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Holistic vision of Inverse Optimal Control

Jessica Colombel, David Daney, François Charpillet

Abstract— Inverse Optimal Control (IOC) is a problem that
exists in many fields. In the context of human motion analysis,
many methods for solving this problem have been proposed.
This paper presents the Projected Inverse Optimal Control
(PIOC) approach which puts forward a simple and complete
vision of the problem. PIOC is composed of several independent
elements allowing to cover problems of dimensioning, mea-
surement noise and reliability of solution. The first element
is the parameterization of the data, allowing to reduce the
dimensions of the problem. The second element corresponds
to the decoupling of the conditions including the conditions of
identifiability of the parameters, singularity of the problem and
feasibility of the solution. The last element refers to the choice of
solution. We show with this approach that the classical solution
methods are in fact projections in the space of trajectories.
PIOC also allows us to propose a simple algorithm for the
choice of basis, a recurrent problem in IOC.

Inverse Optimal Control, Human Motion Analysis, Identifi-
cation.

I. INTRODUCTION

The Inverse Optimal Control (IOC) problem is a complex
problem studied in many disciplines. In particular, the IOC is
related to the Inverse Reinforcement Learning problem whose
expression and proposed resolution methods differ [1]. For
human motion analysis, the IOC is a well known problem.
Thanks to this method, the literature analyzes the movement
in order to imitate it with a robot [2], [3], to predict human
movements to better interact with humans [4], [5] or even to
split the movement into subtasks [6]. Two methods have been
particularly used in the literature: the Bilevel method [2], [7]
and the AIOC method [8], [9]. In the context of human motion
analysis, we are particularly interested in IOC under uncertain-
ties: noisy data, uncertain model, unknown cost function and
parameter selection.

This paper proposes a new approach for Inverse Optimal
Control problem, when observed data are noisy, which raise up
the problem of optimality of the observed trajectory. We called
it Projected Inverse Optimal Control (PIOC). This approach is
divided into three elements, the parametrization of the measure-
ment, the decoupling of conditions of viability of the problem
and the choice of solution. Our approach brings a simple and
complete vision of the IOC resolution problem. In particular,
we show that the resolutions methods proposed in the literature
are equivalent to particular projections in the trajectory space.
The choice of the resolution method is equivalent to a choice
of solution according to different criteria.

Thus, the originality of this paper lies in a new simple vision
of the IOC problem through:

• parameterization of the measurement states and its impact
on the dimensionality and identifiability of the problem;

• decoupling of the conditions: identifiability, singularity
and feasibility conditions;

• illustration of the choice of the solution by a projection;
• solution for the choice of the cost function.
First, this paper introduces the problem statement of IOC by

defining Direct Optimal Control (DOC) and Bilevel and AIOC
resolution methods. Then, the PIOC approach is presented
by detailing its different steps: parametrization, decoupling
conditions and choice of solution. We also provide a simple
example to illustrate our approach. Finally, we will discuss the
perspectives and limitations of the proposed approach before
concluding this paper.

II. PROBLEM STATEMENT

A. Context

The analysis of human movement by the inverse optimal
control is based on the assumption that the movement is op-
timal according to a criterion. Bipedal walking is considered as
an optimal movement [10], as well as simpler movements such
as picking where the hand is following a trajectory minimizing
the criterion of torque variation [11]. Moreover, the biological
sensorimotor control would itself be governed by optimal laws
[12]. Given the multiplicity of movements and their repre-
sentation, many criteria have been proposed to generate or
analyze through IOC human movement [6], [8], [13]–[18].
These criteria, or cost functions, are the basis for the expression
of DOC. While the DOC allows to generate trajectories, the
IOC allows to analyze trajectories and to understand how they
were generated.

The following subsections will present the DOC as well as
two methods for solving the IOC problem. We will simplify
their presentation as much as possible in order to stay pedagog-
ical. Finally, we will discuss the limitations of these methods.

B. Direct Optimal Control

In the context of human (or robot) motion, the aim of
the DOC is to generate a trajectory s∗ optimal for a convex
criterion C(s) =

∑nc

k ωk.Ck, composed by a sum of weighed
(ω = [ω1, . . . , ωnc ]) cost functions (Ck, k = 1, . . . , nc), under
nf equality constraints fi(s) (i = 1, . . . , nf ) and nh inequality
constraints hj(s) (j = 1, . . . , nh).

s∗ = argmin
s

C(s)

s.t. f1,...,nf
(s) = 0, h1,...,nh

(s) ≤ 0
(1)

where s ∈ Rns×nt is a trajectory composed, by nt of frames;
each are defined by a state st of dimension ns, such that s =
[s1, . . . , st, . . . , snt

]T .
The existance of a solution to this problem is assured by

the convexity of the base [19]. For that, the litterature suggest



convexed cost functions (e.g. quadratic) and positive weights
ω [8].

