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Abstract

We investigate multipartite information and entanglement measures in the ground state of a free-fermion 
model defined on a Hamming graph. Using the known diagonalization of the adjacency matrix, we solve 
the model and construct the ground-state correlation matrix. Moreover, we find all the eigenvalues of the 
chopped correlation matrix when the subsystem consists of n disjoint Hamming subgraphs embedded in a 
larger one. These results allow us to find an exact formula for the entanglement entropy of disjoint graphs, 
as well as for the mutual and tripartite information. We use the exact formulas for these measures to extract 
their asymptotic behavior in two distinct thermodynamic limits, and find excellent match with the numerical 
calculations. In particular, we find that the entanglement entropy admits a logarithmic violation of the area 
law which decreases the amount of entanglement compared to the area law scaling.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

Quantum entanglement plays a prominent role in our understanding of collective phenomena 
in quantum many-body systems [1,2], such as quantum phase transitions [3,4], the emergence of 
thermodynamics out of equilibrium [5,6] or topological phases of matter [7,8].

For a quantum system in a pure state |ψ〉 〉, the entanglement between a subsystem A and its 
complement, traditionally denoted B, can be quantified by the entanglement entropy. It is defined 
as the von Neumann entropy of the reduced density matrix ρA of subsystem A,

S(A) = −Tr(ρA logρA), ρA = TrB(|ψ〉〉〈〈ψ |), (1)

where TrB denotes the partial trace over the degrees of freedom of B.
The entanglement entropy measures the entanglement between A and B, irrespective of the 

geometry of A. When A = ⋃n
j=1 Aj consists of n disjoint subsystems, the entanglement entropy 

does not provide information on the multipartite entanglement between the parts ofA. In the case 
n = 2 where A is a bipartite subsystem, one often considers the mutual information I2(A1 :A2), 
defined as

I2(A1 : A2) = S(A1) + S(A2) − S(A1 ∪A2). (2)

We stress that the mutual information is not per se an entanglement measure, because it also 
contains classical correlations between A1 and A2 [9], and a proper measure of entanglement 
in that case is instead the entanglement negativity [10]. However, the mutual information shares 
important properties with the negativity [11–13], and we focus here on the mutual information 
for simplicity. Moreover, since the mutual information measures both classical and quantum 
2
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correlations, a vanishing or subleading mutual information is sufficient to indicate negligible 
entanglement between the subsystems.

For the cases n > 2 where A is a multipartite subsystem, one can also define measures that 
quantify the presence of multipartite entanglement and correlations between the subsystems. 
Developing a refined understanding of multipartite entanglement and information in quantum 
many-body systems is a timely challenge which generates an intense theoretical activity [14–22]. 
For n = 3, we use the tripartite information I3(A1 : A2 :A3), defined as [23]

I3(A1 : A2 : A3) = I2(A1 :A2) + I2(A1 : A3) − I2(A1 : (A2 ∪A3)). (3)

This quantity measures the extensiveness of the mutual information. In particular, a negative 
tripartite information indicates multipartite entanglement which is related to quantum chaos and 
scrambling [14–16]. In the context of two-dimensional systems where A1, A2, A3 are adjacent 
regions, the tripartite information coincides with the celebrated topological entanglement entropy 
[7]. Very recently, the tripartite information was investigated in the context monitored spin chains 
[21] and quantum quenches [22,24].

The mutual and tripartite information simplify in the case where the subsystems Aj are 
complementary, namely when B = ∅. In that case, for n = 2 we have S(A1 ∪A2) = 0 and 
S(A1) = S(A2), which implies

I2(A1 : A2) = 2S(A1), B = ∅. (4)

Similarly, for n = 3 it is direct to show that the tripartite information vanishes,

I3(A1 : A2 : A3) = 0, B = ∅. (5)

Any lattice quantum many body system is naturally defined on a graph: the vertices are the 
spatial position available for the particles, and the edges indicate the interactions. Typical ex-
amples include the one-dimensional chain and the square lattice in two dimensions. However, 
understanding quantum systems whose degrees of freedom reside on the vertices of more intri-
cate graphs has received substantial attention, both from the quantum information and graph 
theory communities [25–29]. A natural endeavor in this context is to use the mathematical 
structure of the underlying graphs to compute entanglement measures of such quantum sys-
tems [25,28,30–35].

In this paper, we investigate the multipartite entanglement properties of free fermions defined 
on Hamming graphs, which are natural generalizations of hypercubes in arbitrary dimension. 
These graphs arise in algebraic combinatorics as part of the Hamming scheme, an example of 
P - and Q polynomial association schemes [36,37] with su(2) as its Terwilliger algebra [38–
41]. Physically, Hamming graphs are known to admit perfect state transfer [26] and fractional 
revival [42]. The entanglement entropy of free fermions defined on Hamming graphs has been 
investigated in Ref. [33], and we expand these results to the case of multipartite subsystems.

