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Introduction

Classical optimization models suppose perfect information over all parameters. This can lead to optimal solutions having poor performance when the actual parameters deviate, even by a small amount, from the predictions used in the optimization model. Different frameworks have been proposed to overcome this issue, among which Robust Optimization which tackles the uncertainty by providing a set of possible values for these parameters, and considering the worst outcome over that set. In this paper, we consider optimization problems where only the objective function is affected by the uncertainty, so that the robust counterpart amounts to find min-max solutions.

Initially, Robust Optimization considered discrete uncertainty sets without particular structure [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF], in particular, in the context of robust scheduling problems [START_REF] Aloulou | Complexity of single machine scheduling problems under scenario-based uncertainty[END_REF][START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single-stage production[END_REF][START_REF] Kasperski | Approximating a two-machine flow shop scheduling under discrete scenario uncertainty[END_REF][START_REF] Mastrolilli | Approximating single machine scheduling with scenarios[END_REF]. A major step forward has been undertaken by Bertsimas and Sim [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF], who studied the robust counterparts of combinatorial optimization problems with linear cost functions. Their model considers that in any scenario, at most Γ coefficients of the cost function deviate, the other ones taking their nominal values. Letting ūi denoting the nominal value of uncertain parameter u i and ûi being its deviation, and Γ ∈ Z + , they define

U Γ ≡    u ∈ R n : u j = ūj + δ j ûj , j ∈ {1, . . . , n}, δ ∈ {0, 1} n , n j=1 δ j ≤ Γ    .
One useful property of U Γ is that exponentially many scenarios are described in a compact manner. More importantly, Bertsimas and Sim show that the solvability and approximability of the deterministic problem are transferred to its robust counterpart, as the latter amounts to solve a linear number of deterministic problems. Their result has later been generalized to some extent to problems with integer variables [START_REF] Goetzmann | Optimization over integers with robustness in cost and few constraints[END_REF] and to more general uncertainty sets [START_REF] Poss | Robust combinatorial optimization with knapsack uncertainty[END_REF].

In what follows, we consider robust scheduling problems. The objective functions of scheduling problems are usually not compatible with the result from [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF]. For instance, the robust counterpart of the problem that minimizes the weighted sum of completion times is N P-hard in the strong sense [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF], contrasting with the polynomial deterministic counterpart. The objective of this paper is to pursue the work initiated in [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF]: studying the complexity and approximability of the robust counterpart of basic single machine scheduling problems under budgeted uncertainty. Next, we define more precisly the problems we study in this paper.

Problem definitions. Consider a set of n jobs, each of which has non-negative processing time p j , weight w j , and due-date d j . A schedule σ is a permutation of {1, . . . , n}, where σ(j) denotes the position of job j, without idle time between jobs. As this paper will rely on mathematical programming formulations, we alternatively characterize any schedule σ by the binary vector x ∈ {0, 1} n 2 such that σ(i) ≤ σ(j) ⇔ x ij = 1. In particular, we set x ii = 1 for each i = 1, . . . , n. Denoting by X σ ⊆ {0, 1} n 2 the set of all schedules, and by g : X σ → R + the objective function, the robust scheduling problems under study can be cast as combinatorial optimization problems of the form min x∈X σ g(x).

We consider herein problems with four different objective functions g. Let C j (x, p) = n i=1 p i x ij denote the completion time of job j for the schedule corresponding to x and processing times p, and let the function U j (x, p) be equal to 1 if job j is tardy (C j (x, p) > d j ), 0 otherwise. We consider here the problems minimizing either the sum of completion times C j (x, p) or the number of tardy jobs, possibly considering weights w. Borrowing the three-field notation α|β|γ from [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], we define more precisely:

• the robust counterpart of 1|| U j with processing time uncertainty, formally stated as min

x∈X σ max p∈U Γ j∈J U j (x, p);
• the robust counterpart of 1|| w j U j with weight uncertainty, formally stated as min x∈X σ max w∈U Γ j∈J w j U j (x, p);

• the robust counterparts of 1|| w j C j with either processing time uncertainty or weight uncertainty, formally stated as min x∈X σ max p∈U Γ j∈J w j C j (x, p) and min x∈X σ max w∈U Γ j∈J w j C j (x, p), respectively.