C. Inverse Optimal Control

The IOC is the problem of finding the unknown weights ω
associated to known cost functions. The constraints are also
known. A lot of resolution methods were proposed to find
the solution of the problem of IOC in the context of human
movement analysis ( [2], [3], [15], [16], [20]) but we will
focus on two of them: the Bilevel resolution method and the
Approximate IOC method.

1) Bilevel IOC: In the context of human motion analysis,
the Bilevel IOC resolution method has been used for locomo-
tion [2], [14] and for the arm [21]. It is a resolution method that
uses two levels of calculation (lower-level: DOC that generates
optimal trajectory; upper-level: distance of generated trajectory
to observed trajectory) that loop until they converge to the
result: the optimal trajectory closest to the observed one [22].
The IOC Bilevel is expressed as follows:

min
ω

∥s∗ − sM∥2

with s∗ = argmin
s

nc∑
k=1

ωk

nsnt∑
t=1

Ck(st)

s.t. f1,...,nf
(s) = 0, h1,...,nh

(s) ≤ 0

(2)

with sM the observed trajectory. We can already note in this
expression that if the data are noisy, we converge to the optimal
trajectory closest to the noisy one.

2) Approximated IOC: The so-called ”Approximate” reso-
lution methods are methods based on properties of an optimal
problem and resulting conditions. The best known conditions
are the Karush-Kuhn-Tucker conditions. They have been used
a lot in the framework of IOC [6], [9], [13], [23]–[25]. Other
conditions have also been used for IOC, such as the Jacobi-
Bellman equations [26]–[28].

The KKT conditions are expressed as follows:
nc∑
k=1

ωk
∂Ck

∂s
(s∗) +

nf∑
i=1

λi
∂fi
∂s

(s∗)

+
nh∑
j=1

νj
∂hj

∂s
(s∗) = 0 stationnary

fi(s
∗) = 0, i = 1, . . . , nf

hj(s
∗) ≤ 0, j = 1, . . . , nh

}
primal feasibility

νj ≥ 0, j = 1, . . . , nh dual feasibility
νjhj(s

∗) = 0, j = 1, . . . , nh complementary slackness
(3)

The stationnary condition can also be written with matrices:

[Jω ,Jλ ,Jν ]︸ ︷︷ ︸
J

ω
λ
ν


︸ ︷︷ ︸

z

= 0
(4)

with J the Identification Matrix and Jω , Jλ and Jν the
sub-matrices associated with the parameters ω (what the IOC
wants to retrieve) and λ,ν the Lagrangian coefficients of the
constraints of equality and inequality, respectively.

The basis C is convex, so that these conditions are con-
sidered necessary but also sufficient for the optimality of the
problem [29].

In the literature, these conditions are used to solve the IOC
problem by using them as ”residuals”. The solution is then done
by minimizing residuals [6], [9], [13], [23].

D. Limitations of the methods

Each of these resolution methods has limitations that do not
allow for optimal use in human motion analysis. The main
drawback of Bilevel is the computation time for the double op-
timization loop [28]. The approximate methods pose problems
of robustness [30]. In particular, it is necessary to know to what
extent one can trust the results obtained [31].

However classical IOC methods work well if the problem is
well posed and the data are perfect. In particular, if the basis
chosen for the IOC correspond well to the one used to generate
the reference trajectory, which must be provided without uncer-
tainties, the resolution methods previously mentioned will find
the solution without difficulty. In practice, this case cannot be
considered: it is then necessary to take into account the natural
uncertainty of the problem, in particular for the analysis of
human motion which interests us particularly.

Moreover according to Ab Azar [1], the IOC problem suffers
more broadly from several problems:

• Ill-posedness problem (existence and uniqueness of the
solution);

• Non-convexity of functions and/or constraints;
• Data availability (incomplete or noisy data);
• Non-linearity, complexity and dimensionality;
• Feature selection (relevance of parameters for dimension-

ality reduction);
• Generalization (choice of cost functions/results obtained).

