attempt is the
Hartree-Fock model where the resulting nonlinear Schrödinger eigenstates are as a rule not
orthogonal [1]. Actually, as early as in the 30’s, it became clear that the overlap integrals
describing non-orthogonality, instead of being negligible, were quantities of essential impor-
tance for the understanding of the physical properties of solids. Pauling for instance [2] as
well as Slater [3] developed the principle of maximum overlap, saying that the strength of a
chemical bond increases with the overlap between the orbitals involved, measured essentially
by the overlap integrals. As for Inglis [4]: he coined the word ”nonorthogonality catastro-
phe”. In electron-transfer models, nonvanishing overlap integrals yield effective Hamiltonians
which give significantly better estimates for the eigenenergies of the system than when these
integrals are neglected [5]. In the present case —and contrary to the above ones—, non-
orthogonality is not just due to the choice of appropriate basis. It is a direct consequence of
a much deeper change in the quantum theory itself, namely, nonlinearity [6]. A celebrated
such example is the nonlinear Schrödinger —or Gross-Pitaevskii (GP)— equation for the
mean-field quantum description of a Bose-Einstein condensate (BEC). It was believed that,
although the corresponding nonlinear eigenstates are indeed not orthogonal, the effect of
their overlap integrals remains negligible [7]. While indeed numerically small, it may yield
interesting non-trivial interference effects [8].

Other fundamentally nonlinear quantum systems have been considered, for instance in the
pioneering attempts to explain superconductivity. Prior to the discovery of the microscopic
BCS theory of superconductivity as a Bose condensation of electrons paired by microscopic
electron-lattice interactions [9], tentative links of superconductivity with the interaction
between electrons and lattice vibrations have been explored [10] [11]. Most interesting in
the scope of the present work is Schafroth’s early suggestion that charge-carrying bosons in
a metal at low temperature actually constitute a gas of bound two-electron states [12, 13]
which can then be described by a self-consistent normalized stationary Schrödinger-Poisson
(SP) nonlinear differential system [14]. At that time (1955) where performant numerical
simulations were not available, Schafroth just wanted to emphasize the role of long-range
Coulomb interactions between the charged bosons by use of mostly qualitative arguments.
Therefore he proposed a one-dimensional (1D) SP model that considers the particles, whose
quantum state is defined by the stationary Schrödinger equation, as moving in an effective
potential related by Poisson’s equation to the local boson charge density plus an uniform
potential modelling both the charge density of the background (in order to make the whole
system electrically neutral) and the non-condensed particles. Due to the assumed Poisson
geometry, this additional uniform potential is but the second derivative of an equivalent
external harmonic confining potential whose frequency is simply the plasma frequency of
the electrons. Consequently, this 1955 SP model was probably the first ab-initio nonlinear
quantum attempt to describe by use of a self-consistent differential system the competition
that occurs in a charged boson gas between external confinement and long-range internal
particle-particle Coulomb interaction [15].

With the experimental development of BEC’s as well as quantum dots, the theoretical
interest of this competition has all the more increased as nonlinear differential systems are
now routinely solved by precise numerical simulations. Therefore the quantum nature of
their eigenstates can now be numerically explored and the physical consequences of their
nonlinearity as well as their non-orthogonality addressed. Non-orthogonal eigenstates due
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to system-environment couplings lead e.g. to a plethora of intriguing non-Hermitian phe-
nomena which can be described either by a duality between non-Hermitian models in flat
spaces and their Hermitian counterparts in curved spaces [16] or by linear quantum electro-
dynamics directly deduced from the nonlinear SP equation [17]. Special emphasis is also put
on strong nonlinearity in such systems which may yield their transition to a Thomas-Fermi
classical state [18] or their description by a stable algorithm in the difficult case where the
density of states varies rapidly with energy [19].