Related works. Tadayon and Smith [START_REF] Tadayon | Algorithms and complexity analysis for robust single-machine scheduling problems[END_REF] considered the robust counterparts of problems 1|| C j , 1|| w j C j , and 1|| U j for uncertain processing times, using uncertainty set U Γ as well as related sets. They provided mixed-integer linear programming formulations for some of these problems, and proved the polynomiality of the robust counterpart of 1|| C j for one of these related sets. Sticking to U Γ , the authors of [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF] prove that the robust counterpart of 1|| C j with uncertain processing times is polynomially solvable. They further provide constant factor approximations algorithms for scheduling problems with parallel machines, later improved in [START_REF] Bougeret | Approximation results for makespan minimization with budgeted uncertainty[END_REF]. The related bin-packing problem has also been investigated in [START_REF] Bougeret | Constant-ratio approximation for robust bin packing with budgeted uncertainty[END_REF], where the authors provide constant factor approximation algorithms.

Contributions and structure of the paper. We first prove in Section 2 that the robust counterpart of 1|| U j with uncertain processing times is N P-hard in the ordinary sense by using a reduction from the partition problem. The result contrasts with the polynomiality of the deterministic counterpart [START_REF] Moore | An n job, one machine sequencing algorithm for minimizing the number of late jobs[END_REF]. Then, in Section 3 we prove that the robust counterpart of 1|| w j U j with uncertain weights can be solved in pseudopolynomial time by employing the deterministic algorithm as a subroutine [START_REF] Lawler | A functional equation and its application to resource allocation and sequencing problems[END_REF]. For the robust counterparts of 1|| w j C j with either uncertain processing times or uncertain weights, we present in Section 4 an approximation algorithm that amounts to solve exactly the nominal problem with a vector of processing times (resp. weights) equal to p + p (resp. w + ŵ). Interestingly, the results presented in Sections 3 and 4 extend to robust combinatorial optimization problems more general than scheduling.

Hardness of the robust counterpart of 1|| U j

We study in this section the complexity of optimization problem

min x∈X σ max p∈U Γ j∈J U j (x, p). (1) 
The hardness proof of this section relies on a reduction from the partition problem. Let us introduce first a small result that will be instrumental in connecting subsets S of {1, . . . , N } to certain types of schedules for (1).

Lemma 1. Consider an instance of problem (1) of size n ≥ 2N where d 2j-1 = d 2j , for j = 1, . . . , N , p2j-1 + p2j + j ∈{1,...,j-1}\{k} min{p 2j -1 , p2j } > d 2j , (2) 
for j, k = 1, . . . , N (k < j), and p1 + p2 > d 1 .

(

) 3 
Given a feasible schedule x for this instance where at most N jobs are late, we have that, for each j ∈ {1, . . . , N } and each p ∈ U Γ , exactly one of the two jobs 2j -1 and 2j is late.

