
HAL Id: hal-03926286
https://hal.science/hal-03926286

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single machine robust scheduling with budgeted
uncertainty

Marin Bougeret, Artur Alves Pessoa, Michael Poss

To cite this version:
Marin Bougeret, Artur Alves Pessoa, Michael Poss. Single machine robust scheduling with budgeted
uncertainty. Operations Research Letters, 2023, 51 (2), pp.137-141. �10.1016/j.orl.2023.01.007�. �hal-
03926286�

https://hal.science/hal-03926286
https://hal.archives-ouvertes.fr

Highlights

Single machine robust scheduling with budgeted uncertainty

Marin Bougeret, Artur Pessoa, Michael Poss

• Minimizing the number of tardy jobs with uncertain durations is NP-hard.

• Minimizing the weighted number of tardy jobs is pseudo-polynomial.

• Worst-case scenario is better than average scenario for budget uncertainty.

Single machine robust scheduling with budgeted uncertainty

Marin Bougeret

LIRMM, University of Montpellier, CNRS, rue Ada 156, 34095, Montpellier, France

Artur Pessoa

Production Engineering Department, Universidade Federal Fluminense, Rua Passo da Patria, 156, 309-D, Sao Domingos,

Niteroi, 24.210-240, Brazil

Michael Poss

LIRMM, University of Montpellier, CNRS, rue Ada 156, 34095, Montpellier, France

Abstract

We consider robust single machine scheduling problems. First, we prove that with uncertain processing
times, minimizing the number of tardy jobs is NP-hard. Second, we show that the weighted variant of
the problem has the same complexity as the nominal counterpart whenever only the weights are uncertain.
Last, we provide approximation algorithms for the problems minimizing the weighted sum of completion
times. Noticeably, our algorithms extend to more general robust combinatorial optimization problems with
cost uncertainty, such as max-cut.

Keywords: robust scheduling, NP-hardness, approximation algorithms

1. Introduction

Classical optimization models suppose perfect information over all parameters. This can lead to optimal
solutions having poor performance when the actual parameters deviate, even by a small amount, from the
predictions used in the optimization model. Different frameworks have been proposed to overcome this issue,
among which Robust Optimization which tackles the uncertainty by providing a set of possible values for
these parameters, and considering the worst outcome over that set. In this paper, we consider optimization
problems where only the objective function is affected by the uncertainty, so that the robust counterpart
amounts to find min-max solutions.

Initially, Robust Optimization considered discrete uncertainty sets without particular structure [11], in
particular, in the context of robust scheduling problems [1, 6, 10, 13]. A major step forward has been
undertaken by Bertsimas and Sim [2], who studied the robust counterparts of combinatorial optimization
problems with linear cost functions. Their model considers that in any scenario, at most Γ coefficients of
the cost function deviate, the other ones taking their nominal values. Letting ūi denoting the nominal value
of uncertain parameter ui and ûi being its deviation, and Γ ∈ Z+, they define

UΓ ≡

u ∈ Rn : uj = ūj + δj ûj , j ∈ {1, . . . , n}, δ ∈ {0, 1}n,
n∑
j=1

δj ≤ Γ

 .

One useful property of UΓ is that exponentially many scenarios are described in a compact manner. More
importantly, Bertsimas and Sim show that the solvability and approximability of the deterministic problem
are transferred to its robust counterpart, as the latter amounts to solve a linear number of deterministic
problems. Their result has later been generalized to some extent to problems with integer variables [8] and
to more general uncertainty sets [15].

Preprint submitted to Elsevier January 3, 2023

In what follows, we consider robust scheduling problems. The objective functions of scheduling problems
are usually not compatible with the result from [2]. For instance, the robust counterpart of the problem
that minimizes the weighted sum of completion times is NP-hard in the strong sense [5], contrasting with
the polynomial deterministic counterpart. The objective of this paper is to pursue the work initiated in [5]:
studying the complexity and approximability of the robust counterpart of basic single machine scheduling
problems under budgeted uncertainty. Next, we define more precisly the problems we study in this paper.