We consider in the present letter the simplest case of two nonlinear eigenstates |i) and |j)
defined by their respective eigenvalues —or chemical potentials— µi and µj ̸= µi. How can
the non-zero probability amplitude (i|j) —defined by its overlap integral Sij =

∫
u∗
iujd

3r ̸= 0
of their respective wave functions ui,j(x)— be physically interpreted (in order to avoid any
confusion, we use parenthesis for the nonlinear eigenstates, e.g. |a), and, as usually, kets for
standard linear orthonormal eigenstates : e.g. |b⟩)? We propose a tentative answer in terms
of the well-known quantum concept of mixed-state quantum system obtained by statisti-
cally combining the nonlinear eigenstates {|i)} with appropriate normalized probabilities.
However, it is known that its description in terms of the density operator ρ is unambiguous
only if the quantum states of the mixture are orthonormal. Then the statistical weights are
the eigenvalues of the corresponding density matrix [20]. Therefore we make use of Löwdin’s
change of basis which symmetrically orthonormalizes an original non-orthogonal set of eigen-
states [21] —e.g. modeling electron transport through a molecule without Green’s functions
or equivalent scattering theory methods [22]— and we build-up the set of Löwdin orthonor-
mal states |j⟩ =

∑
i[S

−1/2]j,i|i) where S is the overlap matrix. We define the mixed state by
the density matrix ρ ∼ {Si,j}, once this later is appropriately diagonalized in the new basis
|j⟩. The corresponding eigenvalues pj > 0 are the normalized statistical weights:

∑
j pj = 1

and ρ =
∑

j pj|j⟩⟨j|. Then we use these results to define an observable of the nonlinear
quantum system, namely here the radial extend ⟨r2⟩ = Tr{ρ[r2]} of a 2D axisymmetric
system where ρ and [r2] are respectively the density matrix and the matrix r2i,j = (j|r2|i) in
the nonlinear eigenbasis {|i)}.

The above procedure is straightforward for several discrete nonlinear eigenstates. For
the sake of clarity, we illustrate it by use of the simplest case, namely, a two-level nonlinear
system which both is easily analytically tractable and displays the main properties of the
model. Moreover, it is experimentally sound: e.g. the ”s” states of two-electron quantum-dot
helium [6] [23].

To be specific, , assume that the wave functions ui,j(x) of the nonlinear normalized
eigenstates |i) and |j) corresponding to the respective nonlinear eigenvalues µi and µj are
real-valued. Define the eigenstate non-orthogonality A = (i|j) = (j|i) =

∫
ui ujd

3r = Sij =
Sji where the overlap matrix S is :

S =

(
1 A
A 1

)
−→ S−1/2 =

±1√
1− A2

(
cos θ − sin θ
− sin θ cos θ

)
, (1)

where A = sin 2θ. Löwdin’s symmetrically-orthonormalized states are [21]:(
|i⟩
|j⟩

)
= S−1/2

(
|i)
|j)

)
. (2)

Note that, due to nonlinearity, these states are not eigenstates —nor even solutions— of
the nonlinear differential quantum system (say, SP or GP for instance). They will serve as
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intermediate tools in order to unambiguously define the 2x2 density matrix ρ in the basis of
the two original nonlinear normalized eigenstates |i) and |j). The spectral decomposition of
the density matrix ρ in Löwdin’s orthonormal basis |i⟩ and |j⟩ is given by:

Λp =

(
pi 0
0 pj

)
= S1/2 ρS−1/2 ⇐⇒ ρ =

∑
l=i,j

pl |l⟩⟨l| , (3)

where the eigenvalues (or statistical weights) pi,j are:

pi =
1

2
± (α− 1

2
)
√
1− A2 ; pj =

1

2
∓ (α− 1

2
)
√
1− A2 . (4)

The ± sign is redundant: it defines two actually equivalent solutions that only depend on
eigenstate labelling. Therefore we adopt in the following the positive sign. The normalization
condition

∑
l=i,j pl = 1 yields the following solution in the nonlinear basis |i) of the spectral

problem (3):

ρ =

(
α A(α− 1

2
)

−A(α− 1
2
) 1− α

)
. (5)

Parameter α, which defines —together with non-orthogonality parameter A = (i|j)— the
populations of Löwdin’s orthogonal states |i⟩ or |j⟩ in accordance with Eq. (4), is the
only adjustable degree of freedom in our nonlinear quantum model |i, j) in order to fit
with experimental values. Indeed consider any Hermitian operator Q whose matrix in the
real-valued nonlinear basis |i, j) is symmetric: Qij =

∫
uiQujd

3r =
∫
ujQuid

3r = Qji.
Therefore:

