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Abstract

This article is dedicated to Eduardo D. Sontag on the occasion of his 70th birthday. We
build upon fundamental stability concepts developed by Sontag, such as input-to-state
stability and its related properties, to study a relevant application in industrial inter-
net of things, namely, estimation for wireless networked control systems. Particularly, we
study emulation-based state estimation for non-linear plants that communicate with a
remote observer over a shared wireless network subject to packet losses. To reduce band-
width usage, a stochastic communication protocol is employed to determine which node
should be given access to the network. Each node has a different successful transmis-
sion probability. We describe the overall closed-loop system as a stochastic hybrid model,
which allows us to capture the behaviour both between and at transmission instants,
whilst covering network features such as random transmission instants, packet losses,
and stochastic scheduling. We then provide sufficient conditions on the transmission rate
that guarantee an input-to-state stability property (in expectation) for the corresponding
estimation error system. We illustrate our results in the design of circle criterion observers.

Keywords: Wireless networked control systems, Emulation, State estimation, Stochastic
protocols.

1 Introduction

Eduardo D. Sontag has proposed and developed a number of novel concepts in fields ranging
from control theory and theoretical computer science, to learning and systems biology. Of
greatest interest to this work are the novel tools introduced by Sontag in the 1980s and 1990s
for studying the effect of external inputs on the stability of non-linear systems, namely input-
to-state stability (ISS) [1] and its related properties [2]. These concepts have been widely
recognised as central paradigms in control engineering research. Particularly, the notion of
ISS quickly became a foundational concept upon which much of modern non-linear feedback
analysis and design rest, see e.g., [3, 4]. Additionally, input-to-state stability led to related
notions such as integral ISS [5], derivative ISS (DISS) [6], input-to-output stability (IOS) [7],
together with important characterisations of forward completeness [8], amongst others.
Applications of ISS are now widespread, which—to cite a few—include: singular perturbation
analysis [9], small-gain theorems [10], tracking design [11], and observer design [12, 13]. Relevant
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to this work are the contributions of ISS to the area of networked control systems (NCSs),
see e.g., [14–16]. Within this context, ISS (and other IOS-like properties) is adopted as the
right notion to formalise the effect of network imperfections on the controller (or observer).
In this work, we build upon the aforementioned stability concepts developed by Sontag to
study an important control engineering problem relevant to industrial internet of things (IIoT)
applications, which is estimation for wireless networked control systems (WNCSs).
Advances in wireless technology are revolutionising how control systems exchange information
with physical processes [17]. In WNCSs, the sensor and actuator information is transmitted
to a remote controller over a shared wireless network. WNCSs provide several advantages over
control systems based on wired counterparts, e.g., improved flexibility, reduced maintenance
costs, and simple deployment of additional measurement points. Particularly, wireless tech-
nology has proven to be successful in replacing wired control systems with wireless ones even
in complex industrial environments, see e.g., [18]. However, wireless networks also introduce
communication constraints that include, but are not limited to, packet losses, data collisions,
time-varying transmission instants, and delays. Therefore, in order to have efficient design
solutions for these systems, the wireless network and its corresponding constraints have to be
considered explicitly in the analysis.
Due to bandwidth limitations, simultaneous transmission of multiple sensors via a shared net-
work may cause data collisions or network congestion. An effective way to alleviate the possible
information loss is the implementation of communication protocols to aid the scheduling of sig-
nal transmissions. Particularly, communication protocols determine which node should obtain
access to the shared wireless network at a particular transmission instant. In the literature,
we can find static protocols like round-robin [19], in which nodes are assigned to a particular
timeslot in a predetermined and cyclic manner, and dynamic protocols like maximum-error-first
try-once-discard [20], where the node with the greatest weighted error will be granted access
to the network. Moreover, stochastic (also called random access) protocols can also be used to
avoid collisions [21], and these have received a lot of attention recently in the literature since
they model carrier-sense multiple access with collision avoidance (CSMA/CA) protocols that
arise in IEEE 802.15.4-based industrial wireless networks such as WirelessHART for instance
[22, 23].
Stochastic protocols have been widely studied in the context of controller design of linear
WNCS in [24–28], in [29] for a class of non-linear WNCS, and our previous works [21, 23]
for general non-linear WNCS. Recently, stochastic protocols have also been studied for the
remote state estimation problem, see e.g., [30–32] for results on linear systems, and [33–37] for
results on special classes of non-linear systems. Particularly, all these works focus on discrete-
time models (either linear or a special class of non-linear) for the underlying WNCS, and thus
consider periodic and deterministic transmissions for the network. These models can be limiting
since they are only valid at each sample time, thus the inter-sample behaviour is lost, and also
disregard the stochastic nature of wireless transmissions. Additionally, none of these works
considered that the node with granted network access may also be subject to packet dropouts
due to the wireless environment. To the best of our knowledge, there are no available results
in the literature that provide a fully non-linear framework for the remote state estimation of
WNCS under stochastic scheduling protocols, random packet losses, and random transmission
instants.
In response to the above discussion, this paper provides an emulation-based framework for
state estimation of general non-linear plants that communicate with an observer via a wireless
network that adopts a stochastic protocol, and where each node is subject to random packet
losses. The emulation approach has been vastly used in the study of NCSs, see e.g., [14, 20, 38].
In our context, the first step of emulation consists in designing an appropriate observer to
estimate the plant state in absence of the wireless network, i.e., as in a standard wired and
analogue control loop. Then, we aim to provide sufficient conditions on the network for which
the original stability property of the observer is preserved when it is implemented over the
wireless network. To this end, we propose a stochastic hybrid model for the WNCS that captures
the continuous dynamics of both the plant and observer, and the discrete dynamics of the
network in terms of transmissions and dropouts. This class of models encompasses both the
linear and classes of non-linear models found in the aforementioned literature, and it allows
us to capture in a higher-fidelity fashion the effects of the underlying wireless network. Using
the obtained WNCS model, we provide a sufficient condition on the rate of transmission that
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ensures a DISS [6] property on the corresponding estimation error system. This sufficient
condition translates into a bound on the transmission rate under which, in absence of inputs,
the mean of the estimation error converges to zero.
As foreshadowed at the start, our analysis tools are highly inspired by the work of Sontag in
[1], where the ISS notion was precisely introduced. Particularly, to provide our stability results,
we adopt small-gain arguments and forward completeness characterisations, for which the ISS
definition becomes very important and natural, see e.g., [8, 10]. In our particular setup, our
analysis considers the interconnection between three subsystems, namely the estimation error
subsystem, the observer subsystem, and the network-induced error subsystem. We assume
different input-output requirements for each subsystem and provide a small-gain theorem that
ensures a DISS property for the estimation error system, and a forward completeness property
for the overall system.
Our contributions can be summarised as follows.

• The presented results are valid for a larger class of models with respect to available literature.
Note that all available results are either for linear systems or specific classes of non-linear
systems [30–37]. Moreover, we adopt a stochastic hybrid systems approach, as opposed to
purely discrete like in the aforementioned works. This allows us to cover both the continuous
behaviour of the plant, and the discrete dynamics from the network (stochastic transmissions
and packet losses). In addition, we consider non-linear plants subject to external disturbances
and measurement noise.

• Our modelling tools build upon the Lp stability work in [21, 39], where stochastic models
for the controller design problem were presented. We emphasise that there are important
technical differences in the analysis since the observer design problem considered in this
paper requires convergence of the estimation error (in absence of inputs) as opposed to only
Lp stability, and this has to be handled carefully given the random transmission instants and
dropouts. In this context, a different analysis that uses tools such as dominated convergence
theorem is performed.

• This proposal also serves as the stochastic counterpart of our previous work on observer
design in a deterministic setting [40]. We note that in [40], successive transmissions are uni-
formly (deterministically) bounded by a maximum allowable transmission interval (MATI).
We highlight that wireless networks naturally exhibit stochastic phenomena. Therefore, in
order to tackle observer design in WNCS settings, this work provides a more suitable frame-
work than [40], for which the structure of the wireless network given by multiple channel
probabilities of success and random transmission times are taken into account.

• Lastly, we extend our recent stochastic work [41] on observer design to a more general case
where each node is subject to its own packet loss process. This tailors to more realistic wireless
networks, in which the distances between node transmitters and receivers—and the physical
environment between them—may be different, leading to different packet loss probabilities
for each node.