Problem definitions. Consider a set of n jobs, each of which has non-negative processing time pj , weight
wj , and due-date dj . A schedule σ is a permutation of {1, . . . , n}, where σ(j) denotes the position of job
j, without idle time between jobs. As this paper will rely on mathematical programming formulations, we
alternatively characterize any schedule σ by the binary vector x ∈ {0, 1}n2

such that σ(i) ≤ σ(j)⇔ xij = 1.

In particular, we set xii = 1 for each i = 1, . . . , n. Denoting by Xσ ⊆ {0, 1}n2

the set of all schedules,
and by g : Xσ → R+ the objective function, the robust scheduling problems under study can be cast as
combinatorial optimization problems of the form

min
x∈Xσ

g(x).

We consider herein problems with four different objective functions g. Let Cj(x, p) =
∑n
i=1 pixij denote the

completion time of job j for the schedule corresponding to x and processing times p, and let the function
Uj(x, p) be equal to 1 if job j is tardy (Cj(x, p) > dj), 0 otherwise. We consider here the problems minimizing
either the sum of completion times Cj(x, p) or the number of tardy jobs, possibly considering weights w.
Borrowing the three-field notation α|β|γ from [9], we define more precisely:

• the robust counterpart of 1||
∑
Uj with processing time uncertainty, formally stated as min

x∈Xσ
max
p∈UΓ

∑
j∈J

Uj(x, p);

• the robust counterpart of 1||
∑
wjUj with weight uncertainty, formally stated as min

x∈Xσ
max
w∈UΓ

∑
j∈J

wjUj(x, p);

• the robust counterparts of 1||
∑
wjCj with either processing time uncertainty or weight uncertainty,

formally stated as min
x∈Xσ

max
p∈UΓ

∑
j∈J

wjCj(x, p) and min
x∈Xσ

max
w∈UΓ

∑
j∈J

wjCj(x, p), respectively.

Related works. Tadayon and Smith [16] considered the robust counterparts of problems 1||
∑
Cj , 1||

∑
wjCj ,

and 1||
∑
Uj for uncertain processing times, using uncertainty set UΓ as well as related sets. They provided

mixed-integer linear programming formulations for some of these problems, and proved the polynomiality
of the robust counterpart of 1||

∑
Cj for one of these related sets. Sticking to UΓ, the authors of [5] prove

that the robust counterpart of 1||
∑
Cj with uncertain processing times is polynomially solvable. They

further provide constant factor approximations algorithms for scheduling problems with parallel machines,
later improved in [4]. The related bin-packing problem has also been investigated in [3], where the authors
provide constant factor approximation algorithms.

Contributions and structure of the paper. We first prove in Section 2 that the robust counterpart of 1||
∑
Uj

with uncertain processing times is NP-hard in the ordinary sense by using a reduction from the partition
problem. The result contrasts with the polynomiality of the deterministic counterpart [14]. Then, in
Section 3 we prove that the robust counterpart of 1||

∑
wjUj with uncertain weights can be solved in pseudo-

polynomial time by employing the deterministic algorithm as a subroutine [12]. For the robust counterparts
of 1||

∑
wjCj with either uncertain processing times or uncertain weights, we present in Section 4 an

approximation algorithm that amounts to solve exactly the nominal problem with a vector of processing
times (resp. weights) equal to p̄ + p̂ (resp. w̄ + ŵ). Interestingly, the results presented in Sections 3 and 4
extend to robust combinatorial optimization problems more general than scheduling.

2

2. Hardness of the robust counterpart of 1||
∑

Uj

We study in this section the complexity of optimization problem

min
x∈Xσ

max
p∈UΓ

∑
j∈J

Uj(x, p). (1)

The hardness proof of this section relies on a reduction from the partition problem.

Problem 1. PARTITION PROBLEM (PP): given N positive integer values a1, . . . , aN such that
∑N
i=1 ai =

2A, does there exist a subset S of {1, . . . , N} satisfying
∑
i∈S ai = A?

Let us introduce first a small result that will be instrumental in connecting subsets S of {1, . . . , N} to
certain types of schedules for (1).

