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Abstract: Condition monitoring (CM) of industrial processes is essential for reducing downtime
and increasing productivity through accurate Condition-Based Maintenance (CBM) scheduling.
Indeed, advanced intelligent learning systems for Fault Diagnosis (FD) make it possible to effectively
isolate and identify the origins of faults. Proven smart industrial infrastructure technology enables
FD to be a fully decentralized distributed computing task. To this end, such distribution among
different regions/institutions, often subject to so-called data islanding, is limited to privacy, security
risks, and industry competition due to the limitation of legal regulations or conflicts of interest.
Therefore, Federated Learning (FL) is considered an efficient process of separating data from multiple
participants to collaboratively train an intelligent and reliable FD model. As no comprehensive study
has been introduced on this subject to date, as far as we know, such a review-based study is urgently
needed. Within this scope, our work is devoted to reviewing recent advances in FL applications for
process diagnostics, while FD methods, challenges, and future prospects are given special attention.

Keywords: condition monitoring; fault detection; fault diagnosis; federated learning

1. Introduction

With the tremendous increase in the degree of diversification and decentralization
within different computation platforms, new strategies have emerged in recent years to
cope with severe constraints imposed on the elaboration of reliable machine-learning
models. Given this, federated learning can be seen as a compromise between central
models and decentralized data, which is of paramount importance in many fields, such
as industrial plants. This explains why FL-enabling technologies in smart infrastructures,
i.e., software, hardware, algorithms, and platforms, can efficiently handle lack-of-trust
and privacy issues when sharing sensitive data [1–3]. FL is a learning process designed to
accommodate such circumstances, where data sharing, in general, is subject to conflicts of
interest. Indeed, its main plans are to improve the generalization of local learning models
while only sharing the learning parameters of the models themselves. This review study
was initiated with the aim of offering pertinent guidelines and helping researchers to
pursue a path of countermeasure that could provide the best results (immune and accurate
condition monitoring FL system). Accordingly, to ensure that its outlines are clear, this
Introduction presents the context and main motivations leading to the current review-based
study. More specifically, it aims to emphasize the research-based methodology followed in
this work in addition to basic surveys and reviews of FL. In addition, it describes the major
contributions and outlines the work. Thus, the main objective of the Introduction is to
gain an overview of FL evolution while determining the best framework of the associated
concepts in the analysis of FD works in the following sections.

Electronics 2023, 12, 158. https://doi.org/10.3390/electronics12010158 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010158
https://doi.org/10.3390/electronics12010158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4877-4200
https://orcid.org/0000-0002-4844-508X
https://orcid.org/0000-0003-1673-8088
https://orcid.org/0000-0002-2031-4088
https://doi.org/10.3390/electronics12010158
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010158?type=check_update&version=1


Electronics 2023, 12, 158 2 of 20

1.1. Motivation

Condition monitoring systems play a crucial role in ensuring the continuous opera-
tion of production processes by minimizing downtimes. Using detection, diagnostic, and
prognostic systems, CBM tasks are precisely planned, and systems are repaired at the
right time while maximizing productivity [4]. The geographical distribution of industrial
regions/institutions has led to so-called smart infrastructures adopting cyberphysical con-
nectivity through specific networking and protocols [5]. Smart infrastructures generally
connect edge devices, i.e., participants/clients, that are typically data-intensive and sub-
ject to a conflict of interest policy. Recent advances in data-driven methods have made
machine-learning systems very successful in CM. In this context, the need to improve the
generalization of machine-learning models without data sharing has yielded FL [6]. Both
FL and FD have experienced many challenges; for instance, FL is prone to performance de-
terioration due to some data-complexity characteristics related to its volume, velocity, and
variety. It could also be related to the type of edge devices, communication and networking
methods, and protocols, as will be explained in Section 2. Moreover, FL algorithms or the
learning process itself may be subject to security and privacy breaches by cyberthreats such
as intrusions, for instance [7,8]. Wherefore, FD learning systems are mainly constrained to
data availability, complexity, and drift. Motivated by the importance of both FD and FL
in smart infrastructures CM, we are interested in providing a rigorous overview of FL in
diagnostic systems while focusing on recent advances, challenges, and future prospects.

1.2. Methodology

The year 2016 can be considered the launch time of the FL paradigm [6]. Accordingly,
in order to cover the majority of pertinent contributions dealing with the exploitation of FL
in FD, we started our research/paper-collection process in the same year until September
2022, when this review study began. It should be mentioned that our research was carried
out on the Google Scholar search engine, where we targeted comprehensive reviews,
surveys, and research papers published each year separately. For each year, as addressed
in Figure 1, we collected all works related to the context of the studied theme. Roughly
speaking, we restricted the investigation to only the first eight pages of search results as
they contain the main works, and beyond this limit, no relevant papers are encountered.
Furthermore, high-quality papers published in reputable journals indexed in different
well-known databases were addressed. As a result, the search process was conducted using
keywords related to both FL and FD.
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First, this work was conducted to inspire important ideas about the field and introduce
new input, and we scrutinized in-depth comprehensive studies with regard to the context
of the theme of our work. Unfortunately, there is a significant lack of reviews and survey



Electronics 2023, 12, 158 3 of 20

papers on the aforementioned subject. Given this, instead, we collected all comprehen-
sive studies, including reviews and surveys encompassing FL in a general manner only.
Therefore, we kept only papers satisfying this criterion, which is related to terms such as
Internet of Things (IoT), distributed environments, and edge and fog computing. We also
excluded FL papers handling areas other than FL in general, e.g., healthcare, smart cities,
vehicular IoT, natural language processing, and digital twins. Under these conditions,
we estimated that the conclusions obtained from the general examination of FL would be
more appropriate to some extent to the FD theme. Thus, the selected papers were sorted
chronologically and analyzed. The analysis findings were used to provide insights for the
synthesis study. During the collection process, it was noticed that these studies began about
three years after the appearance of FL terminology. This means that the studied papers in
this work ranged from 2019 to 2022, with a total of 18 examined papers.

The next step was to collect the research papers written on both FL and FD fields. We
mainly followed a similar methodology using similar keywords from the year 2016. This
time, related papers started appearing in 2020 and grew in number moderately during the
next two years. We made sure that all papers, including targeted keywords, were collected,
resulting in a total of around 19 research papers.

After that, and in order to acquire knowledge about advanced FL technology, the
review papers were analyzed separately through information extraction using well-defined
criteria, such as the review topic, the taxonomy used to classify FL methods, shortcomings
of FL methods, and the types of discussed applications. Meanwhile, when analyzing
research papers, criteria were considered that were tightly related to the main problem, the
studied system/dataset, and the proposed solutions.