The paper is organized as follows. In Sec. 2 we recall the definition of Hamming graphs and 
the diagonalization of their adjacency matrix. We use these results to define and diagonalize 
the related free-fermion Hamiltonian and construct the chopped correlation matrix. We give the 
exact results for the entanglement entropy of n disjoint Hamming subgraphs embedded in a larger 
one in Sec. 3, and also provide analytical and numerical results for the asymptotic behavior of 
the entropy in the limit of large systems. In Sec. 4 we derive exact formulas and asymptotics 
for the mutual and tripartite information. We offer a summary of our results and an outlook for 
future work in Sec. 5. The diagonalization of the chopped correlation matrix is carried out in 
Appendix A.
3
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2. Model and definitions

2.1. Hamming graph

The Hamming graph H(d, q) is defined as follows. The set of vertices Fd
q consists of all 

the d-tuples v = (v1, v2, . . . , vd) with vi ∈ {0, 1, . . . , q − 1} for all i = 1, 2, . . . , d . Two vertices 
v, v′ ∈ Fd

q are connected by an edge if there is exactly one position i for which vi 
= v′
i . The 

graph distance between two vertices v, v′, denoted ∂(v, v′), is defined as the number of entries 
for which they differ,

∂(v, v′) = ∣∣{i ∈ {1,2, . . . , d} : vi 
= v′
i}

∣∣, (6)

where |{. . . }| denotes the cardinality of the set. By definition, the maximal distance between two 
vertices is d , and for this reason we say that d is the diameter of the graph.

The adjacency matrix A of the Hamming graph is a qd × qd matrix whose entries are labeled
by the vertices of H(d, q), and the components are

[A]v,v′ =
{

1 if ∂(v, v′) = 1,

0 otherwise.
(7)

The diagonalization of A is given in Ref. [33,43], and we recall the main steps. Each vertex 
v = (v1, v2, . . . , vd) ∈ Fd

q can be represented by a vector in (Cq)⊗d ,

|v〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vd〉, (8)

where

|vi〉 = (0,0, . . . ,0︸ ︷︷ ︸
vi times

,1,0, . . . ,0)T . (9)

In this basis, the adjacency matrix reads

A =
d∑

i=1

(1q×q)⊗i−1 ⊗ (Jq×q − 1q×q) ⊗ (1q×q)⊗d−i (10)

where 1q×q is the q × q identity matrix, and Jq×q is the q × q matrix filled with ones.
The matrix Jq×q has two distinct eigenvalues, q and 0, with respective degeneracies 1 and 

(q − 1). The unique normalized eigenvector associated to the eigenvalue q is

|θq〉 = 1√
q

q−1∑
i=0

|i〉, (11)

whereas the q − 1 orthonormal eigenvectors with zero eigenvalue are denoted |θj 〉, j =
1, 2, . . . , q − 1. The set {|θi〉 : i ∈ {1, 2, . . . q}} thus defines an orthonormal basis of Cq .

It follows that eigenvectors of A are of the form |θi1θi2 . . . θid 〉 ≡ |θi1〉 ⊗|θi2〉 ⊗· · ·⊗ |θid 〉 with 
ij ∈ {1, 2, . . . , q}. Indeed, from Eq. (10) we have

A|θi1θi2 . . . θid 〉 = ωk|θi1θi2 . . . θid 〉, (12)

where k is the number of vectors |θq〉 in the tensor product. The eigenvalue is

ωk ≡ kq − d, k = 0,1, . . . , d, (13)
4
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and it has the degeneracy

Dk =
(

d

k

)
(q − 1)d−k. (14)

In the following, we denote the orthonormal eigenvectors of A as |ωk, mk〉, where ωk is the 
eigenvalue and mk = 1, 2, . . . , Dk labels the degeneracies.

2.2. Free-fermion Hamiltonian and ground state

We consider spinless free fermions hopping between vertices of the Hamming graph H(d, q)

with distance-dependent amplitudes αi ∈R, i = 0, 1, . . . , d . Physically, α0 is the chemical poten-
tial, α1 is the nearest-neighbor hoping amplitude, and αi>1 correspond to long-range interactions. 
The Hamiltonian is

H =
∑

v,v′∈Fd
q

α∂(v,v′)c
†
vcv′ (15)

where c†
v, cv are fermionic creation and annihilation operators satisfying the canonical anticom-

mutation relation

{c†
v, cv′ } = δv,v′, {c†

v, c
†
v′ } = {cv, cv′ } = 0. (16)

The Hamiltonian acts on a Hilbert space of dimension 2|Fd
q |, where |Fd

q | = qd is the number of 
vertices in the Hamming graph H(d, q). The vacuum state, denoted |0〉 〉, is a special vector of this 
Hilbert space which is annihilated by all fermionic annihilation operators, cv|0〉 〉 = 0 ∀v ∈ Fd

q .
We diagonalize H using the diagonalization of the adjacency matrix A presented in the pre-

vious section. We introduce the diagonal fermionic operators d†
k,mk

, dk,mk
,

d
†
k,mk

=
∑
v∈Fd

q

〈v|ωk,mk〉c†
v, dk,mk

=
∑
v∈Fd

q

〈ωk,mk|v〉cv, (17)

and recast the Hamiltonian in diagonal form,

H =
d∑

k=0

Dk∑
mk=1

εk d
†
k,mk

dk,mk
. (18)

The single-particle energies εk are [33]

εk =
d∑

i=0

αi

(
d

i

)
(q − 1)iKi

(
d − k; q − 1

q
, d

)
(19)

where Ki are the Krawtchouk polynomials of degree i [44],

Ki

(
d − k; q − 1

q
, d

)
=

i∑
j=0

(−i)j (k − d)j

(−d)j j !
(

q

q − 1

)j

. (20)

Here, (a)j is the Pochammer symbol (or shifted factorial), defined as

(a)0 = 1, (a)j = a(a + 1) · · · (a + j − 1), j > 0. (21)
5
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From this diagonalization, one can construct all the eigenstates of H by applying diagonal 
creation operators on the vacuum state |0〉 〉. In particular, the ground state |ψ0〉 〉 is

|ψ0〉〉 =
∏
k∈F

Dk∏
mk=1

d
†
k,mk

|0〉〉 (22)

where F is the set of all integers k ∈ {0, 1, . . . , d} such that εk � 0. We note that the ground state 
is degenerate if there are vanishing single-particle energies εk0 = 0.