Lemma 1. Consider an instance of problem (1) of size n ≥ 2N where d2j−1 = d2j, for j = 1, . . . , N ,

p̄2j−1 + p̄2j +
∑

j′∈{1,...,j−1}\{k}

min{p̄2j′−1, p̄2j′} > d2j , (2)

for j, k = 1, . . . , N (k < j), and
p̄1 + p̄2 > d1. (3)

Given a feasible schedule x for this instance where at most N jobs are late, we have that, for each j ∈
{1, . . . , N} and each p ∈ UΓ, exactly one of the two jobs 2j − 1 and 2j is late.

Proof. First note that, since at most n jobs are late in x, it is enough to prove that at least one job is late
for each pair of jobs {2j − 1, 2j}, j = 1, . . . , N . Given N , we prove the above by induction on the value
of each n ≤ N/2. For the base case (n = 1), (3) implies immediately that job 1 or job 2 is late (or both),
regardless from the value of p ∈ UΓ. Now, assume by the inductive hypothesis that the result is valid for
any value of n smaller than a given n′ and consider n = n′ + 1 together with a schedule x. Let x′ be the
schedule x restricted to jobs {1, . . . , n} \ {2N − 1, 2N}. The hypothesis implies that at least n′ = n− 1 jobs
are late in x′. Then, schedule x is obtained from x′ by inserting jobs 2N − 1 and 2N . Constraints (2) imply
that there is no subset of N jobs that include both jobs 2N − 1 and 2N and that can all be scheduled on
time. This is again true for any p ∈ UΓ, proving the result.

71 3

82 4

5

6

9

2M 3M 4M 5M

2M

2a1 2a2 2a3 2a4

2 3 5 8

14M + a1 + 2a2 + 2a3 + a4
d4 = d8

2 3 5 8

18M + a1 + a4 d9 = d10 = d11 = d12

(a)

(b)

(c)

10

2M

11

2M

12

2M

9 10 11 12

d1 = d2

4A + 2M 3M 4M 5M −A 8M − 2A

d3 = d4 d5 = d6 d7 = d8 d9 = d10 = d11 = d12

Figure 1: The instance of problem (1) obtained via reduction from a PARTITION instance with N = 4.

Theorem 1. Problem (1) is NP-hard.

3

Proof. Let (N, a) be an instance of PP. Let 2A =
∑N
i=1 ai, and M be a sufficiently large number that we

define later. We set n = 3N , Γ = N , and, for j = 1, . . . , N , p̄2j−1 = (j + 1)M , p̂2j−1 = 2aj , p̄2j =
(j + 1)M + aj , p̂2j = 0, p̄2N+j = 0, and p̂2N+j = 2M . Further, we define the due dates

d2j−1 = d2j = 4A+

j∑
j′=1

(j′ + 1)M

for j = 1, . . . , N − 1,

d2N−1 = d2N = 3A+

N∑
j=1

(j + 1)M

and,

d2N+1 = · · · = d3N = A+

N∑
j=1

(j + 1)M +NM

Figure 1(a) illustrates this construction for N = 4. Each job is represented by one or two rectangles, where
the white ones represent non-zero mean processing times and the gray ones the non-zero deviations. The
rectangle widths are proportional to the time values they represent. Job indices are indicated inside the
rectangles.

We show next that the answer to PP is yes if and only if there is a feasible schedule for (1) with cost at
most N . Given a solution S to PP, we show how to construct a feasible schedule for (1) with cost at most
N . For each j = 1, . . . , N , if j ∈ S we schedule job 2j in position j; otherwise, if j /∈ S, we schedule job
2j − 1 in position j. Jobs 2N + 1, . . . , 3N are scheduled in positions N + 1, . . . , 2N , and the remaining jobs
from {1, . . . , 2N} are scheduled at the very end. This solution is depicted in Figures 1(b) and 1(c) for two
different scenarios p ∈ UΓ. Figure 1(b) illustrates a worst-case scenario for meeting the due date d8 (since
all jobs scheduled before that deadline deviate). We see that the deadline constraint on d2N = d2N−1 for
such a worst-case scenario is

N∑
j=1

(j + 1)M +
∑
j∈S

aj +
∑
j /∈S

2aj =

N∑
j=1

(j + 1)M + 2A+
∑
j /∈S

aj ≤
N∑
j=1

(j + 1)M + 3A,

which is satisfied because S is a solution to PP (so
∑
j /∈S aj = A). Notice that deadlines d2, d3, d5 and

d9 = d10 = d11 = d12 are also satisfied for that scenario, so at most 4 jobs are late for that scenario.
Figure 1(c) illustrates a worst-case scenario for meeting the due dates d9 = d10 = d11 = d12. We see that
the deadline constraints on d2N+1 = · · · = d3N for such a worst-case scenario is

N∑
j=1

(j + 1)M +
∑
j∈S

aj +

N∑
j=1

M ≤
N∑
j=1

(j + 1)M +A+NM,

which is again satisfied because S is a solution to PP. For that scenario, one readily verifies that only the
jobs scheduled at the very end are late, so this solution satisfies exactly 2N deadlines.