Notation

Let N := {0, 1, 2, . . . } and N>0 := N\{0}. Denote by Rn the set of all real vectors with n ∈ N>0

components, and let R≥0 := [0,∞). Given t ∈ R and a piecewise continuous function f : R →
Rn, we define f(t+) := lim

s→t,s>t
f(s). Given a ∈ (0,∞], a function α : [0, a) → R≥0 is of class K

if it is continuous, zero at zero and strictly increasing. It is of class K∞ if it is of class K with
a = ∞, and unbounded. For a, b ∈ (0,∞], a function γ : [0, a)×[0, b) → R≥0 is of class KK if, for
any (s1, s2) ∈ (0, a)× (0, b), γ(s1, ·) and γ(·, s2) are of class K. A continuous function β : R≥0×
R≥0 → R≥0 is of class KL if β(·, t) is of class K for each t ≥ 0, and if β(s, ·) is non-increasing
and satisfies limt→∞ β(s, t) = 0 for each s ≥ 0. For any x ∈ Rn and y ∈ Rm, we use (x, y) :=
[x⊤ y⊤]⊤ ∈ Rn+m. In stands for the identity matrix of dimension n× n, and 1n×m denotes a
n×mmatrix with all elements equal to 1. For x ∈ Rn, |x| denotes the standard Euclidean norm,
and also the induced 2-norm for a real matrix. For x = (x1, . . . , xn) ∈ Rn, x = (|x1|, . . . , |xn|).
For any matrix M , the entries of M are the absolute values of the corresponding entries
of M . diag{M1, . . . ,MN} returns the block diagonal matrix with the matrices M1, . . . ,MN

along the diagonal. Let x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, a partial order
⪯ is given by x ⪯ y ⇔ xi ≤ yi, for all i ∈ {1, . . . , n}. Given a (Lebesgue) measurable
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function f : R → Rn, ∥f∥Lp
:=
(∫

R |f(s)|p ds
)1/p

, for p ∈ N>0, ∥f∥L∞
:= ess supt∈R |f(t)|,

and ∥f∥L∞[a,b] := ess supt∈[a,b] |f(t)|. We say that f ∈ Lp for p ∈ N>0 ∪ {+∞} whenever

∥f∥Lp
< ∞. Given [a, b] ⊂ R, ∥f∥Lp[a,b]

:=
( ∫

[a,b]
|f(s)|p ds

)1/p
denotes the Lp norm of f

when restricted to the interval [a, b]. The underlying complete probability space is taken to be
(Ω,F ,P), with Ω the sample space, F the σ-algebra, and P{·} the probability measure. The
expectation operator is denoted by E{·}. For a measurable function g : Ω × R → Rn, we say
that g ∈ Le

∞[a, b] whenever E{∥g∥L∞[a,b]} <∞, given [a, b] ⊂ R. By i.i.d. we mean independent
and identically distributed. □

2 Problem formulation and modelling

We study the scenario depicted in Fig. 1, where a non-linear plant communicates with an
observer via a random access wireless network subject to packet losses. In this section, we
formally describe each block in Fig. 1, and state the considered problem. Particularly, to design
the observer we adopt an emulation-based approach, see e.g., [14, 16, 20, 38]. That is, we
first design an observer that estimates the state of the plant (1)—in some appropriate sense—
without taking into account the wireless network. Any of the available techniques for non-linear
observer design can be used at this stage. In the next stage of emulation, the observer is
implemented over the network, and thus the goal of this paper is to provide conditions on the
observer and the network under which the state estimate x̃p (approximately) converges to the
state of the plant xp. To fulfil this goal, we build upon the modelling framework in [21, 42] on
controller design, and use similar assumptions for our estimation problem.

Fig. 1 Block diagram of the estimation architecture.

2.1 Plant and observer

The plant model is given by

ẋp = fp(xp, u, w), y = g(xp) + v, (1)

where xp ∈ Rnx is the state, u ∈ Rnu is the control input, w ∈ Rnw is the external disturbance,
y ∈ Rny is the plant output affected by the noise v ∈ Rny , and nx, nu, nw, ny ∈ N>0. The
functions u : R → Rnu and v : R → Rnv are Lebesgue measurable and differentiable almost
everywhere. Moreover, these functions and their time-derivatives are assumed to have a finite
L∞ norm.
For the sake of generality, we assume the designed observer has the form

ż = fo(z, u, y − yz), x̃p = go(z), yz = g(x̃p), (2)

where z ∈ Rnz is the observer state, nz ∈ N>0, x̃p ∈ Rnx is the estimate of the state xp,
and yz ∈ Rny is the output estimate. Note that we allow the dimension of the observer to
be different than the system dimension, hence covering immersion-based and reduced-order



Mathematics of Control, Signals, and Systems 5

observers for instance. It is implicit in (2) that we measure u and y, whereas w and v are
unmeasured. The stability property we will prove is natural for this setting.
We emphasise that in the wireless scenario in Fig. 1, the observer has no longer access to (y, u)
as in the classical state estimation case, but to the wireless versions (ŷ, û) that are discussed
next.

2.2 Wireless network dynamics

Before introducing the dynamics of the wireless signals (ŷ, û), we define the transmission times,
the network nodes, and the packet loss processes. Particularly, in wireless networks, because of
synchronisation routines, acknowledgement packets, waiting times, etc., transmissions instants
are naturally stochastic. In this context, it is common to model them by using renewal processes,
and we use a Poisson point process as formalised in the assumption below, see also [43–45].

Standing Assumption 1 Consider a Poisson point process r(·) with rate λ ∈ R>0 that satisfies
r(t) = 0 for t ∈ [0, t0) and r(t) = k for t ∈ [tk−1, tk), where {tk}k∈N denotes the sequence of
transmission instants defined inductively by: t0 = τ0 with τ0 ∼ Exp(λ), and for each k ∈ N>0,
tk = tk−1 + τk, with τk ∼ Exp(λ), where the sequence {τk}k∈N is i.i.d. □

The times {tk}k∈N are also called arrival times in the literature [46], {τk}k∈N are called inter-
transmission times (or inter-arrival times), τ̄ := 1/λ represents the average inter-transmission
time, and λ is the arrival rate. Throughout this paper, we will use the terms arrival rate and
transmission rate interchangeably. The exponential distribution that governs each τk describes
the time between transmissions.
We next define the concept of network node or cluster. A node consists of several sensors
and/or actuators (grouped either by their spatial location or merely by convention) with their
corresponding data being transmitted at the same transmission instant. Let q := (y, u). To
depict the network nodes, we write, after re-ordering (if necessary), q = (q1, . . . , qN ), where each

partition qj is of size nj ∈ {1, . . . , ny+nu}, j ∈ N := {1, . . . , N}, and
∑N

j=1 nj = ny+nu =: n.
The total number of nodes in the network is thus equal to N . Each node transmission is subject
to random packet loss, and to model it, we introduce a Bernoulli process {θj,k}k∈N for each
network node qj , j ∈ N , which satisfies θj,k = 1 for a successful transmission with probability
of success equal to pj , and θj,k = 0 if the packet is lost with probability 1−pj . We note that this
generalises the packet loss model in [21], where only a single Bernoulli process would govern
the transmissions for all nodes.

Standing Assumption 2 The packet loss processes {θm,k}k∈N and {θn,k}k∈N are independent for
all m ̸= n, with m,n ∈ N , and, for each j ∈ N , {θj,k}k∈N is independent of {τk}k∈N. □

This is a standard assumption in NCS literature that considers Bernoulli packet losses and
multiple links, see e.g., [47]. Different packet loss models such as the Gilbert-Elliott model [48]
are of interest for future work.
We are now ready to introduce the dynamics of q̂ = (ŷ, û). At each transmission instant tk,
k ∈ N, only one node is granted access to the network according to a stochastic scheduling
protocol, which will be described further below. Suppose that the node j ∈ N , is granted access
to the network at time tk, then,

q̂j(t
+
k ) =

{
qj(tk), if θj,k = 1,
q̂j(tk), if θj,k = 0.