Proof. First note that, since at most n jobs are late in x, it is enough to prove that at least one job is late for each pair of jobs {2j -1, 2j}, j = 1, . . . , N . Given N , we prove the above by induction on the value of each n ≤ N/2. For the base case (n = 1), (3) implies immediately that job 1 or job 2 is late (or both), regardless from the value of p ∈ U Γ . Now, assume by the inductive hypothesis that the result is valid for any value of n smaller than a given n and consider n = n + 1 together with a schedule x. Let x be the schedule x restricted to jobs {1, . . . , n} \ {2N -1, 2N }. The hypothesis implies that at least n = n -1 jobs are late in x . Then, schedule x is obtained from x by inserting jobs 2N -1 and 2N . Constraints (2) imply that there is no subset of N jobs that include both jobs 2N -1 and 2N and that can all be scheduled on time. This is again true for any p ∈ U Γ , proving the result. Proof. Let (N, a) be an instance of PP. Let 2A = N i=1 a i , and M be a sufficiently large number that we define later. We set n = 3N , Γ = N , and, for j = 1, . . . , N , p2j-1 = (j + 1)M , p2j-1 = 2a j , p2j = (j + 1)M + a j , p2j = 0, p2N+j = 0, and p2N+j = 2M . Further, we define the due dates We show next that the answer to PP is yes if and only if there is a feasible schedule for (1) with cost at most N . Given a solution S to PP, we show how to construct a feasible schedule for (1) with cost at most N . For each j = 1, . . . , N , if j ∈ S we schedule job 2j in position j; otherwise, if j / ∈ S, we schedule job 2j -1 in position j. Jobs 2N + 1, . . . , 3N are scheduled in positions N + 1, . . . , 2N , and the remaining jobs from {1, . . . , 2N } are scheduled at the very end. This solution is depicted in Figures 1(b) and 1(c) for two different scenarios p ∈ U Γ . Figure 1(b) illustrates a worst-case scenario for meeting the due date d 8 (since all jobs scheduled before that deadline deviate). We see that the deadline constraint on d 2N = d 2N -1 for such a worst-case scenario is 

d 1 = d 2 4A + 2M 3M 4M 5M -A 8M -2A d 3 = d 4 d 5 = d 6 d 7 = d 8 d 9 = d 10 = d 11 = d 12
d 2j-1 = d 2j = 4A + j j =1 (j + 1)M for j = 1, . . . , N -1, d 2N -1 = d 2N = 3A + N j=1 (j + 1)M and, d 2N +1 = • • • = d 3N = A + N j=1 (j + 1)M + N M
(j + 1)M + j∈S a j + N j=1 M ≤ N j=1 (j + 1)M + A + N M,
which is again satisfied because S is a solution to PP. For that scenario, one readily verifies that only the jobs scheduled at the very end are late, so this solution satisfies exactly 2N deadlines.

Conversely, we show next that any feasible schedule for (1) with cost at most N leads to a solution S to PP. This argument relies on Lemma 1, so let us verify that (2) and (3) are satisfied. We see that (3) is satisfied if and only if M > 2A -a 1 /2. Moreover, for j = 2, . . . , N , the value of k that minimizes the left-hand size of (2) (among the considered ones) is j -1. In this case, (2) is satisfied if and only if M > 4A -a j , for j = 1, . . . , N -1, and if and only if M > 3A -a j , for j = N . Thus, taking M = 4A, Lemma 1 holds. As at most N job may be late, for each j = 1, . . . , N , the lemma implies that either job 2j -1 or job 2j will be scheduled. Let S be the set of indices j such that job 2j is scheduled. We are left to prove that i∈S a j = A. By the above discussion, this is required to meet the due dates d 2N -1 , d 2N , and d 2N +1 , . . . , d 3N , concluding the proof.

Solving the robust counterpart of 1|| w j U j with uncertain weights

The main purpose of this section is to provide efficient algorithms for solving problem

min x∈X σ max w∈U Γ j∈J w j U j (x, p). (4) 
We do so by considering a slightly more general class of robust combinatorial optimization problem

min x∈X max u∈U Γ f (x, u), (5) 
where X ⊆ {0, 1} m , and the objective function f is assumed to be linear in u, that is, there exists functions

f 1 , . . . , f n such that f (x, u) = n i=1 f i (x)u i .
We further assume in this section more specifically that there are positive numbers F i > 0 such that, for each i ∈ 1, . . . , n,

f i : X → {0, F i }. ( 6 
)
We see that problem ( 4) is a special case of problem ( 5) under condition ( 6) by choosing X = X σ , f i (x) = U j (x, p) (recall p is a given and fixed tuple in this problem), and identifying u with w. Another example of problem ( 5) under condition ( 6) is the problem that searches for a maximum cut in a weighted graph G = (V, E, w), where the weights w are uncertain and belong to U Γ , which can be formulated as

min x∈{0,1} |V | max u∈U Γ e={i,j}∈E w e (x i (1 -x j ) + x j (1 -x i )),
where binary variables x i , i ∈ V , describe the of partition V in two sets according to the chosen cut.