Conversely, we show next that any feasible schedule for (1) with cost at most N leads to a solution S
to PP. This argument relies on Lemma 1, so let us verify that (2) and (3) are satisfied. We see that (3)
is satisfied if and only if M > 2A − a1/2. Moreover, for j = 2, . . . , N , the value of k that minimizes
the left-hand size of (2) (among the considered ones) is j − 1. In this case, (2) is satisfied if and only if
M > 4A − aj , for j = 1, . . . , N − 1, and if and only if M > 3A − aj , for j = N . Thus, taking M = 4A,
Lemma 1 holds. As at most N job may be late, for each j = 1, . . . , N , the lemma implies that either job
2j− 1 or job 2j will be scheduled. Let S be the set of indices j such that job 2j is scheduled. We are left to
prove that

∑
i∈S aj = A. By the above discussion, this is required to meet the due dates d2N−1, d2N , and

d2N+1, . . . , d3N , concluding the proof.

4

3. Solving the robust counterpart of 1||
∑

wjUj with uncertain weights

The main purpose of this section is to provide efficient algorithms for solving problem

min
x∈Xσ

max
w∈UΓ

∑
j∈J

wjUj(x, p). (4)

We do so by considering a slightly more general class of robust combinatorial optimization problem

min
x∈X

max
u∈UΓ

f(x, u), (5)

where X ⊆ {0, 1}m, and the objective function f is assumed to be linear in u, that is, there exists functions
f1, . . . , fn such that f(x, u) =

∑n
i=1 fi(x)ui. We further assume in this section more specifically that there

are positive numbers Fi > 0 such that, for each i ∈ 1, . . . , n,

fi : X → {0, Fi}. (6)

We see that problem (4) is a special case of problem (5) under condition (6) by choosing X = Xσ,
fi(x) = Uj(x, p) (recall p is a given and fixed tuple in this problem), and identifying u with w. Another
example of problem (5) under condition (6) is the problem that searches for a maximum cut in a weighted
graph G = (V,E,w), where the weights w are uncertain and belong to UΓ, which can be formulated as

min
x∈{0,1}|V |

max
u∈UΓ

∑
e={i,j}∈E

we(xi(1− xj) + xj(1− xi)),

where binary variables xi, i ∈ V , describe the of partition V in two sets according to the chosen cut.
The following result is an extension of Theorem 3 from [2] to the setting introduced above.

Proposition 1. Consider an instance I of problem (5) and suppose that (6) holds. Let us introduce ûn+1 = 0
and Fn+1 = 0, and for ` = 1, . . . , n + 1, define ũ`i = max(0, ûi − û` F`Fi). The optimal solution to I can be
obtained by solving

min
`=1,...,n+1

Γû`F` + min
x∈X

f(x, ū+ ũ`).

Proof. The inner maximization problem in (5) can be developed as

n∑
i=1

ūifi(x) + max
δ

{
n∑
i=1

δiûifi(x) |
n∑
i=1

δi ≤ Γ, 0 ≤ δ ≤ 1

}
,

where the constraints on δ lead to an integral polytope so δ ∈ {0, 1}n in any maximizer. Then, we dualize
the maximization over δ and obtain

min
y,θ

{
Γθ +

n∑
i=1

yi | θ + yi ≥ ûifi(x), i = 1, . . . , n, y, θ ≥ 0

}

= min
y,θ

{
Γθ +

n∑
i=1

max(0, ûifi(x)− θ) | θ ≥ 0

}
[y = max(0, ûifi(x)− θ)]

= min
θ

{
Γθ +

n∑
i=1

fi(x) max(0, ûi − θ/Fi) | θ ≥ 0

}
[using (6)]

= min
θ∈{0,û1F1,...,ûnFn}

Γθ +

n∑
i=1

fi(x) max(0, ûi − θ/Fi).