That is, if node j ∈ N is granted access to the network, the corresponding components of
the received signal are updated with the sent signal provided the transmission was successful
(θj,k = 1), and the components are kept unchanged in case of a packet loss (θj,k = 0). On
the other hand, every other node that was not granted access to the network satisfies, for any
θk ∈ {0, 1}, q̂i(t+k ) = q̂i(tk), for i ̸= j.
Between transmission instants, i.e., for t ∈ [tk, tk+1], q̂ = (ŷ, û) is generated according to the
in-network processing implementation. For simplicity, we use zero-order hold devices which
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translates into ˙̂y = 0 and ˙̂u = 0 for t ∈ [tk, tk+1] and k ∈ N. Note that this can be easily relaxed
as in, e.g., [14].
Since the designed observer (2) is implemented over the wireless network as per Figure 1, it no
longer receives (y, u) but (ŷ, û) according to the dynamics presented above. This implies that
(2) becomes

ż = fo(z, û, ŷ − ŷz). (3)

Furthermore, we note that (3) does not depend on its output yz, as in (2), but on ŷz, which
is an artificially introduced networked version of yz. The idea of using ŷz instead of yz was
suggested in [49, Section VIII] and it allows stronger stability properties for the estimation
error system to be established. A similar idea was proposed in [50] for the design of high-gain
observers. The variable ŷz is constructed to evolve along the same vector field as ŷ between
two successive transmission instants, i.e., ˙̂yz = 0 for t ∈ [tk, tk+1]. Let yz = (yz,1, . . . , yz,ny )
and ŷz = (ŷz,1, . . . , ŷz,ny ). At each successful transmission of a component of ŷ, say ŷjy with
jy ∈ {1, . . . , ny}, the corresponding component of ŷz, that is ŷz,jy , is reset to yz,jy , that is

ŷz,jy (t
+
k ) =

{
yz,jy (tk), if ŷjy (t

+
k ) = yjy (tk),

ŷz,jy (tk), otherwise.
(4)

2.3 Random access wireless protocol

As mentioned earlier, we consider a scenario where transmissions in the wireless network are
governed by a random access protocol, also known as stochastic protocol [21]. To aid its defini-
tion, and to facilitate analysis, we define the notion of network-induced error. Particularly, the
network-induced error on the plant output is defined as ey := ŷ− y, and the error on the input
is eu := û − u. We also define a network-induced error on the observer output eyz := ŷz − yz.
Using these definitions, we rewrite (3) as

ż = fo(z, u+ eu, y − yz + ey − eyz ). (5)

We can see that the dynamics of the observer are affected by ey−eyz and eu, thus we define the
overall network-induced error as e := (ey − eyz , eu) ∈ Rn. As per the definition of node/cluster
in Section 2.2, the network-induced error e is partitioned into N nodes as e = (e1, . . . , eN ). The
introduction of the network-induced error allows us to model transmissions in a simpler way.
Specifically, if at transmission instant tk node j ∈ N is granted network access, and provided
the transmission is successful, then the dynamics in Section 2.2 imply the corresponding error
component satisfies ej(t

+
k ) = 0, while the remaining components are kept unchanged.

The random access protocol is defined as follows: At each transmission instant, and randomly,
only one of the contending nodes {1, . . . , N} gets network access. Given the network dynamics
in Section 2.2, we can formally write an equation that describes this mechanism. That is,

e(t+k ) = Qke(tk) := ΘkHke(tk) + (In −Θk)e(tk), (6)

where Θk := diag{θ1,kIn1
, . . . , θN,kInN

} contains the packet loss processes θj,k for every node
j ∈ N , {Hk}k∈N are i.i.d. random matrices taking values in the finite set M := {M1, . . . ,MN},
whereMj is the n×n matrix such thatMje = (e1, . . . , ej−1, 0, ej+1, . . . , eN ) for any j ∈ N and
e ∈ Rn. That is, eachMj sets to zero the j-th component of the network-induced error and keeps
the other components unchanged. Hence, the setM contains all the possible matrices that result
from each contending node getting access to transmit. Therefore, the random access protocol is
such that, at each transmission instant tk, Hk will be equal to some Mj . The probability that
node j transmits successfully through the network is given by P{Qk =Mj} = pj/N for j ∈ N .
For a setting where the network is purely deterministic, the authors in [42] introduced the notion
of persistently exciting (PE) protocols. Essentially, a PE protocol would visit every network
node at least once in a finite number of transmissions. Later on, this notion was extended to
the stochastic case in [21] and named almost surely (a.s.) covering protocol. Before defining a.s.
covering protocols, we introduce two preliminary definitions, cover times and covering sequence.
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Definition 1 (Cover time) For any k ∈ N, the k-th cover time, denoted by Tk, is defined as Tk :=
min

{
j ≥ 1 : {M1, . . . ,MN} ⊂ {QTk−1

, . . . , QTk−1+j−1}
}
, and T−1 = 0. □

Collectively, {Tk}k∈N is referred to as the cover time process. Cover times are the times in
which every network node has successfully transmitted at least once. In our context, this notion
is closely related to the cover time of an undirected graph, see e.g., [51], and the Coupon
Collector’s problem [52].

Definition 2 (Covering sequence) Let τk = tk − tk−1 satisfy Assumption 1. We say that C(i, k) :=
{(Qi, τi), . . . , (Qk, τk)} is a covering sequence if and only if for any i ∈ N there exists k ≥ i such that
{M1, . . . ,MN} ⊂ {Qi, . . . , Qk}. □

We note that cover times are simply the lengths of consecutive disjoint covering sequences. We
can now state the notion of a.s. covering protocols introduced in [21].

Definition 3 (A.s. covering protocol) A stochastic protocol is a.s. covering if P{Tk <∞} = 1, ∀k ≥ 0,
with Tk as per Definition 1. □

An a.s. covering protocol grants network access to every node—at least once—within a finite
number of transmissions with probability one. We emphasise that the stochastic protocol (6)
considered in this paper is a.s. covering provided the probabilities of success pj are not equal
to zero.
To show stability under stochastic protocols, we first need to study the probability distribution
of the cover times Tk. To that end, it is important to characterise E{Tk} and also its probability
generating function (p.g.f.) GT (s) := E{sT }, for s ∈ R. Both are presented in the lemma below.

Lemma 1 Let T be the cover time for the sequence {(Q0, τ0), . . . , (QT−1, τT−1)}. Then,

E{T} =

N∑
j=1

N

[N − (j − 1)]pj
, (7)

GT (s) =

N∏
j=1

s(N − (j − 1))pj
N(1− (1− pj)s)− s(j − 1)pj

, (8)

for any s ∈ R, with |s| < 1
1−[minj∈N pj(N−j+1)]/N

.

Proof: Let j ∈ N , and t̄j be the additional number of transmissions required to go from j − 1
to j different nodes being covered. Therefore, t̄j is geometrically distributed with parameter

[N − (j − 1)]pj/N , and T can be written as T =
∑N

j=1 t̄j . Then, by linearity of expectation

and since {Qk}k∈N are i.i.d. according to Assumption 2, we have E{T} = E
{∑N

j=1 t̄j

}
=∑N

j=1 E{t̄j} =
∑N

j=1N/((N−(j−1))pj), which corresponds to (7). We now prove (8), GT (s) :=

E{sT } = E
{
s(t̄1+···+t̄N )

}
=
∏N

j=1 E
{
st̄j
}
, for any s ∈ R, where E

{
st̄j
}

corresponds to the

p.g.f. Gt̄j (s). Since t̄j is geometric, it is well known that Gt̄j (s) = sp̄
1−s(1−p̄) [53], for |s| <

1/(1− p̄), where p̄ is the parameter of the geometric variable t̄j , which is p̄ = [N − (j−1)]pj/N
as stated above. With the latter, (8) follows immediately. ■
We note that E{T} represents the expected number of transmissions in which all matrices
M1, . . . ,MN have been covered at least once. We see in (7) that it depends on the probability
of success pj of each node j ∈ N . This is different to previous works like [21, 41] in which
E {T} only depends on a single probability of success. Moreover, the expectation E{T} was
computed based on our assumptions for packet losses and scheduling protocol. In fact, different
models for packet losses, and different contention mechanisms will lead to different expressions
for E{T}. We illustrate further below in Section 3.2 that this expected cover time plays a key
role in stability. Future work includes the choice of more realistic channel models, e.g., Gilbert-
Elliott channels [48], and CSMA protocols with random waits [54], where a node waits for a
while (e.g., for an acknowledgement packet) after transmitting.
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fχ(χ, z, e, u, v, w) := fp(χ+ go(z), u, w)

− ∂go
∂z

fo (z, u+ eu, g(χ+ go(z)) + v − g(go(z)) + ey − eyz ) , (10a)

fz(χ, z, e, u, v) := fo (z, u+ eu, g(χ+ go(z)) + v − g(go(z)) + ey − eyz ) , (10b)

ge(χ, z, e, u, v, w, d) :=
(
− ∂g

∂xp
fp(χ+ go(z), u, w)− dv

+
∂g

∂x̃p

∂go
∂z

fo(z, u+ eu, g(χ+ go(z)) + v − g(go(z)) + ey − eyz ),−du
)
. (10c)

3 Input-to-state stability

In this section, we first provide a stochastic hybrid model for the overall WNCS in Figure 1, and
then we use it to provide a sufficient condition on the rate of transmission that ensures a DISS
property on the corresponding estimation error system. This sufficient condition translates into
a bound on the transmission rate under which, in absence of inputs, the mean of the estimation
error converges to zero.

