
HAL Id: hal-03926082
https://hal.science/hal-03926082v1

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradient-based learning applied to document recognition
Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner

To cite this version:
Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 1998, 86 (11), pp.2278-2324. �10.1109/5.726791�. �hal-
03926082�

https://hal.science/hal-03926082v1
https://hal.archives-ouvertes.fr


Gradient-Based Learning Applied 
to Document Recognition

YANN LECUN, MEMBER, IEEE, L ́EON BOTTOU, YOSHUA BENGIO, AND PATRICK HAFFNER 

Multilayer neural networks trained with the back-propagation
algorithm constitute the best example of a successful gradient-
based learning technique. Given an appropriate network
architecture, gradient-based learning algorithms can be used
to synthesize a complex decision surface that can classify
high-dimensional patterns, such as handwritten characters, with
minimal preprocessing. This paper reviews various methods
applied to handwritten character recognition and compares them
on a standard handwritten digit recognition task. Convolutional
neural networks, which are specifically designed to deal with
the variability of two dimensional (2-D) shapes, are shown to
outperform all other techniques.

Real-life document recognition systems are composed of multiple
modules including field extraction, segmentation, recognition,
and language modeling. A new learning paradigm, called graph
transformer networks (GTN’s), allows such multimodule systems
to be trained globally using gradient-based methods so as to
minimize an overall performance measure.

Two systems for online handwriting recognition are described.
Experiments demonstrate the advantage of global training, and

the flexibility of graph transformer networks.
A graph transformer network for reading a bank check is

also described. It uses convolutional neural network character
recognizers combined with global training techniques to provide
record accuracy on business and personal checks. It is deployed
commercially and reads several million checks per day.

Keywords— Convolutional neural networks, document recog-
nition, finite state transducers, gradient-based learning, graph
transformer networks, machine learning, neural networks, optical
character recognition (OCR).

NOMENCLATURE

GT Graph transformer.

GTN Graph transformer network.

HMM Hidden Markov model.

HOS Heuristic oversegmentation.

K-NN K-nearest neighbor.

Y. LeCun, L. Bottou, and P. Haffner are with the Speech and Image
Processing Services Research Laboratory, AT&T Labs-Research, Red
Bank, NJ 07701 USA.

Y. Bengio is with the Département d’Informatique et de Recherche
Opérationelle, Université de Montréal, Montréal, Québec H3C 3J7 Canada.

NN Neural network.

OCR Optical character recognition.

PCA Principal component analysis.

RBF Radial basis function.

RS-SVM Reduced-set support vector method.

SDNN Space displacement neural network.

SVM Support vector method.

TDNN Time delay neural network.

V-SVM Virtual support vector method.

I. INTRODUCTION

Over the last several years, machine learning techniques,

particularly when applied to NN’s, have played an increas-

ingly important role in the design of pattern recognition

systems. In fact, it could be argued that the availability

of learning techniques has been a crucial factor in the

recent success of pattern recognition applications such as

continuous speech recognition and handwriting recognition.

The main message of this paper is that better pattern

recognition systems can be built by relying more on auto-

matic learning and less on hand-designed heuristics. This

is made possible by recent progress in machine learning

and computer technology. Using character recognition as a

case study, we show that hand-crafted feature extraction can

be advantageously replaced by carefully designed learning

machines that operate directly on pixel images. Using

document understanding as a case study, we show that the

traditional way of building recognition systems by manually

integrating individually designed modules can be replaced

by a unified and well-principled design paradigm, called

GTN’s, which allows training all the modules to optimize

a global performance criterion.

Since the early days of pattern recognition it has been

known that the variability and richness of natural data,

be it speech, glyphs, or other types of patterns, make it

almost impossible to build an accurate recognition system

entirely by hand. Consequently, most pattern recognition

systems are built using a combination of automatic learning

techniques and hand-crafted algorithms. The usual method

1



Fig. 1. Traditional pattern recognition is performed with two
modules: a fixed feature extractor and a trainable classifier.

of recognizing individual patterns consists in dividing the

system into two main modules shown in Fig. 1. The first

module, called the feature extractor, transforms the input

patterns so that they can be represented by low-dimensional

vectors or short strings of symbols that: 1) can be easily

matched or compared and 2) are relatively invariant with

respect to transformations and distortions of the input pat-

terns that do not change their nature. The feature extractor

contains most of the prior knowledge and is rather specific

to the task. It is also the focus of most of the design effort,

because it is often entirely hand crafted. The classifier,

on the other hand, is often general purpose and trainable.

One of the main problems with this approach is that the

recognition accuracy is largely determined by the ability of

the designer to come up with an appropriate set of features.

This turns out to be a daunting task which, unfortunately,

must be redone for each new problem. A large amount of

the pattern recognition literature is devoted to describing

and comparing the relative merits of different feature sets

for particular tasks.

Historically, the need for appropriate feature extractors

was due to the fact that the learning techniques used

by the classifiers were limited to low-dimensional spaces

with easily separable classes [1]. A combination of three

factors has changed this vision over the last decade. First,

the availability of low-cost machines with fast arithmetic

units allows for reliance on more brute-force “numerical”

methods than on algorithmic refinements. Second, the avail-

ability of large databases for problems with a large market

and wide interest, such as handwriting recognition, has

enabled designers to rely more on real data and less on

hand-crafted feature extraction to build recognition systems.

The third and very important factor is the availability

of powerful machine learning techniques that can handle

high-dimensional inputs and can generate intricate decision

functions when fed with these large data sets. It can be

argued that the recent progress in the accuracy of speech

and handwriting recognition systems can be attributed in

large part to an increased reliance on learning techniques

and large training data sets. As evidence of this fact, a large

proportion of modern commercial OCR systems use some

form of multilayer NN trained with back propagation.

In this study, we consider the tasks of handwritten

character recognition (Sections I and II) and compare the

performance of several learning techniques on a benchmark

data set for handwritten digit recognition (Section III).

While more automatic learning is beneficial, no learning

technique can succeed without a minimal amount of prior

knowledge about the task. In the case of multilayer NN’s,

a good way to incorporate knowledge is to tailor its archi-

tecture to the task. Convolutional NN’s [2], introduced in

Section II, are an example of specialized NN architectures

which incorporate knowledge about the invariances of two-

dimensional (2-D) shapes by using local connection patterns

and by imposing constraints on the weights. A comparison

of several methods for isolated handwritten digit recogni-

tion is presented in Section III. To go from the recognition

of individual characters to the recognition of words and

sentences in documents, the idea of combining multiple

modules trained to reduce the overall error is introduced

in Section IV. Recognizing variable-length objects such as

handwritten words using multimodule systems is best done

if the modules manipulate directed graphs. This leads to the

concept of trainable GTN, also introduced in Section IV.

Section V describes the now classical method of HOS for

recognizing words or other character strings. Discriminative

and nondiscriminative gradient-based techniques for train-

ing a recognizer at the word level without requiring manual

segmentation and labeling are presented in Section VI.

Section VII presents the promising space-displacement NN

approach that eliminates the need for segmentation heuris-

tics by scanning a recognizer at all possible locations on

the input. In Section VIII, it is shown that trainable GTN’s

can be formulated as multiple generalized transductions

based on a general graph composition algorithm. The

connections between GTN’s and HMM’s, commonly used

in speech recognition, is also treated. Section IX describes

a globally trained GTN system for recognizing handwriting

entered in a pen computer. This problem is known as

“online” handwriting recognition since the machine must

produce immediate feedback as the user writes. The core

of the system is a convolutional NN. The results clearly

demonstrate the advantages of training a recognizer at

the word level, rather than training it on presegmented,

hand-labeled, isolated characters. Section X describes a

complete GTN-based system for reading handwritten and

machine-printed bank checks. The core of the system is

the convolutional NN called LeNet-5, which is described

in Section II. This system is in commercial use in the

NCR Corporation line of check recognition systems for the

banking industry. It is reading millions of checks per month

in several banks across the United States.

A. Learning from Data

There are several approaches to automatic machine learn-

ing, but one of the most successful approaches, popularized

in recent years by the NN community, can be called “nu-

merical” or gradient-based learning. The learning machine

computes a function where is the th

input pattern, and represents the collection of adjustable

parameters in the system. In a pattern recognition setting,

2



the output may be interpreted as the recognized class

label of pattern or as scores or probabilities associated

with each class. A loss function

measures the discrepancy between the “correct” or

desired output for pattern and the output produced by

the system. The average loss function is the

average of the errors over a set of labeled examples

called the training set In the

simplest setting, the learning problem consists in finding

the value of that minimizes In practice,

the performance of the system on a training set is of little

interest. The more relevant measure is the error rate of the

system in the field, where it would be used in practice.

This performance is estimated by measuring the accuracy

on a set of samples disjoint from the training set, which is

called the test set. Much theoretical and experimental work

[3]–[5] has shown that the gap between the expected error

rate on the test set and the error rate on the training

set decreases with the number of training samples

approximately as

(1)

where is the number of training samples, is a measure

of “effective capacity” or complexity of the machine [6],

[7], is a number between 0.5 and 1.0, and is a constant.

This gap always decreases when the number of training

samples increases. Furthermore, as the capacity increases,

decreases. Therefore, when increasing the capacity

there is a tradeoff between the decrease of and the

increase of the gap, with an optimal value of the capacity

that achieves the lowest generalization error Most

learning algorithms attempt to minimize as well as

some estimate of the gap. A formal version of this is called

structural risk minimization [6], [7], and it is based on defin-

ing a sequence of learning machines of increasing capacity,

corresponding to a sequence of subsets of the parameter

space such that each subset is a superset of the previous

subset. In practical terms, structural risk minimization is

implemented by minimizing where the

function is called a regularization function and is

a constant. is chosen such that it takes large values

on parameters that belong to high-capacity subsets of

the parameter space. Minimizing in effect limits the

capacity of the accessible subset of the parameter space,

thereby controlling the tradeoff between minimizing the

training error and minimizing the expected gap between

the training error and test error.

B. Gradient-Based Learning

The general problem of minimizing a function with

respect to a set of parameters is at the root of many

issues in computer science. Gradient-based learning draws

on the fact that it is generally much easier to minimize

a reasonably smooth, continuous function than a discrete

(combinatorial) function. The loss function can be mini-

mized by estimating the impact of small variations of the

parameter values on the loss function. This is measured

by the gradient of the loss function with respect to the

parameters. Efficient learning algorithms can be devised

when the gradient vector can be computed analytically (as

opposed to numerically through perturbations). This is the

basis of numerous gradient-based learning algorithms with

continuous-valued parameters. In the procedures described

in this article, the set of parameters is a real-valued

vector, with respect to which is continuous, as well

as differentiable almost everywhere. The simplest mini-

mization procedure in such a setting is the gradient descent

algorithm where is iteratively adjusted as follows:

(2)

In the simplest case, is a scalar constant. More sophis-

ticated procedures use variable or substitute it for a

diagonal matrix, or substitute it for an estimate of the

inverse Hessian matrix as in Newton or quasi-Newton

methods. The conjugate gradient method [8] can also be

used. However, Appendix B shows that despite many

claims to the contrary in the literature, the usefulness of

these second-order methods to large learning machines is

very limited.

A popular minimization procedure is the stochastic gra-

dient algorithm, also called the online update. It consists

in updating the parameter vector using a noisy, or approxi-

mated, version of the average gradient. In the most common

instance of it, is updated on the basis of a single sample

(3)

With this procedure the parameter vector fluctuates around

an average trajectory, but usually it converges considerably

faster than regular gradient descent and second-order meth-

ods on large training sets with redundant samples (such

as those encountered in speech or character recognition).

The reasons for this are explained in Appendix B. The

properties of such algorithms applied to learning have been

studied theoretically since the 1960’s [9]–[11], but practical

successes for nontrivial tasks did not occur until the mid

eighties.

C. Gradient Back Propagation

Gradient-based learning procedures have been used since

the late 1950’s, but they were mostly limited to linear

systems [1]. The surprising usefulness of such simple

gradient descent techniques for complex machine learning

tasks was not widely realized until the following three

events occurred. The first event was the realization that,

despite early warnings to the contrary [12], the presence of

local minima in the loss function does not seem to be a

major problem in practice. This became apparent when it

was noticed that local minima did not seem to be a major

impediment to the success of early nonlinear gradient-based

learning techniques such as Boltzmann machines [13], [14].

The second event was the popularization by Rumelhart et

al. [15] and others of a simple and efficient procedure

to compute the gradient in a nonlinear system composed

3



of several layers of processing, i.e., the back-propagation

algorithm. The third event was the demonstration that the

back-propagation procedure applied to multilayer NN’s

with sigmoidal units can solve complicated learning tasks.

The basic idea of back propagation is that gradients can

be computed efficiently by propagation from the output to

the input. This idea was described in the control theory

literature of the early 1960’s [16], but its application to ma-

chine learning was not generally realized then. Interestingly,

the early derivations of back propagation in the context

of NN learning did not use gradients but “virtual targets”

for units in intermediate layers [17], [18], or minimal

disturbance arguments [19]. The Lagrange formalism used

in the control theory literature provides perhaps the best

rigorous method for deriving back propagation [20] and for

deriving generalizations of back propagation to recurrent

networks [21] and networks of heterogeneous modules [22].

A simple derivation for generic multilayer systems is given

in Section I-E.

The fact that local minima do not seem to be a problem

for multilayer NN’s is somewhat of a theoretical mystery.

It is conjectured that if the network is oversized for the

task (as is usually the case in practice), the presence of

“extra dimensions” in parameter space reduces the risk

of unattainable regions. Back propagation is by far the

most widely used neural-network learning algorithm, and

probably the most widely used learning algorithm of any

form.

D. Learning in Real Handwriting Recognition Systems

Isolated handwritten character recognition has been ex-

tensively studied in the literature (see [23] and [24] for

reviews), and it was one of the early successful applications

of NN’s [25]. Comparative experiments on recognition of

individual handwritten digits are reported in Section III.

They show that NN’s trained with gradient-based learning

perform better than all other methods tested here on the

same data. The best NN’s, called convolutional networks,

are designed to learn to extract relevant features directly

from pixel images (see Section II).

One of the most difficult problems in handwriting recog-

nition, however, is not only to recognize individual charac-

ters, but also to separate out characters from their neighbors

within the word or sentence, a process known as seg-

mentation. The technique for doing this that has become

the “standard” is called HOS. It consists of generating a

large number of potential cuts between characters using

heuristic image processing techniques, and subsequently

selecting the best combination of cuts based on scores

given for each candidate character by the recognizer. In

such a model, the accuracy of the system depends upon the

quality of the cuts generated by the heuristics, and on the

ability of the recognizer to distinguish correctly segmented

characters from pieces of characters, multiple characters,

or otherwise incorrectly segmented characters. Training a

recognizer to perform this task poses a major challenge

because of the difficulty in creating a labeled database

of incorrectly segmented characters. The simplest solution

consists of running the images of character strings through

the segmenter and then manually labeling all the character

hypotheses. Unfortunately, not only is this an extremely

tedious and costly task, it is also difficult to do the labeling

consistently. For example, should the right half of a cut-up

four be labeled as a one or as a noncharacter? Should the

right half of a cut-up eight be labeled as a three?

The first solution, described in Section V, consists of

training the system at the level of whole strings of char-

acters rather than at the character level. The notion of

gradient-based learning can be used for this purpose. The

system is trained to minimize an overall loss function which

measures the probability of an erroneous answer. Section V

explores various ways to ensure that the loss function

is differentiable and therefore lends itself to the use of

gradient-based learning methods. Section V introduces the

use of directed acyclic graphs whose arcs carry numerical

information as a way to represent the alternative hypotheses

and introduces the idea of GTN.

The second solution, described in Section VII, is to

eliminate segmentation altogether. The idea is to sweep

the recognizer over every possible location on the input

image, and to rely on the “character spotting” property

of the recognizer, i.e., its ability to correctly recognize

a well-centered character in its input field, even in the

presence of other characters besides it, while rejecting

images containing no centered characters [26], [27]. The

sequence of recognizer outputs obtained by sweeping the

recognizer over the input is then fed to a GTN that takes

linguistic constraints into account and finally extracts the

most likely interpretation. This GTN is somewhat similar

to HMM’s, which makes the approach reminiscent of the

classical speech recognition [28], [29]. While this technique

would be quite expensive in the general case, the use of

convolutional NN’s makes it particularly attractive because

it allows significant savings in computational cost.

E. Globally Trainable Systems

As stated earlier, most practical pattern recognition sys-

tems are composed of multiple modules. For example, a

document recognition system is composed of a field loca-

tor (which extracts regions of interest), a field segmenter

(which cuts the input image into images of candidate

characters), a recognizer (which classifies and scores each

candidate character), and a contextual postprocessor, gen-

erally based on a stochastic grammar (which selects the

best grammatically correct answer from the hypotheses

generated by the recognizer). In most cases, the information

carried from module to module is best represented as

graphs with numerical information attached to the arcs.

For example, the output of the recognizer module can be

represented as an acyclic graph where each arc contains the

label and the score of a candidate character, and where each

path represents an alternative interpretation of the input

string. Typically, each module is manually optimized, or

sometimes trained, outside of its context. For example, the

character recognizer would be trained on labeled images

of presegmented characters. Then the complete system is

4



assembled, and a subset of the parameters of the modules

is manually adjusted to maximize the overall performance.

This last step is extremely tedious, time consuming, and

almost certainly suboptimal.

A better alternative would be to somehow train the entire

system so as to minimize a global error measure such

as the probability of character misclassifications at the

document level. Ideally, we would want to find a good

minimum of this global loss function with respect to all the

parameters in the system. If the loss function measuring

the performance can be made differentiable with respect

to the system’s tunable parameters we can find a local

minimum of using gradient-based learning. However, at

first glance, it appears that the sheer size and complexity

of the system would make this intractable.

To ensure that the global loss function is

differentiable, the overall system is built as a feedforward

network of differentiable modules. The function imple-

mented by each module must be continuous and differ-

entiable almost everywhere with respect to the internal

parameters of the module (e.g., the weights of an NN

character recognizer in the case of a character recognition

module), and with respect to the module’s inputs. If this is

the case, a simple generalization of the well-known back-

propagation procedure can be used to efficiently compute

the gradients of the loss function with respect to all the

parameters in the system [22]. For example, let us consider

a system built as a cascade of modules, each of which

implements a function where

is a vector representing the output of the module, is

the vector of tunable parameters in the module (a subset of

and is the module’s input vector (as well as the

previous module’s output vector). The input to the first

module is the input pattern If the partial derivative of

with respect to is known, then the partial derivatives

of with respect to and can be computed using

the backward recurrence

(4)

where is the Jacobian of with

respect to evaluated at the point and

is the Jacobian of with respect to

The Jacobian of a vector function is a matrix containing

the partial derivatives of all the outputs with respect to

all the inputs. The first equation computes some terms

of the gradient of while the second equation

generates a backward recurrence, as in the well-known

back-propagation procedure for NN’s. We can average

the gradients over the training patterns to obtain the full

gradient. It is interesting to note that in many instances

there is no need to explicitly compute the Jacobian ma-

trix. The above formula uses the product of the Jacobian

with a vector of partial derivatives, and it is often easier

to compute this product directly without computing the

Jacobian beforehand. In analogy with ordinary multilayer

NN’s, all but the last module are called hidden layers

because their outputs are not observable from the outside.

In more complex situations than the simple cascade of

modules described above, the partial derivative notation

becomes somewhat ambiguous and awkward. A completely

rigorous derivation in more general cases can be done using

Lagrange functions [20]–[22].

Traditional multilayer NN’s are a special case of the

above where the state information is represented

with fixed-sized vectors, and where the modules are

alternated layers of matrix multiplications (the weights)

and component-wise sigmoid functions (the neurons).

However, as stated earlier, the state information in complex

recognition system is best represented by graphs with

numerical information attached to the arcs. In this case,

each module, called a GT, takes one or more graphs as input

and produces a graph as output. Networks of such modules

are called GTN’s. Sections IV, VI, and VIII develop the

concept of GTN’s and show that gradient-based learning

can be used to train all the parameters in all the modules

so as to minimize a global loss function. It may seem

paradoxical that gradients can be computed when the state

information is represented by essentially discrete objects

such as graphs, but that difficulty can be circumvented,

as shown later.

II. CONVOLUTIONAL NEURAL NETWORKS FOR

ISOLATED CHARACTER RECOGNITION

The ability of multilayer networks trained with gradi-

ent descent to learn complex, high-dimensional, nonlinear

mappings from large collections of examples makes them

obvious candidates for image recognition tasks. In the

traditional model of pattern recognition, a hand-designed

feature extractor gathers relevant information from the input

and eliminates irrelevant variabilities. A trainable classifier

then categorizes the resulting feature vectors into classes. In

this scheme, standard, fully connected multilayer networks

can be used as classifiers. A potentially more interesting

scheme is to rely as much as possible on learning in the

feature extractor itself. In the case of character recognition,

a network could be fed with almost raw inputs (e.g.,

size-normalized images). While this can be done with an

ordinary fully connected feedforward network with some

success for tasks such as character recognition, there are

problems.

First, typical images are large, often with several hundred

variables (pixels). A fully connected first layer with, e.g.,

one hundred hidden units in the first layer would already

contain several tens of thousands of weights. Such a large

number of parameters increases the capacity of the system

and therefore requires a larger training set. In addition, the

memory requirement to store so many weights may rule out

certain hardware implementations. But the main deficiency

of unstructured nets for image or speech applications is that

they have no built-in invariance with respect to translations

or local distortions of the inputs. Before being sent to

the fixed-size input layer of an NN, character images,

5



Fig. 2. Architecture of LeNet-5, a convolutional NN, here used for digits recognition. Each plane
is a feature map, i.e., a set of units whose weights are constrained to be identical.

or other 2-D or one-dimensional (1-D) signals, must be

approximately size normalized and centered in the input

field. Unfortunately, no such preprocessing can be perfect:

handwriting is often normalized at the word level, which

can cause size, slant, and position variations for individual

characters. This, combined with variability in writing style,

will cause variations in the position of distinctive features

in input objects. In principle, a fully connected network of

sufficient size could learn to produce outputs that are invari-

ant with respect to such variations. However, learning such

a task would probably result in multiple units with similar

weight patterns positioned at various locations in the input

so as to detect distinctive features wherever they appear on

the input. Learning these weight configurations requires a

very large number of training instances to cover the space of

possible variations. In convolutional networks, as described

below, shift invariance is automatically obtained by forcing

the replication of weight configurations across space.

Secondly, a deficiency of fully connected architectures is

that the topology of the input is entirely ignored. The input

variables can be presented in any (fixed) order without af-

fecting the outcome of the training. On the contrary, images

(or time-frequency representations of speech) have a strong

2-D local structure: variables (or pixels) that are spatially or

temporally nearby are highly correlated. Local correlations

are the reasons for the well-known advantages of extracting

and combining local features before recognizing spatial

or temporal objects, because configurations of neighboring

variables can be classified into a small number of categories

(e.g., edges, corners, etc.). Convolutional networks force

the extraction of local features by restricting the receptive

fields of hidden units to be local.