⟨Q⟩ = Tr{ρQ} = αQii + (1− α)Qjj ⇐⇒ α =
⟨Q⟩ −Qjj

Qii −Qjj

. (6)

As an illustration, assume that Q is the Hamiltonian H which yields in the nonlinear basis
|i, j): Hii = µi; Hij = Hji = 0; Hjj = µj. Then the energy reads E = Tr{ρH} =
αµi + (1 − α)µj or α = (E − µj)/(µi − µj) in accordance with Eqs (6). Consider the
quantization of the two-electron Coulomb system [15]: the ground state nonlinear eigenvalue
(say, µi) is by less than 1% lower than the corresponding experimental value E. Therefore
α ∼ 0.99. Specifically, the 1s2 carbon ion C4+ yields [15]: µi = −0.40059 a.u./Z2 and
µj = −0.1007 a.u./Z2 (with Z = 6) while the corresponding experimental value is E =
−0.40023 a.u./Z2. Therefore α ∼ 0.9988 and the corresponding density matrix (5) reads:

ρ =

(
0.9988 −0.0249
0.0249 0.0012

)
. (7)

since A ∼ −0.05 [15]. Another example concerns the time-dependent axisymmetric two-state
SP nonlinear system whose ground state ui(x, y) is initially perturbed (”kicked”) by a sudden
modification of the bottom of its external parabolic confining potential. We consider the
case A = −0.132 (a realistic value for GaAs since it correspnds to the harmonic confinement
~ω = 3.37 meV [6]). By numerically projecting the resulting time-dependent wave function
Ψ(x, y, t) onto ground state ui(x, y), then identifying pi with the mean value 0.974 of this
oscillating component, and making use of:

α =
1

2
+

1√
1− A2

(pi −
1

2
) , (8)
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deduced from Eq. (4), we obtain α = 0.978. Choosing Q = [X2] where X2 is the 2D extend of
the system in the above dimensionless units, we have X2

ii = 3.64 and X2
jj = 7.38. Therefore,

by use of Eqs. (6), we obtain ⟨r2⟩ = Tr{ρ[r2]} = 7.38 − 3.74α = 3.72 in appropriate
dimensionless units; to be compared with the actual averaged value 3.77 given by the time-
dependent numerical solution of the ”kicked” SP differential system [24]. Therefore our two-
state stationary SP model, together with its nonlinear density matrix (4-5), provides quite
acceptable mean values when compared with the corresponding averaged time-dependent
description.

In conclusion, let us stress that the generalization of the above two-level mixed-state den-
sity operator description to a system where several nonlinear quantum eigenstates coexist is
mathematically straightforward. The use of the density matrix, together with its unavoid-
able Löwdin change of basis orthonormalizing the original non-orthogonal set of eigenstates
[21], matters here because it is the only physical tool to take into account the mixed-state
properties of the quantum system. Indeed these latter are obtained by statistically combin-
ing the nonlinear eigenstates with appropriate normalized probabilities. These mixed-state
properties can be valuable for the description of, e.g., both the charged Bose gas [15] and the
GP system [25]. In the former case, the interest of the nonlinear eigenstates is that they can
be regarded as unperturbed although they take into account, in addition to the particles’
external parabolic confinement, the (usually quite important) long-range Coulomb interac-
tions [26]. The mathematical consequence is their non-orthogonality yielding in particular
their mixed-state properties. In the later case, nonlinear quantum eigenstates in the phys-
ical description of very-many-particle stationary BEC’s are practically quasi-unavoidable.
Indeed, when the particle number exceeds a few thousands, there is actually no other choice
than solving the nonlinear GP equation. Actually, the ground state of N interacting bosons
confined by an external potential can be directly calculated starting from its many-body
Hamiltonian and using a path-integral Monte Carlo method (e.g. in order to describe the
thermodynamic behaviour of many thousands of atoms interacting with a repulsive “hard-
sphere” potential [27]). Although this procedure gives exact results within statistical errors,
the calculation can be heavy or even impracticable for systems with much larger values of
N . Therefore mean-field approaches are commonly developed for interacting systems in
order to overcome the problem of solving exactly the full many-body Schrödinger equation.
Apart from the convenience of avoiding heavy numerical work, they allow one to understand
the behaviour of a system in terms of a set of parameters having a clear physical meaning,
particularly in the case of trapped bosons [25].
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