5

where the last inequality holds because for any x ∈ X, the function being minimized is convex and piece-wise
linear, so its minimum is always reached at one of its knickpoints. We obtain

min
x∈X

max
u∈UΓ

f(x, u) = min
x∈X

n∑
i=1

ūifi(x) + min
θ∈{0,û1F1,...,ûnFn}

Γθ +

n∑
i=1

fi(x) max(0, ûi − θ/Fi)

= min
θ∈{0,û1F1,...,ûnFn}

Γθ + min
x∈X

n∑
i=1

ūifi(x) +

n∑
i=1

fi(x) max(0, ûi − θ/Fi)

= min
`=1,...,n+1

Γû`F` + min
x∈X

n∑
i=1

fi(x)

(
ūi + max

(
0, ûi − û`

F`
Fi

))

= min
`=1,...,n+1

Γû`F` + min
x∈X

n∑
i=1

fi(x)
(
ūi + ũ`i

)
= min
`=1,...,n+1

Γû`F` + min
x∈X

f(x, ū+ ũ`).

Corollary 1. Problem (4) can be solved in O(n2 maxj dj).

Proof. Given the vector of processing times p, we define f(x, u) =
∑n
j=1 ujUj(x, p), and X = Xσ. We have

fj(x) = Uj(x, p), which satisfies (6). Applying Proposition 1 to this instance of problem (5), we end up
solving n + 1 problems 1||

∑
wjUj . Each of these problems 1||

∑
wjUj corresponds to a different vector of

weights w = ū+ ũ` and can be solved in O(nmaxj dj) [12].

Algorithm 1: Approximation algorithm for (5) with assumption (6).

1 for ` = 1, . . . , n+ 1 do compute an α-approximate solution x`A to min
x∈X

f(x, ū+ ũ`) using A;

2 for ` = 1, . . . , n+ 1 do Z`A = max
u∈UΓ

f(x`A, u) ;

3 let `∗ = arg min`=1,...,n+1 Z
`
A;

4 x∗ = x`
∗

A and Z∗ = Z`
∗
;

return : (x∗, Z∗)

Given u ≥ 0, we define the nominal counterpart of (5) as

min
x∈X

f(x, u), (7)

and we define the optimal objective values of (7) and (5) as optnom and optrob, respectively. We explain
next how we can also extend the approximation result from [2] and leverage Proposition 1 to transfer
approximation ratios of optnom to optrob. Given α ≥ 1, suppose that we have an algorithm A that returns a
solution xA ∈ X with objective ZA that satisfies ZA ≤ α× optnom. Then, we can use Algorithm 1 to obtain
an α-approximation algorithm for (5).

Observation 1. Recall that max
u∈UΓ

f(x`A, u) = max
u∈UΓ

∑n
i=1 fi(x

`
A)ui, so step 2 of Algorithm 1 can be solved in

O(n log(n)) by sorting (f1(x`A)u1, . . . , fn(x`A)un) and taking the largest Γ indices. Thus, Algorithm 1 runs
in polynomial time if A runs in polynomial time.

The details of the proof of the following result are omitted for brevity, we refer the interested reader
to [2].

Proposition 2. Algorithm 1 returns a solution x∗ ∈ X with objective Z∗ that satisfies Z∗ ≤ α× optrob.

6

Proof. Follows closely the lines of the proof of Proposition 4 from [2], replacing Theorem 3 with Proposition 1.

Corollary 2. There is a Fully Polynomial Time Approximation Scheme (FPTAS) for problem (4).

Proof. Let A be an FPTAS for 1||
∑
wjUj (e.g. [7]). Observation 1 and Proposition 2 imply that Algorithm 1

using A is an FPTAS for problem (4).