A. Convolutional Networks

Convolutional networks combine three architectural ideas

to ensure some degree of shift, scale, and distortion in-

variance: 1) local receptive fields; 2) shared weights (or

weight replication); and 3) spatial or temporal subsampling.

A typical convolutional network for recognizing characters,

dubbed LeNet-5, is shown in Fig. 2. The input plane

receives images of characters that are approximately size

normalized and centered. Each unit in a layer receives

inputs from a set of units located in a small neighborhood

in the previous layer. The idea of connecting units to local

receptive fields on the input goes back to the perceptron in

the early 1960’s, and it was almost simultaneous with Hubel

and Wiesel’s discovery of locally sensitive, orientation-

selective neurons in the cat’s visual system [30]. Local

connections have been used many times in neural models

of visual learning [2], [18], [31]–[34]. With local receptive

fields neurons can extract elementary visual features such

as oriented edges, endpoints, corners (or similar features in

other signals such as speech spectrograms). These features

are then combined by the subsequent layers in order to

detect higher order features. As stated earlier, distortions or

shifts of the input can cause the position of salient features

to vary. In addition, elementary feature detectors that are

useful on one part of the image are likely to be useful across

the entire image. This knowledge can be applied by forcing

a set of units, whose receptive fields are located at different

places on the image, to have identical weight vectors [15],

[32], [34]. Units in a layer are organized in planes within

which all the units share the same set of weights. The set of

outputs of the units in such a plane is called a feature map.

Units in a feature map are all constrained to perform the

same operation on different parts of the image. A complete

convolutional layer is composed of several feature maps

(with different weight vectors), so that multiple features

can be extracted at each location. A concrete example of

this is the first layer of LeNet-5 shown in Fig. 2. Units

in the first hidden layer of LeNet-5 are organized in six

planes, each of which is a feature map. A unit in a feature

map has 25 inputs connected to a 5 5 area in the input,

called the receptive field of the unit. Each unit has 25

inputs and therefore 25 trainable coefficients plus a trainable

bias. The receptive fields of contiguous units in a feature

map are centered on corresponding contiguous units in the

previous layer. Therefore, receptive fields of neighboring

units overlap. For example, in the first hidden layer of

LeNet-5, the receptive fields of horizontally contiguous

units overlap by four columns and five rows. As stated

earlier, all the units in a feature map share the same set of 25

weights and the same bias, so they detect the same feature

at all possible locations on the input. The other feature

maps in the layer use different sets of weights and biases,

thereby extracting different types of local features. In the

6



case of LeNet-5, at each input location six different types

of features are extracted by six units in identical locations

in the six feature maps. A sequential implementation of

a feature map would scan the input image with a single

unit that has a local receptive field and store the states

of this unit at corresponding locations in the feature map.

This operation is equivalent to a convolution, followed by

an additive bias and squashing function, hence the name

convolutional network. The kernel of the convolution is the

set of connection weights used by the units in the feature

map. An interesting property of convolutional layers is that

if the input image is shifted, the feature map output will be

shifted by the same amount, but it will be left unchanged

otherwise. This property is at the basis of the robustness of

convolutional networks to shifts and distortions of the input.

Once a feature has been detected, its exact location

becomes less important. Only its approximate position

relative to other features is relevant. For example, once

we know that the input image contains the endpoint of a

roughly horizontal segment in the upper left area, a corner

in the upper right area, and the endpoint of a roughly

vertical segment in the lower portion of the image, we can

tell the input image is a seven. Not only is the precise

position of each of those features irrelevant for identifying

the pattern, it is potentially harmful because the positions

are likely to vary for different instances of the character. A

simple way to reduce the precision with which the position

of distinctive features are encoded in a feature map is

to reduce the spatial resolution of the feature map. This

can be achieved with a so-called subsampling layer, which

performs a local averaging and a subsampling, thereby

reducing the resolution of the feature map and reducing

the sensitivity of the output to shifts and distortions. The

second hidden layer of LeNet-5 is a subsampling layer. This

layer comprises six feature maps, one for each feature map

in the previous layer. The receptive field of each unit is

a 2 2 area in the previous layer’s corresponding feature

map. Each unit computes the average of its four inputs,

multiplies it by a trainable coefficient, adds a trainable

bias, and passes the result through a sigmoid function.

Contiguous units have nonoverlapping contiguous receptive

fields. Consequently, a subsampling layer feature map has

half the number of rows and columns as the feature maps in

the previous layer. The trainable coefficient and bias control

the effect of the sigmoid nonlinearity. If the coefficient is

small, then the unit operates in a quasi-linear mode, and the

subsampling layer merely blurs the input. If the coefficient

is large, subsampling units can be seen as performing a

“noisy OR” or a “noisy AND” function depending on

the value of the bias. Successive layers of convolutions

and subsampling are typically alternated resulting in a

“bipyramid”: at each layer, the number of feature maps

is increased as the spatial resolution is decreased. Each

unit in the third hidden layer in Fig. 2 may have input

connections from several feature maps in the previous

layer. The convolution/subsampling combination, inspired

by Hubel and Wiesel’s notions of “simple” and “complex”

cells, was implemented in Fukushima’s Neocognitron [32],

though no globally supervised learning procedure such

as back propagation was available then. A large degree

of invariance to geometric transformations of the input

can be achieved with this progressive reduction of spatial

resolution compensated by a progressive increase of the

richness of the representation (the number of feature maps).

Since all the weights are learned with back propagation,

convolutional networks can be seen as synthesizing their

own feature extractor. The weight sharing technique has

the interesting side effect of reducing the number of free

parameters, thereby reducing the “capacity” of the machine

and reducing the gap between test error and training error

[34]. The network in Fig. 2 contains 345 308 connections,

but only 60 000 trainable free parameters because of the

weight sharing.

Fixed-size convolutional networks have been applied to

many applications, among other handwriting recognition

[35], [36], machine-printed character recognition [37], on-

line handwriting recognition [38], and face recognition

[39]. Fixed-size convolutional networks that share weights

along a single temporal dimension are known as time-delay

NN’s (TDNN’s). TDNN’s have been used in phoneme

recognition (without subsampling) [40], [41], spoken word

recognition (with subsampling) [42], [43], online recogni-

tion of isolated handwritten characters [44], and signature

verification [45].

B. LeNet-5

This section describes in more detail the architecture of

LeNet-5, the Convolutional NN used in the experiments.

LeNet-5 comprises seven layers, not counting the input, all

of which contain trainable parameters (weights). The input

is a 32 32 pixel image. This is significantly larger than

the largest character in the database (at most 20 20 pixels

centered in a 28 28 field). The reason is that it is desirable

that potential distinctive features such as stroke endpoints

or corner can appear in the center of the receptive field

of the highest level feature detectors. In LeNet-5, the set

of centers of the receptive fields of the last convolutional

layer (C3, see below) form a 20 20 area in the center of the

32 32 input. The values of the input pixels are normalized

so that the background level (white) corresponds to a value

of and the foreground (black) corresponds to 1.175.

This makes the mean input roughly zero and the variance

roughly one, which accelerates learning [46].

In the following, convolutional layers are labeled Cx,

subsampling layers are labeled Sx, and fully connected

layers are labeled Fx, where x is the layer index.

Layer C1 is a convolutional layer with six feature maps.

Each unit in each feature map is connected to a 5 5 neigh-

borhood in the input. The size of the feature maps is 28 28

which prevents connection from the input from falling off

the boundary. C1 contains 156 trainable parameters and

122 304 connections.

Layer S2 is a subsampling layer with six feature maps of

size 14 14. Each unit in each feature map is connected to a

2 2 neighborhood in the corresponding feature map in C1.

The four inputs to a unit in S2 are added, then multiplied by

7



Table 1 Each Column Indicates Which Feature Map in S2 Are
Combined by the Units in a Particular Feature Map of C3

a trainable coefficient, and then added to a trainable bias.

The result is passed through a sigmoidal function. The 2 2

receptive fields are nonoverlapping, therefore feature maps

in S2 have half the number of rows and column as feature

maps in C1. Layer S2 has 12 trainable parameters and 5880

connections.

Layer C3 is a convolutional layer with 16 feature maps.

Each unit in each feature map is connected to several

5 5 neighborhoods at identical locations in a subset of

S2’s feature maps. Table 1 shows the set of S2 feature

maps combined by each C3 feature map. Why not connect

every S2 feature map to every C3 feature map? The

reason is twofold. First, a noncomplete connection scheme

keeps the number of connections within reasonable bounds.

More importantly, it forces a break of symmetry in the

network. Different feature maps are forced to extract dif-

ferent (hopefully complementary) features because they get

different sets of inputs. The rationale behind the connection

scheme in Table 1 is the following. The first six C3 feature

maps take inputs from every contiguous subsets of three

feature maps in S2. The next six take input from every

contiguous subset of four. The next three take input from

some discontinuous subsets of four. Finally, the last one

takes input from all S2 feature maps. Layer C3 has 1516

trainable parameters and 156 000 connections.

Layer S4 is a subsampling layer with 16 feature maps of

size 5 5. Each unit in each feature map is connected to a

2 2 neighborhood in the corresponding feature map in C3,

in a similar way as C1 and S2. Layer S4 has 32 trainable

parameters and 2000 connections.

Layer C5 is a convolutional layer with 120 feature maps.

Each unit is connected to a 5 5 neighborhood on all 16

of S4’s feature maps. Here, because the size of S4 is also

5 5, the size of C5’s feature maps is 1 1; this amounts

to a full connection between S4 and C5. C5 is labeled as

a convolutional layer, instead of a fully connected layer,

because if LeNet-5 input were made bigger with everything

else kept constant, the feature map dimension would be

larger than 1 1. This process of dynamically increasing the

size of a convolutional network is described in Section VII.

Layer C5 has 48 120 trainable connections.

Layer F6 contains 84 units (the reason for this number

comes from the design of the output layer, explained

below) and is fully connected to C5. It has 10 164 trainable

parameters.

As in classical NN’s, units in layers up to F6 compute a

dot product between their input vector and their weight

vector, to which a bias is added. This weighted sum,

denoted for unit is then passed through a sigmoid

squashing function to produce the state of unit denoted

by

(5)

The squashing function is a scaled hyperbolic tangent

(6)

where is the amplitude of the function and determines

its slope at the origin. The function is odd, with horizontal

asymptotes at and The constant is chosen to be

1.7159. The rationale for this choice of a squashing function

is given in Appendix A.

Finally, the output layer is composed of Euclidean RBF

units, one for each class, with 84 inputs each. The outputs

of each RBF unit is computed as follows:

(7)

In other words, each output RBF unit computes the Eu-

clidean distance between its input vector and its parameter

vector. The further away the input is from the parameter

vector, the larger the RBF output. The output of a particular

RBF can be interpreted as a penalty term measuring the

fit between the input pattern and a model of the class

associated with the RBF. In probabilistic terms, the RBF

output can be interpreted as the unnormalized negative

log-likelihood of a Gaussian distribution in the space of

configurations of layer F6. Given an input pattern, the loss

function should be designed so as to get the configuration

of F6 as close as possible to the parameter vector of the

RBF that corresponds to the pattern’s desired class. The

parameter vectors of these units were chosen by hand and

kept fixed (at least initially). The components of those

parameters vectors were set to 1 or 1. While they could

have been chosen at random with equal probabilities for

1 and 1, or even chosen to form an error correcting

code as suggested by [47], they were instead designed to

represent a stylized image of the corresponding character

class drawn on a 7 12 bitmap (hence the number 84). Such

a representation is not particularly useful for recognizing

isolated digits, but it is quite useful for recognizing strings

of characters taken from the fully printable ASCII set. The

rationale is that characters that are similar, and therefore

confusable, such as uppercase “O,” lowercase “o,” and zero,

lowercase “l” digit one, and square brackets and uppercase

“I,” will have similar output codes. This is particularly

useful if the system is combined with a linguistic post-

processor that can correct such confusions. Because the

codes for confusable classes are similar, the output of the

corresponding RBF’s for an ambiguous character will be

similar, and the postprocessor will be able to pick the

appropriate interpretation. Fig. 3 gives the output codes for

the full ASCII set.

Another reason for using such distributed codes, rather

than the more common “1 of N” code (also called place

code or grandmother cell code) for the outputs is that

nondistributed codes tend to behave badly when the number

8



Fig. 3. Initial parameters of the output RBF’s for recognizing the full ASCII set.

of classes is larger than a few dozen. The reason is

that output units in a nondistributed code must be off

most of the time. This is quite difficult to achieve with

sigmoid units. Yet another reason is that the classifiers are

often used not only to recognize characters, but also to

reject noncharacters. RBF’s with distributed codes are more

appropriate for that purpose because unlike sigmoids, they

are activated within a well-circumscribed region of their

input space, outside of which nontypical patterns are more

likely to fall.

The parameter vectors of the RBF’s play the role of

target vectors for layer F6. It is worth pointing out that

the components of those vectors are 1 or 1, which is

well within the range of the sigmoid of F6, and therefore

prevents those sigmoids from getting saturated. In fact,

1 and 1 are the points of maximum curvature of the

sigmoids. This forces the F6 units to operate in their

maximally nonlinear range. Saturation of the sigmoids must

be avoided because it is known to lead to slow convergence

and ill-conditioning of the loss function.

C. Loss Function

The simplest output loss function that can be used with

the above network is the maximum likelihood estimation

criterion, which in our case is equivalent to the minimum

mean squared error (MSE). The criterion for a set of

training samples is simply

(8)

where is the output of the th RBF unit, i.e., the

one that corresponds to the correct class of input pattern

While this cost function is appropriate for most cases,

it lacks three important properties. First, if we allow the

parameters of the RBF to adapt, has a trivial, but

totally unacceptable, solution. In this solution, all the RBF

parameter vectors are equal and the state of F6 is constant

and equal to that parameter vector. In this case the network

happily ignores the input, and all the RBF outputs are equal

to zero. This collapsing phenomenon does not occur if the

RBF weights are not allowed to adapt. The second problem

is that there is no competition between the classes. Such a

competition can be obtained by using a more discriminative

training criterion, dubbed the maximum a posteriori (MAP)

criterion, similar to maximum mutual information criterion

sometimes used to train HMM’s [48]–[50]. It corresponds

to maximizing the posterior probability of the correct class

(or minimizing the logarithm of the probability of the

correct class), given that the input image can come from

one of the classes or from a background “rubbish” class

label. In terms of penalties, it means that in addition to

pushing down the penalty of the correct class like the MSE

criterion, this criterion also pulls up the penalties of the

incorrect classes

(9)

The negative of the second term plays a “competitive”

role. It is necessarily smaller than (or equal to) the first

term, therefore this loss function is positive. The constant

is positive and prevents the penalties of classes that

are already very large from being pushed further up. The

posterior probability of this rubbish class label would be the

ratio of and This discriminative

criterion prevents the previously mentioned “collapsing

effect” when the RBF parameters are learned because it

keeps the RBF centers apart from each other. In Section VI,

we present a generalization of this criterion for systems

that learn to classify multiple objects in the input (e.g.,

characters in words or in documents).

Computing the gradient of the loss function with respect

to all the weights in all the layers of the convolutional

network is done with back propagation. The standard al-

gorithm must be slightly modified to take account of the

9



weight sharing. An easy way to implement it is to first

compute the partial derivatives of the loss function with

respect to each connection, as if the network were a

conventional multilayer network without weight sharing.

Then the partial derivatives of all the connections that share

a same parameter are added to form the derivative with

respect to that parameter.

Such a large architecture can be trained very efficiently,

but doing so requires the use of a few techniques that are

described in the appendixes. Appendix A describes details

such as the particular sigmoid used and the weight ini-

tialization. Appendixes B and C describe the minimization

procedure used, which is a stochastic version of a diagonal

approximation to the Levenberg–Marquardt procedure.

III. RESULTS AND COMPARISON WITH OTHER METHODS

While recognizing individual digits is only one of many

problems involved in designing a practical recognition

system, it is an excellent benchmark for comparing shape

recognition methods. Though many existing methods com-

bine a hand-crafted feature extractor and a trainable clas-

sifier, this study concentrates on adaptive methods that

operate directly on size-normalized images.

A. Database: The Modified NIST Set

The database used to train and test the systems described

in this paper was constructed from the NIST’s Special

Database 3 and Special Database 1 containing binary im-

ages of handwritten digits. NIST originally designated SD-3

as their training set and SD-1 as their test set. However,

SD-3 is much cleaner and easier to recognize than SD-1.

The reason for this can be found on the fact that SD-

3 was collected among Census Bureau employees, while

SD-1 was collected among high-school students. Drawing

sensible conclusions from learning experiments requires

that the result be independent of the choice of training set

and test among the complete set of samples. Therefore it

was necessary to build a new database by mixing NIST’s

datasets.

SD-1 contains 58 527 digit images written by 500 dif-

ferent writers. In contrast to SD-3, where blocks of data

from each writer appeared in sequence, the data in SD-1 is

scrambled. Writer identities for SD-1 are available and we

used this information to unscramble the writers. We then

split SD-1 in two: characters written by the first 250 writers

went into our new training set. The remaining 250 writers

were placed in our test set. Thus we had two sets with nearly

30 000 examples each. The new training set was completed

with enough examples from SD-3, starting at pattern #0, to

make a full set of 60 000 training patterns. Similarly, the

new test set was completed with SD-3 examples starting at

pattern #35 000 to make a full set with 60 000 test patterns.

In the experiments described here, we only used a subset of

10 000 test images (5,000 from SD-1 and 5,000 from SD-3),

but we used the full 60 000 training samples. The resulting

database was called the modified NIST, or MNIST, dataset.

Fig. 4. Size-normalized examples from the MNIST database.

The original black and white (bilevel) images were size

normalized to fit in a 20 20 pixel box while preserving

their aspect ratio. The resulting images contain grey levels

as result of the antialiasing (image interpolation) technique

used by the normalization algorithm. Three versions of the

database were used. In the first version, the images were

centered in a 28 28 image by computing the center of mass

of the pixels and translating the image so as to position this

point at the center of the 28 28 field. In some instances,

this 28 28 field was extended to 32 32 with background

pixels. This version of the database will be referred to as

the regular database. In the second version of the database,

the character images were deslanted and cropped down to

20 20 pixels images. The deslanting computes the second

moments of inertia of the pixels (counting a foreground

pixel as one and a background pixel as zero) and shears the

image by horizontally shifting the lines so that the principal

axis is vertical. This version of the database will be referred

to as the deslanted database. In the third version of the

database, used in some early experiments, the images were

reduced to 16 16 pixels.1 Fig. 4 shows examples randomly

picked from the test set.

B. Results

Several versions of LeNet-5 were trained on the regu-

lar MNIST database. Twenty iterations through the entire

training data were performed for each session. The values

of the global learning rate [see (21) in Appendix C for

a definition] was decreased using the following schedule:

0.0005 for the first two passes; 0.0002 for the next three;

0.0001 for the next three; 0.000 05 for the next 4; and

0.000 01 thereafter. Before each iteration, the diagonal

1 The regular database (60 000 training examples, 10 000 test examples
size-normalized to 20�20 and centered by center of mass in 28�28 fields)
is available WWW: http://www.research.att.com/˜yann/ocr/mnist.

10



Fig. 5. Training and test error of LeNet-5 as a function of the
number of passes through the 60 000 pattern training set (without
distortions). The average training error is measured on-the-fly as
training proceeds. This explains why the training error appears to
be larger than the test error initially. Convergence is attained after
10–12 passes through the training set.

Hessian approximation was reevaluated on 500 samples,

as described in Appendix C, and was kept fixed during

the entire iteration. The parameter was set to 0.02.

The resulting effective learning rates during the first pass

varied between approximately 7 10 and 0.016 over

the set of parameters. The test error rate stabilizes after

around ten passes through the training set at 0.95%. The

error rate on the training set reaches 0.35% after 19

passes. Many authors have reported observing the common

phenomenon of overtraining when training NN’s or other

adaptive algorithms on various tasks. When overtraining

occurs, the training error keeps decreasing over time but

the test error goes through a minimum and starts increasing

after a certain number of iterations. While this phenomenon

is very common, it was not observed in our case as the

learning curves in Fig. 5 show. A possible reason is that

the learning rate was kept relatively large. The effect of

this is that the weights never settle down in the local

minimum but keep oscillating randomly. Because of those

fluctuations, the average cost will be lower in a broader

minimum. Therefore, stochastic gradient will have a similar

effect as a regularization term that favors broader minima.

Broader minima correspond to solutions with large entropy

of the parameter distribution, which is beneficial to the

generalization error.

The influence of the training set size was measured

by training the network with 15 000, 30 000, and 60 000

examples. The resulting training error and test error are

shown in Fig. 6. It is clear that, even with specialized

architectures such as LeNet-5, more training data would

improve the accuracy.

To verify this hypothesis, we artificially generated more

training examples by randomly distorting the original train-

ing images. The increased training set was composed of

the 60 000 original patterns plus 540 000 instances of dis-

torted patterns with randomly picked distortion parameters.

The distortions were combinations of the following planar

affine transformations: horizontal and vertical translations;

scaling; squeezing (simultaneous horizontal compression

and vertical elongation, or the reverse); and horizontal

shearing. Fig. 7 shows examples of distorted patterns used

for training. When distorted data were used for training,

the test error rate dropped to 0.8% (from 0.95% without

deformation). The same training parameters were used

as without deformations. The total length of the training

session was left unchanged (20 passes of 60 000 patterns

each). It is interesting to note that the network effectively

sees each individual sample only twice over the course of

these 20 passes.

Fig. 8 shows all 82 misclassified test examples. some

of those examples are genuinely ambiguous, but several

are perfectly identifiable by humans, although they are

written in an under-represented style. This shows that

further improvements are to be expected with more training

data.

C. Comparison with Other Classifiers

For the sake of comparison, a variety of other trainable

classifiers was trained and tested on the same database. An

early subset of these results was presented in [51]. The error

rates on the test set for the various methods are shown in

Fig. 9.

1) Linear Classifier and Pairwise Linear Classifier:

Possibly the simplest classifier that one might consider

is a linear classifier. Each input pixel value contributes to a

weighted sum for each output unit. The output unit with the

highest sum (including the contribution of a bias constant)

indicates the class of the input character. On the regular

data, the error rate is 12%. The network has 7850 free

parameters. On the deslanted images, the test error rate is

8.4%. The network has 4010 free parameters. The deficien-

cies of the linear classifier are well documented [1], and it is

included here simply to form a basis of comparison for more

sophisticated classifiers. Various combinations of sigmoid

units, linear units, gradient descent learning, and learning

by directly solving linear systems gave similar results.

A simple improvement of the basic linear classifier was

tested [52]. The idea is to train each unit of a single-

layer network to separate each class from each other

class. In our case this layer comprises 45 units labeled

Unit is trained to pro-

duce 1 on patterns of class 1 on patterns of class ,

and it is not trained on other patterns. The final score for

class is the sum of the outputs all the units labeled

minus the sum of the output of all the units labeled for

all and The error rate on the regular test set was 7.6%.