1.3. Related Surveys and Reviews: A General Context

It is noteworthy that the review papers were analyzed according to the publication
year. Thus, classification, in this case, was also achieved based on the same criterion. This
can be justified by observing the evolution of FL surveys in the context of algorithmic
complexity, uncovered challenges, and addressed problems. In this work, we paid attention
to remedied FL challenges so that we could carry out a meaningful analysis of the provided
works in connection to FD. Accordingly, we scanned all FL reviews and created the most
important list of challenges, namely, system heterogeneity (SyH), statistical heterogeneity
(StH), privacy concerns (PrC), communication efficiency (CoE) (see Section 2), algorithmic
architecture and automaticity, latency, massive distribution, and connectivity [9–11]. How-
ever, since latency and connectivity belong to the theme of CoE and mass distribution is
involved with StH, these challenges were reduced to only four elements, namely, SyH, StH,
CoE, and PrC, which will be explained in Section 2.

1.3.1. Research in 2019

The authors of [12] released a review paper focusing on the main concepts of FL, such
as key definitions and the general mathematical context. The review paper paid more
attention to FL types in the context of data architectures, i.e., feature types and samples.
Accordingly, FL was classified into two categories, including vertical and horizontal FL,
based on participants’ data partitioning. In view of this, works on FL in privacy preserva-
tion, distributed learning, edge computing, and federated database systems were analyzed.
Additionally, the application of FL was also briefly discussed.

1.3.2. Research in 2020

The year 2020 has produced many more comprehensive studies than in 2019, where the
privacy of FL models itself began to appear as responsible for security issues. For instance,
in addition to the aforementioned FL categories and concepts established in previous
work [12] and some FL characteristics related to previously mentioned FL challenges, work
in [13] also looked at the description of available open-source FL frameworks, including the
TensorFlow FL Framework (TFF) [14] and Federated AI Technology Enabler (FATE) made
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available by the Webank team [15]. From this perspective, there is an interesting illustration
of the evolution of FL in chronological order (see Figures 5 and 6 from [13]). Moreover, this
work paid more attention to the challenges faced by the application of FL algorithms as
well as their evolution. Additionally, it discussed applications of FL in IoT devices, industry,
and healthcare. The review presented in [9] aimed to discuss the unique characteristics
and challenges of FL by providing a broad picture of approaches and identifying several
directions for future work. The review introduced in [16] studied FL in terms of security
and PrC, where security and privacy issues’ identification, evaluation, and documentation
were tackled. In that respect, it listed security and privacy use cases and provided risk
factors, helping researchers attain a clear view of possible research axes. It also presented
an illustrative description of approaches, various implementations, and challenges and
established a review of security and PrC. Additionally, it specified the most important
security threats, including poisoning and bottlenecks, while inferencing that attacks require
more effort.

1.3.3. Research in 2021

In 2021, there was profound development in understanding FL in greater detail, while
PrC took a prominent place among other challenges. The work presented in [17] was
specifically devoted to the analysis of privacy preservation in FL. Essentially, in addition to
previous concepts and major challenges of FL, this review focused on presenting the latest
advances in cryptographic, disturbance, anonymization, and privacy measures. These
achievements were consolidated by proposing a general taxonomy to analyze privacy risks
in FL in terms of various aspects, summarizing existing methods, and identifying future
research directions. Similarly, the comprehensive study presented in [18] reviewed the
development of FL and presented the current contributions according to a new classifi-
cation of five aspects, namely, data partitioning, privacy, ML algorithms, communication
architecture, and SyH. In addition, it detailed recent challenges and future opportunities
for FL whilst considering the most important characteristics of FL methods and their
application. The survey in [19] was dedicated to exposing advances in mitigating secu-
rity and privacy attacks. To this extent, FL analysis targeted solutions, evaluations, and
comparison methods to maintain privacy. Moreover, this survey analyzed drawbacks
related to maintaining privacy on both server and client sides at the same time. Hence,
the survey typology was designed to discuss privacy-enabled constraints and solutions
while highlighting challenges and charting methods to achieve both types of protection.
Another detailed review that investigates FL survey and research papers was showcased
in [20]. This review presented FL research as a broad category of concepts, challenges,
and applications. Moreover, it reviewed data partitioning, FL architectures, clustering
techniques, and aggregation techniques’ main aspects, i.e., CoE, SyH, SyH, and PrC, as well
as different areas of application, in addition to discussing open issues and challenges in FL.
In [21], the latest findings of FL implementation, recent developments, and insights into
IoT networks were discussed. Additionally, special attention was given to FL opportunities
in data sharing, data loading and caching, attack detection, localization, mobile audience
sensing, and IoT privacy and security. Likewise, general aspects of FL in smart IoT infras-
tructures, such as healthcare, transportation, drones, smart cities, and industry, were also
addressed in the context of networking aspects and protocols while summarizing tables
of FL aspects, contributions, and limitations of the research papers were also provided. A
prominent contribution of this review consists of providing the most important lessons
learned on the topic, fundamental research challenges, and prospects of future research.
The work in [10] provided a comprehensive picture of FL and its taxonomy, going through
the most important classification of FL, challenges, vulnerability assessment approaches
implications, limitations, and future scope. In the framework of FL classification, it delved
into several types of classifications based on different aspects, including data partitioning,
modeling methods, privacy level, communication architecture, and data availability. Addi-
tionally, it added two new challenges to the previous four challenges, i.e., CoE, SyH, SyH,



Electronics 2023, 12, 158 5 of 20

and PrC—namely, algorithmic architecture and automaticity. In [22], papers devoted to
discussing FL in the context of user-generated data privacy in the IoT were underlined.
Challenges related to the CoE, StH, and additional privacy issues associated with FL were
also highlighted. The strengths and weaknesses of the different methods applied to FL
were listed in this review paper, while future directions for preserving privacy on IoT
applications were also taken into consideration. The review paper in [23] targeted FL chal-
lenges from the perspective of non-IID on parametric and non-parametric machine learning
for both horizontal and vertical FL. It therefore enumerated the challenges, advantages,
disadvantages, and future research directions of non-IID data in federated learning. The
work in [24] focused on FL advances and introduced challenges in terms of maintaining
privacy. It also featured the background, motivations, definitions, architectures, and ap-
plications of FL as a privacy-preservation paradigm. Finally, an extremely inclusive and
deep review covering the finest multilevel classification was offered in [11]. This paper
introduced a comprehensive study of FL, related concepts, technologies, and learning
methods. It also depicted the applications and future orientations of communication and
networking. On this basis, a three-level classification scheme was designed to categorize FL
literature according to a high-level challenge (i.e., CoE, StH, SyH, PrC, client selection and
scheduling, and service selection). After, each high-level challenge was categorized by itself
into sub-level challenges, furnishing more details. Moreover, in each sub-level challenge,
an accurate classification based on used techniques was provided, and guidelines for future
research were given for each category.