The following result is an extension of Theorem 3 from [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF] to the setting introduced above.

Proposition 1. Consider an instance I of problem (5) and suppose that (6) holds. Let us introduce ûn+1 = 0 and F n+1 = 0, and for = 1, . . . , n + 1, define ũ i = max(0, ûi -û F Fi ). The optimal solution to I can be obtained by solving min =1,...,n+1

Γû F + min x∈X f (x, ū + ũ ).

Proof. The inner maximization problem in (5) can be developed as

n i=1 ūi f i (x) + max δ n i=1 δ i ûi f i (x) | n i=1 δ i ≤ Γ, 0 ≤ δ ≤ 1 ,
where the constraints on δ lead to an integral polytope so δ ∈ {0, 1} n in any maximizer. Then, we dualize the maximization over δ and obtain min

y,θ Γθ + n i=1 y i | θ + y i ≥ ûi f i (x), i = 1, . . . , n, y, θ ≥ 0 = min y,θ Γθ + n i=1 max(0, ûi f i (x) -θ) | θ ≥ 0 [y = max(0, ûi f i (x) -θ)] = min θ Γθ + n i=1 f i (x) max(0, ûi -θ/F i ) | θ ≥ 0 [using (6)] = min θ∈{0,û1F1,...,ûnFn} Γθ + n i=1 f i (x) max(0, ûi -θ/F i ).
where the last inequality holds because for any x ∈ X, the function being minimized is convex and piece-wise linear, so its minimum is always reached at one of its knickpoints. We obtain

min x∈X max u∈U Γ f (x, u) = min x∈X n i=1 ūi f i (x) + min θ∈{0,û1F1,...,ûnFn} Γθ + n i=1 f i (x) max(0, ûi -θ/F i ) = min θ∈{0,û1F1,...,ûnFn} Γθ + min x∈X n i=1 ūi f i (x) + n i=1 f i (x) max(0, ûi -θ/F i ) = min =1,...,n+1
Γû F + min

x∈X n i=1 f i (x) ūi + max 0, ûi -û F F i = min =1,...,n+1
Γû F + min

x∈X n i=1 f i (x) ūi + ũ i = min =1,...,n+1
Γû F + min x∈X f (x, ū + ũ ).

Corollary 1. Problem (4) can be solved in O(n 2 max j d j ).

Proof. Given the vector of processing times p, we define f (x, u) = n j=1 u j U j (x, p), and X = X σ . We have f j (x) = U j (x, p), which satisfies [START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single-stage production[END_REF]. Applying Proposition 1 to this instance of problem (5), we end up solving n + 1 problems 1|| w j U j . Each of these problems 1|| w j U j corresponds to a different vector of weights w = ū + ũ and can be solved in O(n max j d j ) [START_REF] Lawler | A functional equation and its application to resource allocation and sequencing problems[END_REF].

Algorithm 1: Approximation algorithm for [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF] with assumption [START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single-stage production[END_REF]. Given u ≥ 0, we define the nominal counterpart of (5) as

min x∈X f (x, u), (7) 
and we define the optimal objective values of ( 7) and ( 5) as opt nom and opt rob , respectively. We explain next how we can also extend the approximation result from [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF] and leverage Proposition 1 to transfer approximation ratios of opt nom to opt rob . Given α ≥ 1, suppose that we have an algorithm A that returns a solution x A ∈ X with objective Z A that satisfies Z A ≤ α × opt nom . Then, we can use Algorithm 1 to obtain an α-approximation algorithm for [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF].

Observation 1. Recall that max u∈U Γ f (x A , u) = max u∈U Γ n i=1 f i (x A )u i , so step 2 of Algorithm 1 can be solved in O(n log(n)) by sorting (f 1 (x A )u 1 , . . . , f n (x A )u n )
and taking the largest Γ indices. Thus, Algorithm 1 runs in polynomial time if A runs in polynomial time.