2) Baseline Nearest Neighbor Classifier: Another simple

classifier is a K-NN classifier with a Euclidean distance

measure between input images. This classifier has the

advantage that no training time, and no thought on the

part of the designer, are required. However the memory

requirement and recognition time are large: the complete

60 000 20 20 pixel training images (about 24 megabytes

at one byte per pixel) must be available at run time. Much

11



Fig. 6. Training and test errors of LeNet-5 achieved using training sets of various sizes. This graph
suggests that a larger training set could improve the performance of LeNet-5. The hollow square
shows the test error when more training patterns are artificially generated using random distortions.
The test patterns are not distorted.

Fig. 7. Examples of distortions of ten training patterns.

more compact representations could be devised with modest

increase in error rate. On the regular test set the error

rate was 5.0%. On the deslanted data, the error rate was

2.4%, with Naturally, a realistic Euclidean distance

nearest-neighbor system would operate on feature vectors

Fig. 8. The 82 test patterns misclassified by LeNet-5. Below
each image is displayed the correct answers (left) and the net-
work answer (right). These errors are mostly caused either by
genuinely ambiguous patterns, or by digits written in a style that
are under-represented in the training set.

rather than directly on the pixels, but since all of the other

systems presented in this study operate directly on the

pixels, this result is useful for a baseline comparison.

12



Fig. 9. Error rate on the test set (%) for various classification methods. [deslant] indicates that the
classifier was trained and tested on the deslanted version of the database. [dist] indicates that the
training set was augmented with artificially distorted examples. [16�16] indicates that the system
used the 16�16 pixel images. The uncertainty in the quoted error rates is about 0.1%.

3) PCA and Polynomial Classifier: Following [53] and

[54], a preprocessing stage was constructed which computes

the projection of the input pattern on the 40 principal

components of the set of training vectors. To compute the

principal components, the mean of each input component

was first computed and subtracted from the training

vectors. The covariance matrix of the resulting vectors

was then computed and diagonalized using singular value

decomposition. The 40-dimensional feature vector was used

as the input of a second degree polynomial classifier. This

classifier can be seen as a linear classifier with 821 inputs,

preceded by a module that computes all products of pairs of

input variables. The error on the regular test set was 3.3%.

4) RBF Network: Following [55], an RBF network was

constructed. The first layer was composed of 1000 Gaussian

RBF units with 28 28 inputs, and the second layer was a

simple 1000 inputs/ten outputs linear classifier. The RBF

units were divided into ten groups of 100. Each group of

units was trained on all the training examples of one of

the ten classes using the adaptive K-means algorithm. The

second-layer weights were computed using a regularized

pseudoinverse method. The error rate on the regular test

set was 3.6%.

5) One-Hidden-Layer Fully Connected Multilayer NN:

Another classifier that we tested was a fully connected

multilayer NN with two layers of weights (one hidden layer)

trained with the version of back-propagation described in

Appendix C. Error on the regular test set was 4.7% for a

network with 300 hidden units and 4.5% for a network with

1000 hidden units. Using artificial distortions to generate

more training data brought only marginal improvement:

3.6% for 300 hidden units and 3.8% for 1000 hidden units.

When deslanted images were used, the test error jumped

down to 1.6% for a network with 300 hidden units.

It remains somewhat of a mystery that networks with

such a large number of free parameters manage to achieve

reasonably low testing errors. We conjecture that the dy-

namics of gradient descent learning in multilayer nets

has a “self-regularization” effect. Because the origin of

weight space is a saddle point that is attractive in al-

most every direction, the weights invariably shrink during

the first few epochs (recent theoretical analysis seem to

confirm this [56]). Small weights cause the sigmoids to

operate in the quasi-linear region, making the network

essentially equivalent to a low-capacity, single-layer net-

work. As the learning proceeds the weights grow, which

13



progressively increases the effective capacity of the net-

work. This seems to be an almost perfect, if fortuitous,

implementation of Vapnik’s “structural risk minimization”

principle [6]. A better theoretical understanding of these

phenomena, and more empirical evidence, are definitely

needed.

6) Two-Hidden-Layer Fully Connected Multilayer NN: To

see the effect of the architecture, several two-hidden-layer

multilayer NN’s were trained. Theoretical results have

shown that any function can be approximated by a one-

hidden-layer NN [57]. However, several authors have ob-

served that two-hidden-layer architectures sometimes yield

better performance in practical situations. This phenomenon

was also observed here. The test error rate of a 28 28-

300-100-10 network was 3.05%, a much better result than

the one-hidden-layer network, obtained using marginally

more weights and connections. Increasing the network size

to 28 28-1000-150-10 yielded only marginally improved

error rates: 2.95%. Training with distorted patterns im-

proved the performance somewhat: 2.50% error for the

28 28-300-100-10 network, and 2.45% for the 28 28-

1000-150-10 network.

7) A Small Convolutional Network—LeNet-1: Convolu-

tional networks are an attempt to solve the dilemma

between small networks that cannot learn the training

set and large networks that seem overparameterized.

LeNet-1 was an early embodiment of the convolutional

network architecture which is included here for comparison

purposes. The images were down-sampled to 16 16

pixels and centered in the 28 28 input layer. Although

about 100 000 multiply/add steps are required to evaluate

LeNet-1, its convolutional nature keeps the number of free

parameters to only about 2600. The LeNet-1 architecture

was developed using our own version of the USPS (U.S.

Postal Service zip codes) database and its size was tuned to

match the available data [35]. LeNet-1 achieved 1.7% test

error. The fact that a network with such a small number of

parameters can attain such a good error rate is an indication

that the architecture is appropriate for the task.

8) LeNet-4: Experiments with LeNet-1 made it clear that

a larger convolutional network was needed to make optimal

use of the large size of the training set. LeNet-4 and later

LeNet-5 were designed to address this problem. LeNet-

4 is very similar to LeNet-5, except for the details of

the architecture. It contains four first-level feature maps,

followed by eight subsampling maps connected in pairs

to each first-layer feature maps, then 16 feature maps,

followed by 16 subsampling maps, followed by a fully

connected layer with 120 units, followed by the output layer

(ten units). LeNet-4 contains about 260 000 connections and

has about 17 000 free parameters. Test error was 1.1%. In a

series of experiments, we replaced the last layer of LeNet-

4 with a Euclidean nearest-neighbor classifier, and with

the “local learning” method of Bottou and Vapnik [58], in

which a local linear classifier is retrained each time a new

test pattern is shown. Neither of those methods improved

the raw error rate, although they did improve the rejection

performance.

9) Boosted LeNet-4: Following theoretical work by

Schapire [59], Drucker et al. [60] developed the “boosting”

method for combining multiple classifiers. Three LeNet-4’s

are combined: the first one is trained the usual way; the

second one is trained on patterns that are filtered by the

first net so that the second machine sees a mix of patterns,

50% of which the first net got right and 50% of which

it got wrong; the third net is trained on new patterns on

which the first and the second nets disagree. During testing,

the outputs of the three nets are simply added. Because the

error rate of LeNet-4 is very low, it was necessary to

use the artificially distorted images (as with LeNet-5) in

order to get enough samples to train the second and third

nets. The test error rate was 0.7%, the best of any of our

classifiers. At first glance, boosting appears to be three

times more expensive as a single net. In fact, when the first

net produces a high confidence answer, the other nets are

not called. The average computational cost is about 1.75

times that of a single net.

10) Tangent Distance Classifier: The tangent distance

classifier is a nearest-neighbor method where the distance

function is made insensitive to small distortions and

translations of the input image [61]. If we consider an

image as a point in a high-dimensional pixel space (where

the dimensionality equals the number of pixels), then an

evolving distortion of a character traces out a curve in pixel

space. Taken together, all these distortions define a low-

dimensional manifold in pixel space. For small distortions

in the vicinity of the original image, this manifold can be

approximated by a plane, known as the tangent plane. An

excellent measure of “closeness” for character images is

the distance between their tangent planes, where the set of

distortions used to generate the planes includes translations,

scaling, skewing, squeezing, rotation, and line thickness

variations. A test error rate of 1.1% was achieved using

16 16 pixel images. Prefiltering techniques using simple

Euclidean distance at multiple resolutions allowed to reduce

the number of necessary tangent distance calculations.

11) SVM: Polynomial classifiers are well studied meth-

ods for generating complex decision surfaces. Unfortu-

nately, they are impractical for high-dimensional problems

because the number of product terms is prohibitive. The

support vector technique is an extremely economical way of

representing complex surfaces in high-dimensional spaces,

including polynomials and many other types of surfaces [6].

A particularly interesting subset of decision surfaces

is the ones that correspond to hyperplanes that are at a

maximum distance from the convex hulls of the two classes

in the high-dimensional space of the product terms. Boser

et al. [62] realized that any polynomial of degree in this

“maximum margin” set can be computed by first computing

the dot product of the input image with a subset of the train-

ing samples (called the “support vectors”), elevating the

result to the th power, and linearly combining the numbers

thereby obtained. Finding the support vectors and the coef-

ficients amounts to solving a high-dimensional quadratic

minimization problem with linear inequality constraints.

For the sake of comparison, we include here the results

14



Fig. 10. Rejection Performance: percentage of test patterns that must be rejected to achieve 0.5%
error for some of the systems.

Fig. 11. Number of multiply–accumulate operations for the recognition of a single character
starting with a size-normalized image.

obtained by Burges and Schölkopf and reported in [63].

With a regular SVM, their error rate on the regular test set

was 1.4%. Cortes and Vapnik had reported an error rate of

1.1% with SVM on the same data using a slightly different

technique. The computational cost of this technique is very

high: about 14 million multiply-adds per recognition. Using

Schölkopf’s V-SVM technique, 1.0% error was attained.

More recently, Schölkopf (personal communication) has

reached 0.8% using a modified version of the V-SVM.

Unfortunately, V-SVM is extremely expensive: about twice

as much as regular SVM. To alleviate this problem, Burges

has proposed the RS-SVM technique, which attained 1.1%

on the regular test set [63], with a computational cost of

only 650 000 multiply–adds per recognition, i.e., only about

60% more expensive than LeNet-5.

D. Discussion

A summary of the performance of the classifiers is

shown in Figs. 9–12. Fig. 9 shows the raw error rate of the

classifiers on the 10 000 example test set. Boosted LeNet-4

performed best, achieving a score of 0.7%, closely followed

by LeNet-5 at 0.8%.

Fig. 10 shows the number of patterns in the test set

that must be rejected to attain a 0.5% error for some of

15



Fig. 12. Memory requirements, measured in number of variables, for each of the methods. Most
of the methods only require one byte per variable for adequate performance.

the methods. Patterns are rejected when the value of the

corresponding output is smaller than a predefined thresh-

old. In many applications, rejection performance is more

significant than raw error rate. The score used to decide

upon the rejection of a pattern was the difference between

the scores of the top two classes. Again, Boosted LeNet-4

has the best performance. The enhanced versions of LeNet-

4 did better than the original LeNet-4, even though the raw

accuracies were identical.

Fig. 11 shows the number of multiply–accumulate op-

erations necessary for the recognition of a single size-

normalized image for each method. Expectedly, NN’s are

much less demanding than memory-based methods. Con-

volutional NN’s are particularly well suited to hardware

implementations because of their regular structure and

their low memory requirements for the weights. Single

chip mixed analog–digital implementations of LeNet-5’s

predecessors have been shown to operate at speeds in

excess of 1000 characters per second [64]. However, the

rapid progress of mainstream computer technology renders

those exotic technologies quickly obsolete. Cost-effective

implementations of memory-based techniques are more

elusive due to their enormous memory requirements and

computational requirements.

Training time was also measured. K-NN’s and tangent

distance classifier have essentially zero training time. While

the single-layer net, the pairwise net, and PCA quadratic

net could be trained in less than an hour, the multilayer net

training times were expectedly much longer, but only re-

quired 10–20 passes through the training set. This amounts

to two–three days of CPU to train LeNet-5 on a Silicon

Graphics Origin 2000 server using a single 200 MHz

R10000 processor. It is important to note that while the

training time is somewhat relevant to the designer, it is

of little interest to the final user of the system. Given the

choice between an existing technique and a new technique

that brings marginal accuracy improvements at the price of

considerable training time, any final user would choose the

latter.

Fig. 12 shows the memory requirements, and therefore

the number of free parameters, of the various classifiers

measured in terms of the number of variables that need

to be stored. Most methods require only about 1 byte

per variable for adequate performance. However, nearest-

neighbor methods may get by with 4 bits per pixel for

storing the template images. Not surprisingly, NN’s require

much less memory than memory-based methods.

The overall performance depends on many factors includ-

ing accuracy, running time, and memory requirements. As

computer technology improves, larger capacity recognizers

become feasible. Larger recognizers in turn require larger

training sets. LeNet-1 was appropriate to the available

technology in 1989, just as LeNet-5 is appropriate now.

In 1989 a recognizer as complex as LeNet-5 would have

required several weeks’ training and more data than were

available and was therefore not even considered. For quite a

long time, LeNet-1 was considered the state of the art. The

local learning classifier, the optimal margin classifier, and

the tangent distance classifier were developed to improve

upon LeNet-1—and they succeeded at that. However, they

16



in turn motivated a search for improved NN architectures.

This search was guided in part by estimates of the capacity

of various learning machines, derived from measurements

of the training and test error as a function of the number

of training examples. We discovered that more capacity

was needed. Through a series of experiments in architec-

ture, combined with an analysis of the characteristics of

recognition errors, LeNet-4 and LeNet-5 were crafted.

We find that boosting gives a substantial improvement in

accuracy, with a relatively modest penalty in memory and

computing expense. Also, distortion models can be used

to increase the effective size of a data set without actually

requiring to collect more data.

The SVM has excellent accuracy, which is most remark-

able because, unlike the other high performance classifiers,

it does not include a priori knowledge about the problem.

In fact, this classifier would do just as well if the image

pixels were permuted with a fixed mapping and lost their

pictorial structure. However, reaching levels of performance

comparable to the convolutional NN’s can only be done

at considerable expense in memory and computational re-

quirements. The RS-SVM requirements are within a factor

of two of the convolutional networks, and the error rate is

very close. Improvements of those results are expected as

the technique is relatively new.

When plenty of data are available, many methods can

attain respectable accuracy. The neural-net methods run

much faster and require much less space than memory-

based techniques. The NN’s advantage will become more

striking as training databases continue to increase in size.

E. Invariance and Noise Resistance

Convolutional networks are particularly well suited for

recognizing or rejecting shapes with widely varying size,

position, and orientation, such as the ones typically pro-

duced by heuristic segmenters in real-world string recog-

nition systems.

In an experiment like the one described above, the

importance of noise resistance and distortion invariance is

not obvious. The situation in most real applications is quite

different. Characters generally must be segmented out of

their context prior to recognition. Segmentation algorithms

are rarely perfect and often leave extraneous marks in char-

acter images (noise, underlines, neighboring characters), or

sometimes cut characters too much and produce incomplete

characters. Those images cannot be reliably size-normalized

and centered. Normalizing incomplete characters can be

very dangerous. For example, an enlarged stray mark can

look like a genuine “1.” Therefore, many systems have

resorted to normalizing the images at the level of fields or

words. In our case, the upper and lower profiles of entire

fields (i.e., amounts in a check) are detected and used to

normalize the image to a fixed height. While this guarantees

that stray marks will not be blown up into character-

looking images, this also creates wide variations of the

size and vertical position of characters after segmentation.

Therefore it is preferable to use a recognizer that is robust

to such variations. Fig. 13 shows several examples of

distorted characters that are correctly recognized by LeNet-

5. It is estimated that accurate recognition occurs for

scale variations up to about a factor of two, vertical shift

variations of plus or minus about half the height of the

character, and rotations up to plus or minus 30 degrees.

While fully invariant recognition of complex shapes is still

an elusive goal, it seems that convolutional networks offer

a partial answer to the problem of invariance or robustness

with respect to geometrical distortions.

Fig. 13 includes examples of the robustness of LeNet-5

under extremely noisy conditions. Processing those images

would pose insurmountable problems of segmentation and

feature extraction to many methods, but LeNet-5 seems

able to robustly extract salient features from these cluttered

images. The training set used for the network shown here

was the MNIST training set with salt and pepper noise

added. Each pixel was randomly inverted with probability

0.1.2

IV. MULTIMODULE SYSTEMS AND GRAPH

TRANSFORMER NETWORKS

The classical back-propagation algorithm, as described

and used in the previous sections, is a simple form of

gradient-based learning. However, it is clear that the gra-

dient back-propagation algorithm given by (4) describes a

more general situation than simple multilayer feedforward

networks composed of alternated linear transformations and

sigmoidal functions. In principle, derivatives can be back-

propagated through any arrangement of functional modules,

as long as we can compute the product of the Jacobians of

those modules by any vector. Why would we want to train

systems composed of multiple heterogeneous modules? The

answer is that large and complex trainable systems need to

be built out of simple, specialized modules. The simplest

example is LeNet-5, which mixes convolutional layers,

subsampling layers, fully connected layers, and RBF layers.

Another less trivial example, described in Sections IV-A

and IV-B, is a system for recognizing words, that can

be trained to simultaneously segment and recognize words

without ever being given the correct segmentation.

Fig. 14 shows an example of a trainable multimodular

system. A multimodule system is defined by the function

implemented by each of the modules and by the graph of

interconnection of the modules to each other. The graph

implicitly defines a partial order according to which the

modules must be updated in the forward pass. For example

in Fig. 14, module 0 is first updated, then modules 1 and

2 are updated (possibly in parallel), followed by module

3. Modules may or may not have trainable parameters.

Loss functions, which measure the performance of the

system, are implemented as module 4. In the simplest case,

the loss function module receives an external input that

carries the desired output. In this framework, there is no

qualitative difference between trainable parameters (W1,

2 More examples of LeNet-5 in action are available WWW:
http://www.research.att.com/˜yann/ocr.

17



Fig. 13. Examples of unusual, distorted, and noisy characters correctly recognized by LeNet-5.
The grey level of the output label represents the penalty (lighter for higher penalties).

Fig. 14. A trainable system composed of heterogeneous modules.

W2 in the figure), external inputs and outputs (Z,D,E), and

intermediate state variables (X1, X2, X3, X4, X5).

A. An Object-Oriented Approach

Object-oriented programming offers a particularly con-

venient way of implementing multimodule systems. Each

module is an instance of a class. Module classes have

a “forward propagation” method (or member function)

called fprop whose arguments are the inputs and outputs

of the module. For example, computing the output of

module 3 in Fig. 14 can be done by calling the method

fprop on module 3 with the arguments X3, X4, X5.

Complex modules can be constructed from simpler modules

by simply defining a new class whose slots will contain

the member modules and the intermediate state variables

between those modules. The fprop method for the class

simply calls the fprop methods of the member modules,

with the appropriate intermediate state variables or external

input and outputs as arguments. Although the algorithms

are easily generalizable to any network of such modules,

including those whose influence graph has cycles, we will

limit the discussion to the case of directed acyclic graphs

(feed-forward networks).

Computing derivatives in a multimodule system is just as

simple. A “backward propagation” method, called bprop,

for each module class can be defined for that purpose. The

bprop method of a module takes the same arguments as

the fprop method. All the derivatives in the system can be

computed by calling the bprop method on all the modules

in reverse order compared to the forward propagation

phase. The state variables are assumed to contain slots

for storing the gradients computed during the backward

pass, in addition to storage for the states computed in the

forward pass. The backward pass effectively computes the

partial derivatives of the loss with respect to all the state

variables and all the parameters in the system. There is

an interesting duality property between the forward and

backward functions of certain modules. For example, a

sum of several variables in the forward direction is trans-

formed into a simple fan-out (replication) in the backward

18



direction. Conversely, a fan-out in the forward direction

is transformed into a sum in the backward direction. The

software environment used to obtain the results described

in this paper, called SN3.1, uses the above concepts. It

is based on a home-grown object-oriented dialect of Lisp

with a compiler to C.

The fact that derivatives can be computed by propagation

in the reverse graph is easy to understand intuitively. The

best way to justify it theoretically is through the use of

Lagrange functions [21], [22]. The same formalism can be

used to extend the procedures to networks with recurrent

connections.

B. Special Modules

NN’s and many other standard pattern recognition tech-

niques can be formulated in terms of multimodular systems

trained with gradient-based learning. Commonly used mod-

ules include matrix multiplications and sigmoidal modules,

the combination of which can be used to build conven-

tional NN’s. Other modules include convolutional layers,

subsampling layers, RBF layers, and “softmax” layers [65].

Loss functions are also represented as modules whose

single output produces the value of the loss. Commonly

used modules have simple bprop methods. In general, the

bprop method of a function is a multiplication by the

Jacobian of Here are a few commonly used examples.

The bprop method of a fanout (a “Y” connection) is a

sum, and vice versa. The bprop method of a multipli-

cation by a coefficient is a multiplication by the same

coefficient. The bprop method of a multiplication by a

matrix is a multiplication by the transpose of that matrix.

The bprop method of an addition with a constant is the

identity.

Interestingly, certain nondifferentiable modules can be

inserted in a multimodule system without adverse effect.

An interesting example of that is the multiplexer module.

It has two (or more) regular inputs, one switching input, and

one output. The module selects one of its inputs, depending

upon the (discrete) value of the switching input, and copies

it on its output. While this module is not differentiable

with respect to the switching input, it is differentiable with

respect to the regular inputs. Therefore the overall function

of a system that includes such modules will be differentiable

with respect to its parameters as long as the switching input

does not depend upon the parameters. For example, the

switching input can be an external input.

Another interesting case is the min module. This module

has two (or more) inputs and one output. The output of

the module is the minimum of the inputs. The function

of this module is differentiable everywhere, except on

the switching surface which is a set of measure zero.

Interestingly, this function is continuous and reasonably

regular, and that is sufficient to ensure the convergence

of a gradient-based learning algorithm.

The object-oriented implementation of the multimodule

idea can easily be extended to include a bbprop method

that propagates Gauss–Newton approximations of the sec-

ond derivatives. This leads to a direct generalization for

modular systems of the second-derivative back propagation

(22) given in Appendix C.

The multiplexer module is a special case of a much more

general situation, described at length in Section IX, where

the architecture of the system changes dynamically with the

input data. Multiplexer modules can be used to dynamically

rewire (or reconfigure) the architecture of the system for

each new input pattern.

C. GTN’s

Multimodule systems are very flexible tools for build-

ing a large trainable system. However, the descriptions

in the previous sections implicitly assumed that the set

of parameters, and the state information communicated

between the modules, are all fixed-size vectors. The limited

flexibility of fixed-size vectors for data representation is

a serious deficiency for many applications, notably for

tasks that deal with variable length inputs (e.g., continuous

speech recognition and handwritten word recognition) or for

tasks that require encoding relationships between objects or

features whose number and nature can vary (invariant per-

ception, scene analysis, recognition of composite objects).

An important special case is the recognition of strings of

characters or words.

More generally, fixed-size vectors lack flexibility for

tasks in which the state must encode probability distribu-

tions over sequences of vectors or symbols, as is the case in

linguistic processing. Such distributions over sequences are

best represented by stochastic grammars, or, in the more

general case, directed graphs in which each arc contains

a vector (stochastic grammars are special cases in which

the vector contains probabilities and symbolic information).