3.1 A hybrid model for the WNCS

Given the continuous dynamics from the plant/controller, and the discrete dynamics introduced
by transmissions and packet losses, we model the WNCS in Fig. 1 as a hybrid system. We
introduce the estimation error χ := xp − x̃p, and d := (du, dv), where du := u̇ and dv := v̇.
Then, by using the system description in Section 2, we can write

χ̇ = fχ(χ, z, e, u, v, w), ∀t ∈ [tk, tk+1], (9a)

ż = fz(χ, z, e, u, v), ∀t ∈ [tk, tk+1], (9b)

ė = ge(χ, z, e, u, v, w, d), ∀t ∈ [tk, tk+1], (9c)

χ(t+k ) = χ(tk), (9d)

z(t+k ) = z(tk), (9e)

e(t+k ) = Qke(tk), (9f)

where fχ, fz and ge are defined in (10). The model (9) captures all dynamics of the elements in
the WNCS from Fig. 1 both between– and at–transmission instants. It is important to mention
that (9) is a stochastic hybrid system (SHS), see e.g., [55]. Particularly, we emphasise that it
is only the network-induced constraints (i.e., stochastic protocol, random transmissions, and
random dropouts) that introduce randomness in our models, and the exogenous disturbances
u, v, and w are L∞ signals as stated in Section 2. This leads to randomness in the jump equation
(9f) and the transmission instants tk. For detailed information about construction of solutions
to the SHS (9), we refer the reader to [21], see also [55, 56]. At a general level, we flow the
continuous dynamics until a discrete event occurs (or the end of the solution domain is reached),
and then repeat from the new state after the jump. That is, let ξ := (χ, z, e), ϖ := (u, v, w, d),
fξ := (fχ, fz, ge), and Jk := diag{Inx

, Inz
, Qk}. With these definitions, the SHS (9) can be

written as ξ̇ = fξ(ξ,ϖ) for all t ∈ [tk, tk+1], and ξ(t+k ) = Jkξ(tk). Let t0 ≥ 0 be the initial
time. We assume enough regularity on fξ for the existence of an absolutely continuous function
ξ(t, t0, ξ0, ϖ) such that ξ(t0) = ξ0 and (d/dt)ξ(t, t0, ξ0, ϖ) = fξ(ξ,ϖ), t ∈ (t0, a), a > 0, for
every initial condition (t0, ξ0) and any ϖ ∈ L∞. Then, the solutions to (9) are generated, for

every (t0, ξ0), as ξ(t) = ξ0 +
∫ t

t0
fξ(s, ξ(s), ϖ(s))ds, t ∈ (t0, t1), where ξ(s) = ξ(s, t0, ξ0, ϖ(s)),

and inductively, for all t ∈ (tk, tk+1), k ≥ 1, ξ(t) = Jkξ(tk) +
∫ t

tk
fξ(s, ξ(s), ϖ(s))ds, where

ξ(s) = ξ(s, tk, Jkξ(tk), ϖ(s)).
We are interested in different properties for the χ–system and the z–system. In particular, we
want to prove a convergence property for the estimation error χ, but only some well defined
or bounded behaviour for all time is desired for the observer state z.
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3.2 Stability analysis

We now use the WNCS model (9) to provide sufficient conditions that guarantee a DISS
stability property in expectation for the estimation error system. First, we state the underlying
assumptions. Since the z–dynamics of the observer do not necessarily have to converge, we
ensure they possess an appropriate (average) behaviour in the sense of no finite escapes for
bounded inputs as per the below assumption.

Assumption 1 System ż = fz(χ, z, e, u, v) is forward complete in expectation with inputs (χ, e) ∈ Le
∞

and (u, v) ∈ L∞. That is, there exist ν1, ν2, ν3 ∈ K and c ∈ R≥0 such that, for any z0 ∈ Rnz ,
(χ, e) ∈ Le

∞ and (u, v) ∈ L∞, the corresponding solution to ż = fz(χ, z, e, u, v) satisfies

E {|z(t)|} ≤ ν1(t) + ν2(|z0|) + ν3(E{∥(χ, e, u, v)∥L∞[0,t]}) + c,

for all t ≥ 0 □

We highlight that Assumption 1 is inspired on the influential characterisations proposed by
Angeli and Sontag in [8], where they show forward completeness can be characterised in a
necessary and sufficient manner by means of smooth scalar growth inequalities.
We next assume a specific grow for the e-system (9c) between two successive transmissions.

Assumption 2

(a) There exists an n × n real matrix A with non-negative entries and a continuous function ỹ :
Rnx × Rnz × Rnu × Rnv × Rnw × Rnu+nv → Rn

≥0 such that

ge(χ, z, e, u, v, w, d) ⪯ Ae+ ỹ(χ, z, u, v, w, d), (11)

for all χ ∈ Rnx , z ∈ Rnz , e ∈ Rn, u ∈ Rnu , v ∈ Rnv , w ∈ Rnw , and d ∈ Rnu+nv .

(b) There exists γχ2 ∈ R≥0 and σ ∈ K∞ such that ỹ in (11) satisfies |ỹ(χ, z, u, v, w, d)| ≤ γχ2 |χ| +
σ(|(u, v, w, d)|), for all χ ∈ Rnx , z ∈ Rnz , u ∈ Rnu , v ∈ Rnv , w ∈ Rnw , and d ∈ Rnu+nv . □

Assumption 2(a) is the vector analogue of the standard dissipation-type inequalities often
adopted for the e–dynamics in controller and observer design, see e.g., [16, 42]. Assumption
2(b) imposes a linear gain with respect to χ, and it is reminiscent of condition (13) in [16].
We assume the upper bound on |ỹ| to be independent of z in this paper. However, this can
be relaxed as done in our previous deterministic work [40], at the expense of getting weaker
stability properties. To avoid obscuring the main message of this paper, we adopt Assumption
2(b), as this already holds for a large class of observers, see the example in Section 4 for instance.
Lastly, we assume the observer (2) is designed appropriately so that the estimation error
converges in absence of external disturbances, noise, and network.

Assumption 3 There exists β1 ∈ KL, γe1 ∈ R≥0 and µ ∈ K∞ such that, for any χ0 ∈ Rnx , e ∈ Le
∞

and (v, w) ∈ L∞, the corresponding solution to (χ̇, ż) = (fχ(χ, z, e, u, v, w), fz(χ, z, e, u, v)) satisfies

E{|χ(t)|} ≤ β1(|χ0|, t) + γe1E{∥e∥L∞[0,t]}+ µ
(
∥(v, w)∥L∞[0,t]

)
,

E{∥χ∥L∞[0,t]} ≤ β1(|χ0|, 0) + γe1E{∥e∥L∞[0,t]}+ µ
(
∥(v, w)∥L∞[0,t]

)
,

for all t ≥ 0. □

We note that Assumption 3 ensures an ISS property on the designed observer so that it is robust
with respect to (e, v, w), which is satisfied by various observer designs in the literature, see e.g.,
[57, 58] and the references therein. These ISS conditions are the stochastic counterpart of the
ones often adopted when using emulation-based design, see e.g., [14, 40]. Similar stochastic ISS
notions have been used in the literature, see e.g., [59]. We note the above assumptions hold in
different scenarios such as high-gain and circle criterion observers, and we illustrate this via an
example in Section 4, see also [57].
We are now ready to state the main stability results. Essentially, we consider system (9) as the
interconnection of three subsystems in χ, z and e, and apply small-gain arguments to conclude
a DISS stability property for the overall system. Given Assumptions 1–3, the stability of χ–
and e–dynamics can be studied separately from the system interconnection (9). We first show
that the e–subsystem satisfies an ISS property with respect to ỹ.
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Proposition 2 Suppose Assumption 2(a) holds. Under the stochastic protocol in Section 2.3, there
exists a rate of transmission λ that satisfies ρ(λ) < 1, where

ρ(λ) :=
∏N

j=1
(N−(j−1))pj

N(1−|A|/λ−(1−pj))−(j−1)pj
− 1, λ > N |A|/[minj∈N pj(N − j + 1)], (12)

for which there exists β2 ∈ KL such that any solution to the e-subsystem (9c), (9f) with initial condition
e0 ∈ Rn and input ỹ ∈ Le

∞ verifies

E {|e(t)|} ≤ β2(|e0|, t) + γ̃(λ)E{∥ỹ∥L∞[0,t]}, (13)

for all t ≥ 0, with1

γ̃(λ) =
E {T} (1 + ρ(λ))

(λ− |A|)(1− ρ(λ))
. (14)

Proof: See Section 6.1. ■
We note that E {T} is computed as per Lemma 1, and it depends on the success probabilities for
each node. It is important to highlight that our results are general in the sense that they depend
on the expected cover time, and the expression for it depends on the implemented protocol.
In this setting, E {T} can be computed explicitly for the considered stochastic protocol and
packet loss model by Lemma 1. However, these results provide a foundation for more general
settings with different packet loss models such as the Gilbert-Elliott model [48], where the
computation of E {T} would lead to a different expression than (7).
Proposition 2 provides sufficient conditions on the arrival rate λ so that the e–subsystem is
ISS w.r.t. ỹ. Since the emulation design ensures ISS properties on the χ–subsystem by means
of Assumption 3, and the z–dynamics behave nicely via Assumption 1, we can now state a
DISS property for the overall system (9) via a small-gain theorem.