The details of the proof of the following result are omitted for brevity, we refer the interested reader to [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF]. Proposition 2. Algorithm 1 returns a solution x * ∈ X with objective Z * that satisfies Z * ≤ α × opt rob .

Proof. Follows closely the lines of the proof of Proposition 4 from [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF], replacing Theorem 3 with Proposition 1.

Corollary 2. There is a Fully Polynomial Time Approximation Scheme (FPTAS) for problem (4).

Proof. Let A be an FPTAS for 1|| w j U j (e.g. [START_REF] Gens | Fast approximation algorithm for job sequencing with deadlines[END_REF]). Observation 1 and Proposition 2 imply that Algorithm 1 using A is an FPTAS for problem (4).

A general n

Γ -approximation algorithm The main purpose of this section is to provide approximation algorithms for problems

min x∈X σ max w∈U Γ j∈J w j C j (x, p) and min x∈X σ max p∈U Γ j∈J w j C j (x, p). (8) 
As in the previous section, we reach our goal by considering the more general problem min x∈X max u∈U Γ f (x, u), with f linear in u, but without the supplementary condition [START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single-stage production[END_REF]. We denote again the optimal objective values of ( 7) and ( 5) as opt nom and opt rob , respectively. We also assume that we have an algorithm A that returns a solution x A ∈ X with objective Z A that satisfies Z A ≤ α × opt nom .

Algorithm 2: Approximation algorithm for (5).

1 let u max = (ū 1 + û1 , . . . , ūn + ûn ); 2 compute an α-approximate solution x * to min x∈X f (x, u max ) using A; Proof. The proof is done in two steps. First, let us define F (x) = f (x, u max ) and f Γ (x) = max u∈U Γ f (x, u).

The following holds:

f Γ (x) F (x) = n i=1 f i (x)ū i + max 0≤δ≤1 δ≤Γ n i=1 f i (x)û i δ i n i=1 f i (x)ū i + n i=1 f i (x)û i ≥ max 0≤δ≤1 δ≤Γ n i=1 f i (x)û i δ i n i=1 f i (x)û i ≥ Γ n . (9) 
Let us now prove that x * is an α × n Γ -approximate solution for [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF]. Let x F and x rob be optimal solutions of min x∈X F (x) and problem [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF], respectively. We have

Z * = f Γ (x * ) ≤ F (x * ) ≤ α × F (x F ) ≤ α × F (x rob ) ≤ α × n Γ × f Γ (x rob ) = α × n Γ × opt rob
, where the last inequality follows from [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]. Notice that the ratio proposed in Proposition 3 compares favorably to the well-known ratio |U Γ | that is achieved by the average scenario [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF], obtained by using u mean = 1

|U Γ | u∈U Γ u instead of u max in Algorithm 2.
Corollary 3. There is a polynomial time n Γ -approximation algorithm for problems [START_REF] Goetzmann | Optimization over integers with robustness in cost and few constraints[END_REF]. Proof. The nominal problem 1|| w j C j can be formulated as min x∈X σ n j=1 n i=1 p i w j x ij . Thus, the objective function is bilinear in w and p, and both robust counterparts are special cases of problem [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF]. As in Observation 1, we can find in polynomial time an exact solution of the deterministic problem for the single scenario u max (which corresponds to a scenario where every job deviates).

Problem 1 .

 1 PARTITION PROBLEM (PP): given N positive integer values a 1 , . . . , a N such that N i=1 a i = 2A, does there exist a subset S of {1, . . . , N } satisfying i∈S a i = A?