Each path in the graph represents a different sequence of

vectors. Distributions over sequences can be represented

by interpreting elements of the data associated with each

arc as parameters of a probability distribution or simply

as a penalty. Distributions over sequences are particularly

handy for modeling linguistic knowledge in speech or

handwriting recognition systems: each sequence, i.e., each

path in the graph, represents an alternative interpretation

of the input. Successive processing modules progressively

refine the interpretation. For example, a speech recognition

system might start with a single sequence of acoustic

vectors, transform it into a lattice of phonemes (distribution

over phoneme sequences), then into a lattice of words

(distribution over word sequences), and then into a single

sequence of words representing the best interpretation.

In our work on building large-scale handwriting recog-

nition systems, we have found that these systems could be

developed and designed much more easily and quickly by

viewing the system as a networks of modules that take one

or several graphs as input and produce graphs as output.

Such modules are called GT’s, and the complete systems

are called GTN’s. Modules in a GTN communicate their

states and gradients in the form of directed graphs whose

arcs carry numerical information (scalars or vectors) [66].

From the statistical point of view, the fixed-size state vec-

tors of conventional networks can be seen as representing

19



(a) (b)

Fig. 15. Traditional NN’s and multimodule systems communi-
cate fixed-size vectors between layers. Multilayer GTN’s are
composed of trainable modules that operate on and produce graphs
whose arcs carry numerical information.

the means of distributions in state space. In variable-size

networks such as the space-displacement NN’s described

in Section VII, the states are variable-length sequences

of fixed size vectors. They can be seen as representing

the mean of a probability distribution over variable-length

sequences of fixed-size vectors. In GTN’s the states are

represented as graphs, which can be seen as represent-

ing mixtures of probability distributions over structured

collections (possibly sequences) of vectors (Fig. 15).

One of the main points of the next several sections is

to show that gradient-based learning procedures are not

limited to networks of simple modules that communicate

through fixed-size vectors but can be generalized to

GTN’s. Gradient back propagation through a GT takes

gradients with respect to the numerical information in

the output graph and computes gradients with respect to

the numerical information attached to the input graphs,

and with respect to the module’s internal parameters.

Gradient-based learning can be applied as long as

differentiable functions are used to produce the numerical

data in the output graph from the numerical data in the

input graph and the functions parameters.

The second point of the next several sections is to show

that the functions implemented by many of the modules

used in typical document processing systems (and other

image recognition systems), though commonly thought to

be combinatorial in nature, are indeed differentiable with

respect to their internal parameters as well as with respect

to their inputs, and are therefore usable as part of a globally

trainable system.

In most of the following, we will purposely avoid making

references to probability theory. All the quantities manipu-

lated are viewed as penalties, or costs, which if necessary

can be transformed into probabilities by taking exponentials

and normalizing.

V. MULTIPLE OBJECT RECOGNITION: HOS

One of the most difficult problems of handwriting recog-

nition is to recognize not just isolated characters, but

Fig. 16. Building a segmentation graph with HOS.

strings of characters such as zip codes, check amounts,

or words. Since most recognizers can only deal with one

character at a time, we must first segment the string

into individual character images. However, it is almost

impossible to devise image analysis techniques that will

infallibly segment naturally written sequences of characters

into well formed characters.

The recent history of automatic speech recognition [28],

[67] is here to remind us that training a recognizer by

optimizing a global criterion (at the word or sentence level)

is much preferable to merely training it on hand-segmented

phonemes or other units. Several recent works have shown

that the same is true for handwriting recognition [38]:

optimizing a word-level criterion is preferable to solely

training a recognizer on presegmented characters because

the recognizer can learn not only to recognize individual

characters, but also to reject missegmented characters,

thereby minimizing the overall word error.

This section and Section VI describe in detail a simple

example of GTN to address the problem of reading strings

of characters, such as words or check amounts. The method

avoids the expensive and unreliable task of hand-truthing

the result of the segmentation often required in more

traditional systems trained on individually labeled character

images.

A. Segmentation Graph

A now classical method for segmentation and recognition

is called HOS [68], [69]. Its main advantages over other

approaches to segmentation are that it avoids making hard

decisions about the segmentation by taking a large number

of different segmentations into consideration. The idea is to

use heuristic image processing techniques to find candidate

cuts of the word or string, and then to use the recognizer to

score the alternative segmentations thereby generated. The

process is depicted in Fig. 16. First, a number of candidate

cuts are generated. Good candidate locations for cuts can be

found by locating minima in the vertical projection profile,

or minima of the distance between the upper and lower

contours of the word. Better segmentation heuristics are

described in Section XI. The cut generation heuristic is

designed so as to generate more cuts than necessary in the

hope that the “correct” set of cuts will be included. Once the

cuts have been generated, alternative segmentations are best

represented by a graph, called the segmentation graph. The

segmentation graph is a directed acyclic graph with a start

node and an end node. Each internal node is associated with

a candidate cut produced by the segmentation algorithm.

Each arc between a source node and a destination node

20



Fig. 17. Recognizing a character string with a GTN. For read-
ability, only the arcs with low penalties are shown.

is associated with an image that contains all the ink

between the cut associated with the source node and the

cut associated with the destination node. An arc is created

between two nodes if the segmentor decided that the ink

between the corresponding cuts could form a candidate

character. Typically, each individual piece of ink would

be associated with an arc. Pairs of successive pieces of

ink would also be included, unless they are separated by a

wide gap, which is a clear indication that they belong to

different characters. Each complete path through the graph

contains each piece of ink once and only once. Each path

corresponds to a different way of associating pieces of ink

together so as to form characters.

B. Recognition Transformer and Viterbi Transformer

A simple GTN to recognize character strings is shown in

Fig. 17. It is composed of two GT’s called the recognition

transformer and the Viterbi transformer The goal

of the recognition transformer is to generate a graph, called

the interpretation graph or recognition graph that

contains all the possible interpretations for all the possible

segmentations of the input. Each path in represents

one possible interpretation of one particular segmentation

Fig. 18. The recognition transformer refines each arc of the
segmentation arc into a set of arcs in the interpretation graph, one
per character class, with attached penalties and labels.

of the input. The role of the Viterbi transformer is to extract

the best interpretation from the interpretation graph.

The recognition transformer takes the segmentation

graph as input, and applies the recognizer for single

characters to the images associated with each of the arcs in

the segmentation graph. The interpretation graph has

almost the same structure as the segmentation graph, except

that each arc is replaced by a set of arcs from and to the

same node. In this set of arcs, there is one arc for each pos-

sible class for the image associated with the corresponding

arc in As shown in Fig. 18, to each arc is attached

a class label, and the penalty that the image belongs to

this class as produced by the recognizer. If the segmentor

has computed penalties for the candidate segments, these

penalties are combined with the penalties computed by the

character recognizer to obtain the penalties on the arcs of

the interpretation graph. Although combining penalties of

different nature seems highly heuristic, the GTN training

procedure will tune the penalties and take advantage of this

combination anyway. Each path in the interpretation graph

corresponds to a possible interpretation of the input word.

The penalty of a particular interpretation for a particular

segmentation is given by the sum of the arc penalties

along the corresponding path in the interpretation graph.

Computing the penalty of an interpretation independently

of the segmentation requires to combine the penalties of

all the paths with that interpretation. An appropriate rule

for combining the penalties of parallel paths is given in

Section VI-C.

21



The Viterbi transformer produces a graph with a

single path. This path is the path of least cumulated penalty

in the Interpretation graph. The result of the recognition

can be produced by reading off the labels of the arcs along

the graph extracted by the Viterbi transformer. The

Viterbi transformer owes its name to the famous Viterbi

algorithm [70], an application of the principle of dynamic

programming to find the shortest path in a graph efficiently.

Let be the penalty associated to arc with source

node and destination node (note that there can be

multiple arcs between two nodes). In the interpretation

graph, arcs also have a label The Viterbi algorithm

proceeds as follows. Each node is associated with a

cumulated Viterbi penalty Those cumulated penalties

are computed in any order that satisfies the partial order

defined by the interpretation graph (which is directed and

acyclic). The start node is initialized with the cumulated

penalty The other nodes cumulated penalties

are computed recursively from the values of their

parent nodes, through the upstream arcs with

destination

(10)

Furthermore, the value of for each node which min-

imizes the right-hand side is noted the minimizing

entering arc. When the end node is reached we obtain in

the total penalty of the path with the smallest total

penalty. We call this penalty the Viterbi penalty, and this

sequence of arcs and nodes the Viterbi path. To obtain the

Viterbi path with nodes and arcs we

trace back these nodes and arcs as follows, starting with

the end node, and recursively using the minimizing

entering arc: and until the start node

is reached. The label sequence can then be read off the arcs

of the Viterbi path.

VI. GLOBAL TRAINING FOR GRAPH

TRANSFORMER NETWORKS

Section V described the process of recognizing a string

using HOS, assuming that the recognizer is trained so

as to give low penalties for the correct class label of

correctly segmented characters, high penalties for erroneous

categories of correctly segmented characters, and high

penalties for all categories for poorly formed characters.

This section explains how to train the system at the string

level to do the above without requiring manual labeling of

character segments. This training will be performed with

a GTN whose architecture is slightly different from the

recognition architecture described in Section V.

In many applications, there is enough a priori knowledge

about what is expected from each of the modules in order

to train them separately. For example, with HOS one

could individually label single-character images and train

a character recognizer on them, but it might be difficult

to obtain an appropriate set of noncharacter images to

train the model to reject wrongly segmented candidates.

Although separate training is simple, it requires additional

supervision information that is often lacking or incomplete

(the correct segmentation and the labels of incorrect candi-

date segments). Furthermore, it can be shown that separate

training is suboptimal [67].

The following section describes four different gradient-

based methods for training GTN-based handwriting recog-

nizers at the string level: Viterbi training, discriminative

Viterbi training, forward training, and discriminative for-

ward training. The last one is a generalization to graph-

based systems of the maximum a posteriori criterion in-

troduced in Section II-C. Discriminative forward training

is somewhat similar to the so-called maximum mutual

information criterion used to train HMM in speech recog-

nition. However, our rationale differs from the classical

one. We make no recourse to a probabilistic interpretation

but show that, within the gradient-based learning approach,

discriminative training is a simple instance of the pervasive

principle of error correcting learning.

Training methods for graph-based sequence recognition

systems such as HMM’s have been extensively studied

in the context of speech recognition [28]. Those meth-

ods require that the system be based on probabilistic

generative models of the data, which provide normalized

likelihoods over the space of possible input sequences.

Popular HMM learning methods, such as the Baum–Welsh

algorithm, rely on this normalization. The normalization

cannot be preserved when nongenerative models such as

NN’s are integrated into the system. Other techniques, such

as discriminative training methods, must be used in this

case. Several authors have proposed such methods to train

NN/HMM speech recognizers at the word or sentence level

[29], [67], [71]–[78].

Other globally trainable sequence recognition systems

avoid the difficulties of statistical modeling by not resorting

to graph-based techniques. The best example is recurrent

NN’s (RNN’s). Unfortunately, despite early enthusiasm,

the training of RNN’s with gradient-based techniques has

proven very difficult in practice [79].

The GTN techniques presented below simplify and gen-

eralize the global training methods developed for speech

recognition.

A. Viterbi Training

During recognition, we select the path in the interpre-

tation graph that has the lowest penalty with the Viterbi

algorithm. Ideally, we would like this path of lowest penalty

to be associated with the correct label sequence as often as

possible. An obvious loss function to minimize is therefore

the average over the training set of the penalty of the

path associated with the correct label sequence that has the

lowest penalty. The goal of training will be to find the set of

recognizer parameters (the weights, if the recognizer is an

NN) that minimize the average penalty of this “correct”

lowest penalty path. The gradient of this loss function

can be computed by back propagation through the GTN

architecture shown in Fig. 19. This training architecture is

almost identical to the recognition architecture described

in the previous section, except that an extra GT called a

22



Fig. 19. Viterbi training GTN architecture for a character string
recognizer based on HOS.

path selector is inserted between the interpretation graph

and the Viterbi transformer. This transformer takes the

interpretation graph and the desired label sequence as input.

It extracts from the interpretation graph those paths that

contain the correct (desired) label sequence. Its output

graph is called the constrained interpretation graph (also

known as forced alignment in the HMM literature) and

contains all the paths that correspond to the correct label

sequence. The constrained interpretation graph is then sent

to the Viterbi transformer which produces a graph

with a single path. This path is the “correct” path with

the lowest penalty. Finally, a path scorer transformer takes

and simply computes its cumulated penalty by

adding up the penalties along the path. The output of this

GTN is the loss function for the current pattern

(11)

The only label information that is required by the above

system is the sequence of desired character labels. No

knowledge of the correct segmentation is required on

the part of the supervisor, since it chooses among the

segmentations in the interpretation graph the one that yields

the lowest penalty.

The process of back propagating gradients through the

Viterbi training GTN is now described. As explained in

Section IV, the gradients must be propagated backward

through all modules of the GTN in order to compute

gradients in preceding modules and thereafter tune their

parameters. Back propagating gradients through the path

scorer is quite straightforward. The partial derivatives of

the loss function with respect to the individual penalties on

the constrained Viterbi path are equal to one, since

the loss function is simply the sum of those penalties. Back

propagating through the Viterbi Transformer is equally

simple. The partial derivatives of with respect to the

penalties on the arcs of the constrained graph are one for

those arcs that appear in the constrained Viterbi path

and zero for those that do not. Why is it legitimate to back

propagate through an essentially discrete function such as

the Viterbi transformer? The answer is that the Viterbi trans-

former is nothing more than a collection of min functions

and adders put together. It was shown in Section IV that

gradients can be back propagated through min functions

without adverse effects. Back propagation through the path

selector transformer is similar to back propagation through

the Viterbi transformer. Arcs in that appear in

have the same gradient as the corresponding arc in

i.e., one or zero, depending on whether the arc appear

in The other arcs, i.e., those that do not have an

alter ego in because they do not contain the right label

have a gradient of zero. During the forward propagation

through the recognition transformer, one instance of the

recognizer for single character was created for each arc in

the segmentation graph. The state of recognizer instances

was stored. Since each arc penalty in is produced by

an individual output of a recognizer instance, we now have

a gradient (one or zero) for each output of each instance

of the recognizer. Recognizer outputs that have a nonzero

gradient are part of the correct answer and will therefore

have their value pushed down. The gradients present on

the recognizer outputs can be back propagated through

each recognizer instance. For each recognizer instance, we

obtain a vector of partial derivatives of the loss function

with respect to the recognizer instance parameters. All the

recognizer instances share the same parameter vector, since

they are merely clones of each other, therefore the full

gradient of the loss function with respect to the recognizer’s

parameter vector is simply the sum of the gradient vectors

produced by each recognizer instance. Viterbi training,

though formulated differently, is often use in HMM-based

speech recognition systems [28]. Similar algorithms have

been applied to speech recognition systems that integrate

NN’s with time alignment [71], [72], [76] or hybrid neural-

network/HMM systems [29], [74], [75].

While it seems simple and satisfying, this training archi-

tecture has a flaw that can potentially be fatal. The problem

was already mentioned in Section II-C. If the recognizer

is a simple NN with sigmoid output units, the minimum

of the loss function is attained, not when the recognizer

always gives the right answer, but when it ignores the

input and sets its output to a constant vector with small

values for all the components. This is known as the collapse

problem. The collapse only occurs if the recognizer outputs

can simultaneously take their minimum value. If, on the

other hand, the recognizer’s output layer contains RBF

units with fixed parameters, then there is no such trivial

solution. This is due to the fact that a set of RBF with

fixed distinct parameter vectors cannot simultaneously take

their minimum value. In this case, the complete collapse

described above does not occur. However, this does not

totally prevent the occurrence of a milder collapse because

the loss function still has a “flat spot” for a trivial solution

with constant recognizer output. This flat spot is a saddle

point, but it is attractive in almost all directions and is very

difficult to get out of using gradient-based minimization

procedures. If the parameters of the RBF’s are allowed

23



to adapt, then the collapse problems reappear because the

RBF centers can all converge to a single vector, and the

underlying NN can learn to produce that vector and ignore

the input. A different kind of collapse occurs if the width

of the RBF’s are also allowed to adapt. The collapse only

occurs if a trainable module such as an NN feeds the

RBF’s. The collapse does not occur in HMM-based speech

recognition systems because they are generative systems

that produce normalized likelihoods for the input data (more

on this later). Another way to avoid the collapse is to train

the whole system with respect to a discriminative training

criterion, such as maximizing the conditional probability of

the correct interpretations (correct sequence of class labels)

given the input image.

Another problem with Viterbi training is that the penalty

of the answer cannot be used reliably as a measure of

confidence because it does not take low-penalty (or high-

scoring) competing answers into account.

B. Discriminative Viterbi Training

A modification of the training criterion can circumvent

the collapse problem described above and at the same time

produce more reliable confidence values. The idea is to

not only minimize the cumulated penalty of the lowest

penalty path with the correct interpretation, but also to

somehow increase the penalty of competing and possibly

incorrect paths that have a dangerously low penalty. This

type of criterion is called discriminative because it plays the

good answers against the bad ones. Discriminative training

procedures can be seen as attempting to build appropriate

separating surfaces between classes rather than to model in-

dividual classes independently of each other. For example,

modeling the conditional distribution of the classes given

the input image is more discriminative (focusing more on

the classification surface) than having a separate generative

model of the input data associated to each class (which, with

class priors, yields the whole joint distribution of classes

and inputs). This is because the conditional approach does

not need to assume a particular form for the distribution of

the input data.

One example of discriminative criterion is the difference

between the penalty of the Viterbi path in the constrained

graph, and the penalty of the Viterbi path in the (uncon-

strained) interpretation graph, i.e., the difference between

the penalty of the best correct path and the penalty of

the best path (correct or incorrect). The corresponding

GTN training architecture is shown in Fig. 20. The left

side of the diagram is identical to the GTN used for

nondiscriminative Viterbi training. This loss function re-

duces the risk of collapse because it forces the recognizer

to increases the penalty of wrongly recognized objects.

Discriminative training can also be seen as another example

of error correction procedure, which tends to minimize the

difference between the desired output computed in the left

half of the GTN in Fig. 20 and the actual output computed

in the right half of Fig. 20.

Let the discriminative Viterbi loss function be denoted

and let us call the penalty of the Viterbi path

in the constrained graph and the penalty of the Viterbi

path in the unconstrained interpretation graph

(12)

is always positive since the constrained graph is a

subset of the paths in the interpretation graph, and the

Viterbi algorithm selects the path with the lowest total

penalty. In the ideal case, the two paths and

coincide, and is zero.

Back-propagating gradients through the discriminative

Viterbi GTN adds some “negative” training to the previ-

ously described nondiscriminative training. Fig. 20 shows

how the gradients are back propagated. The left half is

identical to the nondiscriminative Viterbi training GTN,

therefore the back propagation is identical. The gradients

back propagated through the right half of the GTN are

multiplied by 1, since contributes to the loss with

a negative sign. Otherwise the process is similar to the left

half. The gradients on arcs of get positive contributions

from the left half and negative contributions from the

right half. The two contributions must be added since the

penalties on arcs are sent to the two halves through

a “Y” connection in the forward pass. Arcs in that

appear neither in nor in have a gradient of zero.

They do not contribute to the cost. Arcs that appear in both

and also have zero gradient. The 1 contribution

from the right half cancels the 1 contribution from the left

half. In other words, when an arc is rightfully part of the

answer there is no gradient. If an arc appears in but

not in the gradient is 1. The arc should have had a

lower penalty to make it to If an arc is in but

not in the gradient is The arc had a low penalty,

but it should have had a higher penalty since it is not part

of the desired answer.

Variations of this technique have been used for the speech

recognition. Driancourt and Bottou [76] used a version of

it where the loss function is saturated to a fixed value.

This can be seen as a generalization of the Learning Vector

Quantization 2 (LVQ-2) loss function [80]. Other variations

of this method use not only the Viterbi path but the K-

best paths. The discriminative Viterbi algorithm does not

have the flaws of the nondiscriminative version, but there

are problems nonetheless. The main problem is that the

criterion does not build a margin between the classes. The

gradient is zero as soon as the penalty of the constrained

Viterbi path is equal to that of the Viterbi path. It would be

desirable to push up the penalties of the wrong paths when

they are dangerously close to the good one. The following

section presents a solution to this problem.

C. Forward Scoring and Forward Training

While the penalty of the Viterbi path is perfectly appro-

priate for the purpose of recognition it gives only a partial

picture of the situation. Imagine the lowest penalty paths

corresponding to several different segmentations produced

the same answer (the same label sequence). Then it could be

argued that the overall penalty for the interpretation should

24



Fig. 20. Discriminative Viterbi training GTN architecture for a character string recognizer based
on HOS. Quantities in square brackets are penalties computed during the forward propagation.
Quantities in parentheses are partial derivatives computed during the backward propagation.

be smaller than the penalty obtained when only one path

produced that interpretation, because multiple paths with

identical label sequences are more evidence that the label

sequence is correct. Several rules can be used compute

the penalty associated to a graph that contains several

parallel paths. We use a combination rule borrowed from

a probabilistic interpretation of the penalties as negative

log posteriors. In a probabilistic framework, the posterior

probability for the interpretation should be the sum of the

posteriors for all the paths that produce that interpretation.

Translated in terms of penalties, the penalty of an inter-

pretation should be the negative logarithm of the sum of

the negative exponentials of the penalties of the individual

paths. The overall penalty will be smaller than all the

penalties of the individual paths.

Given an interpretation, there is a well-known method,

called the forward algorithm for computing the above

quantity efficiently [28]. The penalty computed with this

procedure for a particular interpretation is called the for-

ward penalty. Consider again the concept of constrained

25



graph, the subgraph of the interpretation graph which

contains only the paths that are consistent with a particular

label sequence. There is one constrained graph for each

possible label sequence (some may be empty graphs, which

have infinite penalties). Given an interpretation, running

the forward algorithm on the corresponding constrained

graph gives the forward penalty for that interpretation.

The forward algorithm proceeds in a way very similar to

the Viterbi algorithm, except that the operation used at

each node to combine the incoming cumulated penalties,

instead of being the min function, is the so-called logadd

operation, which can be seen as a “soft” version of the min

function

(13)

where is the set of upstream arcs of node

is the penalty on arc and

(14)

Note that because of numerical inaccuracies, it is better

to factorize the largest (corresponding to the smallest

penalty) out of the logarithm.

An interesting analogy can be drawn if we consider

that a graph on which we apply the forward algorithm is

equivalent to an NN on which we run a forward propaga-

tion, except that multiplications are replaced by additions,

the additions are replaced by log-adds, and there are no

sigmoids.

One way to understand the forward algorithm is to think

about multiplicative scores (e.g., probabilities) instead of

additive penalties on the arcs: score

In that case the Viterbi algorithm selects the path with

the largest cumulative score (with scores multiplied along

the path), whereas the forward score is the sum of the

cumulative scores associated to each of the possible paths

from the start to the end node. The forward penalty is

always lower than the cumulated penalty on any of the

paths, but if one path “dominates” (with a much lower

penalty), its penalty is almost equal to the forward penalty.