2.3. Nearest-neighbor and long-range models

In this section, we give two example of free-fermion models defined on Hamming graphs for 
which there is a closed-form formula for the energies (19). Moreover, the set F has the simple 
form F = {0, 1, . . . , k0} where k0 depends on the specific model.

As a first example, let us consider the model nearest-neighbor hoping, namely α1 = 1 and 
αi>1 = 0. In this case, Eq. (19) simplifies greatly, and a direct calculation yields

εk = α0 + ωk, (23)

where ωk are the eigenvalues of the adjacency matrix, see Eq. (13). This is the generalization 
to the Hamming graph of the well-known diagonalization of the one-dimensional tight-biding 
model [45]. In this situation, the Fermi momentum is

k0 =
⌊

d − α0

q

⌋
. (24)

This model has a finite energy gap q , and the degeneracy of the first excited state is exponentially 
large in d .

It is also possible to find a closed-form expression for the energies in the case of long-range 
interactions with exponential suppression, namely αi>0 = e−ci with c � 0. The energies in this 
case read [33]

εk = (1 − e−c)d−k(1 + e−c(q − 1))k + α0 − 1. (25)

For α0 � 1 there are no negative energies and F = ∅, whereas for α0 < 1 we have

k0 =
⌊

log(1 − α0) − d log(1 − e−c)

log(1 + e−c(q − 1)) − log(1 − e−c)

⌋
. (26)

2.4. Filling fraction

Let us investigate the filling fraction νF of the ground state |ψ0〉 〉 in Eq. (22) for the nearest-
neighbor and long-range models. It is defined as the ratio between the occupation number of the 
ground state and the total number of vertices |Fd

q | = qd ,

νF = 1

qd

k0∑
k=0

(
d

k

)
(q − 1)d−k. (27)

For the nearest-neighbor case where k0 = �(q − α0)/q�, we investigate the filling fraction as 
a function of d for different value of q and α0. Even though νF is not a constant, it converges 
6
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Fig. 1. Ground-state filling fraction νF for the nearest-neighbor hoping model with q = 4 and α0 = 0, 1 as a function of 
d (symbols). The solid line indicates the asymptotic value νF = 1/2.

to 1/2 for large values of d , irrespective of q and α0. We illustrate this in Fig. 1 for q = 4 and 
α0 = 0, 1. We have similar curves for different values of q and α0 but do not reproduce them on 
the figure for clarity.

Let us now consider the long-range model with k0 defined in Eq. (26) and investigate the filling 
fraction as a function of α0 and c. First, for α0 � 1 all the energies are positive, and therefore 
νF = 0. Second, for α0 < 1 and small c � 0, the energies in Eq. (25) are all negative for large 
values of d , and therefore the filling fraction satisfies limd→∞ νF = 1. Third, we consider the 
case α0 
= 0 and large c. In this case, the large-d limit of the filling fraction depends on the sign of 
α0. We have limd→∞ νF = 0 for α0 > 0 and limd→∞ νF = 1 for α0 < 0. Finally, let us consider 
α0 = 0 and large c. From Eq. (26), we have

k0 ∼
⌊

d

q

⌋
, (28)

which is the same value as for the nearest-neighbor hoping model with α0 = 0, see Eq. (24). 
Therefore, the filling fraction converges to 1/2, similarly as in Fig. 1. We conclude that for 
the long-range model, the filling fraction converges to either νF = 0, 1 or 1/2 depending 
on α0 and c.

2.5. Correlation matrix and entanglement entropy

The diagonalization of H also allows to compute the ground-state two-point correlation matrix 
C (or simply correlation matrix). Similarly to the adjacency matrix A, it is a matrix whose entries 
are labeled by the vertices of H(d, q) and which is defined as

[C]v,v′ = 〈〈ψ0|c†
vcv′ |ψ0〉〉. (29)

A direct calculation shows that

C =
∑
k∈F

Dk∑
mk=1

|ωk,mk〉〈ωk,mk|

≡ π ,

(30)
F

7
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namely that C = πF , the projection operator onto all the eigenspaces of A associated to negative 
single-particle energies.

Let us consider a subset A ∈ Fd
q of vertices of the Hamming graph, and denote by πA the 

projector on this subset. The chopped correlation matrix CA is the restriction of the correlation 
matrix C to the subset A, i.e.