1.3.4. Research in 2022

The year 2022 produced more detailed reviews of other FL challenges, such as StH,
while PrC studies delved even further; for example, the work in [25] was concerned with
recent progress in FL against evolving edge-computing standards. The review was focused
on training with the employment of deep learning. Thus, the work was conducted to illus-
trate edge computing, deep learning, and key FL concepts, summarizing the contributions
of the literature review and discussing FL architecture, challenges, and recent solutions. It
also reported some examples of case studies related to drones and healthcare. Finally, it
listed open issues and possible future research. The review paper in [26] was dedicated to
analyzing and establishing the definition of non-IID data problems for FL while pointing
out the challenges of this specific problem. Accordingly, the methods used to deal with
this problem were classified with the aim of providing a comprehensive study to solve the
problem of non-IID in FL. The results showed that non-IID data were the main reason for
reduced FL performance and the harmful active participation of clients. The work in [27]
attempted to review FL trends in edge computing by synthesizing and comparing FL
algorithms, models, and frameworks while presenting different applications. In addition,
datasets used for FL were specified, while current challenges were also discussed. In [28],
various research on centralized FL, decentralized FL, and heterogeneous FL in the context
of distributed environments were analyzed. Moreover, privacy-preservation analysis and
data sharing, as well as confidentiality in the maintenance of the security framework,
were elaborated. Finally, the review demonstrated the challenges, critical analysis, and
parameters of the FL model.

Table 1 features a recapitulation of analyzed FL reviews and surveys. Generally
speaking, all reviews followed a similar methodology when introducing their studies’
papers. First, they addressed the main concepts and familiar topics related to FL, then
delved into the classification of FL methods. Classification depended on the main goal of
the review and some criteria. For example, when considering data partitioning, FL could
be classified as vertical, horizontal, and transfer federated learning. However, addressing
the challenges of FL is a necessary point that all reviews agreed on. In this scope, some
reviews analyzed contributions dedicated to all challenges, and others delved into more
detail on a specific topic, as already showcased in Table 1.
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Table 1. Investigated review/survey papers of FL in a general context.

Year Ref. Most Important Contributions besides Generalities, e.g., Main Concepts, Classifications,
Applications, and Future Prospects

Main Challenges
Addressed

2019 [12]

• Classification of FL in two categories, including vertical and horizontal FL based on data
features;

• Analysis of FL works according to privacy preservation, distributed learning, edge computing,
and federated database systems.

Challenges of FL in
general

2020

[13] • Discussion of FL challenges: system heterogeneity, StH, PrC, and communication efficiency;
• Description of open-source TensorFlow and Federated AI Technology.

Challenges of FL in
general

[9] • Discussion of FL challenges: system heterogeneity, StH, PrC, and communication efficiency.
Challenges of FL in

general

[16] • Focused on security and PrC by identifying security and privacy issues, and evaluating and
documenting them, respectively.

PrC

2021

[17] • Analyzing privacy preservation in FL by presenting advanced cryptographic, disturbance,
anonymization, and privacy measures.

PrC

[18] • Classification according to five aspects, namely, data partitioning, privacy, ML algorithms,
communication architecture, and systems heterogeneity.

Challenges of FL in
general

[19] • Discussion of mitigation security and privacy attacks. PrC

[20] • Discussion of FL challenges: system heterogeneity, StH, PrC, and communication efficiency;
• Discussion on data partitioning, FL architectures, and clustering techniques.

Challenges of FL in
general

[21]
• Discussion of FL opportunities in data sharing, data loading and caching, attack detection,

localization, mobile audience sensing, and IoT privacy and security;
• Discussion of general aspects in the context of networking aspects and protocols.

StH
and PrC

[10]

• Provision of different types of classifications based on different aspects, including data
partitioning, modeling methods, privacy level, communication architecture, and data
availability.

• Addition of two more new challenges to the previous four challenges, namely, algorithmic
architecture and automaticity.

Challenges of FL in
general and PrC

[22]
• Discussions of data privacy in the IoT;
• Highlighting challenges related to the communications expensiveness, StH, and additional

privacy issues associated with FL were also highlighted.
PrC

[23] • Targeted StH. StH

[24] • Focused on advances in FL and addressed challenges in terms of maintaining privacy. PrC

[11] • Focused on proving a deep taxonomy of FL.
Challenges of FL in

general

2022

[25] • Discussion of FL in the context of using deep-learning methods.
Challenges of FL in

general

[26] • Analyzed FL works in context of non-IID. StH

[27] • Discussion of FL in the context of edge computing.
Challenges of FL in

general

[28] • Discussion of privacy preservation, data sharing, and confidentiality. PrC

The chronological order shows that review papers started by studying FL methods
from a general viewpoint. After, efforts were concentrated on each challenge separately,
starting with the PrC of FL models themselves. Then, pure comprehensive studies appeared
to deal with other challenges, such as StH. This means that StH is one of the primary
concerns of FL models after their security design to protect from cyberattacks. In order
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to bring attention to the most important studied challenges regarding FL, we created a
pie chart, which is shown in Figure 2. This figure summarizes the important topics and
main challenges of FL. It indicates that, before all, the privacy of the FL algorithm is
necessary and should be carried out. Thenceforth, StH appeared to be very important in
constructing a powerful FL model. One of the limitations we found in the literature is that
there is a scarcity of comprehensive reviews, specifically in connection with other CoE and
SyE challenges.

Electronics 2023, 11, x FOR PEER REVIEW 7 of 21 
 

 

• Addition of two more new challenges to the previous four
challenges, namely, algorithmic architecture and automa-
ticity. 

[22] 

• Discussions of data privacy in the IoT; 
• Highlighting challenges related to the communications expen-

siveness, StH, and additional privacy issues associated with FL 
were also highlighted.  

PrC 

[23] • Targeted StH. StH 

[24] • Focused on advances in FL and addressed challenges in terms 
of maintaining privacy. 