Theorem 3 Suppose Assumptions 1–3 hold. Then, there exists λ∗ ∈ (0,∞) that solves γ̃(λ∗)γχ2 γ
e
1 = 1,

and for any choice of intensity of transmission satisfying λ > λ∗, the following holds.

(i) There exist β ∈ KL, η1 ∈ K, and η2 ∈ KK such that

E {|(χ(t), e(t))|} ≤ β(|(χ0, e0)|, t) + η1(∥(v, w)∥L∞
) + η2(1/λ, ∥(u, v, w, d)∥L∞

), (15)

for all (χ0, e0) ∈ Rnx+n, (u, v, w, d) ∈ L∞, and t ≥ 0.

(ii) System (9) is forward complete in expectation with input (u, v, w, d) ∈ L∞.

Proof: See Section 6.2. ■
Theorem 3 shows that the expectations of both the estimation error χ and the network-induced
error e converge to a ball centred at the origin, and whose radius depends on the L∞ norm
of the input (u, v, w, d). This is a DISS property for the (χ, e)-subsystem with respect to the
inputs (u, v, w, d), for which we can draw some interesting conclusions. When disturbances and
measurement noises are absent, i.e., w = 0 and v = 0, the mean of the estimation error—a
priori—does not converge to the origin, since in this case, E {|(χ(t), e(t))|} ≤ β(|(χ0, e0)|, t) +
η2(1/λ, ∥(u, du)∥L∞

). However, we can always increase the intensity of transmission λ so that
η2 is small, and thus the effect of (u, du) is reduced. Moreover, we note that the dependence
on u in (15) comes from the definition of ge in (10c) and Assumption 2(b). For different
scenarios, which our setting already covers, the dependence on (u, du) may be completely
removed. For instance, in WNCSs where the observer is collocated in the same remote unit
with the controller, the observer has direct access to u (rather than û), i.e., eu = 0. Then σ in
Assumption 2(b) would not depend on u for a large class of systems, e.g., input affine non-linear
systems and observers that run a copy of the plant. We show an example in Section 4 below
(see (18a),(18c) with eu = 0). Lastly, we note that in absence of inputs, i.e., w = v = u = 0,
the mean of the estimation error indeed asymptotically converges to the origin in (15).

4 Case study: Circle criterion observer

We highlight that the results in Section 3 apply to numerous different observers, including but
not limited to, high-gain observers, circle criterion observers, and globally Lipschitz observers,

1Note that the right-hand side inequality in (12) implies λ > |A|, more details in the proof in Section 6.1.
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see e.g., [60–62]. We next apply our results to circle criterion observers as an example [61, 63].
Consider that plant (1) takes the form

ẋp = Apxp +Gψ(Hxp) + ϕ(u) + w, y = Cxp + v, (16)

where xp ∈ Rnx , y ∈ Rny , u ∈ Rnu , Ap, G,H and C are matrices of appropriate dimensions.
The state dependent non-linearity ψ is an r-dimensional vector where each entry is a function

of a linear combination of the states ψi = ψi

(∑nx

j=1Hijxp,j

)
, i = 1, . . . , r. The main restriction

is that each ψi is non-decreasing, that is, for all a, b ∈ R, it satisfies (a− b)[ψi(a)− ψi(b)] ≥ 0.
The class of non-linearities for which the circle criterion results in [61, 63] apply, is a large
class that does not require globally Lipschitzness of ψ and ϕ. In this case study, however, we
assume ψ and ϕ are globally Lipschitz with constants Ψ and Φ, respectively.
The observer for system (16) is given by

ż = Apz + L(yz − y) +Gψ (Hz +K(yz − y)) + ϕ(u), yz = Cz, (17)

where z = x̃p ∈ Rnx , K ∈ Rr×ny , and L ∈ Rnx×ny are such that the following holds.

Assumption 4 There exist K,L ∈ Rnx×ny , and a real symmetric positive definite matrix P ∈
Rnx×nx such that for V : χ 7→ χ⊤Pχ,

⟨∇V (χ), (Ap + LC)χ+Gψ (H(χ+ z))−Gψ(Hz −KCχ)⟩ ≤ −cV (χ),

for all χ ∈ Rnx , z ∈ Rnz , and some c ∈ R>0. □

Finding K and L such that Assumption 4 is satisfied can be done via solving an LMI [63].
After implementing the observer (17) over the wireless network, we can write

fχ(χ, z, e, u, v, w) = (Ap + LC)χ+ ϕ(u)− ϕ(u+ eu) + L(ey − eyz + v) + w

+Gψ(H(χ+ z))−Gψ (Hz −KCχ−Kv −K(ey − eyz )) , (18a)

fz(χ, z, e, u, v) = Apz − L(Cχ+ ey − eyz + v) +Gψ(Hz −K(Cχ+ ey − eyz + v))

+ ϕ(u+ eu) (18b)

ge(χ, z, e, u, v, w, d) =
(
− Cfχ(χ, z, e, u, v, w)− dv,−du

)
. (18c)

We next verify that Assumptions 2–3 hold, as formalised in the proposition below.

Proposition 4 Consider system (9) with fχ, fz and ge as per (18). Under the stochastic protocol in
Section 2.3 and Assumption 4, the following holds.

(i) Assumption 2(a) holds with

A =

[
CL+Ψ|K|CG1r×ny ΦC1nx×nu

0 0

]
, (19)

and

ỹ(χ, z, u, v, w, d) =

[
C(Ap + LC)χ+ΨCG|(H +KC)χ+Kv|1r + CLv + Cw + d̄v

d̄u

]
. (20)

(ii) Assumption 2(b) holds with γχ2 = |C(Ap + LC)| + Ψ|CG||1r||H + KC| and σ(s) =
max{Ψ|CG||K||1r|+ |CL|, |C|, 1}4s.

(iii) Assumption 3 holds with β1(s, t) =
√
λmax(P )/λmin(P ) exp(−ct/10)s, γe1 =

max
{

5(Ψ|PG||K|+|PL|)
cλmin(P )

,
5Φ|P |

cλmin(P )

}
, and µ(s) = max

{
5(|K|+|PL|)
cλmin(P )

,
5|P |

cλmin(P )

}
2s, where P and c

come from Assumption 4.

Proof : See Section 6.3. ■
Note that, since ψ and ϕ in (17) are globally Lipschitz, Assumption 1 always applies in view
of, e.g., [64, Theorem 3.2]. Then, a direct consequence of Proposition 4 is that all conditions
of Theorem 3 are satisfied. Moreover, all parameters needed to calculate the transmission rate
bound are given in Proposition 4. Hence, Theorem 3 can be directly applied. This is formalised
via the following corollary.
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Corollary 5 Consider system (9) with fχ, fz and ge as per (18), under the stochastic protocol in
Section 2.3. Suppose Assumption 4 holds. Then, for any choice of transmission rate λ > λ∗, where λ∗

solves γ̃(λ∗)γχ2 γ
e
1 = 1 with γ̃ as per (14), we have that (15) holds. ■

5 Numerical simulations

Fig. 2 Average inter-transmission times 1/λ∗ (in seconds) for different probabilities of successful transmission
in nodes 1 and 2.

We now numerically illustrate our results for the case study in Section 4. Consider the plant
(16) with

Ap =

0 1 0
0 1 1
0 0 0

 , G =

 1
−1
0

 , H =
[
0 1 0

]
, C =

[
1 0 0

]
,

and ψ(Hxp) = ψ(xp,2) =
√
x2p,2 + 5, ϕ(u) = (0, u, 2u), and w = 0, v = 0. Note that ψ and

ϕ are globally Lipschitz with constants Ψ = 1 and Φ =
√
5. To design the observer (17), in

absence of the network, we solve the LMI in [63, Theorem 5.1] to find K and L that verify
Assumption 4. Particularly, we get

P =

 2.62 −0.64 −0.23
−0.64 0.36 −0.23
−0.23 −0.23 1.65

 , K = −3.26, L =

 −3.8
−13.64
−1.99

 , c = 0.082.

As per emulation, the observer is implemented over a wireless network consisting of two nodes
(N = 2), one for the sensor measurement y and another for the control input u. The probabil-
ities of successful transmission for nodes 1 and 2 are denoted by p1 and p2, respectively. We
now compute the transmission rate bound λ∗ for which any λ > λ∗ ensures the DISS property
(15) on the estimation error. We do this via Corollary 5, and the parameters required to com-

pute it are obtained via Proposition 4. That is, A =

[
7.06 2.24
0 0

]
, γχ2 = 7.35, γe1 = 5.92 · 103.