CA = πAπFπA. (31)

Owing to the quadratic nature of the Hamiltonian H, the ground-state entanglement entropy 
S(A) of A ∈ Fd

q can be obtained via the chopped correlation matrix [46,47],

S(A) = −Tr(CA logCA + (1 − CA) log(1 − CA)). (32)

3. Entanglement entropy of disjoint subgraphs

We consider the case where the subsystem A consists of n disjoints Hamming graphs H(L, q)

with L < d , embedded in the larger one H(d, q). More specifically, A = ⋃n
j=1 Aj with

Aj =
{
v ∈ Fd

q : vi = (j − 1) ∀i s.t. 1 � i � r
}

(33)

where r ≡ d − L is an integer that we interpret as the distance between the subsystems. Indeed, 
the minimal path between two vertices v ∈ Aj and v′ ∈ Aj ′ with j 
= j ′ has length r . Moreover, 
we impose n � q .

We note that every vertex v ∈ A is adjacent to r(q − 1) vertices in the complement B. The 
size (or volume) of A is

VA = |A| = nqd−r , (34)

whereas the size of the boundary (or area), defined as the number of edges connecting vertices 
in A and in B, is

|∂A| = (q − 1)rVA = r(q − 1) nqd−r . (35)

The fact that every vertex of A belongs to the boundary between A and B is reminiscent of the 
so-called skeletal regions, introduced in Ref. [48]. However, the main difference here is that the 
volume of A is not negligible compared to the size of the whole system. Indeed,

VA
|Fd

q | = nq−r , (36)

and this number is finite and non-zero for fixed n, q, r , even in the large-volume limit d → ∞.
The entropy for one subsystem S(Aj ) is computed in Ref. [33]. In the following, we gener-

alize these computations to the multipartite case, and derive exact formulas for the entanglement 
entropies S(

⋃n
j=1 Aj ), which are the building blocks of the multipartite entanglement measures.

3.1. Eigenvectors and eigenvalues of CA

Our goal is to construct eigenvectors of the operator CA = πAπFπA. We define

ηj = e2iπj/n, j = 1,2, . . . , n. (37)

The subset A has dimension n × qL. We introduce n × qL orthonormal vectors as follows,
8
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|θi1 · · · θiL〉j = 1√
n

(
n−1∑
=0

η
j |〉⊗r

)
⊗ |θi1〉 ⊗ · · · ⊗ |θiL〉, (38)

where j = 1, 2, . . . , n, and the vectors |θi〉 are defined in Sec. 2.1.
Let us define Q as the number of vectors |θq〉 in the state |θi1 · · · θiL〉j . We find that |θi1 · · · θiL〉j

is an eigenvector of the chopped correlation matrix,

CA|θi1 · · · θiL〉j =
⎧⎨
⎩

�
(n)
Q,0|θi1 · · · θiL〉0, j = 0,

�
(n)
Q,1|θi1 · · · θiL〉j j > 0,

(39a)

with eigenvalue

�
(n)
Q,e =

∑
k∈F

Q�k�Q+r

(
r

k − Q

)(
1

q

)k−Q (
q − 1

q

)r−k+Q

+ nδe,0 − 1

qr

∑
k∈F

Q�k�Q+r

(
r

k − Q

)
(−1)r−k+Q. (39b)

We give the proof of this result in Appendix A. For n = 1, the second term on the right-hand side 
of Eq. (39b) vanishes, and we recover the result from Ref. [33] for the case of a single subsystem.

The eigenvalues �(n)
Q,0 and �(n)

Q,1 have degeneracy DQ and (n − 1)DQ, respectively, with DQ

given by Eq. (14) with k = Q and d → L. The total number of eigenvalues is

n

L∑
Q=0

DQ = nqL, (40)

as expected.

3.2. Entanglement entropy

We introduce the function s(x) as

s(x) = −x logx − (1 − x) log(1 − x). (41)

With Eqs. (32) and (39), we find that the entanglement entropy of n disjoint Hamming subgraphs 
is

S
( n⋃

j=1

Aj

)
=

L∑
Q=0

DQ

[
s(�

(n)
Q,0) + (n − 1)s(�

(n)
Q,1)

]
. (42)

Let us consider the case where F = {0, 1, . . . , k0} for some Fermi momentum k0 > 0. In 
that situation, if Q > k0, we have �(n)

Q,j = 0. Moreover, for Q � k0 − r , the sums in Eq. (39b)

can be simplified using Newton’s binomial formula, and we find �(n)
Q,j = 1. In both cases, the 

eigenvalues do not contribute to the entanglement entropy because limx→0,1 s(x) = 0. Therefore, 
Eq. (42) simplifies to

S
( n⋃

Aj

)
=

r∑(
L

d − i − k0

)
(q − 1)d−i−k0

(
s(F

(n)
i,0 ) + (n − 1)s(F

(n)
i,1 )

)
(43a)
j=1 i=1

9
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Fig. 2. Entanglement entropy S divided by qd−1d−1/2 as a function of d for r = 1, k0 = d/q , and various values of 
n, q . We compare the exact result of Eq. (43) (symbols) with the asymptotic formula of Eq. (46) (solid lines), and find 
excellent agreement.

where we introduced i = Q − k0 + r and

F
(n)
i,j =

r−i∑
m=0

(
r

m

)
1

qr

(
(q − 1)r−m + (nδj,0 − 1)(−1)r−m

)
. (43b)

Let us stress that the entanglement entropy on Hamming graphs only depends on the underly-
ing model (i.e. the choice of αi) through k0, or equivalently the filling fraction νF . Moreover, the 
entanglement entropy vanishes for the trivial filling fractions νF = 0, 1. Therefore, based on our 
analysis of Sec. 2.4, we focus on the case k0 = �d/q� which corresponds to an asymptotic filling 
fraction limd→∞ νF = 1/2. Our results thus hold both for the nearest-neighbor hoping model 
with arbitrary α0 and the long-range model with large c and α0 = 0. In the following we further 
assume that d is a multiple of q , such that k0 = d/q .