PrC 

[11] • Focused on proving a deep taxonomy of FL. Challenges of FL in 
general 

2022 

[25] • Discussion of FL in the context of using deep-learning methods. Challenges of FL in 
general 

[26] • Analyzed FL works in context of non-IID. StH 

[27] • Discussion of FL in the context of edge computing. Challenges of FL in 
general 

[28] • Discussion of privacy preservation, data sharing, and confiden-
tiality. 

PrC 

The chronological order shows that review papers started by studying FL methods 
from a general viewpoint. After, efforts were concentrated on each challenge separately, 
starting with the PrC of FL models themselves. Then, pure comprehensive studies ap-
peared to deal with other challenges, such as StH. This means that StH is one of the pri-
mary concerns of FL models after their security design to protect from cyberattacks. In 
order to bring attention to the most important studied challenges regarding FL, we cre-
ated a pie chart, which is shown in Figure 2. This figure summarizes the important topics 
and main challenges of FL. It indicates that, before all, the privacy of the FL algorithm is 
necessary and should be carried out. Thenceforth, StH appeared to be very important in 
constructing a powerful FL model. One of the limitations we found in the literature is 
that there is a scarcity of comprehensive reviews, specifically in connection with other 
CoE and SyE challenges. 

 

Figure 2. Main investigated types of FL challenges. 

Based on these findings, FD tools developed based on FL algorithms will also be 
analyzed under these FL challenge criteria according to their importance. This indicates 
that such tools will be analyzed based on how they deal with the privacy protection of 
the FL model and a strong background of StH. They will also be analyzed on whether 
they address CoE and SyH. 

  

Figure 2. Main investigated types of FL challenges.

Based on these findings, FD tools developed based on FL algorithms will also be
analyzed under these FL challenge criteria according to their importance. This indicates
that such tools will be analyzed based on how they deal with the privacy protection of the
FL model and a strong background of StH. They will also be analyzed on whether they
address CoE and SyH.

1.4. Contributions

Apart from FL review and survey analysis in a general context while mainly focusing
on the challenges in Section 1, this review paper is devoted to the following:

• Providing a brief background on the main concepts, classification, algorithms, and
challenges of FL. This background is limited to the information needed for this review
study.

• Analyzing FD methods in the context of the treated problems, FL algorithms, machine-
learning algorithms, and datasets.

• On the basis of the obtained results, this review provides challenges facing the evolu-
tion of FL in the context of FD.

• This review also gives insight into the future prospects of FD applications in FD.

1.5. Review Outlines

This paper is organized as follows: in addition to the Introduction of Section 1, Sec-
tion 2 is devoted to providing a general overview of FL. Accordingly, only necessary
information in the context of our review-based study is revealed. Section 3 is allocated to
reviewing recent progress in FD methods in the context of using FL for privacy preservation,
listing the main challenges facing the evolution of FL in FD, and providing future directions
for FD under FL. Section 4 concludes this work and gives a summary of future work to be
carried out as a continuity of this study.

2. Overview of Federated Learning

This section is mainly reserved for the description of the necessary concepts and
definitions related to our study. As this is already widely known in the literature, we
have made it as short as possible and left only the important features that are necessary
to understand the content of this work. Accordingly, Figure 3 will be used in this sec-
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tion to discuss FL mechanisms in relation to the positions of FL challenges as well as its
enabling technologies.
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2.1. Overview

FL is a collaborative training method designed to improve the generalization of local
machine-learning models by transferring their training parameters to a single global model
while keeping data localized only in the local models. More precisely, FL is based on
running an algorithm in a parallel-computing pool to perform aggregation of a set of differ-
ent learning models while taking into account several aspects related to communication
efficiency, system heterogeneity, StH, and PrC. FL is an online learning process that manip-
ulates models iteratively and adaptively trains for a specific period of time, known as a
training round, on a specific set of mini-batches of inputs and targets {xc,r, yc,r} of a specific
type of data, where {c, r} refers to the client and training round, respectively. This process
continues as long as training data keep flooding sequentially. Assume that Wc,r are learning
parameters obtained from participants at a specific training round from specific training
model. FL’s main mission, in this case, is to aggregate Wc,r at each round while training
to maximize the accuracy of local learning models by minimizing the losses l accordingly.
As represented by (1) and (2), f denotes the main function of aggregation; g refers to the
global model; and the loss function is presented by θ, which is defined according to training
process constraints. ỹc,r refers to estimated targets from each local model.

Wg,r = f (Wc,r) (1)

lc,r = θ(yc,r, ỹc,r) (2)

The aggregation function f differs from one model to another. In fact, its design
mainly depends on the treated subject and the main challenges to be solved. The most basic
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aggregation function is based on federated averaging (FedAvg) of learning parameters, as
described by (3).

Wg,r =
1
c

c

∑
i=1

(Wc,r) (3)

2.2. Classification of FL Algorithms

FL algorithms can be classified according to many criteria, such as network topology,
data availability, data partitioning, aggregation and optimization techniques, and open-
source frameworks (see [16], Figure 2), depending on the main objectives of the study.
In our review-based study, we are interested in the analysis of FL methods according
to the type of data partitioning (Section 3 demonstrates that other classifications have
not been given sufficient attention). So, the FL algorithms, in this case, are categorized
under three types, namely, horizontal FL, vertical FL, and transfer FL. Vertical FL training
scenarios involve local datasets sharing the same sample feature identification with different
spaces in one or more of the following data features: data variation, velocity, and space
volume [10]. Horizontal FL represents the case where local datasets might share a few
feature-identification samples but the same feature space. Federated TL refers to different
local datasets, where the challenge is the need to improve generalization from each other
due to the advantages of data behaviors.

2.3. Challenges

As discussed earlier, FL is subject to different challenges, mainly related to SyH, StH,
PrC, and CoE. Since this is very important for our study in this case, as the main FD
methods will be analyzed and criticized according to these criteria, this section aims at
describing these challenges.

SyH: FL networks are natively heterogeneous due to differences in many characteris-
tics, such as connectivity, hardware, powering methods, communication, storage capacity
and method, and node-computing capabilities. Additionally, not all nodes may be active at
the same time due to the fact that some devices work periodically or may also be under
maintenance. Devices may stop functioning at some point during FL; therefore, fault
tolerance is enabled by these system-level properties [27]. In this context, the FL algorithms
and the training mechanism must take this factor into account because it plays a vital role
in balancing the scales of the training models via weighting.

StH: Typically, participants collect non-IID across the network with significant vari-
ations, leading to unique statistical structures among devices and their associated distri-
butions. This non-IID nature adds some complexity in terms of modeling, analysis, and
evaluation. As a result, multitasking and meta-learning enable personalized modeling for
specific devices, which is often a more natural approach to dealing with StH [9].