4. A general n
Γ
-approximation algorithm

The main purpose of this section is to provide approximation algorithms for problems

min
x∈Xσ

max
w∈UΓ

∑
j∈J

wjCj(x, p) and min
x∈Xσ

max
p∈UΓ

∑
j∈J

wjCj(x, p). (8)

As in the previous section, we reach our goal by considering the more general problem minx∈X maxu∈UΓ f(x, u),
with f linear in u, but without the supplementary condition (6). We denote again the optimal objective
values of (7) and (5) as optnom and optrob, respectively. We also assume that we have an algorithm A that
returns a solution xA ∈ X with objective ZA that satisfies ZA ≤ α× optnom.

Algorithm 2: Approximation algorithm for (5).

1 let umax = (ū1 + û1, . . . , ūn + ûn);
2 compute an α-approximate solution x∗ to min

x∈X
f(x, umax) using A;

3 Z∗ = max
u∈UΓ

f(x∗, u);

return : (x∗, Z∗)

Proposition 3. Algorithm 2 returns a solution x∗ ∈ X with objective Z∗ that satisfies Z∗ ≤ α× n
Γ ×opt

rob.

Proof. The proof is done in two steps. First, let us define F (x) = f(x, umax) and fΓ(x) = maxu∈UΓ f(x, u).
The following holds:

fΓ(x)

F (x)
=

n∑
i=1

fi(x)ūi + max
0≤δ≤1∑
δ≤Γ

n∑
i=1

fi(x)ûiδi

n∑
i=1

fi(x)ūi +
n∑
i=1

fi(x)ûi

≥

max
0≤δ≤1∑
δ≤Γ

n∑
i=1

fi(x)ûiδi

n∑
i=1

fi(x)ûi

≥ Γ

n
. (9)

Let us now prove that x∗ is an α× n
Γ -approximate solution for (5). Let xF and xrob be optimal solutions of

minx∈X F (x) and problem (5), respectively. We have Z∗ = fΓ(x∗) ≤ F (x∗) ≤ α× F (xF) ≤ α× F (xrob) ≤
α× n

Γ × f
Γ(xrob) = α× n

Γ × opt
rob, where the last inequality follows from (9).

Notice that the ratio proposed in Proposition 3 compares favorably to the well-known ratio |UΓ| that
is achieved by the average scenario [11], obtained by using umean = 1

|UΓ|
∑
u∈UΓ u instead of umax in

Algorithm 2.

Corollary 3. There is a polynomial time n
Γ -approximation algorithm for problems (8).

Proof. The nominal problem 1||
∑
wjCj can be formulated as minx∈Xσ

∑n
j=1

∑n
i=1 piwjxij . Thus, the

objective function is bilinear in w and p, and both robust counterparts are special cases of problem (5).
As in Observation 1, we can find in polynomial time an exact solution of the deterministic problem for the
single scenario umax (which corresponds to a scenario where every job deviates).

7

We present below an example in which the above approach yields a ratio of at least
√
n for Γ = 1. Hence,

the ratio αnΓ , which is equal to n in the case of problems (8) with Γ = 1, is not far from being tight.

Example 1. Let n ∈ N. Let p̄1 = p̄2 = · · · = p̄n = 0. Let p̂1

w1
= p̂2

w2
= · · · = p̂n

wn
= 1. Hence, for all j,

p̂j = wj. Let wi
∑n
j=i wj = 1 for all i. This determines exactly all wi, hence all p̂i (for instance, wn = 1).

On this instance, our algorithm can output any schedule. Let us compare two of them: σ1 = (1, 2, . . . , n) and
σ2 = (n, n−1, . . . , 1), and let x1 and x2 be the corresponding binary vectors. We denote by δx(i) the effect on
objective function of the deviaton of job i. We have δx1

(i) = p̂i
∑n
j=i wj = wi

∑n
j=i wj = 1 for all i. Hence,

F (x1) = 1. Let us now consider F (x2) and notice that F (x2) = maxi(δx2(i)) ≥ δx2(1). We will show that
δx2(1) ≥

√
n. We note Ωi =

∑n
j=i wj From wi

∑n
j=i wi = 1 we get w2

i + wi
∑n
j=i+1 wj − 1 = 0, hence wi =

1
2

(
−Ωi+1 +

√
Ω2
i+1 + 4

)
. Since Ωi = wi + Ωi+1, we get Ωi = 1

2

(
Ωi+1 +

√
Ωi+1 + 4

)
. Let ui = Ω2

n−i. Then

ui =
(

1
2

(
Ωn−i+1 +

√
Ωn−i+1 + 4

))2
= 1

4

(√
ui−1 +

√
ui−1 + 4

)2
= 1

4

(
4 + 2ui−1 + 2

√
ui−1
√
ui−1 + 4

)
≥

1
4 (4 + 4ui−1) = ui−1 + 1. Since u0 = Ω2

n = 1, we have ui ≥ i + 1 for all i. Hence Ωn−i ≥
√
i+ 1, so

Ω1 ≥
√
n. We obtain δx2

(1) = p̂nΩ1 ≥
√
n, so that F (x2) ≥

√
n.