3.3. Asymptotics for r = 1

For r = 1, or L = d − 1, the sum in Eq. (43) reduces to a single term. Furthermore, for 
i = r = 1, the function F (n)

i,j simplifies to

F
(n)
1,j = q − nδj,0

q
. (44)

We thus have

S
( n⋃

j=1

Aj

)
=

(
d − 1

d − 1 − k0

)
(q − 1)d−1−k0s

(q − n

q

)
(45)

where we used s(0) = s(1) = 0. Using Stirling’s formula in Eq. (45), we find

S
( n⋃

j=1

Aj

)
∼ qd−1

(
1

d

)1/2
q√

2π(q − 1)
s
(q − n

q

)
(46)

at leading order in the limit d → ∞. In Fig. 2, we compare this asymptotic result (solid lines) 
with the exact formula of Eq. (43) (symbols), and find excellent agreement.
10
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3.4. Asymptotics for finite r

It is possible to generalize the calculations of the previous section to investigate the asymptotic 
behavior of the entanglement entropy in the limit d → ∞ where r > 0 is fixed. This corresponds 
to the thermodynamic limit where the ratio VA/|Fd

q | remains a constant, see Eq. (36). We find

S
( n⋃

j=1

Aj

)
∼ qd−r

(
1

d

)1/2

f (n, q, r) (47a)

with

f (n, q, r) = q√
2π(q − 1)

r∑
i=1

(
s(F

(n)
i,0 ) + (n − 1)s(F

(n)
i,1 )

)
(47b)

at leading order for large d . As expected, Eq. (47) reduces to Eq. (46) for r = 1. The agreement 
between the asymptotic result of Eq. (47) and the exact formula of Eq. (43) is excellent. We do 
not illustrate this agreement with a new figure, because it would essentially be identical to Fig. 2.

Even though the function f (n, q, r) is cumbersome, Eq. (47a) provides the full d-dependence 
of the leading term of the entanglement entropy. Moreover, for large r we numerically observe 
the following properties: (i) f (n, q, r) ∝∼ n, (ii) f (n, q, r)2 ∝∼ r , and (iii) ∂qf (n, q, r) ∼ 0.

These observations, combined with further numerical investigations of the entanglement en-
tropy, suggest that the entropy scales as

S
( n⋃

j=1

Aj

)
∼ VA

( r

d

)1/2 (
β − γ

( r

d

)
+ . . .

)
(48a)

where VA = nqd−r is given in Eq. (34), the ellipsis indicate subleading terms of order (r/d)2, 
and β, γ are constants that do not depend on n, q, r, d . However, we stress that the entanglement 
entropy of n disjoint Hamming subgraphs is not exactly proportional to n. Therefore, there are 
also subleading corrections in Eq. (48a) which are not proportional to n. We fit the values of β, γ
and find

β � 0.7203, γ � 0.0278, (48b)

in the limit d → ∞ for large but fixed values of r . In terms of the asymptotic result of Eq. (47), 
we expect

β = f (n, q, r)

nr1/2 , (49)

and indeed we find f (n, q, r)/nr1/2 � 0.7203 for large values of r .
In the left panel of Fig. 3, we compare the exact results for the entropy obtained with Eq. (43)

for various values of n, q, r (symbols) with the numerical fit of Eq. (48) (solid line), and find 
excellent agreement. We also display the asymptotic value f (n, q, r)/nr1/2 for n = 3, q = 4 and 
r = 600 (dashed line).

For fixed n, q, r the volume VA of A is proportional to the area |∂A| of the boundary between 
A and B, see Eq. (35). Moreover, since the d-dependence of |∂A| is exponential, |∂A| ∝ qd , the 
diameter d scales as log |∂A|, up to additive and multiplicative constants. Therefore, the scaling 
of the entanglement entropy in Eq. (47a) corresponds to a violation of the area law by a power 
of the logarithm of the area,

S ∼ |∂A|
(

log |∂A|
)−1/2

. (50)
11
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Fig. 3. Left: Entanglement entropy S divided by VA (r/d)1/2 as a function of d/r for k0 = d/q and various values of 
n, q, r . The symbols are obtained from the exact formula of Eq. (43), and the solid line is the function β − γ

(
r
d

)
where 

β, γ are given in Eq. (48b). The dashed line is the asymptotic value f (n, q, r)/nr1/2 ∼ 0.7203 for n = 3, q = 4 and 
r = 600, where f (n, q, r) is defined in Eq. (47b). Right: Entanglement entropy S divided by VA (1 − δ)1/2 as a function 
of d for k0 = d/q , n = 2 and various values of q, δ. The symbols are obtained from the exact formula of Eq. (43), and 
the solid lines are the fitted asymptotic values given in Eq. (52).