PrC: Privacy is a major concern in FL networks. FL already relies on a privacy-
protection policy by sharing only trained local models to obtain updates without data
sharing. However, multiple participations in multiple training rounds can divulge sensitive
information from data. For instance, a long short-term memory (LSTM) network with the
ability of sequential learning can reveal information about data under several attack tests
due to the forgetting mechanism. FL’s mission, in this case, is to enhance privacy with tools
such as differential privacy. However, these methods often provide privacy at the cost of
degrading model performance or system efficiency [9].

CoE: Communication is a critical issue in FL networks, especially when associated
with privacy. The massive number of devices driving massive communications will cer-
tainly slow down, in terms of magnitude, local computing with limited resources, such as
bandwidth, energy, and power. As a result, it is very important to design CoE methods to
reduce communication rounds and their sizes, respectively.
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2.4. Enabling Technologies

Many technologies have been applied and used to improve FL further. As stated earlier,
these technologies range from algorithms to hardware and software platforms. Hence,
this subsection is devoted to the introduction of the most important and well-known
technologies so far.

2.4.1. Algorithms

FedAvge initiates the first attempts of FL. Nevertheless, when it comes to other chal-
lenges, it seems that, in this case, it is designed to fit with accuracy and performance only,
and it does not consider, for instance, the privacy, communication, or heterogeneity of data
and systems. So, the following versions of FL algorithms released were oriented to such is-
sues either separately or totally. In this context, this section will only briefly cover important
aspects of some well-known FL variants, including FedProx for StH, FedPAQ for CoE, and
TurboAggregate for both CoE and the security of FL models. As an example, FedProx [29]
is designed to address heterogeneity primarily related to non-IID between participants.
The main idea is to add mathematical expressions to the aggregation functions as a kind of
proximal term for each local training parameter of each local model separately. This will
force the update processes to approximate the global model and reduce the influence of StH
with each update. Overall, FedProx is an FL philosophy targeting loss function convergence
established under non-IID. In FedProx, all devices are weighted equally, the same as in
FedAvg at the aggregation phase. Accordingly, the differences between participants (e.g.,
hardware) are not taken into account, i.e., SyH. FedPAQ [30] is a CoE aggregation process
that offers periodic averaging instead of synchronizing updates with the server. FedPAQ
involves a variety of local updates before any collaboration. The primary goal is to reduce
communication overhead by allowing a subgroup of client devices to participate in training
based on the device’s connectivity to a wireless network free, idle, and accessible to a base
station. Identically to FedAvg, the new global model of FedPAQ is computed as the average
of the local models, which involves high complexity in strongly convex and non-convex
parameters. TurboAggregate [31] is an aggregation algorithm implemented to handle both
PrC and CoE aggregation. It is based on an aggregation of several groups of participants
in a circular strategy. Initially, at the level of CoE, it iteratively divides the participants
into several groups, sends them for global aggregation, and employs the updated model
to adjust the other groups, respectively. It also includes a rest security feature by adding
random variables as noise to the local models to preserve privacy. The noise is designed to
be filtered when the update process is complete.

2.4.2. Software and Platforms

Fortunately, there are many FL open-source systems that support the training of
machine-learning models, while the security of such an open platform ensures no leakage
of either sensitive data or model parameters [24]. Indeed, a variety of open-source software
platforms, such as Federated AI Technology Enabler (FATE), TensorFlow Federated (TFF),
OpenMined, LEAF Benchmark, FedML, PaddleFL, and OpenFL, are widely used in differ-
ent industrial contexts [24]. Institutions such as the AI department of WeBank, a digital
bank in China; Carnegie Mellon University; and Google AI provide these open-source
platforms to perform FL learning tasks, giving access to many privileges, such as decen-
tralized learning and FL algorithms with different architectures (including deep learning,
different FL datasets, etc.). These FL platforms also provide secure-computing protocols
and privacy-preserving tools such as homomorphic encryption and multi-party computing.

2.4.3. Hardware

The algorithmic complexity of deep learning motivates accelerating hardware devel-
opment to support FL computational and storage requirements. Indeed, the multiple layers
of non-linear abstractions in deep learning lead to greater computational complexity. A
massive number of training parameters and iterative learning operations and millions
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of samples require more computational power, especially under FL. In this context, FL
imposes the use of three categories of computational resources. These include Central
Processing Units (CPUs), Graphics Processing Units (GPUs), and Application-Specific
Integrated Circuits (ASICs) [25]. GPUs are effectively used for cloud computing due to the
challenges of big data and the use of deep learning. In the case of FL, it is recommended to
use GPUs when training global models that require tuning massive parameters, including
potential data processing. For the resource allocations of typically lightweight peripheral
devices that require fewer computing resources due to limited computing power, CPUs are
very efficient. Meanwhile, ASICs are recommended to simplify the algorithmic complexity
of the deep-learning model and speed up its application [25].

3. Works Related to Federated Learning for Fault Diagnosis

This section will deal with the review of papers falling exactly within the subject of
the paper, which is FL for FD. It also presents the main challenges and future prospects.

3.1. Analysis
3.1.1. Research in 2020

In 2020, an FL algorithm was proposed to realize a three-level fault detection system for
power terminals [32]. The main idea was to tackle expansive communication constraints by
reducing message transmissions between the cloud and edge servers while protecting data
privacy. It should be mentioned that the data used here were picked from a simulated power
grid system with a cloud, 10 edge servers, and numerous terminals. It represents a linguistic
description of the system health status recorded from a power terminal system log, so the
FL problem is a language-processing topic. In this case, long short-term memory (LSTM),
which is a better choice for sequential learning, was adopted to train the collaborative
model on edge devices. Once LSTM was trained, the training parameters were sent to the
local server for aggregation. It was stated that the model might be prone to overfitting
due to data imbalance when receiving a lower number of fault samples. Therefore, the
FL algorithm was designed to take these issues into account when using the FedAvg
philosophy. Additionally, the log records of electrical terminals were expected to be
massive, which would lead to higher transmission costs. Therefore, these records were
further compressed with specific three-stage log compression, i.e., variable replacement,
similarity calculation, and redundancy filtering, respectively, to ensure low latency.