The forward algorithm gets its name from the forward

pass of the well-known Baum–Welsh algorithm for training

HMM’s [28]. Section VIII-E gives more details on the

relation between this work and HMM’s.

The advantage of the forward penalty with respect to the

Viterbi penalty is that it takes into account all the different

ways to produce an answer, not just the one with the lowest

penalty. This is important if there is some ambiguity in the

segmentation, since the combined forward penalty of two

paths and associated with the same label sequence

may be less than the penalty of a path associated with

another label sequence, even though the penalty of

might be less than any one of or

The forward-training GTN is only a slight modification of

the previously introduced Viterbi-training GTN. It suffices

to turn the Viterbi transformers in Fig. 19 into forward

scorers that take an interpretation graph as input an produce

the forward penalty of that graph on output. Then the

penalties of all the paths that contain the correct answer

are lowered, instead of just that of the best one.

Back propagating through the forward penalty computa-

tion (the forward transformer) is quite different from back

propagating through a Viterbi transformer. All the penalties

of the input graph have an influence on the forward penalty,

but penalties that belong to low-penalty paths have a

stronger influence. Computing derivatives with respect to

the forward penalties computed at each node of a

graph is done by back-propagation through the graph

(15)

where with source is the set of

downstream arcs from node From the above derivatives,

the derivatives with respect to the arc penalties are obtained

(16)

This can be seen as a “soft” version of the back propagation

through a Viterbi scorer and transformer. All the arcs in

have an influence on the loss function. The arcs that

belong to low penalty paths have a larger influence. Back

propagation through the path selector is the same as before.

The derivative with respect to arcs that have an alter

ego in are simply copied from the corresponding arc in

The derivatives with respect to the other arcs are zero.

Several authors have applied the idea of back-propagating

gradients through a forward scorer to train speech recogni-

tion systems, including Bridle and his -net model [73] and

Haffner and his -TDNN model [81], but these authors

recommended discriminative training as described in the

next section.

D. Discriminative Forward Training

The information contained in the forward penalty can be

used in another discriminative training criterion which we

will call the discriminative forward criterion. This criterion

corresponds to maximization of the posterior probability of

choosing the paths associated with the correct interpreta-

tion. This posterior probability is defined as the exponential

of minus the constrained forward penalty, normalized by the

exponential of minus the unconstrained forward penalty.

Note that the forward penalty of the constrained graph

is always larger or equal to the forward penalty of the

unconstrained interpretation graph. Ideally, we would like

the forward penalty of the constrained graph to be equal

to the forward penalty of the complete interpretation graph.

Equality between those two quantities is achieved when

the combined penalties of the paths with the correct label

sequence is negligibly small compared to the penalties of all

the other paths, or that the posterior probability associated

to the paths with the correct interpretation is almost one,

which is precisely what we want. The corresponding GTN

training architecture is shown in Fig. 21.

Let the difference be denoted and let us call

the forward penalty of the constrained graph and

26



Fig. 21. Discriminative forward training GTN architecture for a
character string recognizer based on HOS.

the forward penalty of the complete interpretation

graph

(17)

is always positive since the constrained graph is

a subset of the paths in the interpretation graph, and the

forward penalty of a graph is always larger than the forward

penalty of a subgraph of this graph. In the ideal case, the

penalties of incorrect paths are infinitely large, therefore

the two penalties coincide and is zero. Readers

familiar with the Boltzmann machine connectionist model

might recognize the constrained and unconstrained graphs

as analogous to the “clamped” (constrained by the observed

values of the output variable) and “free” (unconstrained)

phases of the Boltzmann machine algorithm [13].

Back propagating derivatives through the discriminative

forward GTN distributes gradients more evenly than in the

Viterbi case. Derivatives are back propagated through the

left half of the GTN in Fig. 21 down to the interpretation

graph. Derivatives are negated and back propagated through

the right-half, and the result for each arc is added to the

contribution from the left half. Each arc in now has

a derivative. Arcs that are part of a correct path have

a positive derivative. This derivative is very large if an

incorrect path has a lower penalty than all the correct

paths. Similarly, the derivatives with respect to arcs that are

part of a low-penalty incorrect path have a large negative

derivative. On the other hand, if the penalty of a path

associated with the correct interpretation is much smaller

than all other paths, the loss function is very close to zero

and almost no gradient is back propagated. The training

therefore concentrates on examples of images which yield

a classification error, and furthermore, it concentrates on the

pieces of the image which cause that error. Discriminative

forward training is an elegant and efficient way of solving

the infamous credit assignment problem for learning ma-

chines that manipulate “dynamic” data structures such as

graphs. More generally, the same idea can be used in all

situations where a learning machine must choose between

discrete alternative interpretations.

As previously, the derivatives on the interpretation graph

penalties can then be back propagated into the character

recognizer instances. Back propagation through the charac-

ter recognizer gives derivatives on its parameters. All the

gradient contributions for the different candidate segments

are added up to obtain the total gradient associated to

one pair (input image, correct label sequence), that is, one

example in the training set. A step of stochastic gradient

descent can then be applied to update the parameters.

E. Remarks on Discriminative Training

In the above discussion, the global training criterion

was given a probabilistic interpretation, but the individual

penalties on the arcs of the graphs were not. There are

good reasons for that. For example, if some penalties are

associated to the different class labels, they would: 1) have

to sum to one (class posteriors) or 2) integrate to one over

the input domain (likelihoods).

Let us first discuss the first case (class posteriors nor-

malization). This local normalization of penalties may

eliminate information that is important for locally rejecting

all the classes [82], e.g., when a piece of image does

not correspond to a valid character class because some of

the segmentation candidates may be wrong. Although an

explicit “garbage class” can be introduced in a probabilistic

framework to address that question, some problems remain

because it is difficult to characterize such a class probabilis-

tically and to train a system in this way (it would require

a density model of unseen or unlabeled samples).

The probabilistic interpretation of individual variables

plays an important role in the Baum–Welsh algorithm

in combination with the expectation-maximization (EM)

procedure. Unfortunately, those methods cannot be applied

to discriminative training criteria, and one is reduced to

using gradient-based methods. Enforcing the normalization

of the probabilistic quantities while performing gradient-

based learning is complex, inefficient, time consuming, and

creates ill-conditioning of the loss-function.

Following [82], we therefore prefer to postpone normal-

ization as far as possible (in fact, until the final decision

stage of the system). Without normalization, the quantities

manipulated in the system do not have a direct probabilistic

interpretation.

Let us now discuss the second case (using a generative

model of the input). Generative models build the boundary

indirectly by first building an independent density model

for each class and then performing classification decisions

on the basis of these models. This is not a discriminative

approach in that it does not focus on the ultimate goal of

learning, which in this case is to learn the classification

decision surface. Theoretical arguments [6], [7] suggest that

estimating input densities when the real goal is to obtain

a discriminant function for classification is a suboptimal

strategy. In theory, the problem of estimating densities

in high-dimensional spaces is much more ill posed than

finding decision boundaries.

27



Fig. 22. Explicit segmentation can be avoided by sweeping a
recognizer at every possible location in the input field.

Even though the internal variables of the system do not

have a direct probabilistic interpretation, the overall system

can still be viewed as producing posterior probabilities

for the classes. In fact, assuming that a particular label

sequence is given as the “desired sequence” to the GTN in

Fig. 21, the exponential of minus can be interpreted

as an estimate of the posterior probability of that label

sequence given the input. The sum of those posteriors for

all the possible label sequences is one. Another approach

would consists of directly minimizing an approximation

of the number of misclassifications [83], [76]. We prefer

to use the discriminative forward loss function because it

causes less numerical problems during the optimization. We

will see in Section X-C that this is a good way to obtain

scores on which to base a rejection strategy. The important

point being made here is that one is free to choose any

parameterization deemed appropriate for a classification

model. The fact that a particular parameterization uses

internal variables with no clear probabilistic interpretation

does not make the model any less legitimate than models

that manipulate normalized quantities.

An important advantage of global and discriminative

training is that learning focuses on the most important

errors, and the system learns to integrate the ambiguities

from the segmentation algorithm with the ambiguities of

the character recognizer. In Section IX we present ex-

perimental results with an online handwriting recognition

system that confirm the advantages of using global training

versus separate training. Experiments in speech recognition

with hybrids of NN’s and HMM’s also showed marked

improvements brought by global training [29], [67], [77],

[84].

VII. MULTIPLE OBJECT RECOGNITION: SPACE

DISPLACEMENT NEURAL NETWORK

There is a simple alternative to explicitly segmenting

images of character strings using heuristics. The idea is

to sweep a recognizer at all possible locations across a

normalized image of the entire word or string as shown

in Fig. 22. With this technique, no segmentation heuristics

are required since the system essentially examines all the

possible segmentations of the input. However, there are

problems with this approach. First, the method is in general

Fig. 23. An SDNN is a convolutional network that has been
replicated over a wide input field.

quite expensive. The recognizer must be applied at every

possible location on the input, or at least at a large enough

subset of locations so that misalignments of characters

in the field of view of the recognizers are small enough

to have no effect on the error rate. Second, when the

recognizer is centered on a character to be recognized,

the neighbors of the center character will be present in the

field of view of the recognizer, possibly touching the center

character. Therefore the recognizer must be able to correctly

recognize the character in the center of its input field, even

if neighboring characters are very close to or touching the

central character. Third, a word or character string cannot

be perfectly size-normalized. Individual characters within a

string may have widely varying sizes and baseline positions.

Therefore the recognizer must be very robust to shifts and

size variations.

These three problems are elegantly circumvented if a

convolutional network is replicated over the input field.

First of all, as shown in Section III, convolutional NN’s are

very robust to shifts and scale variations of the input image,

as well as to noise and extraneous marks in the input. These

properties take care of the latter two problems mentioned

in the previous paragraph. Second, convolutional networks

provide a drastic saving in computational requirement when

replicated over large input fields. A replicated convolutional

network, also called an SDNN [27], is shown in Fig. 23.

While scanning a recognizer can be prohibitively expen-

sive in general, convolutional networks can be scanned or

replicated very efficiently over large, variable-size input

fields. Consider one instance of a convolutional net and its

28



alter ego at a nearby location. Because of the convolutional

nature of the network, units in the two instances that look

at identical locations on the input have identical outputs,

therefore their states do not need to be computed twice.

Only a thin “slice” of new states that are not shared by

the two network instances needs to be recomputed. When

all the slices are put together, the result is simply a larger

convolutional network whose structure is identical to the

original network, except that the feature maps are larger

in the horizontal dimension. In other words, replicating a

convolutional network can be done simply by increasing the

size of the fields over which the convolutions are performed

and by replicating the output layer accordingly. The output

layer effectively becomes a convolutional layer. An output

whose receptive field is centered on an elementary object

will produce the class of this object, while an in-between

output may indicate no character or contain rubbish. The

outputs can be interpreted as evidences for the presence of

objects at all possible positions in the input field.

The SDNN architecture seems particularly attractive for

recognizing cursive handwriting where no reliable segmen-

tation heuristic exists. Although the idea of SDNN is quite

old and very attractive in its simplicity, it has not generated

wide interest until recently because, as stated above, it puts

enormous demands on the recognizer [26], [27]. In speech

recognition, where the recognizer is at least one order of

magnitude smaller, replicated convolutional networks are

easier to implement, for instance in Haffner’s multistate

TDNN model [78], [85].

A. Interpreting the Output of an SDNN with a GTN

The output of an SDNN is a sequence of vectors which

encode the likelihoods, penalties, or scores of finding char-

acter of a particular class label at the corresponding location

in the input. A postprocessor is required to pull out the

best possible label sequence from this vector sequence. An

example of SDNN output is shown in Fig. 25. Very often,

individual characters are spotted by several neighboring

instances of the recognizer, a consequence of the robustness

of the recognizer to horizontal translations. Also quite

often, characters are erroneously detected by recognizer

instances that see only a piece of a character. For example

a recognizer instance that only sees the right third of a

“4” might output the label 1. How can we eliminate those

extraneous characters from the output sequence and pull

out the best interpretation? This can be done using a new

type of GT with two input graphs as shown in Fig. 24.

The sequence of vectors produced by the SDNN is first

coded into a linear graph with multiple arcs between pairs

of successive nodes. Each arc between a particular pair of

nodes contains the label of one of the possible categories,

together with the penalty produced by the SDNN for that

class label at that location. This graph is called the SDNN

output graph. The second input graph to the transformer

is a grammar transducer, more specifically a finite-state

transducer [86], that encodes the relationship between input

strings of class labels and corresponding output strings

of recognized characters. The transducer is a weighted

Fig. 24. A GT pulls out the best interpretation from the output
of the SDNN.

Fig. 25. An example of multiple character recognition with
SDNN. With SDNN, no explicit segmentation is performed.

finite state machine (a graph) where each arc contains a

pair of labels and possibly a penalty. Like a finite-state

machine, a transducer is in a state and follows an arc

to a new state when an observed input symbol matches

the first symbol in the symbol pair attached to the arc.

At this point the transducer emits the second symbol in

the pair together with a penalty that combines the penalty

of the input symbol and the penalty of the arc. A trans-

ducer therefore transforms a weighted symbol sequence

into another weighted symbol sequence. The GT shown

in Fig. 24 performs a composition between the recognition

graph and the grammar transducer. This operation takes

every possible sequence corresponding to every possible

path in the recognition graph and matches them with the

paths in the grammar transducer. The composition produces

the interpretation graph, which contains a path for each

corresponding output label sequence. This composition

operation may seem combinatorially intractable, but it turns

out there exists an efficient algorithm for it described in

more details in Section VIII.

B. Experiments with SDNN

In a series of experiments, LeNet-5 was trained with the

goal of being replicated so as to recognize multiple charac-

ters without segmentations. The data were generated from

29



Fig. 26. AN SDNN applied to a noisy image of digit string.
The digits shown in the SDNN output represent the winning class
labels, with a lighter grey level for high-penalty answers.

the previously described MNIST set as follows. Training

images were composed of a central character, flanked by

two side characters picked at random in the training set. The

separation between the bounding boxes of the characters

were chosen at random between 1 and 4 pixels. In other

instances, no central character was present, in which case

the desired output of the network was the blank space class.

In addition, training images were degraded with 10% salt

and pepper noise (random pixel inversions).

Figs. 25 and 26 show a few examples of successful

recognitions of multiple characters by the LeNet-5 SDNN.

Standard techniques based on HOS would fail miserably on

many of those examples. As can be seen on these examples,

the network exhibits striking invariance and noise resistance

properties. While some authors have argued that invariance

requires more sophisticated models than feedforward NN’s

[87], LeNet-5 exhibits these properties to a large extent.

Similarly, it has been suggested that accurate recognition

of multiple overlapping objects require explicit mechanisms

that would solve the so-called feature binding problem [87].

As can be seen on Figs. 25 and 26, the network is able

to tell the characters apart even when they are closely

intertwined, a task that would be impossible to achieve

with the more classical HOS technique. The SDNN is also

able to correctly group disconnected pieces of ink that form

characters. Good examples of that are shown in the upper

half of Fig. 26. In the top left example, the 4 and the 0 are

more connected to each other than they are connected with

themselves, yet the system correctly identifies the 4 and the

0 as separate objects. The top right example is interesting

for several reasons. First the system correctly identifies the

three individual ones. Second, the left half and right half

of disconnected 4 are correctly grouped, even though no

geometrical information could decide to associate the left

half to the vertical bar on its left or on its right. The right

half of the 4 does cause the appearance of an erroneous

one on the SDNN output, but this one is removed by the

character model transducer which prevents characters from

appearing on contiguous outputs.

Another important advantage of SDNN is the ease with

which they can be implemented on parallel hardware.

Specialized analog/digital chips have been designed and

used in character recognition, and in image preprocessing

applications [88]. However the rapid progress of conven-

tional processor technology with reduced-precision vector

arithmetic instructions (such as Intel’s MMX) make the

success of specialized hardware hypothetical at best.3

C. Global Training of SDNN

In the above experiments, the string images were artifi-

cially generated from individual character. The advantage

is that we know in advance the location and the label of

the important character. With real training data, the correct

sequence of labels for a string is generally available, but

the precise locations of each corresponding character in the

input image are unknown.

In the experiments described in the previous section, the

best interpretation was extracted from the SDNN output

using a very simple GT. Global training of an SDNN can

be performed by back propagating gradients through such

GT’s arranged in architectures similar to the ones described

in Section VI.

This is somewhat equivalent to modeling the output

of an SDNN with an HMM. Globally trained, variable-

size TDNN/HMM hybrids have been used for speech

recognition and online handwriting recognition [67], [77],

[89], [90]. SDNN’s have been used in combination with

HMM’s or other elastic matching methods for handwritten

word recognition [91], [92].

Fig. 27 shows the GT architecture for training an

SDNN/HMM hybrid with the discriminative forward

criterion. The top part is comparable to the top part of

Fig. 21. On the right side the composition of the recognition

graph with the grammar gives the interpretation graph

with all the possible legal interpretations. On the left side

the composition is performed with a grammar that only

contains paths with the desired sequence of labels. This has

a somewhat similar function to the path selector used in the

previous section. Like in Section VI-D, the loss function is

the difference between the forward score obtained from the

left half and the forward score obtained from the right half.

To back propagate through the composition transformer,

we need to keep a record of which arc in the recognition

graph originated which arcs in the interpretation graph.

The derivative with respect to an arc in the recognition

graph is equal to the sum of the derivatives with respect

to all the arcs in the interpretation graph that originated

from it. Derivative can also be computed for the penalties

on the grammar graph, allowing to learn them as well. As

in the previous example, a discriminative criterion must

3 Short video clips of the LeNet-5 SDNN are available WWW:
http://www.research.att.com/˜yann/ocr.

30



Fig. 27. A globally trainable SDNN/HMM hybrid system ex-
pressed as a GTN.

be used, because using a nondiscriminative criterion could

result in a collapse effect if the network’s output RBF are

adaptive. The above training procedure can be equivalently

formulated in term of HMM. Early experiments in zip

code recognition [91], and more recent experiments in

online handwriting recognition [38] have demonstrated the

idea of globally trained SDNN/HMM hybrids. SDNN is

an extremely promising and attractive technique for OCR,

but so far it has not yielded better results than HOS. We

hope that these results will improve as more experience is

gained with these models.

D. Object Detection and Spotting with SDNN

An interesting application of SDNN’s is object detection

and spotting. The invariance properties of convolutional

networks, combined with the efficiency with which they

can be replicated over large fields, suggests that they can be

used for “brute force” object spotting and detection in large

images. The main idea is to train a single convolutional

network to distinguish images of the object of interest from

images present in the background. In utilization mode, the

network is replicated so as to cover the entire image to

be analyzed, thereby forming a 2-D SDNN. The output of

the SDNN is a 2-D plane in which activated units indicate

the presence of the object of interest in the corresponding

receptive field. Since the sizes of the objects to be detected

within the image are unknown, the image can be presented

to the network at multiple resolutions, and the results at

multiple resolutions combined. The idea has been applied

to face location [93], address block location on envelopes

[94], and hand tracking in video [95].

To illustrate the method, we will consider the case

of face detection in images as described in [93]. First,

images containing faces at various scales are collected.

Those images are filtered through a zero-mean Laplacian

filter so as to remove variations in global illumination and

low spatial frequency illumination gradients. Then, training

samples of faces and nonfaces are manually extracted from

those images. The face subimages are then size normalized

so that the height of the entire face is approximately 20

pixels while keeping fairly large variations (within a factor

of two). The scale of background subimages are picked

at random. A single convolutional network is trained on

those samples to classify face subimages from nonface

subimages.

When a scene image is to be analyzed, it is first filtered

through the Laplacian filter and subsampled at powers-of-

two resolutions. The network is replicated over each of

multiple resolution images. A simple voting technique is

used to combine the results from multiple resolutions.

A 2-D version of the global training method described

in the previous section can be used to alleviate the need

to manually locate faces when building the training sample

[93]. Each possible location is seen as an alternative inter-

pretation, i.e., one of several parallel arcs in a simple graph

that only contains a start node and an end node.

Other authors have used NN’s or other classifiers such

as SVM’s for face detection with great success [96], [97].

Their systems are very similar to the one described above,

including the idea of presenting the image to the network

at multiple scales. But since those systems do not use

convolutional networks, they cannot take advantage of the

speedup described here, and they have to rely on other

techniques, such as prefiltering and real-time tracking,

to keep the computational requirement within reasonable

limits. In addition, because those classifiers are much less

invariant to scale variations than convolutional networks, it

is necessary to multiply the number of scales at which the

images are presented to the classifier.

VIII. GRAPH TRANSFORMER NETWORKS

AND TRANSDUCERS

In Section IV, GTN’s were introduced as a general-

ization of multilayer, multimodule networks where the

state information is represented as graphs instead of fixed-

size vectors. This section reinterprets the GTN’s in the

framework of generalized transduction and proposes a

powerful graph composition algorithm.

A. Previous Work

Numerous authors in speech recognition have used

gradient-based learning methods that integrate graph-

based statistical models (notably HMM’s) with acoustic

recognition modules, mainly Gaussian mixture models,

but also NN’s [67], [78], [98], [99]. Similar ideas have

been applied to handwriting recognition (see [38] for

a review). However, there has been no proposal for a

systematic approach to multilayer graph-based trainable

systems. The idea of transforming graphs into other graphs

has received considerable attention in computer science

31



through the concept of weighted finite-state transducers

[86]. Transducers have been applied to speech recognition

[100] and language translation [101], and proposals have

been made for handwriting recognition [102]. This line

of work has been mainly focused on efficient search

algorithms [103] and on the algebraic aspects of combining

transducers and graphs (called acceptors in this context),

but very little effort has been devoted to building globally

trainable systems out of transducers. What is proposed

in the following sections is a systematic approach to

automatic training in graph-manipulating systems. A

different approach to graph-based trainable systems, called

input–output HMM, was proposed in [104] and [105].

B. Standard Transduction

In the established framework of finite-state transducers

[86], discrete symbols are attached to arcs in the graphs.

Acceptor graphs have a single symbol attached to each

arc whereas transducer graphs have two symbols (an input

symbol and an output symbol). A special null symbol is

absorbed by any other symbol (when concatenating symbols

to build a symbol sequence). Weighted transducers and

acceptors also have a scalar quantity attached to each

arc. In this framework, the composition operation takes

as input an acceptor graph and a transducer graph and

builds an output acceptor graph. Each path in this output

graph (with symbol sequence ) corresponds to one path

(with symbol sequence ) in the input acceptor graph

and one path and a corresponding pair of input–output

sequences in the transducer graph. The weights

on the arcs of the output graph are obtained by adding

the weights from the matching arcs in the input acceptor

and transducer graphs. In the rest of the paper, we will

call this graph composition operation using transducers the

(standard) transduction operation.

A simple example of transduction is shown in Fig. 28.