In our approach, we want to address these difficulties and
propose elements to overcome them. We therefore propose to
unify the different methods by highlighting the central role of
the projection of uncertain trajectory on an ideal provided by
the choice of bases.

III. PSEUDO INVERSE OPTIMAL CONTROL APPROACH

Our approach, called PIOC, is is particularly interesting in
the presence of uncertainties, whether they are on the data or
the choice of cost functions or constraints.

A. Illustration

This article corresponds to the presentation of our general
vision of the IOC. Thus we illustrate the different notions of
our approach from a simple example already used in litterature
[20]. We propose the same example in our previous article
were the detailed equations are given [31]: a 2 bars with two
degrees of freedom θ1 et θ2. Both the DOC and the IOC will
be modeled from nc = 2 cost functions of torques: C ={
τ21 , τ

2
2

}
. For each degree of freedom, the state is represented

by the angle, its velocity and its acceleration. There is no
inequality constraint in this example.



B. Parametrization: reduction of the dimension

Parameterization consists in expressing the observed state
by parameters such as polynomials or Fourier series. Among
the IOC problems cited earlier II-D, trajectory parameterization
helps with some of them.

The parameterization allows to reduce the observed param-
eters, leading to a reduction of the dimensions of the problem
while keeping all the information describing the state of the
system. This reduction is necessary because the dimension of
the state variables can be very large for human motion. For
instance, if we observed a human arm we can have 8 angles
and their velocity and acceleration, wich lead to ns = 24
state variables. Now suppose there are 30s of measurement
at 25Hz, so nt = 750, the number of state variables will be
ns ∗ nt = 18000. By reducing the parameters of the problem,
the time to solve the problem is reduced accordingly.

The data availability problem is also addressed by the
parametrization. The data needs to be interpolated in order to
be parameterized. This not only reduces the effects of missing
data, but also reduces the impact of noise for the derived data
thanks to the analytical expression of the parametrization.

For our approach, we propose to use a polynomial parame-
terization. This parametrization is already used in the literature
to represent human motion trajectories [32], [33], and even
for IOC [6], [23]. Note that in our approach, we use the
parametrization of the system states and not the cost functions,
which is then called polynomial optimization [34].

For the observation of human motion, expressing the state
by polynomials not only reduces the number of observed
parameters, but also the number of constraints. The constraints
concerning the start and end points and the kinematics are
removed because they are directly included in the coefficients
of the polynomial.

Let Q(t) be a polynomial describing the trajectory of a state
parameter q, such that Q(t) =

∑nd

k=0 αk t
k, with nd the degree

of the polynomial. To simplify the calculations, we choose to
define the starting and ending point at t = 0 and t = 1,
respectively. It is then possible to associated start and end
points with the polynomial coefficients and its derivation. The
representation of the trajectories and their derivatives (first and
second) by polynomials can be represented by a linear system
in polynomial coefficients. The number of rows and columns of
this linear system correspond to the initial and final constraints
and to the number of parameters parameterizing the trajectory,
respectively. The difference between the two gives the dimen-
sion of the space defining the set of trajectory allowing to go
from an initial point to a final point. Theoretically, the larger
this space is, the finer it can represent the observed trajectories.
If nd = 6, we obtain:


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2 0 0 0 0
1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 0 2 6 12 20 30





α0

α1

α2

α3

α4

α5

α6


−


q0
q̇0
q̈0
q1
q̇1
q̈1

 = 0 (5)

This system is made of 6 equations for 7 unknowns, so it is
possible to define 6 of the parameters in function of the 7th one.
We can then express the polynomial Q only in terms of α6, as
follows:

Q(t) = a+ b t+ c t2 + (d− α6) t
3 + (e+ 3α6) t

4+

(f − 3α6) t
5 + α6 t

6
(6)

with a, b, c, d, e and f scalars only depending on the starting
and ending points.

In this example, α6 is the free coefficient which can express
the whole polynomial. Note that if nd = 7, there will be
2 free parameters for each state. We propose to use the free
coefficients as parameters for the IOC problem. It is important
to understand that if nd ≤ 5, there is no free parameter,
and therefore there is only one trajectory that corresponds
to the start and end points. If there is only one trajectory
described by this constraints, this trajectory is not the result of
an optimization process but simply of constraints. Therefore,
it is not possible to use a polynomial degree strictly lower
than 6 to describe a trajectory supposedly resulting from an
optimization. We insist on this lower bound because parame-
terizations of human motion tend to 5th-order polynomial [33]
for the study of the Jerk, but in the context of this optimization
problem, this degree is not sufficient.