In Figure 2, we depict the stability region for which the DISS property (15) on the estimation
error system holds. Specifically, we have plotted the average inter-transmission times τ̄ = 1/λ∗

for different values of the probabilities of success in nodes 1 and 2. Any values of τ̄ below the
curve plotted in Figure 2 satisfies the stability property (15). We can see an overall trend in
which lower probabilities of success require faster transmissions to have effective estimation.
Even if one channel is high quality, a second channel with several dropouts may still require a
high rate of transmission to ensure good estimation.
In brief, our results state that, if we–for instance–pick p1 = 0.5 and p2 = 0.8 (i.e., an average
of 50% packet loss for node 1 and 20% for node 2), we need to transmit every τ̄ = 14[ms], on
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average, to ensure our state estimation approximates the state of the plant (16) on average,
when using a random access wireless network.

6 Proof of main results

6.1 Proof of Proposition 2

The proof is divided in two steps. We first show that there exists a choice of intensity of
transmission λ that satisfies ρ(λ) < 1. The second step consists on showing that (13) holds
for such choice of λ. The first step follows from noting that ρ(λ) > 0 is a strictly decreasing
function of λ for λ > 0, and that limλ→∞ ρ(λ) = 0, which implies ∃λ∗

e ∈ (0,∞) such that for
all λ > λ∗

e, ρ(λ) < 1.
Let us now fix some λ such that ρ(λ) < 1. We will show that the e–subsystem (9c), (9f) is ISS
in expectation from ỹ to e, i.e., that (13) holds for all t ≥ 0. To that end, let us first introduce
the following technical lemma.

Lemma 6 Let T be the cover time for the sequence {(Q0, τ0), . . . , (QT−1, τT−1)}. Then, the following
holds.

(a)
∣∣∏T−1

k=0 Qk exp(Aτk)
∣∣ ≤ exp

(
|A|

∑T−1
k=0 τk

)
− 1.

(b) E{exp
(
|A|

∑T−1
k=0 τk

)
} = ρ(λ) + 1, with ρ as per (12).

Proof: Item (a) follows immediately from [21, Lemma 9.1]. (b) Let τ̃ =
∑T−1

k=0 τk. Via
Example 1.8.13 in [53], we can compute the moment generating function of S as Mτ̃ (s) =
E {exp(sτ̃)} = GT (Mτ (s)), where Mτ is the moment generating function of the exponen-
tially distributed random variables τk. Particularly, Mτ (s) = λ/(λ− s), for λ > s. Therefore,
E {exp (|A|τ̃)} = GT (λ/(λ − |A|)), where GT (s) is given in Lemma 1, and we require both
λ/(λ − |A|) < 1

1−[minj∈N pj(N−j+1)]/N and λ > |A|. The proof is complete by noting that

choosing λ as per the proposition statement satisfies both bounds. Particularly, note that
it suffices to show that minj∈N pj(N − j + 1)/N ≤ 1. In fact, minj∈N pj(N − j + 1)/N =
min{p1, p2(N − 1)/N, . . . , pN/N}, which is always less or equal than 1 since pj ∈ (0, 1] for all
j ∈ N , and N > 0. Then, (12) implies λ > |A|. ■
We now proceed to show (13). Let e be a solution to (9c), (9f) with input ỹ ∈ Le

∞. To prove (13),
we first compute the contribution of the initial condition e0, and then the contribution of the
input ỹ. Consequently, let ỹ = 0. Similar to the proof of Theorem 9.4 in [21], from Assumption
2(a) and (9f), we can write e(t+k ) ⪯ Qk exp(A(tk − tk−1))e(t

+
k−1) ⪯ Qk exp(Aτk)e(t

+
k−1) for all

k ∈ N. Iterating the latter leads to

e(t+k ) =

(
k∏

ι=0

Qι exp(Aτι)

)
e0. (21)

We now introduce some needed definitions. Let the sequence {(Q0, τ0), (Q1, τ1), . . . }
be partitioned such that each subsequence {(Q0, τ0), . . . , (QT0−1, τT0−1)} ∪
{(QT0

, τT0
), . . . , (QT0+T1−1, τT0+T1−1)}, · · · is covering, and let Tj denote the cover time for

the j–th subsequence, j ∈ N. Let ρj := exp
(
|A|
∑Tj−1

i=0 τj,i
)
− 1, where τj,i denotes the

i-th inter-transmission time in the j-th covering sequence. Let SM be the time it takes

to cover N nodes M times, i.e., SM :=
∑M−1

j=0

∑Tj−1
i=0 τj,i. Lastly, we define a process

rT (t) := max{M ≥ 0 : t ≥ SM} =: maxM (t). We note that rT (t) counts the amount of times
N nodes have been visited. Particularly, rT (t) is a renewal process2 [53], i.e., a more general
notion than the Poisson process r(t) that governs transmissions in Assumption 1, since the

holding times SM+1 − SM =
∑TM−1

i=0 τM,i are not necessarily exponentially distributed.

2It suffices to verify that the holding times SM+1−SM are i.i.d. and have positive finite mean. Since Tk’s and τk’s are
i.i.d., then the holding time SM+1 −SM is also i.i.d.. Next, we have E {SM+1 − SM} = E {TM}E {τM,i}. Particularly,
E {τM,i} = 1/λ, and E {TM} can be found in Lemma 1. Consequently, E {SM+1 − SM} = 1

λ

∑N
j=1

N
[N−(j−1)]pj

, which

is positive and finite since pj ∈ (0, 1] for all j ∈ N , λ ∈ (0,∞), and N ≥ 1.
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From (21), the above definitions, and Lemma 6(a), we can write

|e(S+
M )| ≤

∣∣∣∣∣∣
∏

tk≤SM

Qk exp(Aτk)

∣∣∣∣∣∣ |e0| ≤
(

M−1∏
j=0

ρj

)
|e0|.

Moreover, from Assumption 2(a) with ỹ = 0, we can further write, for all t ∈ (SM , SM+1) and
M ∈ N>0,

|e(t)| ≤

(
M−1∏
j=0

ρj

)
exp(|A|(t− SM ))|e0| ≤

(
M−1∏
j=0

ρj

)
(ρM + 1)|e0|, (22)

where the latter comes from the definition of ρM , and noting that |e| = |e|.
We now show that we can relate M with the renewal process rT (t), and thus write (22) in
terms of rT (t) for all t ≥ 0. For the next part of the proof we will include the sample space
Ω explicitly for formality, but when omitted it will be clear from the context. Fix t ≥ 0, then,
for almost every (a.e.) realisation ω ∈ Ω, since SM (ω) → ∞ when M → ∞, ∃M(ω) such that
t ∈ (SM(ω), SM(ω)+1) a.s.. Then, by definition of rT (ω, t), M(ω) = rT (ω, t) in such interval.
Therefore, since the above argument can be done for any t ≥ 0, from (22) we can write

|e(ω, t)| ≤
(∏rT (ω,t)−1

j=0 ρj

)
(ρrT (ω,t) + 1)|e0|, (23)

for all t ≥ 0. That is, for each realisation ω ∈ Ω, the network-induced error satisfies (23) for all
t ≥ 0 almost surely.
We apply the law of total expectation in (23), together with Lemma 6(b), to obtain
E {|e(ω, t)|} ≤ E

{
ρrT (ω,t)

}
(ρ+1)|e0|, ∀t ≥ 0, where ρ < 1 is as per the proposition statement.

In what follows, we prove that β2(s, t) := E
{
ρrT (t)

}
(ρ+1)s, exists and is a KL function. Since

our stochastic protocol is a.s. covering, the holding times are finite with probability one, and
thus rT (t) grows unbounded in t, i.e., limt→∞ rT (t) = ∞ (see e.g., Lemma 18 in [53]). More-
over, E

{
ρrT (t)

}
=
∑∞

k=0 ρ
kP{rT (t) = k} ≤

∑∞
k=0 ρ

k = 1/(1 − ρ) < ∞, since ρ < 1. Then,

we know E
{
ρrT (t)

}
exists and it is bounded. Therefore, β2(·, t) is of class K for each t ≥ 0. It

remains to show that β(s, ·) is non-increasing and satisfies limt→∞ β(s, t) = 0 for each s ≥ 0.
Non-increasing: We first need to show that, for a.e. ω ∈ Ω, rT (ω, t) is a non-decreasing
function of t. Let 0 ≤ t1 ≤ t2, then ∃M(ω) ∈ M (t1) for which t1 ≥ SM(ω), and thus t2 ≥ t1 ≥
SM(ω). Then, M(ω) ∈ M (t2), meaning M (t1) ⊆ M (t2), and thus rT (ω, t2) := maxM (t2) ≥
maxM (t1) =: rT (ω, t1), showing rT (ω, t) is non-decreasing in t ≥ 0. Next, we show β2(s, t) is
non-increasing in t. That is, for t2 ≥ t1 ≥ 0 we just showed that rT (ω, t2) ≥ rT (ω, t1), and
since ρ < 1, ρrT (ω,t2) ≤ ρrT (ω,t1). Lastly, by monotonicity of the expectation, E

{
ρrT (ω,t2)

}
≤

E
{
ρrT (ω,t1)

}
, showing that β2(s, t) is non-increasing in t ≥ 0.