In this simple example, the input and output symbols

on the transducer arcs are always identical. This type of

transducer graph is called a grammar graph. To better

understand the transduction operation, imagine two tokens

sitting each on the start nodes of the input acceptor graph

and the transducer graph. The tokens can freely follow

any arc labeled with a null input symbol. A token can

follow an arc labeled with a nonnull input symbol if the

other token also follows an arc labeled with the same

input symbol. We have an acceptable trajectory when

both tokens reach the end nodes of their graphs (i.e.,

the tokens have reached the terminal configuration). This

trajectory represents a sequence of input symbols that

complies with both the acceptor and the transducer. We can

then collect the corresponding sequence of output symbols

along the trajectory of the transducer token. The above

procedure produces a tree, but a simple technique described

in Section VIII-C can be used to avoid generating multiple

copies of certain subgraphs by detecting when a particular

output state has already been seen.

The transduction operation can be performed very ef-

ficiently [106], but presents complex bookkeeping prob-

Fig. 28. Example of composition of the recognition graph with
the grammar graph in order to build an interpretation that is
consistent with both of them. During the forward propagation
(dark arrows), the methods check and fprop are used. Gradients
(dashed arrows) are back propagated with the adaptation of the
method group.

lems concerning the handling of all combinations of null

and nonnull symbols. If the weights are interpreted as

probabilities (normalized appropriately) then an acceptor

graph represents a probability distribution over the language

defined by the set of label sequences associated to all

possible paths (from the start to the end node) in the graph.

An example of application of the transduction operation

is the incorporation of linguistic constraints (a lexicon or

a grammar) when recognizing words or other character

strings. The recognition transformer produces the recog-

nition graph (an acceptor graph) by applying the NN

recognizer to each candidate segment. This acceptor graph

is composed with a transducer graph for the grammar. The

grammar transducer contains a path for each legal sequence

of symbol, possibly augmented with penalties to indicate

the relative likelihoods of the possible sequences. The arcs

contain identical input and output symbols. Another exam-

ple of transduction was mentioned in Section V: the path

selector used in the HOS training GTN is implementable by

a composition. The transducer graph is linear graph which

contains the correct label sequence. The composition of

the interpretation graph with this linear graph yields the

constrained graph.

C. Generalized Transduction

If the data structures associated to each arc took only

a finite number of values, composing the input graph and

an appropriate transducer would be a sound solution. For

our applications however, the data structures attached to

the arcs of the graphs may be vectors, images or other

32



high-dimensional objects that are not readily enumerated.

We present a new composition operation that solves this

problem.

Instead of only handling graphs with discrete symbols

and penalties on the arcs, we are interested in considering

graphs whose arcs may carry complex data structures,

including continuous-valued data structures such as vectors

and images. Composing such graphs requires additional

information.

1) When examining a pair of arcs (one from each input

graph), we need a criterion to decide whether to create

corresponding arc(s) and node(s) in the output graph,

based on the information attached to the input arcs.

We can decide to build an arc, several arcs, or an

entire subgraph with several nodes and arcs.

2) When that criterion is met, we must build the corre-

sponding arc(s) and node(s) in the output graph and

compute the information attached to the newly created

arc(s) as a function that the information attached to

the input arcs.

These functions are encapsulated in an object called

a composition transformer. An instance of composition

transformer implements the following three methods:

1) check(arc1, arc2) compares the data struc-

tures pointed to by arcs arc1 (from the first graph)

and arc2 (from the second graph) and returns

a boolean indicating whether corresponding arc(s)

should be created in the output graph;

2) fprop(ngraph, upnode,downnode, arc1,

arc2) is called when check(arc1,arc2) re-

turns true; this method creates new arcs and nodes

between nodes upnode and downnode in the out-

put graph ngraph, and computes the information

attached to these newly created arcs as a function of

the attached information of the input arcs arc1 and

arc2;

3) bprop(ngraph, upnode, downnode, arc1,

arc2) is called during training in order to prop-

agate gradient information from the output subgraph

between upnode and downnode into the data struc-

tures on the arc1 and arc2, as well as with respect

to the parameters that were used in the fprop call

with the same arguments; this method assumes that

the function used by fprop to compute the values

attached to its output arcs is differentiable.

The check method can be seen as constructing a dy-

namic architecture of functional dependencies, while the

fprop method performs a forward propagation through

that architecture to compute the numerical information at-

tached to the arcs. The bprop method performs a backward

propagation through the same architecture to compute the

partial derivatives of the loss function with respect to

the information attached to the arcs. This is illustrated in

Fig. 28.

Fig. 29 shows a simplified generalized graph composition

algorithm. This simplified algorithm does not handle null

transitions, and it does not check whether the tokens

Fig. 29. Pseudocode for a simplified generalized composition
algorithm. For simplifying the presentation, we do not handle
null transitions nor implement dead end avoidance. The two main
components of the composition appear clearly here: 1) the recursive
function simtoken() enumerating the token trajectories and 2)
the associative array map used for remembering which nodes of
the composed graph have been visited.

trajectory is acceptable (i.e., both tokens simultaneously

reach the end nodes of their graphs). The management

of null transitions is a straightforward modification of the

token simulation function. Before enumerating the possible

nonnull joint token transitions, we loop on the possible

null transitions of each token, recursively call the token

simulation function, and finally call the method fprop.

The safest way for identifying acceptable trajectories con-

sists of running a preliminary pass for identifying the

token configurations from which we can reach the terminal

configuration (i.e., both tokens on the end nodes). This

33



is easily achieved by enumerating the trajectories in the

opposite direction. We start on the end nodes and follow

the arcs upstream. During the main pass, we only build

the nodes that allow the tokens to reach the terminal

configuration.

Graph composition using transducers (i.e., standard trans-

duction) is easily and efficiently implemented as a gener-

alized transduction. The method check simply tests the

equality of the input symbols on the two arcs, and the

method fprop creates a single arc whose symbol is the

output symbol on the transducer’s arc.

The composition between pairs of graphs is particularly

useful for incorporating linguistic constraints in a handwrit-

ing recognizer. Examples of its use are given in the online

handwriting recognition system described in Section IX

(and in the check reading system described in Section X).

In the rest of the paper, the term composition transformer

will denote a GT based on the generalized transductions

of multiple graphs. The concept of generalized transduc-

tion is a very general one. In fact, many of the GT’s

described earlier in this paper, such as the segmenter and

the recognizer, can be formulated in terms of generalized

transduction. In this case, the generalized transduction does

not take two input graphs but a single input graph. The

method fprop of the transformer may create several arcs

or even a complete subgraph for each arc of the initial

graph. In fact the pair check,fprop itself can be seen

as procedurally defining a transducer.

In addition, it can be shown that the generalized trans-

duction of a single graph is theoretically equivalent to

the standard composition of this graph with a particular

transducer graph. However, implementing the operation this

way may be very inefficient since the transducer can be

very complicated.

In practice, the graph produced by a generalized transduc-

tion is represented procedurally in order to avoid building

the whole output graph (which may be huge when for

example the interpretation graph is composed with the

grammar graph). We only instantiate the nodes which are

visited by the search algorithm during recognition (e.g.,

Viterbi). This strategy propagates the benefits of pruning

algorithms (e.g., beam search) in all the GTN’s.

D. Notes on the Graph Structures

Section VI discussed the idea of global training by back-

propagating gradient through simple GT’s. The bprop

method is the basis of the back-propagation algorithm for

generic GT’s. A generalized composition transformer can

be seen as dynamically establishing functional relation-

ships between the numerical quantities on the input and

output arcs. Once the check function has decided that a

relationship should be established, the fprop function im-

plements the numerical relationship. The check function

establishes the structure of the ephemeral network inside

the composition transformer.

Since fprop is assumed to be differentiable, gradients

can be back propagated through that structure. Most param-

eters affect the scores stored on the arcs of the successive

graphs of the system. A few threshold parameters may

determine whether an arc appears or not in the graph.

Since nonexisting arcs are equivalent to arcs with very large

penalties, we only consider the case of parameters affecting

the penalties.

In the kind of systems we have discussed until now

(and the application described in Section X), much of the

knowledge about the structure of the graph that is produced

by a GT is determined by the nature of the GT, but it may

also depend on the value of the parameters and on the input.

It may also be interesting to consider GT modules which

attempt to learn the structure of the output graph. This might

be considered a combinatorial problem and not amenable

to gradient-based learning, but a solution to this problem is

to generate a large graph that contains the graph candidates

as subgraphs, and then select the appropriate subgraph.

E. GTN and HMM’s

GTN’s can be seen as a generalization and an extension

of HMM’s. On the one hand, the probabilistic interpretation

can be either kept (with penalties being log-probabilities),

pushed to the final decision stage (with the difference of

the constrained forward penalty and the unconstrained for-

ward penalty being interpreted as negative log-probabilities

of label sequences), or dropped altogether (the network

just represents a decision surface for label sequences in

input space). On the other hand, GTN’s extend HMM’s

by allowing to combine in a well-principled framework

multiple levels of processing, or multiple models (e.g.,

Pereira et al. have been using the transducer framework for

stacking HMM’s representing different levels of processing

in automatic speech recognition [86]).

Unfolding an HMM in time yields a graph that is very

similar to our interpretation graph (at the final stage of

processing of the GTN, before Viterbi recognition). It has

nodes associated to each time step and state in the

model. The penalty for an arc from to

then corresponds to the negative log-probability of emitting

observed data at position and going from state to

state in the time interval With this probabilistic

interpretation, the forward penalty is the negative logarithm

of the likelihood of whole observed data sequence (given

the model).

In Section VI we mentioned that the collapsing phe-

nomenon can occur when nondiscriminative loss functions

are used to train NN’s/HMM hybrid systems. With classi-

cal HMM’s with fixed preprocessing, this problem does

not occur because the parameters of the emission and

transition probability models are forced to satisfy certain

probabilistic constraints: the sum or the integral of the

probabilities of a random variable over its possible values

must be one. Therefore, when the probability of certain

events is increased, the probability of other events must

automatically be decreased. On the other hand, if the

probabilistic assumptions in an HMM (or other probabilistic

model) are not realistic, discriminative training, discussed

in Section VI, can improve performance as this has been

34



clearly shown for speech recognition systems [48]–[50],

[107], [108].

The input–output HMM (IOHMM) [105], [109] is

strongly related to GT’s. Viewed as a probabilistic model,

an IOHMM represents the conditional distribution of

output sequences given input sequences (of the same or

a different length). It is parameterized from an emission

probability module and a transition probability module.

The emission probability module computes the conditional

emission probability of an output variable (given an

input value and the value of discrete “state” variable).

The transition probability module computes conditional

transition probabilities of a change in the value of the

“state” variable, given the input value. Viewed as a GT,

it assigns an output graph (representing a probability

distribution over the sequences of the output variable)

to each path in the input graph. All these output graphs

have the same structure, and the penalties on their arcs are

simply added in order to obtain the complete output graph.

The input values of the emission and transition modules are

read off the data structure on the input arcs of the IOHMM

GT. In practice, the output graph may be very large, and

needs not be completely instantiated (i.e., it is pruned: only

the low penalty paths are created).

IX. AN ON-LINE HANDWRITING RECOGNITION SYSTEM

Natural handwriting is often a mixture of different

“styles,” i.e., lower case printed, upper case, and cursive.

A reliable recognizer for such handwriting would greatly

improve interaction with pen-based devices, but its imple-

mentation presents new technical challenges. Characters

taken in isolation can be very ambiguous, but considerable

information is available from the context of the whole word.

We have built a word recognition system for pen-based

devices based on four main modules: 1) a preprocessor that

normalizes a word, or word group, by fitting a geometrical

model to the word structure; 2) a module that produces an

“annotated image” from the normalized pen trajectory; 3)

a replicated convolutional NN that spots and recognizes

characters; and 4) a GTN that interprets the networks

output by taking word-level constraints into account. The

network and the GTN are jointly trained to minimize an

error measure defined at the word level.

In this work, we have compared a system based on

SDNN’s (such as described in Section VII), and a system

based on HOS (such as described in Section V). Because of

the sequential nature of the information in the pen trajectory

(which reveals more information than the purely optical in-

put from in image), HOS can be very efficient in proposing

candidate character cuts, especially for noncursive script.

A. Preprocessing

Input normalization reduces intracharacter variability,

thereby simplifying character recognition. We have used

a word normalization scheme [92] based on fitting a geo-

metrical model of the word structure. Our model has four

“flexible” lines representing respectively the ascenders line,

Fig. 30. An online handwriting recognition GTN based on HOS.

the core line, the base line, and the descenders line. The

lines are fitted to local minima or maxima of the pen

trajectory. The parameters of the lines are estimated with

a modified version of the EM algorithm to maximize the

joint probability of observed points and parameter values,

using a prior on parameters that prevents the lines from

collapsing on each other.

The recognition of handwritten characters from a pen

trajectory on a digitizing surface is often done in the

time domain [44], [110], [111]. Typically, trajectories are

normalized and local geometrical or dynamical features are

extracted. The recognition may then be performed using

curve matching [110], or other classification techniques

such as TDNN’s [44], [111]. While these representations

have several advantages, their dependence on stroke order-

ing and individual writing styles makes them difficult to use

in high accuracy, writer independent systems that integrate

the segmentation with the recognition.

Since the intent of the writer is to produce a legible

image, it seems natural to preserve as much of the pictorial

nature of the signal as possible, while at the same time

exploit the sequential information in the trajectory. For this

purpose we have designed a representation scheme called

AMAP [38], where pen trajectories are represented by low-

resolution images in which each picture element contains

information about the local properties of the trajectory. An

AMAP can be viewed as an “annotated image” in which

each pixel is a five-element feature vector: four features are

associated to four orientations of the pen trajectory in the

35



Fig. 31. An online handwriting recognition GTN based on
SDNN.

area around the pixel and the fifth one is associated to local

curvature in the area around the pixel. A particularly useful

feature of the AMAP representation is that it makes very

few assumptions about the nature of the input trajectory.

It does not depend on stroke ordering or writing speed,

and it can be used with all types of handwriting (capital,

lower case, cursive, punctuation, symbols). Unlike many

other representations (such as global features), AMAP’s

can be computed for complete words without requiring

segmentation.

B. Network Architecture

One of the best networks we found for both online and

offline character recognition is a five-layer convolutional

network somewhat similar to LeNet-5 (Fig. 2), but with

multiple input planes and different numbers of units on

the last two layers—layer one: convolution with eight

kernels of size 3 3; layer two: 2 2 subsampling; layer

three: convolution with 25 kernels of size 5 5; layer

four: convolution with 84 kernels of size 4 4; layer five:

2 1 subsampling; classification layer: 95 RBF units (one

per class in the full printable ASCII set). The distributed

codes on the output are the same as for LeNet-5, except

they are adaptive unlike with LeNet-5. When used in the

HOS system, the input to above network consisted of

an AMAP with five planes, 20 rows, and 18 columns.

It was determined that this resolution was sufficient for

representing handwritten characters. In the SDNN version,

the number of columns was varied according to the width

of the input word. Once the number of subsampling layers

and the sizes of the kernels are chosen, the sizes of all the

layers, including the input, are determined unambiguously.

The only architectural parameters that remain to be selected

are the number of feature maps in each layer and the infor-

mation as to what feature map is connected to what other

feature map. In our case, the subsampling rates were chosen

as small as possible (2 2) and the kernels as small as

possible in the first layer (3 3) to limit the total number of

connections. Kernel sizes in the upper layers are chosen to

be as small as possible while satisfying the size constraints

mentioned above. Larger architectures did not necessarily

perform better and required considerably more time to

be trained. A very small architecture with half the input

field also performed worse because of insufficient input

resolution. Note that the input resolution is nonetheless

much less than for OCR because the angle and curvature

provide more information than would a single grey level

at each pixel.

C. Network Training

Training proceeded in two phases. First, we kept the

centers of the RBF’s fixed and trained the network weights

so as to minimize the output distance of the RBF unit

corresponding to the correct class. This is equivalent to

minimizing the MSE between the previous layer and the

center of the correct-class RBF. This bootstrap phase was

performed on isolated characters. In the second phase, all

the parameters, network weights, and RBF centers were

trained globally to minimize a discriminative criterion at

the word level.

With the HOS approach, the GTN was composed of four

main GT’s.

1) The segmentation transformer performs the HOS and

outputs the segmentation graph. An AMAP is then

computed for each image attached to the arcs of this

graph.

2) The character recognition transformer applies the

convolutional network character recognizer to each

candidate segment and outputs the recognition graph

with penalties and classes on each arc.

3) The composition transformer composes the recog-

nition graph with a grammar graph representing a

language model incorporating lexical constraints.

4) The beam search transformer extracts a good in-

terpretation from the interpretation graph. This task

could have been achieved with the usual Viterbi

Transformer. The beam search algorithm, however,

implements pruning strategies which are appropriate

for large interpretation graphs.

With the SDNN approach, the main GT’s are the fol-

lowing.

1) The SDNN transformer replicates the convolutional

network over the a whole word image and outputs

a recognition graph that is a linear graph with class

36



Fig. 32. Comparative results (character error rates) showing the improvement brought by global
training on the SDNN/HMM hybrid, and on the HOS, without and with a 25 461-word dictionary.

penalties for every window centered at regular inter-

vals on the input image.

2) The character-level composition transformer com-

poses the recognition graph with a left-to-right HMM

for each character class (as in Fig. 27).

3) The word-level composition transformer composes

the output of the previous transformer with a language

model incorporating lexical constraints and outputs

the interpretation graph.

4) The beam search transformer extracts a good inter-

pretation from the interpretation graph.

In this application, the language model simply constrains

the final output graph to represent sequences of character

labels from a given dictionary. Furthermore, the interpreta-

tion graph is not actually completely instantiated: the only

nodes created are those that are needed by the beam search

module. The interpretation graph is therefore represented

procedurally rather than explicitly.

A crucial contribution of this research was the joint

training of all GT modules within the network with respect

to a single criterion, as explained in Sections VI and

VII. We used the discriminative forward loss function on

the final output graph: minimize the forward penalty of

the constrained interpretation (i.e., along all the “correct”

paths) while maximizing the forward penalty of the whole

interpretation graph (i.e., along all the paths).

During global training, the loss function was optimized

with the stochastic diagonal Levenberg–Marquardt proce-

dure described in Appendix C, which uses second deriva-

tives to compute optimal learning rates. This optimization

operates on all the parameters in the system, most notably

the network weights and the RBF centers.

D. Experimental Results

In the first set of experiments, we evaluated the gen-

eralization ability of the NN classifier coupled with the

word normalization preprocessing and AMAP input rep-

resentation. All results are in writer independent mode

(different writers in training and testing). Initial training

on isolated characters was performed on a database of

approximately 100 000 hand printed characters (95 classes

of upper case, lower case, digits, and punctuation). Tests on

a database of isolated characters were performed separately

on the four types of characters: upper case (2.99% error on

9122 patterns), lower case (4.15% error on 8201 patterns),

digits (1.4% error on 2938 patterns), and punctuation (4.3%

error on 881 patterns). Experiments were performed with

the network architecture described above. To enhance the

robustness of the recognizer to variations in position, size,

orientation, and other distortions, additional training data

was generated by applying local affine transformations to

the original characters.

The second and third set of experiments concerned the

recognition of lower case words (writer independent). The

tests were performed on a database of 881 words. First we

evaluated the improvements brought by the word normal-

ization to the system. For the SDNN/HMM system we have

to use word-level normalization since the network sees one

whole word at a time. With the HOS system, and before

doing any word-level training, we obtained with character-

level normalization 7.3% and 3.5% word and character

errors (adding insertions, deletions and substitutions) when

the search was constrained within a 25 461-word dictionary.

When using the word normalization preprocessing instead

of a character level normalization, error rates dropped to

4.6% and 2.0% for word and character errors respectively,

i.e., a relative drop of 37% and 43% in word and character

error respectively. This suggests that normalizing the word

in its entirety is better than first segmenting it and then

normalizing and processing each of the segments.

In the third set of experiments, we measured the im-

provements obtained with the joint training of the NN

and the postprocessor with the word-level criterion, in

comparison to training based only on the errors performed

at the character level. After initial training on individual

characters as above, global word-level discriminative train-

ing was performed with a database of 3500 lower case

words. For the SDNN/HMM system, without any dictionary

constraints, the error rates dropped from 38% and 12.4%

word and character error to 26% and 8.2% respectively after

word-level training, i.e., a relative drop of 32% and 34%.

37



For the HOS system and a slightly improved architecture,

without any dictionary constraints, the error rates dropped

from 22.5% and 8.5% word and character error to 17% and

6.3% respectively, i.e., a relative drop of 24.4% and 25.6%.

With a 25 461-word dictionary, errors dropped from 4.6%

and 2.0% word and character errors to 3.2% and 1.4%,

respectively, after word-level training, i.e., a relative drop

of 30.4% and 30.0%. Even lower error rates can be obtained

by drastically reducing the size of the dictionary to 350

words, yielding 1.6% and 0.94% word and character errors.

These results clearly demonstrate the usefulness of glob-

ally trained NN/HMM hybrids for handwriting recognition.

This confirms similar results obtained earlier in speech

recognition [77].

X. A CHECK READING SYSTEM

This section describes a GTN based check reading sys-

tem, intended for immediate industrial deployment. It also

shows how the use of gradient based-learning and GTN’s

make this deployment fast and cost-effective while yielding

an accurate and reliable solution.

The verification of the amount on a check is a task that

is extremely time and money consuming for banks. As

a consequence, there is a very high interest in automat-

ing the process as much as possible (see, for example,

[112]–[114]). Even a partial automation would result in

considerable cost reductions. The threshold of economic

viability for automatic check readers, as set by the bank,

is when 50% of the checks are read with less than 1%

error. The other 50% of the check being rejected and

sent to human operators. In such a case, we describe the

performance of the system as 50% correct/49% reject/1%

error. The system presented here was one of the first to

cross that threshold on representative mixtures of business

and personal checks.

Checks contain at least two versions of the amount. The

courtesy amount is written with numerals, while the legal

amount is written with letters. On business checks, which

are generally machine-printed, these amounts are relatively

easy to read but quite difficult to find due to the lack of

standard for business check layout. On the other hand, these

amounts on personal checks are easy to find but much

harder to read.

For simplicity (and speed requirements), our initial task

is to read the courtesy amount only. This task consists of

two main steps.

1) The system has to find, among all the fields (lines

of text), the candidates that are the most likely to

contain the courtesy amount. This is obvious for many

personal checks, where the position of the amount

is standardized. However, as already noted, finding

the amount can be rather difficult in business checks,

even for the human eye. There are many strings of

digits, such as the check number, the date, or even

“not to exceed” amounts, that can be confused with

the actual amount. In many cases, it is very difficult to

decide which candidate is the courtesy amount before

performing a full recognition.

Fig. 33. A complete check amount reader implemented as a
single cascade of GT modules. Successive graph transformations
progressively extract higher level information.

2) In order to read (and choose) some courtesy amount

candidates, the system has to segment the fields into

characters, read and score the candidate characters,

and finally find the best interpretation of the amount

using contextual knowledge represented by a stochas-

tic grammar for check amounts.

The GTN methodology was used to build a check amount

reading system that handles both personal checks and

business checks.

A. A GTN for Check Amount Recognition

We now describe the successive graph transformations

that allow this network to read the check amount (cf.

Fig. 33). Each GT produces a graph whose paths encode

and score the current hypotheses considered at this stage

of the system.