C. Decoupling of conditions
In our approach, the main principle is the decoupling of

the conditions. As already introduced in our previous paper
[31], the solution of the problem is based on the verification of
different conditions derived from KKT conditions. We consider
an acceptable result when each of these conditions is met:

• Identifiability conditions;
• Singularity condition;
• Feasibility conditions.
1) Identifiability conditions: For a problem such as IOC,

to admit a solution, all parameters must be identifiable. As
detailed in our previous paper [31], sub matrices (Jω,Jλ,Jν)
associated with parameters need to be full ranks. If not a
QR decomposition is suggested to eliminate the superfluous
parameters.

Dimensionality: The identifiability is also dependent on the
dimensions of the problem. In particular, the problem must
have more (or at least equal) parameters than equations (cost
functions and constraints). Note that in the context of paramet-
ric approach, as we proposed, for the matrix, this translates
into having as many or more rows (of size (nd − 5) ∗ nq

) than columns (of size nc + (nf − nfp) + nh with nfp

constraints eliminated by the parametric). In other words (nd−
5) ∗ nq ≥ nc + (nf − nfp) + nh. This means that for a given
problem, model and constraints impact directly the degree of
the polynomial allowing to solve the problem.

For example with our illustration III-A: polynomial trajec-
tories eliminate all the equality constraints (nf = nfp) from
our problem and there is no constraints of equality (nh = 0).
If the polynomials are of degree nd = 6, there are only two
free parameters (one for each angle) so the matrix obtained is
of size 2 × 2. If we want to study nc = 4 cost functions, we
must increase the degree of the polynomial to nd = 7. This



link between the degree of the polynomial and the problem
studied is very important to take into account. All the more
so as one must be careful since the higher the degree of the
polynomial, the more likely the trajectory will have unwanted
curve oscillations.

Fig. 1: Illustration of a singularity curve from the example
in section III-A. Two axis represents the free parameters α6

and β6 from the angle θ1 and θ2, respectively. The color map
is the determinant of the matrix det(JTJ).

2) Singularity condition: Based on the KKT stationnary
condition, this condition is a necessary but not sufficiant con-
dition to express the optimality of the trajectory. We call it
singularity condition because the Identification Matrix J needs
to be singular to admit a non-trivial solution.

The singularity of a matrix is equivalent to at least one of the
singular values is null or the determinant of the matrix is null.
For our problem, the matrix J is often non-square, so the de-
terminant should be expressed as: det(JTJ). The determinant

has the advantage of having an analytical expression, unlike
singular values.

With our example, it is possible to display this condition in
the trajectory space. We call the curve obtained the ”singularity
curve” (Fig. 1).

Note that this determinant is a necessary but not sufficient
condition (KKT conditions on constraints are necessary to be
sufficient). Figure 1 proposes a zoom on a portion (red square)
on which all the trajectories from the DOC are.

3) Feasibility conditions: In our approach, we distinguish
two types of feasibility conditions: the conditions associated to
the constraints and the condition associated to the convexity of
the problem.

As the KKT conditions express it, the conditions associated
with the constraints are feasibility conditions. In a context of
uncertainty, the constraints may not be respected. We consider
that the verification of these constraints should be done ac-
cording to the desired accuracy. This verification can even be
optional.

The condition associated to the convexity of the problem is
defined by the DOC (sec. II-B): the positivity of the weights
obtained are necessary. Thus if there are not positives, the
results are not considered reliable. It is important to understand
that in our approach it is a condition and not a constraint. For
example, in the litterature, AIOC methods use the positivity
of ω as a constraints [6], [23], [24]. We consider that the
constraint forces the ω to be positive and thus modify the result
to fit the constraint, even if it means a huge deviation from
the observed trajectory. Using it as a condition allows us to
invalidate the result if the weights are negative.

D. Choice of solution: projection

As previously mentioned, our approach is reserved for the
problem of IOC under uncertainty. The parameterization and
the decoupling of the conditions allow to tackle the difficulties
of selection of the parameters, dimensionality, convexity and
expression of the inverse problem. Thus, if the data are perfect,
these steps are sufficient to obtain a reliable result whatever the
chosen solution method. If the data are perfect and each of the
previous conditions are met, the observed trajectory will be on
a singularity curve. However, if the data are noisy the observed
trajectory will not be on a singularity curve. Therefore, the
resolution methods correspond to a projection of the observed
trajectory to a singular trajectory on the singularity curve.
Different methods do not project in the same way.