3.1.2. Research in 2021

For the year 2021, an FL method for machine FD with dynamic validation and self-
supervised learning was proposed while treating both data privacy and scarcity issues for
different clients in [33]. In this context, a federated deep-learning network was proposed
for global aggregation. Moreover, a dynamic-validation scheme was adopted to solve the
problems of the StH of data. Two rotating machinery datasets, namely, the Case Western
Reserve University (CWRU) [34] and Bogie bearing datasets, were involved. CWRU de-
scribes the vibration acceleration signals collected from the drive end of the motor, while
the Bogie dataset was similarly collected from a multi-unit train bogie high-speed running
system. A self-supervised data translation (augmentation) method was proposed to deal
with problems caused by unbalanced or limited data patterns. FedAvg algorithms were
adopted to train a collaborative model based on CNN architecture for further extraction
and classification (i.e., supervised learning). A new aggregation methodology was pro-
posed in [35] to provide greater privacy to FL algorithms in the fault diagnosis of rotating
machinery. The main idea was to adopt a so-called quasi-cloud/edge/client-learning
mechanism by involving sequential Kalman filter learning rules as an asynchronous fusion
algorithm of learning parameters provided by edge clients. The effectiveness of the pro-
posed scheme was verified by the data of rotating machinery, and the authors succeeded
in using their own dataset retrieved from a specific rotating mechanical device. Pedestal
loosening, broken fan blades, and rotor imbalance were the main considered failure modes
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of the system. After a well-defined feature-extraction process of vibration signals obtained
from eight sensors installed at different locations, a single hidden layer neural network
with adjustable output weights only was involved in training edge models. Continuing the
work presented in [35], the authors in [36] added new features to the learning scheme in
addition to asynchronous Kalman filtering. A real-time customer identification method
with the newly labeled samples obtained at unequal intervals was approved to enable
clients to reach better performance. Additionally, the CWRU dataset [34] was also studied
in addition to a previously studied one to ensure that their study could be generalized
better. In [37], a fault-diagnosis method based on the FedAvg algorithm to collaboratively
train a CNN model was proposed. Two main datasets, namely, CWRU [34] and Machinery
Fault Database (MFD) [38], were involved in an attempt to provide an effective investi-
gation of the FL model under limited data sharing and poor generalization of the model
for mechanical equipment. This type of challenge in the context of FL falls under the
theme of StH. In [39], an asynchronous FL method was proposed to solve problems related
to resource constraints that fall within the field of CoE and system heterogeneity. This
method enables efficient node selection for asynchronous updates based on local data
distribution. In view of this, the main process led to reducing computational costs and
improving communication and the efficiency of the FL model. The FL algorithm in this
work adopted a multi-branch neural network (MBNN) as an optimization method for
asynchronous FL. This method depended on penalization to select only the branches of
interest (nodes important for training). In order to evaluate the proposed MBNN, two real
datasets were involved, namely, the CWRU dataset [34] and the gearbox failure diagnostic
dataset provided by the University of Connecticut [40,41]. In [42], and under computational
cost and CoE criteria, an FL method that contains stacked sparse autoencoders (SSAE)
and Siamese networks was proposed for the diagnosis of inter-turn short-circuit (ITSC)
faults in permanent magnet synchronous motors (PMSM). SSAE was used for unsuper-
vised feature extraction with an incomplete list of patterns, while Siamese networks were
used for similarity analysis. An adaptive FL model was proposed in [43] to adjust the FL
aggregation interval based on some feedback edge clients to target communication cost
while ensuring model accuracy. Accordingly, a CNN with a dropout layer was trained by
momentum gradient descent (MGD) to speed up the convergence rate and avoid overfitting.
The efficiency of the proposed FL method was satisfactory when applied on a non-IID
bearing fault (CWRU) dataset. A federated transfer-learning approach was investigated for
machine fault diagnosis in [44]. A deep adversarial semi-supervised network was used
for transfer learning, while it could be initialized differently depending on each particular
client. The model was built with the intention of targeting SyH as the primary objective
rather than StH. A deep network is a type of CNN used for supervised learning. The same
CWRU [34] and Bogie datasets discussed earlier were used for model validation.