Logarithmic violations of the area law have been observed in numerous other physical sys-
tems, such as one-dimensional quantum critical systems [3,4] and free fermions in higher dimen-
sions [49,50]. However, in these cases the models are gapless and logarithmic violation tends to 
increase the entanglement compared to the area law, which is in stark contrast with the Hamming 
graph.

The interpretation of the unusual scaling in Eq. (50) is that the entanglement in the Hamming 
graph is extremely local. The entanglement entropy per edge connecting a site in A with a site in 
B is of order d−1/2 and vanishes in the large-d limit. However, this effect of short-ranged entan-
glement is in part compensated by the fact that the number of links, or area, grows exponentially 
fast with d , leading to an exponential amount of entanglement which is nonetheless subleading 
compared to the strict area law.

3.5. Numerics for r ∝ d

We also consider the case where r grows linearly with d , namely r = (1 − δ)d with fixed 
0 < δ < 1. In that case, we numerically observe that the entropy scales as

S
( n⋃

j=1

Aj

)
= β̃VA + . . . (51)

in the limit d → ∞. Here, β̃ is a constant with respect to n, q , but it depends on δ. In the right 
panel of Fig. 3, we show the exact results obtained with Eq. (43) for the entropy as a function of 
d for n = 2 and various values of q, δ (symbols). We do not show the results for different values 
of n, because we find that curves that only differ by the value of n are almost indistinguishable. 
We fit the constant β̃ from Eq. (51) and find

β̃

(1 − δ)1/2 �
{

0.6988, δ = 1/5,

0.7043, δ = 2/5.
(52)
12
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These two numerical values are the solid lines in the right panel of Fig. 3. Let us mention that for 
n = 1 and q = 2, Eq. (51) reproduces the scaling S ∝ 2L observed in Ref. [33].

The results for the scaling of the entanglement entropy for large d but fixed r and for r =
(1 − δ)d are mutually compatible. Indeed, comparing Eqs. (48a) and (51), we expect

β̃

(1 − δ)1/2 = β − γ (1 − δ) + . . . (53)

where the ellipsis indicate terms of order (1 − δ)2. Injecting the numerical values of Eq. (48b) in 
Eq. (53), we find β − γ (1 − δ) � 0.6981 and β − γ (1 − δ) � 0.7036 for δ = 1/5 and δ = 2/5, 
respectively. These values are very close to the fitted ones in Eq. (52).

In the situation where r ∝ d with fixed n, q , we have VA ∝ |∂A|/d , see Eq. (35). The scaling 
of the entanglement entropy of Eq. (51) thus corresponds to a logarithmic violation of the area 
law of the form

S ∼ |∂A|
(

log |∂A|
)−1

. (54)

While the scaling is not identical as in the case of fixed r given in Eq. (50), we also observe a 
logarithmic violation that tends to decrease the amount of entanglement compared to the area 
law. The interpretation is the same, namely the entanglement in Hamming graphs appears to get 
increasingly local as we approach the thermodynamic limit. A difference compared to the case 
of finite r is that here the volume of A becomes negligible compared to the total number of sites, 
see Eq. (36). It is known that the entanglement of skeletal regions with no volume is weaker than 
for systems with volume [48]; we observe a similar behavior here.

4. Multipartite information

We use the exact result of Eq. (43) for the entanglement entropy of disjoint Hamming sub-
graphs to study the behavior of the mutual and the tripartite information. For simplicity, we 
always consider the case where F = {0, 1, . . . , k0} and k0 = �d/q�, as in Sec. 3.3. However, our 
results readily generalize to the case of arbitrary F if we use Eq. (42) instead of Eq. (43) for the 
entropies.

4.1. Exact results

Combining Eqs. (2) and (43) for n = 1, 2, we find

I2(A1 : A2) =
r∑

i=1

(
L

d − i − k0

)
(q − 1)d−i−k0

(
2s(F

(1)
i,0 ) − s(F

(2)
i,0 ) − s(F

(2)
i,1 )

)
. (55)

As a consistency check, let us verify that Eq. (4) holds when A1 and A2 are complementary. In 
the context of the Hamming graph, this situation corresponds to the choices q = 2 and r = 1. 
The sum in Eq. (55) simplifies to one term with i = r = 1. With Eq. (44), we find

I2(A1 : A2) = 2

(
L

d − 1 − k0

)
s(1/2), (56)

where we used s(0) = s(1) = 0. A direct comparison with Eq. (43) yields I2(A1 :A2) = 2S(A1), 
as expected.
13
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For the tripartite information, we combine Eqs. (3) and (43) for n = 1, 2, 3, we find

I3(A1 : A2 : A3) =
r∑

i=1

(
L

d − i − k0

)
(q − 1)d−i−k0

×
(

3s(F
(1)
i,0 ) − 3s(F

(2)
i,0 ) − 3s(F

(2)
i,1 ) + s(F

(3)
i,0 ) + 2s(F

(3)
i,1 )

)
. (57)

As for the mutual information, we verify that the tripartite information in Eq. (57) is compatible 
with Eq. (5) and vanishes when A1, A2 and A3 are complementary. This situation corresponds 
to q = 3 and r = 1. With Eq. (44), we see that

I3(A1 : A2 : A3) =
(

L

d − 1 − k0

)
2d−1−k0

(
3s(2/3) − 3s(1/3)

)
= 0

(58)

where we used s(x) = s(1 − x).