1) Type of projection: In this paper, we have mentioned
two methods used in the literature for the application of IOC to
human motion analysis: Bilevel and AIOC (Sec. II-C). These
methods of solving the IOC problem correspond to different
projections, one orthogonal and the other one that we will call
”iso-weighted”. Figure 2 illustrates these two projections for
two uncertain trajectories.

a) Iso-weighted projection: The iso-weighted projection
is obtained with the resolution of an unconstrained AIOC on ω .
It corresponds to this equation:

z = argmin
z

∥Jz∥2

s.t. det(J(s)TJ(s)) = 0
(7)



Fig. 2: Comparison of projections for two trajectories in
green and yellow on a singularity curve graph (Fig. 1). For
each trajectory, the projection in plain line is iso-weighting
and the dotted lines are ”orthogonal”. Note that for the
green trajectory has two dotted projections, one has weight
constraints (ω ≥ 0) the other has no constraints.

In reality, we only use a Singular Value Decomposition and
the solution to this minimization should be the singular vec-
tor associated to the smallest singular value (more details in
[31]). Figure 3 shows for each trajectory, which weight ω is
associated. In our example, ω is a vector of size nc = 2, so
it is possible to express this vector as an angle. The yellow/red
areas are the areas in which the ω is positive. They are therefore
the areas in which it is possible to obtain a solution to the IOC
problem with this resolution method.

It is to be noted that the resolution of AIOC is not a real
”projection” on the trajectory space. Indeed, as the goal of the
IOC is only to recover the omega, there is no real need to find
the optimal trajectory corresponding to the weights found. We
present it as a projection to show which singular trajectory the
uncertain observed trajectory corresponds to. It is interesting to
understand that for all iso-weighted trajectories, the minimum
cost corresponding to this weighting is on the singularity curve.
If the objective of the resolution is to minimize the cost of the
observed trajectory, this solution is to be preferred.

b) Orthogonal Projection: The resolution of the IOC
problem with a Bilevel corresponds an orthogonal projection
constrained by positive omega. The high level is a minimization
of the distance between two trajectories and in the polynomial
framework the distance between two polynomials is linearly
dependent on the free parameters. Let ξp be the path error
between two polynomials Q(t) et Q′(t), such that:

ξp =

∫ 1

0

(Q(t)−Q′(t)) dt (8)

Fig. 3: Illustration of the iso-weighted area. Two axis repre-
sents the free parameters α6 and β6 from the angle θ1 and
θ2, respectively. The black curve is the singularity curve. The
colormap is associated to the angle (in degree) that represents
the vector ω of size 2. In yellow/red, ω is positiv.

If the constraints of the model and if the start and finish are
identical, according to the equation (Eq. 6), we obtain:

ξp =

∫ 1

0

(−(α6 − α′
6) t

3 + 3 (α6 − α′
6) t

4

− 3 (α6 − α′
6) t

5 + (α6 − α′
6) t

6) dt

= ∆α

∫ 1

0

(− t3 + 3 t4 − 3 t5 + t6) dt

= −∆α

140

(9)

with ∆α = α6 − α′
6. The same reasoning can be applied to

each observed state as well as with a higher polynomial degree.
We therefore have an error that is linear between the error on
the trajectory and the error on the parameters. Now, in the
space of parametric trajectories, the minimum squared norm
is the shortest distance, which corresponds to an orthogonal
projection between the measured trajectory parameters and
those of the optimal trajectories.

Moreover, since the low level is a DOC, ω are necessarily
positive. Choosing the solution corresponding to a Bilevel then
consists in taking the optimal trajectory closest to the observed
trajectory. In other words, an orthogonal projection constrained
by positive omega.

Orthogonal projection without constraints: As we said
before, it does not seem relevant to us to constrain the positivity
of ω but rather to use it as a condition (Sec III-C). This
choice of projection which would be purely orthogonal would
correspond to a method also used in the literature: the Onelevel
IOC [35]. This method is composed by the high level of the
bilevel but under KKT condition constraints. Onelevel IOC has
the advantage of being faster than the Bilevel which has 2 levels
of optimization. Moreover, according to our approach, we even
propose to rewrite the Onelevel method as follows:

s∗ = argmin
s

∥s − sM∥2

s.t. det(J(s)TJ(s)) = 0
(10)



As already mentioned in the paper, the use of the determinant
rather than all the KKT conditions brings the advantage of be-
ing simpler and especially of decoupling the feasibility problem
from the resolution, which is at the heart of our approach.