3.1.3. Research in 2022

In 2022, a federated transfer-learning method using the problem of StH and the
unavailability of data caused by different working conditions and accelerated tests was
proposed for the fault diagnosis of machines in [45]. The preceding distributions for
bridging the domain gap that follows demonstrated information sharing across domains
while maintaining data privacy. The training process was carried out involving a specific
CNN architecture. Two datasets, namely CWRU [34] and CRACK, were implemented for
validation. In [46], the authors proposed a federated deep-learning framework for fault
detection in wind turbines. Accordingly, a multiscale residual attention network model was
used for feature extraction from raw data. Two particular tasks resulted in this case. First,
a multiscale residual learning process was exploited for spatial feature extraction from
different sensors at different scales. Second, a feature-attention mechanism was dedicated
to selecting only descriptive and important features strongly correlated to fault events,
leading to an improved fault-detection process of a final universal approximator (i.e., a
deep network designed for classification). From the provided algorithms, it appeared that
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the standard FedAvg algorithm was used for the aggregation process to deal with the StH
problem under large data unavailability. Two sets of condition-monitoring data from an
actual wind turbine were used for the evaluation of the proposed model. The datasets were
collected from a supervisory control and data-acquisition system installed to monitor two
turbines. The first was a 3 MW direct drive wind turbine near the south coast of Ireland [47].
The second was acquired from a 1.5 MW direct-drive WT in northern China [48]. A deep-
learning-based diagnostic method based on federated adversarial and transfer learning that
enables domain adaptation was developed in [49]. Accordingly, a new federated minimax
(FedMM) algorithm was also developed for global model aggregation that targets the
problem of gradient drift caused by sample imbalance under StH. Complex deep-learning
networks such as CNN were involved in training for the supervised approximation process.
The model was verified under gas-insulated switchgear insulation faults with experiments
consisting of laboratory and field clients. In [50], a new adaptive federated learning
approach for Internet of Ships fault diagnosis was proposed. The objective of the method
was to target PrC using the Paillier cryptographic communication scheme. Additionally,
to deal with the StH of the harsh marine environment, an adaptive control algorithm
was proposed to deal with the model-aggregation interval during the learning process
while reducing cryptography computations and communications expensiveness. The CNN
algorithm was adopted for the classification process while a CWRU was involved [34].
In [51], a stacking federated learning model was proposed for diagnosing short-circuit
faults between turns in permanent magnet synchronous motors. Under connectivity criteria
that fit into communication efficiency, a verification strategy was implemented for selecting
clients. A dataset was created in this context to validate the client weightings. The dataset
contained samples for normal operating conditions and fault patterns. Particle swarm
optimization was involved in finding weights for clients engaged in the aggregation process.
Compared to the standard FedAvg, the proposed model showed better performance in
terms of data imbalance and communication costs, and local oscillations were avoided in
the model. In [52], authors proposed a federated-learning-based diagnosis system for fault
detection and identification in PV systems. To address the challenges of system and StH
different computing capabilities and the amount of data in the PV station, an asynchronous
decentralized federated learning (ADFL) mechanism was designed. The asynchronous
update scheme helped in overcoming communication overhead while reducing training
time. A specific weight mixing method proposed by the authors was used to perform model
aggregation (see Equation (11) of [52]), while a CNN was the main training architecture.
Experiments on a real PV generator consisting of two PV strings connected in parallel
with 22 PV modules in series were performed to verify the efficiency of the proposed
method, while short circuit faults, partial shading faults, and degradation faults were
simulated, respectively. In [53], the authors proposed a fast FedAvg (FA-FedAvg) algorithm
for fault diagnosis based on traditional FedAvg algorithms to improve model learning
quality and speed. As a result, a client-selection weighting strategy was incorporated to
conduct high-quality communication. Under latency criteria, an aggregation strategy based
on the precision difference was proposed to reduce the number of iterations and accelerate
the convergence of the learning model. Finally, the proposed algorithm was applied
to the CWRU dataset [34] using a CNN architecture and compared with FedAvg and
FedProx. In the work proposed in [54], more attention was paid to class imbalance when
building their privacy-preserving federated learning framework for the fault diagnosis of
decentralized wind turbines. In this framework and taking into account PrC, the authors
built a biometric authorization mechanism to ensure that only legitimate access granted
private data and served against cyberthreats. The federated learning process itself was
built on a dual privacy-enhancement mechanism; namely, the gradient noise mechanism
and the proportional parameter update strategy were used to enable privacy and security,
while ResNet18 [55] was the main training model. Meanwhile, the gradient-based self-
monitoring scheme was integrated for overall imbalance fault diagnosis. Vibration data that
were collected from five biometric authentication wind farms located in Kangbao, Hebei
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Province, China, were used to verify the effectiveness of the proposed framework. In [56],
under the problem of StH and data unavailability, a CNN average shared layers through
federated transfer learning (FTL-ASL) method for bearing fault diagnosis was proposed.
Then, a modified FedAvg algorithm was adopted for aggregating feature layers from
different diagnostic models, while custom layers were updated locally. A set of bearing
datasets, i.e., Paderborn University (PUD) [57], Machinery Failure Prevention Technology
(MFPT) [58], and CWRU [34], were used to validate the implemented approach. In [59], a
federated transfer learning framework with deviation-based weighted federated average
(D-WFA) was proposed for bearing fault diagnosis. As a result, a dynamic weighted-
average algorithm based on maximum mean divergence (MMD) was designed for local
pattern aggregation. The proposed D-WFA was used to train a CNN model to overcome the
drawback of the FedAvg algorithm, which resembled systems heterogeneity because clients
have different contributions to the overall training. Used data were retrieved by testing a
Nippon Seiko Kabushiki-gaisha (NSK) 40BNR10 ball bearing in a milling machine fault-
diagnosis experiment. Four bearings were studied under four typical health conditions,
namely, healthy (H), inner ring fault (IF), outer ring fault (OF), and broken cage fault (CF).

3.2. Discussion

Table 2 represents an overview to better understand the contributions of FL work in
FD. More precisely, it describes the used FL algorithms, machine-learning architecture,
involved datasets, and the main challenges the authors were concerned with. Therefore, to
better analyze the results in Table 2, we followed a similar methodology of drawing pie
charts for each particular case. Figure 4 was therefore introduced for clarification.
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Table 2. FL works carried out within the framework of FD.

Year Ref. Aggregation Algorithm Learning Algorithm Dataset Solved Challenges

2020 [32] FedAvg LSTM

A language-processing-based dataset of a
simulated power grid system. The system
has cloud computing with 10 edge servers
and several terminals.

CoE

2021

[33] FedAvg CNN enhanced with data
augmentation algorithm CWRU [34] and Bogie bearing datasets. StH

[35] Kalman filter Kalman filter
Dataset retrieved from a specific rotating
mechanical device (type is not specifically
revealed).

CoE

[36]

Kalman filtering
enhanced by a real-time
participant-identification
method

Kalman filter

Dataset retrieved from a specific rotating
mechanical device (type was not
specifically revealed). The CWRU dataset
[34] was also studied in this work.

Communication
efficiency

[37] FedAvg CNN CWRU [34] and MFD [38]. StH.

[39] MBNN MBNN CWRU [34] and the gearbox failure
diagnostic dataset [40,41]. CoE and SyH

[42] FedAvg SSAE and Siamese
networks

Inter-turn short-circuit (ITSC) faults
dataset.

Communication
efficiency

[43]
FedAvg with some
adaptive-learning
features

CNN with a dropout
layer trained by MGD CWRU [34]. CoE

[44] FedAvg
Deep adversarial
semi-supervised network
and a CNN

CWRU [34] and Bogie datasets. SyH

2022

[45] Transfer learning CNN CWRU [34] and CRACK datasets. StH

[46] FedAvg

Multiscale residual
attention network and a
custom deep network
designed for classification

A 3 MW direct-drive wind turbine [47]
and 1.5 MW direct-drive WT [48] fault
datasets.

StH

[49] FedMM CNN with adversarial
learning features

Gas-insulated switchgear insulation
fault-detection dataset. StH

[50]
Paillier cryptographic
and adaptive control
algorithm

CNN CWRU [34] PrC, StH, and CoE

[51]
FedAvg and particle
swarm optimization for
client weighting

Custom deep network
designed for classification

Turns in permanent magnet synchronous
motor short-circuit fault-detection dataset. StH, and CoE

[52] ADFL CNN
Real PV generator consisting of two PV
strings connected in parallel with 22 PV
modules.