14M + a 1 + 2a 2 + 2a 3 + a 4 d 4 = d 8 2 3 5 8 18M + a 1 + a 4 d 9 = d 10 = d 11 = d 12

 12891012 

Figure 1 :

 1 Figure 1: The instance of problem (1) obtained via from a PARTITION instance with N = 4.

Figure 1 (

 1 Figure 1(a) illustrates this construction for N = 4. Each job is represented by one or two rectangles, where the white ones represent non-zero mean processing times and the gray ones the non-zero deviations. The rectangle widths are proportional to the time values they represent. Job indices are indicated inside the rectangles.We show next that the answer to PP is yes if and only if there is a feasible schedule for (1) with cost at most N . Given a solution S to PP, we show how to construct a feasible schedule for (1) with cost at most N . For each j = 1, . . . , N , if j ∈ S we schedule job 2j in position j; otherwise, if j / ∈ S, we schedule job 2j -1 in position j. Jobs 2N + 1, . . . , 3N are scheduled in positions N + 1, . . . , 2N , and the remaining jobs from {1, . . . , 2N } are scheduled at the very end. This solution is depicted in Figures1(b) and 1(c) for two different scenarios p ∈ U Γ . Figure1(b) illustrates a worst-case scenario for meeting the due date d 8 (since all jobs scheduled before that deadline deviate). We see that the deadline constraint on d 2N = d 2N -1 for such a worst-case scenario is

  because S is a solution to PP (so j / ∈S a j = A). Notice that deadlines d 2 , d 3 , d 5 and d 9 = d 10 = d 11 = d 12 are also satisfied for that scenario, so at most 4 jobs are late for that scenario.

Figure 1 (

 1 c) illustrates a worst-case scenario for meeting the due dates d 9 = d 10 = d 11 = d 12 . We see that the deadline constraints on d 2N +1 = • • • = d 3N for such a worst-case scenario is N j=1

1 for = 1 ,

 1 . . . , n + 1 do compute an α-approximate solution x A to min x∈X f (x, ū + ũ ) using A; 2 for = 1, . . . , n + 1 do Z A = max u∈U Γ f (x A , u) ; 3 let * = arg min =1,...,n+1 Z A ; 4 x * = x * A and Z * = Z * ; return : (x * , Z * )

3 ZProposition 3 .

 33 * = max u∈U Γ f (x * , u); return : (x * , Z * ) Algorithm 2 returns a solution x * ∈ X with objective Z * that satisfies Z * ≤ α × n Γ × opt rob .
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We present below an example in which the above approach yields a ratio of at least √ n for Γ = 1. Hence, the ratio α n Γ , which is equal to n in the case of problems [START_REF] Goetzmann | Optimization over integers with robustness in cost and few constraints[END_REF] with Γ = 1, is not far from being tight.

Hence, for all j, pj = w j . Let w i n j=i w j = 1 for all i. This determines exactly all w i , hence all pi (for instance, w n = 1). On this instance, our algorithm can output any schedule. Let us compare two of them: σ 1 = (1, 2, . . . , n) and σ 2 = (n, n-1, . . . , 1), and let x 1 and x 2 be the corresponding binary vectors. We denote by δ x (i) the effect on objective function of the deviaton of job i. We have δ x1 (i) = pi n j=i w j = w i n j=i w j = 1 for all i. Hence, F (x 1 ) = 1. Let us now consider F (x 2 ) and notice that F (x 2 ) = max i (δ x2 (i)) ≥ δ x2 (1). We will show that

Notice that an alternative polynomial time 2-approximation algorithm can be obtained for problems (8) by following the approach depicted in Theorem 5 from [START_REF] Mastrolilli | Approximating single machine scheduling with scenarios[END_REF], dualizing the robust constraint to avoid enumerating all |U Γ | elements of U Γ . Thus, Algorithm 2 is better than the one adapated from [START_REF] Mastrolilli | Approximating single machine scheduling with scenarios[END_REF] when Γ > n 2 . Furthermore, Algorithm 2 is much more general than the ad-hoc procedure adapated from [START_REF] Mastrolilli | Approximating single machine scheduling with scenarios[END_REF] and can be applied to any robust combinatorial optimization problem of the form (5).

Conclusion

The results presented here raise two natural questions. First, given the hardness of the robust counterpart of 1|| U j , one could dig into approximability of the problem. Second, one could into approximability results when the due-dates are uncertain, for the robust counterpart of both 1|| U j and 1|| w j U j .