Limiting behaviour: First note that limt→∞ ρrT (ω,t) = 0, ∀ω ∈ Ω, since ρ < 1. Moreover,
|ρrT (ω,t)| ≤ 1, ∀ω ∈ Ω,∀t ≥ 0. Then, by the dominated convergence theorem (see [65, Sec.
5.9]), we have that limt→∞ E

{
ρrT (t)

}
= 0. We can thus conclude that, indeed, β2(s, t) =

E
{
ρrT (t)

}
(ρ+ 1)s ∈ KL.

So far we have shown the contribution of the initial condition e0 in (13). It remains to show
that E {|e(t)|} ≤ γ̃(λ)E{∥ỹ∥L∞[0,t]} to conclude the proof. We set the initial condition e0 = 0

and compute the contribution of the input ỹ directly by applying Theorem 9.4 in [21], which
gives E{∥e∥L∞[0,t]} ≤ γ̃(λ)E{∥ỹ∥L∞[0,t]}. Since |e(t)| ≤ ∥e∥L∞[0,t] for all t ≥ 0, the proof is
thus complete. ■

6.2 Proof of Theorem 3

We first show that there exists λ∗ ∈ (0,∞) such that for all λ > λ∗, γ̃(λ)γχ2 γ
e
1 < 1. Note that

ρ(λ) is a strictly decreasing function of λ, then so is γ̃ in (14). Moreover, limλ→∞ γ̃(λ) = 0.
This implies that there exists λ∗ ∈ (0,∞) such that γ̃(λ∗)γχ2 γ

e
1 = 1, and particularly, for any

λ > λ∗, γ̃(λ)γχ2 γ
e
1 < 1, which will be required in the proof later on (small gain condition).

(i) Now we continue with proving (15). This part of the proof is inspired by the deterministic
works [66, Theorem 2.1] and [16, Theorem 1], and it follows via two steps. In the first step,
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we prove that (χ, e)-subsystem is bounded-input bounded-state (BIBS) in expectation with
input (u, v, w, d). That is, we show that there exists ᾱ, φ ∈ K such that E {|(χ(t), e(t))|} ≤
ᾱ(|(χ0, e0)|) +φ(∥(u, v, w, d)∥L∞[0.t]), for all t ≥ 0. In the second step, we show convergence in

the sense of the DISS property (15).
Step 1 (BIBS property): From the proof of Theorem 9.4 in [21] (i.e., Lp stability from ỹ
to e), and using similar arguments that led to (23), we have that, for any initial condition
e0 ∈ Rn and any exogenous input ỹ ∈ Le

∞, any corresponding solution to (9c), (9f) satisfies

E{∥e∥L∞[0,t]} ≤ α(|e0|) + γ̃(λ)E{∥ỹ∥L∞[0,t]} for all t ≥ 0 with α(s) = 1+ρ(λ)
(1−ρ(λ))min{|A|,1}s and

γ̃ as per (14). With the latter, and together with Assumptions 2(b) and 3, we can write

E{∥e∥L∞[0,t]} ≤ α(|e0|) + γ̃(λ)
(
γχ2 E{∥χ∥L∞[0,t]}+ σ(∥(u, v, w, d)∥L∞[0,t]

)
≤ α(|e0|)

1− γ̃(λ)γχ2 γ
e
1

+
γ̃(λ)

1− γ̃(λ)γχ2 γ
e
1

(
γχ2 β1(|χ0|, 0) + γχ2 µ(∥(v, w)∥L∞[0,t])

+ σ(∥(u, v, w, d)∥L∞[0,t])
)

:=Me(λ, χ0, e0, ∥(u, v, w, d)∥L∞[0,t]). (24)

Similarly, from Assumption 3 and (24), we get

E{∥χ∥L∞[0,t]} ≤ β1(|χ0|, 0) + γe1Me + µ(∥(v, w)∥L∞[0,t])

:=Mχ(λ, χ0, e0, ∥(u, v, w, d)∥L∞[0,t]). (25)

Then, E {|(χ(t), e(t))|} ≤Mχ +Me, for all t ≥ 0, and thus

E {|(χ(t), e(t))|} ≤ ᾱ(|(χ0, e0)|) + µ(∥(v, w)∥L∞[0,t]) + φ1(1/λ)µ(∥(v, w)∥L∞[0,t])

+ φ2(1/λ)σ(∥(u, v, w, d)∥L∞[0,t]), (26)

for all t ≥ 0, where ᾱ(s) = β1(s, 0) +
(γe

1+1)
1−γ̃(λ)γχ

2 γe
1
α(s) +

(γe
1+1)γ̃(λ)γχ

2

1−γ̃(λ)γχ
2 γe

1
β1(s, 0), φ1(s) =

(γe
1+1)γ̃(s−1)γχ

2

1−γ̃(s−1)γχ
2 γe

1
, and φ2(s) =

(γe
1+1)γ̃(s−1)

1−γ̃(s−1)γχ
2 γe

1
. Obviously ᾱ ∈ K. Recall from the start of the proof

that γ̃ in (14) is strictly decreasing on λ and limλ→∞ γ̃(λ) = 0. Then, φ1(0) = φ2(0) = 0, and
thus φ1, φ2 ∈ K. We conclude from (26) that the (χ, e)-subsystem is BIBS.
Step 2 (Convergence property): For any 0 ≤ t10 ≤ t20 ≤ t11 ≤ t21, we can use Assumption
3 and Proposition 2 to write

E {|χ(t11)|} ≤ β1(|χ(t10), t11 − t10|) + µ(∥(v, w)∥L∞
) + γe1E{∥e∥L∞[t10,t11]

} (27a)

E {|e(t21)|} ≤ β2(|e(t20)|, t21 − t20) + γ̃(λ)
(
γχ2 E{∥χ∥L∞[t20,t21]

}+ σ(∥(u, v, w, d)∥L∞
)
)
.

(27b)

Let t ∈ [0,∞) and take t10 = t/4, t20 = t/2, t21 = t, and t11 ∈ [t/2, t]. In view of (27), and the
bounds (24) and (25), we have

E {|e(t)|} ≤ β2(Me, t/2) + γ̃(λ)
(
γχ2

(
β1(Mχ, t/4) + γe1E{∥e∥L∞[t/4,∞)}

+ µ(∥(v, w)∥L∞
)
)
+ σ(∥(u, v, w, d)∥L∞

)
)
. (28)

In the following, we will use Lemma 7 below, which is a special case of Lemma A.1 in [10].

Lemma 7 Let β ∈ KL, µ ∈ (0, 1], and K ∈ [0, 1). For any λ ∈ (1,∞), ∃β̂ ∈ KL such that, for
any s, d ∈ R≥0, and any nonnegative real function z(t) ∈ Le

∞ that satisfies E{z(t)} ≤ β(s, t) +

KE{∥z(t)∥L∞[µt,∞)}+ d, ∀t ∈ [0,∞), then E{z(t)} ≤ β̂(s, t) + (1−K)−1λd, ∀t ∈ [0,∞). □

Consequently, using Lemma 7 in (28) with z(t) = |e(t)|, β(s, t) = β2(s, t/2)+γ̃(λ
∗)γχ2 β1(s, t/4),

K = γ̃(λ)γχ2 γ
e
1 (which is < 1 given the choice of λ), d = γ̃(λ)γχ2 µ(∥(v, w)∥L∞

) +
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γ̃(λ)σ(∥(u, v, w, d)∥L∞
), and µ = 1/4, implies ∃β̂2 ∈ KL such that for any λ2 ∈ (1,∞),

E {|e(t)|} ≤ β̂2(Me+Mχ, t)+
λ2γ̃(λ)

1− γ̃(λ)γχ2 γ
e
1

(
γχ2 µ(∥(v, w)∥L∞

)+σ(∥(u, v, w, d)∥L∞
)
)
, (29)

for all t ≥ 0. Similarly, in view of (27), it can be shown that there exists β̂1 ∈ KL such that
for any λ1 ∈ (1,∞),