SyH, StH, and CoE

[53] FA-FedAvg CNN CWRU [34] CoE

[54]

Biometric authorization
mechanism, gradient
noise mechanism, and
proportional parameter
update strategy

ResNet18 [55] 5 biometric authentication wind farm
datasets. PrC

[56] FTL-ASL CNN PUD [57], MFPT [58], and CWRU [34]
datasets. StH

[59] D-WFA and MMD CNN (NSK) 40BNR10 ball bearing dataset. SyH

Hence, by considering the studied FL algorithms as the main investigation criteria
(Figure 4a), we found that the standard FedAvg algorithm was always used (42.1%), while
the new variants (57.9%) were used more than FedAvg. FedAvg was generally used when
the main challenges addressed were not primarily related to StH or SyH. The reason behind
this is that FedAvg considers systems or participant data equally contributing to the training
process with the same weights. However, other variants generally add an enhancement
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to FedAvg or perhaps use other algorithms rather than FedAvg to update local models
while each participant has their own weight in the context of the data and the nature of the
system (device). Additionally, for work on CoE, standard FedAvg cannot handle this issue.
This is why new features, such as client selection, synchronization, and compression, are
needed. In the context of privacy, FedAvg can be used with additional features that ensure
FL process immunity, such as encryption.

Figure 4b depicts machine-learning algorithms. Generally, complex deep networks
such as generative adversarial networks, LSTM, CNN, and auto-encoders are used in the
FD process. However, among all, and since the problem of FD is a classification problem,
CNN and its variants, which are very powerful pattern classification tools, dominate,
represented by over 63.2% of the algorithms used, while ResNet18 also comes into play.
CNN is typically an architecture that follows a non-adaptive training process. Projecting
this problem onto the nature of FD data in general and the nature of the training process
will be one of its limitations.

When subject to targeted challenges (Figure 4c), StH and SyH are almost equally
considered and receive more attention than CoE and PrC. Contrary to what is recom-
mended by the pie chart in Figure 2, privacy receives little attention in contrast to practical
requirements. This can be seen as an issue with systems designed for security.

In the context of the used datasets (Figure 4d), bearing datasets are the most investi-
gated, especially CWRU. Little interest has been focused on other datasets. Additionally,
these datasets are not specifically designed for FL, and their partitioning does not purely
describe an accepted FL process for the work in [46], which perfectly describes a real
non-IID situation.

3.3. Challenges

In terms of the previous review results, FL algorithms designed for FD are subject to
many challenges, making their investigation in real CM systems questionable under some
situations, as indicated below.

Data unavailability: Generally speaking, used datasets in these FD works are meant
to be used for offline training for a particular device in the first place and are not specifically
designed for FL. It is true they might cope with changes in working conditions, or they
could be divided to reach such FL conditions, but this is not enough to simulate a distributed
environment where data could perfectly address a real non-IID problem. This limits the
generalization capacity of developed models. This data unavailability also does not support
CoE and PrC, where many devices with specific resource constraints, communications
methods, and protocols can be used in real conditions.

Generalization in case studies: The provided case studies typically dealt with a
dataset of industrial systems instead of real industrial processes, including real interactions
between different participants and devices with different architectures. This means that FL
challenges are not fully addressed, and it is mostly the non-IID cases that are addressed.
In this case, the main challenge is to provide a simulation of a real federated network
describing fault-detection scenarios to mimic reality in support of the conclusions and not
only for the purpose of evaluating the accuracy of the learning model.

The rarity of real failure scenarios: Industrial processes are subject to a preventive
maintenance program ensuring a reduction in downtime. The collection of such scenarios
is more challenging, especially from a federated network, to provide real conclusions. This
leads to many alternative solutions, such as simulations and accelerated aging, which are
already observed in pie charts of the investigated datasets.

FL algorithm privacy: The designed algorithms perfectly consider StH and SyH while
almost completely ignoring CoE and PrC because it is challenging to develop an algorithm
that is secure without suffering from less accuracy. Security features such as encryption
lead to model parameter distortion, generating diminished aggregation and prediction
performances.
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Algorithmic complexity: Complex deep learning architecture, such as CNNs, could
result in different drawbacks related to computational costs during training as well as
communication. For instance, a huge number of learning parameters resulting from deep-
layer architectures makes addressing an EoC with fewer packets and fewer rounds difficult
under FL.

Adaptive learning: It is common that an industrial process is subject to massive
changes in working conditions due to either the internal or external characteristics of
field equipment. Additionally, it is known that adaptive learning is the key feature to
successful prediction. However, under FL constraints related to CoE and PrC, it is difficult
to reach a higher level of dynamic programming while keeping system performances at the
same level.

3.4. Future Prospects

With regard to previous FD challenges under FL networks, the following guidelines
should be followed to improve performance.

FD datasets generations for FL networks: To provide a further generalized study on
FD in FL networks, emulating real experiments on real industrial processes is required
(e.g., massive dynamic data, imbalanced classes, different data partitioning, and different
working conditions). This will facilitate data in good agreement with the real conditions of
SyS, StH, PrC, and CoE.

Generative modeling and transfer learning: To overcome the lack of faulty patterns
in FL networks due to simulation and accelerated aging, generative modeling should
receive satisfactory attention when dealing with this type of data. This will help pro-
vide samples that are more robust or at least improve the accuracy of predictions of
unseen samples.

Addressing SyH and StH in real FL networks: The work provided so far deals
with datasets of the same industrial equipment. Therefore, future work should consider
heterogeneity by providing different systems belonging to the same FL network to provide
further conclusions about FD and FL.

Addressing CoE: The provided work did not account for the different types of sensors
(e.g., wired/wireless) and measurements (e.g., sampling rates) in real industrial processes
and federated networks. This limits the conclusions obtained to only model accuracy and
not FL and FD in smart infrastructures. Therefore, further investigations should consider
the CoE issue to provide additional conclusions on FL algorithms and connectivity.

Reducing the complexity of learning algorithms: Focusing on studying simpler effec-
tive architectures, such as in [60], is necessary to overcome expansive communication issues.

Focusing on PrC: More works need to be assigned to the PrC of FL algorithms to
prevent any attacks under a simple algorithmic architecture.

Addressing adaptive learning: Adaptive learning needs to be explored to deal with
the change in data characteristics and address online learning.

4. Conclusions

This paper was dedicated to reviewing recent advances in FD under FL. Since there is
no detailed literature survey on the topic as far as we know, we aimed to feature a set of
very interesting review/survey papers that fit into the context of FL in general. This step
is considered an important phase in the extraction of the main analysis criteria, such as
the stakes, the taxonomy, and the most common topics. The information extracted from
the review used to analyze the FD works, respectively, has been carried out so far in the
form of FL. The main conclusions obtained about FD are that the algorithms designed by
FL suffer from a lack of generalization due to the unavailability of data, in addition to a
complex architecture making the training process difficult to perform, especially when
considering SyH, StH, PrC, and CoE together. To continue to achieve the aims of this work,
new steps will be dedicated to the targeting of “prognosis and health management” under
FL for more generalization on the study of CM.
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