The input to the system is a trivial graph with a single

arc that carries the image of the whole check (cf. Fig. 33).

1) The Field Location Transformer: first performs

classical image analysis (including connected component

analysis, ink density histograms, layout analysis, etc.) and

heuristically extracts rectangular zones that may contain the

check amount. produces an output graph, called the

field graph (cf. Fig. 33) such that each candidate zone is

associated with one arc that links the start node to the

end node. Each arc contains the image of the zone and

a penalty term computed from simple features extracted

from the zone (absolute position, size, aspect ratio, etc.).

The penalty term is close to zero if the features suggest

that the field is a likely candidate and is large if the field is

deemed less likely to be an amount. The penalty function is

differentiable, therefore its parameters are globally tunable.

38



An arc may represent separate dollar and cent amounts

as a sequence of fields. In fact, in handwritten checks, the

cent amount may be written over a fractional bar and not

aligned at all with the dollar amount. In the worst case, one

may find several cent amount candidates (above and below

the fraction bar) for the same dollar amount.

2) The Segmentation Transformer: similar to the

one described in Section VIII, examines each zone

contained in the field graph and cuts each image into

pieces of ink using heuristic image processing techniques.

Each piece of ink may be a whole character or a piece

of character. Each arc in the field graph is replaced by

its corresponding segmentation graph that represents all

possible groupings of pieces of ink. Each field segmentation

graph is appended to an arc that contains the penalty of the

field in the field graph. Each arc carries the segment image,

together with a penalty that provides a first evaluation

of the likelihood that the segment actually contains a

character. This penalty is obtained with a differentiable

function that combines a few simple features such as

the space between the pieces of ink or the compliance

of the segment image with a global baseline, and a few

tunable parameters. The segmentation graph represents all

the possible segmentations of all the field images. We can

compute the penalty for one segmented field by adding

the arc penalties along the corresponding path. As before,

using a differentiable function for computing the penalties

will ensure that the parameters can be optimized globally.

The segmenter uses a variety of heuristics to find candi-

date cut. One of the most important ones is called “hit and

deflect” [115]. The idea is to cast lines downward from the

top of the field image. When a line hits a black pixel, it is

deflected so as to follow the contour of the object. When a

line hits a local minimum of the upper profile, i.e., when it

cannot continue downward without crossing a black pixel,

it is just propagated vertically downward through the ink.

When two such lines meet each other, they are merged

into a single cut. The procedure can be repeated from the

bottom up. This strategy allows the separation of touching

characters such as double zeros.

3) The Recognition Transformer: iterates over all

segment arcs in the segmentation graph and runs a character

recognizer on the corresponding segment image. In our

case, the recognizer is LeNet-5, the convolutional NN

described in Section II, whose weights constitute the largest

and most important subset of tunable parameters. The

recognizer classifies segment images into one of 95 classes

(fully printable ASCII set) plus a rubbish class for unknown

symbols or badly formed characters. Each arc in the input

graph is replaced by 96 arcs in the output graph.

Each of those 96 arcs contains the label of one of the

classes, and a penalty that is the sum of the penalty of

the corresponding arc in the input (segmentation) graph,

and the penalty associated with classifying the image in

the corresponding class, as computed by the recognizer. In

other words, the recognition graph represents a weighted

trellis of scored character classes. Each path in this graph

represents a possible character string for the corresponding

field. We can compute a penalty for this interpretation

by adding the penalties along the path. This sequence of

characters may or may not be a valid check amount.

4) The Composition Transformer: selects the paths

of the recognition graph that represent valid character

sequences for check amounts. This transformer takes two

graphs as input: the recognition graph and the grammar

graph. The grammar graph contains all possible sequences

of symbols that constitute a well-formed amount. The out-

put of the composition transformer, called the interpretation

graph, contains all the paths in the recognition graph that are

compatible with the grammar. The operation that combines

the two input graphs to produce the output is a generalized

transduction (see Section IX). A differentiable function is

used to compute the data attached to the output arc from

the data attached to the input arcs. In our case, the output

arc receives the class label of the two arcs and a penalty

computed by simply summing the penalties of the two

input arcs (the recognizer penalty and the arc penalty in

the grammar graph). Each path in the interpretation graph

represents one interpretation of one segmentation of one

field on the check. The sum of the penalties along the path

represents the “badness” of the corresponding interpretation

and combines evidence from each of the modules along the

process, as well as from the grammar.

5) The Viterbi Transformer: The Viterbi transformer fi-

nally selects the path with the lowest accumulated penalty

corresponding to the best grammatically correct interpreta-

tions.

B. Gradient-Based Learning

Each stage of this check reading system contains tunable

parameters. While some of these parameters could be

manually adjusted (e.g., the parameters of the field locator

and segmenter), the vast majority of them must be learned,

particularly the weights of the NN recognizer.

Prior to globally optimizing the system, each module pa-

rameters are initialized with reasonable values. The param-

eters of the field locator and the segmenter are initialized by

hand, while the parameters of the NN character recognizer

are initialized by training on a database of presegmented

and labeled characters. Then, the entire system is trained

globally from whole check images labeled with the correct

amount. No explicit segmentation of the amounts is needed

to train the system: it is trained at the check level.

The loss function minimized by our global training

procedure is the discriminative forward criterion described

in Section VI: the difference between 1) the forward penalty

of the constrained interpretation graph (constrained by the

correct label sequence) and 2) the forward penalty of the

unconstrained interpretation graph. Derivatives can be back

propagated through the entire structure, although it is only

practical to do it down to the segmenter.

C. Rejecting Low Confidence Checks

In order to be able to reject checks which are the

most likely to carry erroneous Viterbi answers, we must

rate them with a confidence and reject the check if this

39



Fig. 34. Additional processing required to compute the confi-
dence.

confidence is below a given threshold. To compare the

unnormalized Viterbi penalties of two different checks

would be meaningless when it comes to decide which

answer we trust the most.

The optimal measure of confidence is the probability

of the Viterbi answer given the input image. As seen

in Section VI-E, given a target sequence (which, in this

case, would be the Viterbi answer), the discriminative

forward loss function is an estimate of the logarithm of

this probability. Therefore, a simple solution to obtain a

good estimate of the confidence is to reuse the interpretation

graph (see Fig. 33) to compute the discriminative forward

loss as described in Fig. 21, using as our desired sequence

the Viterbi answer. This is summarized in Fig. 34, with

D. Results

A version of the above system was fully implemented

and tested on machine-print business checks. This system is

basically a generic GTN engine with task specific heuristics

encapsulated in the check and fprop method. As a con-

sequence, the amount of code to write was minimal: mostly

the adaptation of an earlier segmenter into the segmentation

transformer. The system that deals with handwritten or

personal checks was based on earlier implementations that

used the GTN concept in a restricted way.

The NN classifier was initially trained on 500 000 images

of character images from various origins spanning the entire

printable ASCII set. This contained both handwritten and

machine-printed characters that had been previously size

normalized at the string level. Additional images were

generated by randomly distorting the original images using

simple affine transformations of the images. The network

was then further trained on character images that had been

automatically segmented from check images and manually

truthed. The network was also initially trained to reject

noncharacters that resulted from segmentation errors. The

recognizer was then inserted in the check-reading system

and a small subset of the parameters were trained globally

(at the field level) on whole check images.

On 646 business checks that were automatically cat-

egorized as machine printed, the performance was 82%

correctly recognized checks, 1% errors, and 17% rejects.

This can be compared to the performance of the previous

system on the same test set: 68% correct, 1% errors, and

31% rejects. A check is categorized as machine-printed

when characters that are near a standard position dollar

sign are detected as machine printed, or when, if nothing is

found in the standard position, at least one courtesy amount

candidate is found somewhere else. The improvement is

attributed to three main causes. First the NN recognizer

was bigger and trained on more data. Second, because of

the GTN architecture, the new system could take advantage

of grammatical constraints in a much more efficient way

than the previous system. Third, the GTN architecture

provided extreme flexibility for testing heuristics, adjusting

parameters, and tuning the system. This last point is more

important than it seems. The GTN framework separates

the “algorithmic” part of the system from the “knowledge-

based” part of the system, allowing easy adjustments of the

latter. The importance of global training was only minor

in this task because the global training only concerned a

small subset of the parameters.

An independent test performed by systems integrators

in 1995 showed the superiority of this system over other

commercial courtesy amount reading systems. The system

was integrated in NCR’s line of check reading systems. It

has been fielded in several banks across the United States

since June 1996, and it has been reading millions of checks

per day since then.

XI. CONCLUSIONS

During the short history of automatic pattern recognition,

increasing the role of learning seems to have invariably

improved the overall performance of recognition systems.

The systems described in this paper are more evidence to

this fact. Convolutional NN’s have been shown to eliminate

the need for hand-crafted feature extractors. GTN’s have

been shown to reduce the need for hand-crafted heuristics,

manual labeling, and manual parameter tuning in document

recognition systems. As training data becomes plentiful, as

computers get faster, and as our understanding of learning

algorithms improves, recognition systems will rely more

and more of learning and their performance will improve.

Just as the back-propagation algorithm elegantly solved

the credit assignment problem in multilayer NN’s, the

gradient-based learning procedure for GTN’s introduced in

this paper solves the credit assignment problem in systems

whose functional architecture dynamically changes with

each new input. The learning algorithms presented here are

in a sense nothing more than unusual forms of gradient

descent in complex, dynamic architectures, with efficient

back-propagation algorithms to compute the gradient. The

results in this paper help establish the usefulness and

relevance of gradient-based minimization methods as a

general organizing principle for learning in large systems.

It was shown that all the steps of a document analysis

system can be formulated as GT’s through which gradi-

40



ents can be back propagated. Even in the nontrainable

parts of the system, the design philosophy in terms of

graph transformation provides a clear separation between

domain-specific heuristics (e.g., segmentation heuristics)

and generic, procedural knowledge (the generalized trans-

duction algorithm)

It is worth pointing out that data generating models (such

as HMM’s) and the maximum likelihood principle were not

called upon to justify most of the architectures and the train-

ing criteria described in this paper. Gradient-based learning

applied to global discriminative loss functions guarantees

optimal classification and rejection without the use of “hard

to justify” principles that put strong constraints on the

system architecture, often at the expense of performances.

More specifically, the methods and architectures pre-

sented in this paper offer generic solutions to a large number

of problems encountered in pattern recognition systems.

1) Feature extraction is traditionally a fixed transform,

and it is generally derived from some expert prior

knowledge about the task. This relies on the probably

incorrect assumption that the human designer is able

to capture all the relevant information in the input.

We have shown that the application of gradient-based

learning to convolutional NN’s allows us to learn ap-

propriate features from examples. The success of this

approach was demonstrated in extensive comparative

digit recognition experiments on the NIST database.

2) Segmentation and recognition of objects in images

cannot be completely decoupled. Instead of taking

hard segmentation decisions too early, we have used

HOS to generate and evaluate a large number of

hypotheses in parallel, postponing any decision until

the overall criterion is minimized.

3) Hand-truthing images to obtain segmented characters

for training a character recognizer is expensive and

does not take into account the way in which a whole

document or sequence of characters will be recog-

nized (in particular, the fact that some segmentation

candidates may be wrong, even though they may look

like true characters). Instead we train multimodule

systems to optimize a global measure of performance,

which does not require time consuming detailed hand-

truthing and yields significantly better recognition

performance because it allows to train these modules

to cooperate toward a common goal.

4) Ambiguities inherent in the segmentation, character

recognition, and linguistic model should be inte-

grated optimally. Instead of using a sequence of task-

dependent heuristics to combine these sources of in-

formation, we have proposed a unified framework in

which generalized transduction methods are applied

to graphs representing a weighted set of hypotheses

about the input. The success of this approach was

demonstrated with a commercially deployed check-

reading system that reads millions of business and

personal checks per day: the generalized transduction

engine resides in only a few hundred lines of code.

5) Traditional recognition systems rely on many hand-

crafted heuristics to isolate individually recognizable

objects. The promising SDNN approach draws on the

robustness and efficiency of convolutional NN’s to

avoid explicit segmentation altogether. Simultaneous

automatic learning of segmentation and recognition

can be achieved with gradient-based learning meth-

ods.

This paper presents a small number of examples of GT

modules, but it is clear that the concept can be applied to

many situations where the domain knowledge or the state

information can be represented by graphs. This is the case

in many audio signal recognition tasks, and visual scene

analysis applications. Future work will attempt to apply

GT networks to such problems, with the hope of allowing

more reliance on automatic learning and less on detailed

engineering.

APPENDIX A

PRECONDITIONS FOR FASTER CONVERGENCE

As seen before, the squashing function used in our

convolutional networks is Symmetric

functions are believed to yield faster convergence, although

the learning can become extremely slow if the weights

are too small. The cause of this problem is that in weight

space the origin is a fixed point of the learning dynamics

and, although it is a saddle point, it is attractive in almost

all directions [116]. For our simulations, we use

and (see [20], [34]). With this choice of

parameters, the equalities and are

satisfied. The rationale behind this is that the overall gain

of the squashing transformation is around one in normal

operating conditions, and the interpretation of the state of

the network is simplified. Moreover, the absolute value of

the second derivative of is a maximum at 1 and 1,

which improves the convergence toward the end of the

learning session. This particular choice of parameters is

merely a convenience, and does not affect the result.

Before training, the weights are initialized with random

values using a uniform distribution between and

, where is the number of inputs (fan-in) of the unit

which the connection belongs to. Since several connections

share a weight, this rule could be difficult to apply, but in

our case all connections sharing a same weight belong to

units with identical fan-ins. The reason for dividing by the

fan-in is that we would like the initial standard deviation

of the weighted sums to be in the same range for each

unit and to fall within the normal operating region of the

sigmoid. If the initial weights are too small, the gradients

are very small and the learning is slow. If they are too

large, the sigmoids are saturated and the gradient is also

very small. The standard deviation of the weighted sum

scales like the square root of the number of inputs when

the inputs are independent, and it scales linearly with the

number of inputs if the inputs are highly correlated. We

chose to assume the second hypothesis since some units

receive highly correlated signals.

41



APPENDIX B

STOCHASTIC GRADIENT VERSUS BATCH GRADIENT

Gradient-based learning algorithms can use one of two

classes of methods to update the parameters. The first

method, dubbed “batch gradient,” is the classical one: the

gradients are accumulated over the entire training set, and

the parameters are updated after the exact gradient has

been so computed. In the second method, called “stochastic

gradient,” a partial, or noisy, gradient is evaluated on the

basis of one single training sample (or a small number

of samples), and the parameters are updated using this

approximate gradient. The training samples can be selected

randomly or according to a properly randomized sequence.

In the stochastic version the gradient estimates are noisy,

but the parameters are updated much more often than

with the batch version. An empirical result of considerable

practical importance is that on tasks with large, redundant

data sets, the stochastic version is considerably faster than

the batch version, sometimes by orders of magnitude [117].

Although the reasons for this are not totally understood

theoretically, an intuitive explanation can be found in the

following extreme example. Let us take an example where

the training database is composed of two copies of the

same subset. Then accumulating the gradient over the whole

set would cause redundant computations to be performed.

On the other hand, running Stochastic Gradient once on

this training set would amount to performing two complete

learning iterations over the small subset. This idea can be

generalized to training sets where there exist no precise

repetition of the same pattern but where some redundancy is

present. In fact stochastic update must be better when there

is redundancy, i.e., when a certain level of generalization

is expected.

Many authors have claimed that second-order methods

should be used in lieu of gradient descent for NN training.

The literature abounds with recommendations [118] for

classical second-order methods such as the Gauss–Newton

or Levenberg–Marquardt algorithms for quasi-Newton

methods such as Broyden–Fletcher–Goldfarb–Shanno,

limited-storage Broyden–Fletcher–Goldfarb–Shanno, or

for various versions of the conjugate gradients method.

Unfortunately, all of the above methods are unsuit-

able for training large NN’s on large data sets. The

Gauss–Newton and Levenberg–Marquardt methods require

operations per update, where is the number

of parameters, which makes them impractical for even

moderate size networks. Quasi-Newton methods require

“only” operations per update, but that still makes

them impractical for large networks. Limited-storage Broy-

den–Fletcher–Goldfarb–Shanno’s and conjugate gradients

require only operations per update so they would

appear appropriate. Unfortunately, their convergence speed

relies on an accurate evaluation of successive “conjugate

descent directions” which only makes sense in “batch”

mode. For large data sets, the speed-up brought by

these methods over regular batch gradient descent cannot

match the enormous speed up brought by the use of

stochastic gradient. Several authors have attempted to

use conjugate gradient with small batches or batches of

increasing sizes [119], [120], but those attempts have

not yet been demonstrated to surpass a carefully tuned

stochastic gradient. Our experiments were performed with

a stochastic method that scales the parameter axes so as to

minimize the eccentricity of the error surface.

APPENDIX C

STOCHASTIC DIAGONAL LEVENBERG–MARQUARDT

Owing to the reasons given in Appendix B, we prefer

to update the weights after each presentation of a single

pattern in accordance with stochastic update methods. The

patterns are presented in a constant random order, and the

training set is typically repeated 20 times.

Our update algorithm is dubbed the stochastic diagonal

Levenberg–Marquardt method where an individual learning

rate (step size) is computed for each parameter (weight)

before each pass through the training set [20], [34], [121].

These learning rates are computed using the diagonal terms

of an estimate of the Gauss–Newton approximation to

the Hessian (second derivative) matrix. This algorithm is

not believed to bring a tremendous increase in learning

speed but it converges reliably without requiring extensive

adjustments of the learning parameters. It corrects major

ill-conditioning of the loss function that are due to the

peculiarities of the network architecture and the training

data. The additional cost of using this procedure over

standard stochastic gradient descent is negligible.

At each learning iteration a particular parameter is

updated according to the following stochastic update rule:

(18)

where is the instantaneous loss function for pattern

In convolutional NN’s, because of the weight sharing,

the partial derivative is the sum of the partial

derivatives with respect to the connections that share the

parameter

(19)

where is the connection weight from unit to unit

is the set of unit index pairs such that the connection

between and share the parameter i.e.,

(20)

As stated previously, the step sizes are not constant but

are function of the second derivative of the loss function

along the axis

(21)

where is a hand-picked constant and is an estimate

of the second derivative of the loss function with respect

to The larger is, the smaller the weight update.

The parameter prevents the step size from becoming too

42



large when the second derivative is small, very much like

the “model-trust” methods, and the Levenberg–Marquardt

methods in nonlinear optimization [8]. The exact formula

to compute from the second derivatives with respect

to the connection weights is

(22)

However, we make three approximations. The first approx-

imation is to drop the off-diagonal terms of the Hessian

with respect to the connection weights in (22)

(23)

Naturally, the terms are the average over the

training set of the local second derivatives

(24)

Those local second derivatives with respect to connection

weights can be computed from local second derivatives with

respect to the total input of the downstream unit

(25)

where is the state of unit and is the second

derivative of the instantaneous loss function with respect to

the total input to unit (denoted Interestingly, there is

an efficient algorithm to compute those second derivatives

which is very similar to the back-propagation procedure

used to compute the first derivatives [20], [21]

(26)

Unfortunately, using those derivatives leads to well-known

problems associated with every Newton-like algorithm:

these terms can be negative and can cause the gradient

algorithm to move uphill instead of downhill. Therefore,

our second approximation is a well-known trick called

the Gauss–Newton approximation, which guarantees that

the second derivative estimates are nonnegative. The

Gauss–Newton approximation essentially ignores the

nonlinearity of the estimated function (the NN, in our case),

but not that of the loss function. The back propagation

equation for Gauss-Newton approximations of the second

derivatives is

(27)

This is very similar to the formula for back propagating the

first derivatives, except that the sigmoid’s derivative and

the weight values are squared. The right-hand side is a sum

of products of nonnegative terms, therefore the left-hand

side term is nonnegative.

The third approximation we make is that we do not run

the average in (24) over the entire training set, but run it

on a small subset of the training set instead. In addition

the re-estimation does not need to be done often since the

second-order properties of the error surface change rather

slowly. In the experiments described in this paper, we re-

estimate the on 500 patterns before each training pass

through the training set. Since the size of the training set

is 60 000, the additional cost of re-estimating the is

negligible. The estimates are not particularly sensitive to the

particular subset of the training set used in the averaging.

This seems to suggest that the second-order properties of

the error surface are mainly determined by the structure

of the network, rather than by the detailed statistics of the

samples. This algorithm is particularly useful for shared-

weight networks because the weight sharing creates ill

conditioning of the error surface. Because of the sharing,

one single parameter in the first few layers can have

an enormous influence on the output. Consequently, the

second derivative of the error with respect to this parameter

may be very large, while it can be quite small for other

parameters elsewhere in the network. The above algorithm

compensates for that phenomenon.

Unlike most other second-order acceleration methods for

back-propagation, the above method works in stochastic

mode. It uses a diagonal approximation of the Hessian.

Like the classical Levenberg–Marquardt algorithm, it uses

a “safety” factor to prevent the step sizes from getting

too large if the second derivative estimates are small.

Hence the method is called the stochastic diagonal Lev-

enberg–Marquardt method.

ACKNOWLEDGMENT

Some of the systems described in this paper are the work

of many researchers now at AT&T and Lucent Technolo-

gies. In particular, C. Burges, C. Nohl, T. Cauble, and J.

Bromley contributed much to the check reading system.

Experimental results described in Section III include con-

tributions by C. Burges, A. Brunot, C. Cortes, H. Drucker,

L. Jackel, U. Müller, B. Schölkopf, and P. Simard. The

authors wish to thank F. Pereira, V. Vapnik, J. Denker, and

I. Guyon for helpful discussions, C. Stenard and R. Higgins

for providing the applications that motivated some of this

work, and L. R. Rabiner and L. D. Jackel for relentless

support and encouragement.

REFERENCES

[1] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis. New York: Wiley, 1973.

[2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural Computation, vol. 1,
no. 4, pp. 541–551, Winter 1989.

[3] S. Seung, H. Sompolinsky, and N. Tishby, “Statistical mechan-
ics of learning from examples,” Phys. Rev. A, vol. 45, pp.
6056–6091, 1992.

[4] V. N. Vapnik, E. Levin, and Y. LeCun, “Measuring the vc-
dimension of a learning machine,” Neural Computation, vol. 6,
no. 5, pp. 851–876, 1994.

[5] C. Cortes, L. Jackel, S. Solla, V. N. Vapnik, and J. Denker,
“Learning curves: Asymptotic values and rate of convergence,”

43



in Advances in Neural Information Processing Systems 6, J. D.
Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA:
Morgan Kaufmann, 1994, pp. 327–334.

[6] V. N. Vapnik, The Nature of Statistical Learning Theory. New
York: Springer, 1995.

[7] , Statistical Learning Theory. New York: Wiley, 1998.
[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, Numerical Recipes: The Art of Scientific Computing.
Cambridge, UK: Cambridge Univ., 1986.

[9] S. I. Amari, “A theory of adaptive pattern classifiers,” IEEE
Trans. Electron. Comput., vol. EC-16, pp. 299–307, 1967.

[10] Y. Tsypkin, Adaptation and Learning in Automatic Systems
New York: Academic, 1971.