Notice that an alternative polynomial time 2-approximation algorithm can be obtained for problems (8)
by following the approach depicted in Theorem 5 from [13], dualizing the robust constraint to avoid enu-
merating all |UΓ| elements of UΓ. Thus, Algorithm 2 is better than the one adapated from [13] when Γ > n

2 .
Furthermore, Algorithm 2 is much more general than the ad-hoc procedure adapated from [13] and can be
applied to any robust combinatorial optimization problem of the form (5).

5. Conclusion

The results presented here raise two natural questions. First, given the hardness of the robust counterpart
of 1||

∑
Uj , one could dig into approximability of the problem. Second, one could into approximability results

when the due-dates are uncertain, for the robust counterpart of both 1||
∑
Uj and 1||

∑
wjUj .

Acknowledgement

The authors are grateful to the referees, the comments of which improved the readibility of the paper.
This research benefited from the support of the ANR project ROBUST [ANR-16-CE40-0018].

References

[1] M. A. Aloulou and F. D. Croce. Complexity of single machine scheduling problems under scenario-based uncertainty.
Operations Research Letters, 36(3):338 – 342, 2008.

[2] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math. Program., 98(1-3):49–71, 2003.
[3] M. Bougeret, G. Dósa, N. Goldberg, and M. Poss. Constant-ratio approximation for robust bin packing with budgeted

uncertainty. SIAM J. Discret. Math., 36(4):2534–2552, 2022.
[4] M. Bougeret, K. Jansen, M. Poss, and L. Rohwedder. Approximation results for makespan minimization with budgeted

uncertainty. Theory Comput. Syst., 65(6):903–915, 2021.
[5] M. Bougeret, A. A. Pessoa, and M. Poss. Robust scheduling with budgeted uncertainty. Discret. Appl. Math., 261:93–107,

2019.
[6] R. L. Daniels and P. Kouvelis. Robust scheduling to hedge against processing time uncertainty in single-stage production.

Management Science, 41(2):pp. 363–376, 1995.
[7] G. V. Gens and E. V. Levner. Fast approximation algorithm for job sequencing with deadlines. Discrete Applied Mathe-

matics, 3(4):313–318, 1981.
[8] K. Goetzmann, S. Stiller, and C. Telha. Optimization over integers with robustness in cost and few constraints. In

Approximation and Online Algorithms - 9th International Workshop, WAOA 2011, Saarbrücken, Germany, September
8-9, 2011, Revised Selected Papers, pages 89–101, 2011.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization and approximation in deterministic sequencing
and scheduling: a survey. Annals of discrete mathematics, 5:287–326, 1979.

[10] A. Kasperski, A. Kurpisz, and P. Zielinski. Approximating a two-machine flow shop scheduling under discrete scenario
uncertainty. European Journal of Operational Research, 217(1):36–43, 2012.

8

[11] P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14. Springer Science & Business Media,
1997.

[12] E. L. Lawler and J. M. Moore. A functional equation and its application to resource allocation and sequencing problems.
Management Science, 16:77–84, 1969.

[13] M. Mastrolilli, N. Mutsanas, and O. Svensson. Approximating single machine scheduling with scenarios. In Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 153–164. Springer Berlin Heidelberg,
2008.

[14] J. M. Moore. An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management science,
15(1):102–109, 1968.

[15] M. Poss. Robust combinatorial optimization with knapsack uncertainty. Discret. Optim., 27:88–102, 2018.
[16] B. Tadayon and J. C. Smith. Algorithms and complexity analysis for robust single-machine scheduling problems. J.

Scheduling, 18(6):575–592, 2015.

9