E {|χ(t)|} ≤ β̂1(Me+Mχ, t)+
λ1

1− γ̃(λ)γχ2 γ
e
1

(
µ(∥(v, w)∥L∞

)+ γ̃(λ)γe1σ(∥(u, v, w, d)∥L∞
)
)
,

(30)

for all t ≥ 0. Combining (29) and (30) leads to

E {|(χ(t), e(t))|} ≤ β̂(Me +Mχ, t) + λ1µ(∥(v, w)∥L∞
)+

γ̃(λ)

1− γ̃(λ)γχ2 γ
e
1

((
λ2γ

χ
2 + λ1γ

χ
2 γ

e
1

)
µ(∥(v, w)∥L∞

) +
(
λ2 + λ1γ

e
1

)
σ(∥(u, v, w, d)∥L∞

)
)
,

for all t ≥ 0, where β̂(s, t) = β̂1(s, t) + β̂2(s, t). From this point forward, we can proceed

exactly as in the proof of Theorem 1 in [40] to show that (15) holds with β(s, t) := β̂(2ᾱ(s), t),

η1(s) := λ1µ(s) + β̂(4µ(s), 0), and η2(s1, s2) :=
γ̃(s−1

1 )

1−γ̃(s−1
1 )γχ

2 γe
1

(
(λ2γ

χ
2 + λ1γ

χ
2 γ

e
1)µ(s2) + (λ2 +

λ1γ
e
1)σ(s2)

)
+ β̂(4φ1(s1)µ(s2) + 4φ2(s1)σ(s2), 0). Note that β(s, t) ∈ KL, η1(s) ∈ K, and

η2(s1, ·) ∈ K. Moreover, recall that γ̃(λ) is a strictly decreasing function on λ, thus so is
γ̃(λ)/(1 − γ̃(λ)γχ2 γ

e
1), and thus η2(1/λ, s2) ∈ K for λ ∈ (0,∞), concluding the proof of (i) in

Theorem 3.
(ii) In view of (15) and Assumption 1, for all t ≥ 0,

E {|(χ(t), e(t), z(t))|} ≤ β(|(χ0, e0)|, 0) + η1(∥(v, w)∥L∞
) + η2(1/λ

∗, ∥(u, v, w, d)∥L∞
)

+ ν1(t) + ν2(|z0|) + ν3(E
{
∥(x, e, u, v)∥L∞

}
) + c.

Moreover, from (24) and (25) we know that E
{
∥(x, e)∥L∞

}
≤Mχ +Me. Then,

ν3(E
{
∥(x, e, u, v)∥L∞

}
) ≤ ν3(2Mχ + 2Me) + ν3(2 ∥(u, v)∥L∞

)

≤ ν3
(
4ᾱ(|(χ0, e0)|)

)
+ ν3(2 ∥(u, v)∥L∞

) + ν3
(
4µ(∥(v, w)∥L∞

)

+ 4φ1(1/λ
∗)µ(∥(v, w)∥L∞

) + 4φ2(1/λ
∗)σ(∥(u, v, w, d)∥L∞

)
)
.

We can conclude from the above computations that (9) is forward complete in expectation
with input (u, v, w, d) ∈ L∞. ■

6.3 Proof of Proposition 4

(i) Let χ ∈ Rnx , z ∈ Rnz , e ∈ Rn, u ∈ Rnu , v ∈ Rnv , w ∈ Rnw , d ∈ Rnu+nv . By the definition
of ge in (18), we have that,

ge(χ, z, e, u, v, w, d) ⪯
[
Cfχ(χ, z, e, u, v, w) + dv

d̄u

]
⪯
[
Cfχ(χ, z, ς, u, v, w)

0

]
+

[
d̄v
d̄u

]
. (31)

On the other hand, we have that Cfχ = C(Ap +LC)χ+C(ϕ(u)− ϕ(u+ eu)) +CL(ey −
eyz + v) + Cw + C

(
Gψ(H(χ+ z))−Gψ (Hz −KCχ−Kv −K(ey − eyz ))

)
. Then,

Cfχ ⪯ C(Ap + LC)χ+ C(ϕ(u)− ϕ(u+ eu)) + CL(ey − eyz ) + CLv

+ Cw + CG
(
ψ(H(χ+ z))− ψ (Hz −KCχ−Kv −K(ey − eyz ))

)
. (32)
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The terms of the form f(x)− f(x+ y) in (32), for globally Lipschitz f , can be bounded
as follows.

ϕ(u)− ϕ(u+ eu) =

 |ϕ1(u)− ϕ1(u+ eu)|
...

|ϕnx
(u)− ϕnx

(u+ eu)|

 ⪯

Φ|e
u|
...

Φ|eu|

 ⪯ Φ1nx×nu
(eu)

Similarly, we have that

ψ(H(χ+ z))− ψ (Hz −KCχ−Kv −K(ey − eyz ))

⪯ Ψ

|(H +KC)χ+Kv|+ |K||ey − eyz |
...

|(H +KC)χ+Kv|+ |K||ey − eyz |


= Ψ|(H +KC)χ+Kv|1r +Ψ|K|1r×ny (e

y − eyz ).

With the above, (32) becomes

Cfχ ⪯ C(Ap + LC)χ+ΨCG|(H +KC)χ+Kv|1r + CLv + Cw

+
(
CL+Ψ|K|CG1r×ny

)
(ey − eyz ) + ΦC1nx×nu(e

u). (33)

The proof is thus complete in view of (31) and (33).
(ii) Taking the euclidean norm of ỹ in (20), and using the triangle inequality, we have that

|ỹ| ≤ |C(Ap + LC)||χ| + Ψ|CG||H +KC||χ||1r| + Ψ|CG||K||v||1r| + |CL||v| + |C||w| +
|dv|+ |du|, which completes the proof.

(iii) Under Assumption 4, and using the property λmin(P )|χ|2 ≤ V (χ) ≤ λmax(P )|χ|2, and
the fact that 2ab ≤ (c/5)a2+(5/c)b2, we have that along solutions to χ̇ = fχ(χ, z, e, v, w),
for all t ≥ 0,

V̇ ≤ −cV + 2|χ|
(
Ψ|PG||K(ey − eyz ) +Kv|+ |PL(ey − eyz ) + PLv|+ |P ||w|+Φ|P ||eu|

)
,

≤ −cV +
2
√
V√

λmin(P )

(
(Ψ|PG||K|+ |PL|)|ey − eyz |+Φ|P ||eu|+ (|K|+ |PL|)|v|+ |P ||w|

)
≤ − c

5
V +

5(Ψ|PG||K|+ |PL|)2

cλmin(P )
|ey − eyz |2 + 5Φ2|P |2

cλmin(P )
|eu|2 + 5(|K|+ |PL|)2

cλmin(P )
|v|2

+
5|P |2

cλmin(P )
|w|2

≤ − c
5
V +max

{
5(Ψ|PG||K|+ |PL|)2

cλmin(P )
,
5Φ2|P |2

cλmin(P )

}
|e|2 + 5(|K|+ |PL|)2

cλmin(P )
|v|2

+
5|P |2

cλmin(P )
|w|2, (34)

where V̇ denotes dV (χ(t))/dt.

Define Ce
.
= max

{
5(Ψ|PG||K|+|PL|)2

cλmin(P ) , 5Φ2|P |2
cλmin(P )

}
, Cv

.
= 5(|K|+|PL|)2

cλmin(P ) and Cw
.
= 5|P |2

cλmin(P ) .

We invoke the comparison principle for (34) (see Lemma 3.4 in [64]) and get

V (χ(t)) ≤ exp
(
− c

5 (t− t0)
)
V (χ(t0)) +

5
c

(
Ce ∥e∥2L∞[t0,t]

+ Cv ∥v∥2L∞[t0,t]
+ Cw ∥w∥2L∞[t0,t]

)
.

Therefore, |χ(t)| ≤
√

λmax(P )
λmin(P ) exp

(
− c

10 (t− t0)
)
|χ(t0)| +

√
5Ce

cλmin(P ) ∥e∥L∞[t0,t]
+√

5Cv

cλmin(P ) ∥v∥L∞[t0,t]
+
√

5Cw

cλmin(P ) ∥w∥L∞[t0,t]
, which completes the proof via linearity of

the expectation operator E{·}. ■
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7 Conclusions

We proposed an emulation-based framework for state estimation of general non-linear plants
subject to external disturbances and measurement noise, and that communicate with the
observer over a wireless network. The network adopts a stochastic protocol for the nodes,
and each node is subject to both random packet losses and random transmission instants.
We provided sufficient conditions on the rate of transmission that ensure convergence of the
mean of the estimation error under the network-induced constraints. Future work will focus on
considering different packet loss models and protocols.
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