2) Choice of basis: The approach proposed in this paper
aims to address many problems of IOC resolution in the context
of human movement. The choice of the cost functions used
to generate the observed trajectory is one of them. Figure 4
shows three singularity curves corresponding respectively to
torque, angular power and acceleration multiplied by torque.
If we observe a trajectory in the middle of its curves, how can
we choose the best basis?

We propose a simple algorithm to choose a cost functions
basis. This algorithm relies on properties of singularity curves
and conditions proposed by our approach.

In a first step, the algorithm proposes to compute the de-
terminants of each of the identification matrices associated to
their basis. Once done, basis are sorted in ascending order
for the determinants, so that the smallest determinant is first
tested with a IOC resolution method. Doing the resolution
of IOC on the smallest determinant allows the algorithm to
be faster, especially if many basis are tested. However, this
criterion cannot be unique because the ω also give clues on
the reliability of the result. Thus, if ω is not positive, the next
basis is tested. The first basis tested with a positive ω vector
corresponds to the chosen basis. If no basis tested gives positive
ω , then the algorithm returns that there are no basis associated
with this trajectory.

Note that this algorithm is generic and can be used with
any solving method (for example, AIOC or Bilevel). If Bilevel
is chosen and the computation time of the algorithm is not a
problem, it is possible to choose as selection criterion the basis
corresponding to the optimal trajectory closest to the observed
trajectory.

Be careful, the use of the determinant as a comparison
criterion between different basis raises the question of the
normalization of matrices.

IV. DISCUSSION AND PERSPECTIVES

The PIOC approach provides a holistic and generic vision
of the IOC problem. In particular, it provides answers to issues
of the IOC problem in the context of human motion: model,
dimensionality, measurement noise, etc. Each of the proposed
solutions is independent of the others and our approach is
meant to be generalizable. We show in this paper that two
methods of resolution of the IOC problem, Bilevel and AIOC,
were just two different types of projection in the trajectory
reference frame. This approach opens up many elements. Each
of the steps proposed in our approach can be transposed with
other methods. Concerning the parametrization, it would be
possible to test with other parameters than the polynomial. Sim-
ilarly, the optimality conditions on which we rely are the KKT
conditions. The same approach can be taken with the Jacobi-
Bellman conditions. As we work in an uncertain framework,
the main interest of this approach is the decoupling between
the resolution (or the choice of solution) and the different
conditions allowing to choose if the result obtained is valid or
not. This approach opens the door to many perspectives: better

Fig. 4: Illustration of 3 singular curves: C = [τ1, τ2] (yellow),
C ′ = [θ̇1 τ1, θ̇2 τ2] (blue) and C ′′ = [θ̈1 τ1, θ̈2 τ2] (purple).
The green point correspond to a uncertain trajectory. It is
not obvious which cost function basis to choose in this
configuration.

choice of solution according to the application, better choice of
cost functions basis, improvement of calculation times (thanks
to the Onelevel for example), better vision of the IOC problem,
better understanding of the reliability of the results obtained
and generalization of the application to human movement.

V. CONCLUSION

This paper presents our holistic approach called Projected
Inverse Optimal Control. This approach is complete and
transversal in the framework of uncertainty related to the obser-
vation of human movement. It is to be understood that it is not
a simple method of resolution. It proposes different elements,
each independent of the others, to improve expression and
better understand the resolution of the IOC’s problem. We have
shown in this paper that our approach overcomes some difficul-
ties. The parameterization of the trajectories allows to reduce
the dimensions of the problem. In the polynomial framework,
we even show that there is a minimum degree depending on
the state, the constraints and the number of cost functions. We
also propose to decouple the conditions of the problem from its
solution. The identifiability condition verifies that the problem
is well posed, the singularity condition verifies an optimality
condition necessary to solve the problem and the feasibility
condition verifies the reliability of the results. Finally, we
show that the solution of the IOC problem could be illustrated
simply by projections in the space of trajectories. This vision
of the resolution allowed us to explain the differences between
the classical resolution methods of the literature as well as
to discuss an algorithm allowing to choose a base of cost
functions.
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