4.2. Asymptotics for finite r

Using similar tools as in Sec. 3.4, we investigate the asymptotic behavior of the mutual infor-
mation in the limit d → ∞ with finite r . We find

I2(A1 : A2) ∼ qd−r

(
1

d

)1/2

g2(q, r),

I3(A1 : A2 : A3) ∼ qd−r

(
1

d

)1/2

g3(q, r),

(59a)

with

g2(q, r) = q√
2π(q − 1)

r∑
i=1

(
2s(F

(1)
i,0 ) − s(F

(2)
i,0 ) − s(F

(2)
i,1 )

)
(59b)

and

g3(q, r) = q√
2π(q − 1)

r∑
i=1

(
3s(F

(1)
i,0 )−3s(F

(2)
i,0 )−3s(F

(2)
i,1 )+ s(F

(3)
i,0 )+2s(F

(3)
i,1 )

)
(59c)

at leading order for large d . The match between these predictions and exact numerical calcu-
lations is extremely good, similarly as in Secs. 3.3 and 3.4 for the entanglement entropy, and 
therefore we do not illustrate it with a new figure.

4.3. Negligible multipartite information

In Fig. 4 we illustrate the behavior of g2(q, r) and g3(q, r) as a function of r for fixed q =
5. Both functions decay exponentially fast in r , and this behavior holds for arbitrary values 
of q > 2. For q = 2, the function g2(2, r) decays as r−1/2 instead of exponentially, and the 
tripartite information is not well defined. These results indicate that for moderately large values 
of r and q > 2, both the mutual and the tripartite information are subleading and negligible 
compared to the entanglement entropy. This result confirms that the entanglement in Hamming 
is extremely local, and hence separated regions are almost not entangled. We note that if the 
14
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Fig. 4. Functions g2(q, r) and g3(q, r) defined in Eqs. (59b) and (59c) for q = 5 as a function of r , in logarithmic scale.

entanglement entropy of n disjoint subgraphs were exactly proportional to n, we would have 
S(A1 ∪A2) = S(A1) +S(A2), and hence I2(A1 :A2) = I3(A1 : A2 : A3) = 0. Here, the mutual 
and tripartite information do not exactly vanish precisely because of the subleading corrections 
that are not proportional to n in the entanglement entropy, as discussed below Eq. (48a). We stress 
that the near proportionality of the entanglement entropy in n also holds for n > 3, and hence 
we conclude that any multipartite information measure between disjoint Hamming subgraphs is 
negligible and subleading compared to the entanglement entropy.

Finally, we investigate the behavior of the multipartite information measures in the case where 
r = (1 − δ)d . This situation corresponds to the limit of infinite separation between the sub-
systems, and we thus expect mutual information measures to vanish. Indeed, the coefficients 
g2(q, (1 − δ)d) and g3(q, (1 − δ)d) vanish in the limit d → ∞, and we find I2(A1 :A2) =
I3(A1 : A2 :A3) = 0 for q > 2. For q = 2, the decay of the coefficient g2(2, (1 − δ)d) for large 
d is slower than for q > 2 and the mutual information does not identically vanish in the large-d
limit. We nonetheless have limd→∞ I2/(q

dδd−1/2) = 0, namely the leading term in the expan-
sion vanishes.

5. Conclusion

In this paper, we investigated multipartite entanglement and information measures for free 
fermions defined on Hamming graphs. We obtained the exact diagonalization of the chopped 
correlation matrix CA in the case where A consists of n disjoint Hamming subgraphs embedded 
in a larger one, see Eq. (39). We stress that, while it is common to use the chopped correlation 
matrix to investigate entanglement in free-fermion systems, only in very rare instances can the 
correlation matrix be exactly diagonalized in finite size. This is thus one of the main results of 
this paper, and it is a non-trivial generalization of the formulas obtained in Ref. [33] for the case 
n = 1.

With the exact diagonalization of the chopped correlation matrix, we derived exact formulas 
for the entanglement entropy of disjoint blocks, as well as for the mutual and tripartite infor-
mation. We focused on two models of free fermions on Hamming graphs, a nearest-neighbor 
hoping model and a long-range model with couplings that decay exponentially with the distance, 
and found that the entanglement entropy is the same in both. We investigated the asymptotic 
behavior of the entanglement entropy of disjoint blocks in the thermodynamic limit d → ∞
15
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with (i) r = cst, and (ii) r ∝ d . In the limit (i), we found an analytic expression for the asymp-
totic behavior of the entropy, see Eq. (47), and conjectured the general scaling of Eq. (48). The 
agreement with numerical results is excellent. In the limit (ii) we mainly used numerical fits, but 
we argued that the conjecture of Eq. (51) is compatible with the analytical results of the case (i). 
In both cases, the entropy scales as S ∼ |∂A|(log |∂A|)−a with a = 1/2 and a = 1 for the lim-
its (i) and (ii), respectively. These scaling correspond to logarithmic violations of the area law 
that tend to decrease the amount of entanglement compared to the area law. The entanglement 
in Hamming graphs is thus ultra local and the entanglement per boundary edge vanishes in the 
large-d limit. Moreover, the suppression of the area law is stronger in the limit (ii) where the 
subsystems have a negligible volume and become skeletal regions. Using similar methods, we 
also investigated the asymptotic behavior of the mutual and tripartite information and found that 
their leading terms are negligible compared to the entanglement entropy, and they vanish in the 
limit (ii). These results for the multipartite information measures confirm that entanglement on 
Hamming graphs is more local than on traditional cubic lattices. This highlights the fact that the 
underlying geometry of a lattice model can play a non-trivial role in the physics at a thermody-
namic scale.

We conclude with some directions for future research. First, it would be important to un-
derstand if other physical model display similar unusual violation of the area law as the ones 
we observed for Hamming graph. Second, it would be interesting to perform similar analysis 
on other relevant graphs, such as the Johnson graph, see Ref. [34], and compare the behavior 
of multipartite entanglement. Finally, since the Hamming graph is known to admit perfect state 
transfer, a natural question would be to investigate the nonequilibrium entanglement dynamics 
after a quantum quench and understand how perfect state transfer affects the time evolution of 
entanglement and multipartite information.
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Appendix A. Diagonalization of CA

In this appendix, we give the proof of Eq. (39). First, we define the projectors Pi as

Pi = |i〉〈i|, i = 0, . . . , q − 1, (A.1)

where |i〉 is a vector in Cq defined as in Eq. (9). The projector on A is

πA = (
P ⊗r

0 + · · · + P ⊗r
n−1

) ⊗ (1q×q)⊗L, (A.2)

where we recall that r = d − L.
Second, we investigate the projector on F . For simplicity, we introduce

Oi = xi1q×q + yiJq×q (A.3)

and consider the projector

πd(x, y) = O1 ⊗ · · · ⊗ Od (A.4)

with x = (x1, . . . , xd), and similarly for y. For a binary string b = (b1, b2, . . . , bd) ∈ {0, 1}d of 
length d , we define the weight function as w(b) ≡ ∑d

i=1 bi . With these notations, the projector 
πF is [33]

πF =
∑
k∈F

∑
b∈{0,1}d

w(b)=d−k

πd

(
(b1, . . . , bd),

( (−1)b1

q
, . . . ,

(−1)bd

q

))
. (A.5)

By construction, we have

πA|θi1 · · · θiL〉j = |θi1 · · · θiL〉j . (A.6)

Moreover, the state |θi1 · · · θiL〉j is an eigenvector of the operator Or+1 ⊗· · ·⊗Od for any choice 
of x, y,

Or+1 ⊗ · · · ⊗ Od |θi1 · · · θiL〉j = γi(x, y)|θi1 · · · θiL〉j (A.7)

with

γi(x, y) =
L∏

m=1

(xr+m + qyr+mδim,q). (A.8)

To show that |θi1 · · · θiL〉j is an eigenvector of CA, it remains to show that(
P ⊗r

0 + · · · + P ⊗r
n−1

) · πr(x, y)|θi1 · · · θiL〉j = λj (x, y)|θi1 · · · θiL〉j (A.9)

where πr(x, y) is defined as in Eq. (A.4) with d → r . We find

λj (x, y) =
r∏

i=1

(xi + yi) +
(

n−1∑
=1

η
j

)
r∏

i=1

yi, (A.10)

where the sum over η
j is a simple trigonometric series which simplifies to

n−1∑
η

j = nδj,0 − 1. (A.11)

=1
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We give the proof of Eq. (A.10) for r = 2 and arbitrary n. For clarity, we define

|ψn〉j ≡ 1√
n

(
n−1∑
=0

η
j |〉 ⊗ |〉

)
. (A.12)

The operator 
(
P ⊗2

0 + · · · + P ⊗2
n−1

) · π2(x, y) acts non-trivially on the term |ψn〉j of the vector 
|θi1 · · · θiL〉j . The action of π2(x, y) is

π2(x, y)|ψn〉j = 1√
n

n−1∑
=0

η
j O1|〉 ⊗ O2|〉 (A.13)

and we have

O1|〉 ⊗ O2|〉 = (
(x1 + y1)(x2 + y2) − y1y2

)|〉 ⊗ |〉 + y1y2

q−1∑
m,m′=0

|m〉 ⊗ |m′〉. (A.14)

In Eq. (A.9), because of the projector operators on A, the double sum over m, m′ in Eq. (A.14)
reduces to 

∑n−1
m=0 |m〉 ⊗ |m〉. We have(

P ⊗2
0 + · · · + P ⊗2

n−1

) · π2(x, y)|ψn〉j =(
(x1 + y1)(x2 + y2) − y1y2

)|ψn〉j

+ y1y2
1√
n

(
n−1∑
=0

η
j

)
n−1∑
m=0

|m〉 ⊗ |m〉. (A.15)

With the trigonometric identity of Eq. (A.11), we conclude that Eq. (A.15) is exactly Eq. (A.9)
with the eigenvalue of Eq. (A.10) for r = 2. The generalization for arbitrary r is direct.

Combining the results from the previous paragraphs, we thus find

πAπd(x, y)πA|θi1 · · · θiL〉j = λj (x, y)γi(x, y)|θi1 · · · θiL〉j . (A.16)

Using this result and Eq. (A.5) to express πF in terms of πd(x, y), we conclude that |θi1 · · · θiL〉j
is an eigenvector of the chopped correlation matrix, with the eigenvalue given in Eq. (39).
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