[11] , Foundations of the Theory of Learning Systems. New
York: Academic, 1973.

[12] M. Minsky and O. Selfridge, “Learning in random nets,” in
Proc. 4th London Symp. Information Theory, pp. 335–347, 1961.

[13] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning
algorithm for Boltzmann machines,” Cognitive Sci., vol. 9, pp.
147–169, 1985.

[14] G. E. Hinton and T. J. Sejnowski, “Learning and relearning
in Boltzmann machines,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1:
Foundations, D. E. Rumelhart and J. L. McClelland, Eds.
Cambridge, MA: MIT, 1986.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learn-
ing internal representations by error propagation,” in Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, vol. I. Cambridge, MA: Bradford Books, 1986,
pp. 318–362,

[16] A. E. Bryson, Jr. and Y.-C. Ho, Applied Optimal Control.
London, UK: Blaisdell, 1969.

[17] Y. LeCun, “A learning scheme for asymmetric threshold
networks,” in Proc. Cognitiva ’85, Paris, France, 1985, pp.
599–604.

[18] , “Learning processes in an asymmetric threshold net-
work,” in Disordered Systems and Biological Organization, E.
Bienenstock, F. Fogelman-Soulië, and G. Weisbuch, Eds. Les
Houches, France: Springer-Verlag, 1986, pp. 233–240.

[19] D. B. Parker, “Learning-logic,” Sloan School Manage., MIT,
Cambridge, MA, Tech. Rep., TR-47, Apr. 1985.

[20] Y. LeCun, Modéles Connexionnistes de l’Apprentissage (Con-
nectionist Learning Models), Ph.D. dissertation, Université P.
et M. Curie (Paris 6), June 1987.

[21] , “A theoretical framework for back-propagation,” in Proc.
1988 Connectionist Models Summer School, D. Touretzky, G.
Hinton, and T. Sejnowski, Eds. Pittsburgh, PA: CMU, Morgan
Kaufmann, 1988, pp. 21–28.

[22] L. Bottou and P. Gallinari, “A framework for the cooperation
of learning algorithms,” in Advances in Neural Information
Processing Systems, vol. 3, D. Touretzky and R. Lippmann,
Eds. Denver, CO: Morgan Kaufmann, 1991.

[23] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam,
“Computer recognition of unconstrained handwritten numerals,”
Proc. IEEE, vol. 80, pp. 1162–1180, July 1992.

[24] S. N. Srihari, “High-performance reading machines,” Proc.
IEEE., vol. 80, pp. 1120–1132, July 1992.

[25] Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf,
I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard,
“Handwritten digit recognition: Applications of neural net chips
and automatic learning,” IEEE Trans. Commun., vol. 37, pp.
41–46, Nov. 1989.

[26] J. Keeler, D. Rumelhart, and W. K. Leow, “Integrated seg-
mentation and recognition of hand-printed numerals,” in Neural
Information Processing Systems, R. P. Lippmann, J. M. Moody,
and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann,
vol. 3, pp. 557–563, 1991.

[27] O. Matan, C. J. C. Burges, Y. LeCun, and J. S. Denker, “Multi-
digit recognition using a space displacement neural network,”
vol. 4, in Neural Information Processing Systems, J. M. Moody,
S. J. Hanson, and R. P. Lippman, Eds. San Mateo, CA:
Morgan Kaufmann, 1992.

[28] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proc. IEEE, vol.
77, pp. 257–286, Feb. 1989.

[29] H. A. Bourland and N. Morgan, Connectionist Speech Recog-
nition: A Hybrid Approach. Boston: Kluwer, 1994.

[30] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular in-

teraction, and functional architecture in the cat’s visual cortex,”
J. Physiology (London), vol. 160, pp. 106–154, 1962.

[31] K. Fukushima, “Cognition: A self-organizing multilayered neu-
ral network,” Biological Cybern., vol. 20, pp. 121–136, 1975.

[32] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm
for pattern recognition tolerant of deformations and shifts in
position,” Pattern Recognit., vol. 15, no. 6, pp. 455–469, Nov.
1982.

[33] M. C. Mozer, The Perception of Multiple Objects: A Con-
nectionist Approach. Cambridge, MA: MIT-Bradford Books,
1991.

[34] Y. LeCun, “Generalization and network design strategies,”
in Connectionism in Perspective, R. Pfeifer, Z. Schreter, F.
Fogelman, and L. Steels, Eds. Zurich, Switzerland: Elsevier,
1989.

[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Handwritten digit
recognition with a back-propagation network,” in Advances
in Neural Information Processing Systems 2 (NIPS’89), David
Touretzky, Ed. Denver, CO: Morgan Kaufmann, 1990.

[36] G. L. Martin, “Centered-object integrated segmentation and
recognition of overlapping hand-printed characters,” Neural
Computation, vol. 5, no. 3, pp. 419–429, 1993.

[37] J. Wang and J. Jean, “Multi-resolution neural networks for
omnifont character recognition,” in Proc. Int. Conf. Neural
Networks, vol. III, 1993, pp. 1588–1593.

[38] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges, “Lerec: A
NN/HMM hybrid for on-line handwriting recognition,” Neural
Computation, vol. 7, no. 5, 1995.

[39] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: A convolutional neural network approach,” IEEE
Trans. Neural Networks, vol. 8, pp. 98–113, Jan. 1997.

[40] K. J. Lang and G. E. Hinton, “A time delay neural network
architecture for speech recognition,” Carnegie-Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-CS-88-152, 1988.

[41] A. H. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.
Lang, “Phoneme recognition using time-delay neural networks,”
IEEE Trans. Acoustics, Speech, Signal Processing, vol. 37, pp.
328–339, Mar. 1989.

[42] L. Bottou, F. Fogelman, P. Blanchet, and J. S. Lienard, “Speaker
independent isolated digit recognition: Multilayer perceptron
versus dynamic time warping,” Neural Networks, vol. 3, pp.
453–465, 1990.

[43] P. Haffner and A. H. Waibel, “Time-delay neural networks
embedding time alignment: A performance analysis,” in Proc.
EUROSPEECH’91, 2nd Europ. Conf. Speech Communication
and Technology, Genova, Italy.

[44] I. Guyon, P. Albrecht, Y. LeCun, J. S. Denker, and W. Hubbard,
“Design of a neural network character recognizer for a touch
terminal,” Pattern Recognit., vol. 24, no. 2, pp. 105–119, 1991.

[45] J. Bromley, J. W. Bentz, L. bottou, I. Guyon, Y. LeCun, C.
Moore, E. Säckinger, and R. Shah, “Signature verification using
a siamese time delay neural network,” Int. J. Pattern Recognit.
Artificial Intell., vol. 7, no. 4, pp. 669–687, Aug. 1993.

[46] Y. LeCun, I. Kanter, and S. Solla, “Eigenvalues of covariance
matrices: Application to neural-network learning,” Phys. Rev.
Lett., vol. 66, no. 18, pp. 2396–2399, May 1991.

[47] T. G. Dietterich and G. Bakiri, “Solving multiclass learning
problems via error-correcting output codes,” J. Artificial Intell.
Res., vol. 2, pp. 263–286, 1995.

[48] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer,
“Maximum mutual information of hidden Markov model pa-
rameters for speech recognition,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, 1986, pp. 49–52.

[49] , “Speech recognition with continuous-parameter hidden
Markov models,” Comput., Speech Language, vol. 2, pp.
219–234, 1987.

[50] B. H. Juang and S. Katagiri, “Discriminative learning for
minimum error classification,” IEEE Trans. Acoustics, Speech,
Signal Processing, vol. 40, pp. 3043–3054, Dec. 1992.

[51] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S.
Denker, H. Drucker, I. Guyon, U. A. Muller, E. Säckinger, P.
Simard, and V. N. Vapnik, “Comparison of learning algorithms
for handwritten digit recognition,” in Int. Conf. Artificial Neural
Networks, F. Fogelman and P. Gallinari, Eds. Paris: EC2 &
Cie, 1995, pp. 53–60.

[52] I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfus, J. Denker, and
Y. LeCun, “Comparing different neural net architectures for

44



classifying handwritten digits,” in Proc. IEEE IJCNN, Wash-
ington, DC, vol. II, 1989, pp. 127–132,.

[53] R. Ott, “Construction of quadratic polynomial classifiers,” in
Proc. IEEE Int. Conf. Pattern Recognition, 1976, pp. 161–165.

[54] J. Schürmann, “A multifont word recognition system for postal
address reading,” IEEE Trans. Comput., vol. C-27, pp. 721–732,
Aug. 1978.

[55] Y. Lee, “Handwritten digit recognition using k-nearest neigh-
bor, radial-basis functions, and backpropagation neural net-
works,” Neural Computation, vol. 3, no. 3, pp. 440–449, 1991.

[56] D. Saad and S. A. Solla, “Dynamics of on-line gradient descent
learning for multilayer neural networks,” in Advances in Neural
Information Processing Systems, vol. 8, D. S. Touretzky, M.
C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT,
1996, pp. 302–308.

[57] G. Cybenko, “Approximation by superpositions of sigmoidal
functions,” Math. Control, Signals, Syst., vol. 2, no. 4, pp.
303–314, 1989.

[58] L. Bottou and V. N. Vapnik, “Local learning algorithms,”
Neural Computation, vol. 4, no. 6, pp. 888–900, 1992.

[59] R. E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197–227, 1990.

[60] H. Drucker, R. Schapire, and P. Simard, “Improving per-
formance inneural networks using a boosting algorithm,” in
Advances in Neural Information Processing Systems 5, S. J.
Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA:
Morgan Kaufmann, 1993, pp. 42–49.

[61] P. Simard, Y. LeCun, and J. Denker, “Efficient pattern recog-
nition using a new transformation distance,” in Advances in
Neural Information Processing Systems, vol. 5, S. Hanson, J.
Cowan, and L. Giles, Eds. San Mateo, CA: Morgan Kauf-
mann, 1993.

[62] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proc. 5th Annu. Workshop
Computational Learning Theory, vol. 5, 1992, pp. 144–152.

[63] C. J. C. Burges and B. Schoelkopf, “Improving the accuracy
and speed of support vector machines,” in Advances in Neural
Information Processing Systems 9, M. Jordan, M. Mozer, and
T. Petsche, Eds. Cambridge, MA: MIT, 1997.

[64] E. Säckinger, B. Boser, J. Bromley, Y. LeCun, and L. D. Jackel,
“Application of the ANNA neural network chip to high-speed
character recognition,” IEEE Trans. Neural Networks, vol. 3,
no. 3, pp. 498–505, Mar. 1992.

[65] J. S. Bridle, “Probabilistic interpretation of feedforward classi-
fication networks outputs, with relationship to statistical pattern
recognition,” in Neurocomputing, Algorithms, Architectures and
Applications, F. Fogelman, J. Herault, and Y. Burnod, Eds.
Les Arcs, France: Springer, 1989.

[66] Y. LeCun, L. Bottou, and Y. Bengio, “Reading checks with
graph transformer networks,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, Signal Processing. Munich, Germany, vol. 1, 1997,
pp. 151–154,.

[67] Y. Bengio, Neural Networks for Speech and Sequence Recogni-
tion. London, UK: International Thompson, 1996.

[68] C. Burges, O. Matan, Y. LeCun, J. Denker, L. Jackel, C.
Stenard, C. Nohl, and J. Ben, “Shortest path segmentation: A
method for training a neural network to recognize character
strings,” in Proc. Int. Joint Conf. Neural Networks, Baltimore,
MD, vol. 3, 1992, pp. 165–172.

[69] T. M. Breuel, “A system for the off-line recognition of hand-
written text,” in Proc. IEEE ICPR’94, Jerusalem, pp. 129–134.

[70] A. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Trans. In-
form. Theory, vol. 15, pp. 260–269, Apr. 1967.

[71] R. P. Lippmann and B. Gold, “Neural-net classifiers useful
for speech recognition,” in Proc. IEEE 1st Int. Conf. Neural
Networks, San Diego, CA, June 1987, pp. 417–422.

[72] H. Sakoe, R. Isotani, K. Yoshida, K. Iso, and T. Watan-
abe, “Speaker-independent word recognition using dynamic
programming neural networks,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, Glasgow, 1989, pp. 29–32.

[73] J. S. Bridle, “Alphanets: A recurrent ‘neural’ network archi-
tecture with a hidden Markov model interpretation,” Speech
Commun., vol. 9, no. 1, pp. 83–92, 1990.

[74] M. A. Franzini, K. F. Lee, and A. H. Waibel, “Connectionist
viterbi training: A new hybrid method for continuous speech
recognition,” in Proc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, Albuquerque, NM, 1990, pp. 425–428.

[75] L. T. Niles and H. F. Silverman, “Combining hidden Markov
models and neural network classifiers,” in Proc. Int. Conf.
Acoustics, Speech, Signal Processing, Albuquerque, NM, 1990,
pp. 417–420.

[76] X. Driancourt and L. Bottou, “MLP, LVQ and DP: Comparison
& cooperation,” in Proc. Int. Joint Conf. Neural Networks,
Seattle, WA, vol. 2, 1991, pp. 815–819.

[77] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Global
optimization of a neural network-hidden Markov model hybrid,”
IEEE Trans. Neural Networks, vol. 3, pp. 252–259, March 1992.

[78] P. Haffner and A. H. Waibel, “Multi-state time-delay neural net-
works for continuous speech recognition,” vol. 4, in Advances
in Neural Information Processing Systems. San Mateo, CA:
Morgan Kaufmann, pp. 579–588, 1992.

[79] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans.
Neural Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994.

[80] T. Kohonen, G. Barna, and R. Chrisley, “Statistical pattern
recognition with neural network: Benchmarking studies,” in
Proc. IEEE 2nd Int. Conf. Neural Networks, San Diego, CA,
vol. 1, 1988, pp. 61–68.

[81] P. Haffner, “Connectionist speech recognition with a global
MMI algorithm,” in Proc. EUROSPEECH’93, 3rd Europ. Conf.
Speech Communication and Technology, Berlin, pp. 1929–1932.

[82] J. S. Denker and C. J. Burges, “Image segmentation and
recognition,” in The Mathematics of Induction. Reading, MA:
Addison Wesley, 1995.

[83] L. Bottou, Une Approche théorique de l’Apprentissage Connex-
ionniste: Applications à la Reconnaissance de la Parole, Ph.D.
dissertation, Univ. Paris XI, France, 1991.

[84] M. Rahim, Y. Bengio, and Y. LeCun, “Disriminative feature
and model design for automatic speech recognition,” in Proc.
Eurospeech, Rhodes, Greece, 1997, pp. 75–78.

[85] U. Bodenhausen, S. Manke, and A. Waibel, “Connectionist
architectural learning for high performance character and speech
recognition,” in Proc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, Minneapolis, MN, vol. 1, 1993, pp. 625–628.

[86] F. Pereira, M. Riley, and R. Sproat, “Weighted rational trans-
ductions and their application to human language processing,”
in ARPA Natural Language Processing Workshop, 1994.

[87] M. Lades, J. C. Vorbrüggen, J. Buhmann, and C. von der Mals-
burg, “Distortion invariant object recognition in the dynamic
link architecture,” IEEE Trans. Comput., vol. 42, pp. 300–311,
March 1993.

[88] B. Boser, E. Säckinger, J. Bromley, Y. LeCun, and L. Jackel,
“An analog neural network processor with programmable topol-
ogy,” IEEE J. Solid-State Circuits, vol. 26, pp. 2017–2025, Dec.
1991.

[89] M. Schenkel, H. Weissman, I. Guyon, C. Nohl, and D. Hender-
son, “Recognition-based segmentation of on-line hand-printed
words,” in Advances in Neural Information Processing Systems
5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. Denver,
CO: Morgan Kaufmann, 1993, pp. 723–730.

[90] C. Dugust, L. Devillers, and X. Aubert, “Combining TDNN
and HMM in a hybrid system for improved continuous-speech
recognition,” IEEE Trans. Speech Audio Processing, vol. 2, pp.
217–224, Jan. 1994.

[91] O. Matan, H. S. Baird, J. Bromley, C. J. C. Burges, J. S. Denker,
L. D. Jackel, Y. LeCun, E. P. D. Pednault, W. Satterfield, C. E.
Stenard, and T. J. Thompson, “Reading handwritten digits: A
ZIP code recognition system,” IEEE Trans. Comput., vol. 25,
no. 7, pp. 59–63, July 1992.

[92] Y. Bengio and Y. LeCun, “Word normalization for on-line
handwritten word recognition,” in Proc. IEEE Int. Conf. Pattern
Recognition, Jerusalem, 1994.

[93] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for
the localization of objects in images,” Proc. Inst. Elect. Eng.,
vol. 141, no. 4, pp. 245–250, Aug. 1994.

[94] R. Wolf and J. Platt, “Postal address block location using a
convolutional locator network,” in Advances in Neural Infor-
mation Processing Systems 6, J. D. Cowan, G. Tesauro, and
J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994,
pp. 745–752.

[95] S. Nowlan and J. Platt, “A convolutional neural network hand
tracker,” in Advances in Neural Information Processing Systems
7, G. Tesauro, D. Touretzky, and T. Leen, Eds. San Mateo,
CA: Morgan Kaufmann, 1995, pp. 901–908.

[96] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based

45



face detection,” in Proc. IEEE CVPR’96, pp. 203–208.
[97] E. Osuna, R. Freund, and F. Girosi, “Training support vector

machines: An application to face detection,” in Proc. IEEE
CVPR’96, pp. 130–136.

[98] H. Bourlard and C. J. Wellekens, “Links between Markov
models and multilayer perceptrons,” in Advances in Neural
Information Processing Systems, D. Touretzky, Ed. Denver:
Morgan-Kaufmann, vol. 1, 1989, pp. 186–187.

[99] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Neural
network—Gaussian mixture hybrid for speech recognition or
density estimation,” in Advances in Neural Information Process-
ing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann,
Eds. Denver, CO: Morgan Kaufmann, 1992, pp. 175–182.

[100] F. C. N. Pereira and M. Riley, “Speech recognition by compo-
sition of weighted finite automata,” in Finite-State Devices for
Natural Lague Processing. Cambridge, MA: MIT, 1997.

[101] M. Mohri, “Finite-state transducers in language and speech
processing,” Computational Linguistics, vol. 23, no. 2, pp.
269–311, 1997.

[102] I. Guyon, M. Schenkel, and J. Denker, “Overview and syn-
thesis of on-line cursive handwriting recognition techniques,”
in Handbook on Optical Character Recognition and Document
Image Analysis, P. S. P. Wang and H. Bunke, Eds. New York:
World Scientific, 1996.

[103] M. Mohri and M. Riley, “Weighted determinization and mini-
mization for large vocabulary recognition,” in Proc. Eurospeech
’97, Rhodes, Greece, pp. 131–134.

[104] Y. Bengio and P. Frasconi, “An input/output HMM architec-
ture,” in Advances in Neural Information Processing Systems,
vol. 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cam-
bridge, MA: MIT, pp. 427–434, 1996.

[105] , “Input/output HMM’s for sequence processing,” IEEE
Trans. Neural Networks, vol. 7, no. 5, pp. 1231–1249, 1996.

[106] M. Mohri, F. C. N. Pereira, and M. Riley, A Rational Design
for a Weighted Finite-State Transducer Library (Lecture Notes
in Computer Science). New York: Springer Verlag, 1997.

[107] M. Rahim, C. H. Lee, and B. H. Juang, “Discriminative
utterance verification for connected digits recognition,” IEEE
Trans. Speech Audio Processing, vol. 5, pp. 266–277, 1997.

[108] M. Rahim, Y. Bengio, and Y. LeCun, “Discriminative feature
and model design for automatic speech recognition,” in Proc.
Eurospeech ’97, Rhodes, Greece.

[109] S. Bengio and Y. Bengio, “An EM algorithm for asynchronous
input/output hidden Markov models,” in Proc. International
Conference on Neural Information Processing, Hong-King,
1996, pp. 328–334.

[110] C. Tappert, C. Suen, and T. Wakahara, “The state of the art
in on-line handwriting recognition,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 8, pp. 787–808, Dec. 1990.

[111] S. Manke and U. Bodenhausen, “A connectionist recognizer
for on-line cursive handwriting recognition,” in Proc. Int. Conf.
Acoustics, Speech, Signal Processing, Adelaide, vol. 2, 1994,
pp. 633–636.

[112] M. Gilloux and M. Leroux, “Recognition of cursive script
amounts on postal checks,” in Proc. Europ. Conf. Postal Tech-
nol., Nantes, France, June 1993, pp. 705–712.

[113] D. Guillevic and C. Y. Suen, “Cursive script recognition applied
to the processing of bank checks,” in Proc. Int. Conf. Document
Analysis Recognition, Montreal, Canada, Aug. 1995, pp. 11–14.

[114] L. Lam, C. Y. Suen, D. Guillevic, N. W. Strathy, M. Cheriet,
K. Liu, and J. N. Said, “Automatic processing of informa-
tion on checks,” in Int. Conf. Systems, Man, and Cybernetics,
Vancouver, Canada, Oct. 1995, pp. 2353–2358.

[115] C. J. C. Burges, J. I. Ben, J. S. Denker, Y. LeCun, and C. R.
Nohl, “Off line recognition of handwritten postal words using
neural networks,” Int. J. Pattern Recognit. Artificial Intell., vol.
7, no. 4, p. 689, 1993.

[116] Y. LeCun, Y. Bengio, D. Henderson, A. Weisbuch, H. Weiss-
man, and L. Jackel, “On-line handwriting recognition with
neural networks: Spatial representation versus temporal repre-
sentation,” in Proc. Int. Conf. Handwriting Drawing, 1993.

[117] U. Müller, A. Gunzinger, and W. Guggenbühl, “Fast neural net
simulation with a DSP processor array,” IEEE Trans. Neural
Networks, vol. 6, pp. 203–213, Jan. 1995.

[118] R. Battiti, “First- and second-order methods for learning: Be-
tween steepest descent and Newton’s method,” Neural Compu-
tation, vol. 4, no. 2, pp. 141–166, 1992.

[119] A. H. Kramer and A. Sangiovanni-Vincentelli, “Efficient par-

allel learning algorithms for neural networks,” in Advances in
Neural Information Processing Systems, vol. 1, D. S. Touretzky,
Ed. San Mateo, CA: Morgan Kaufmann, 1988, pp. 40–48.

[120] M. Moller, Efficient Training of Feed-Forward Neural Net-
works, Ph.D. dissertation, Aarhus Univ., Aarhus, Denmark,
1993.

[121] S. Becker and Y. LeCun, “Improving the convergence of
back-propagation learning with second-order methods,” Univ.
Toronto Connectionist Res. Group, Toronto, Ontario, Canada,
Tech. Rep. CRG-TR-88-5, Sept. 1988.

Yann LeCun (Member, IEEE) received the
Diplôme d’Ingénieur degree from the Ecole
Supérieure d’Ingénieur en Electrotechnique
et Electronique, Paris, in 1983 and the Ph.D.
degree in computer science from the Université
Pierre et Marie Curie, Paris, in 1987.

During his time at the Université Pierre et
Marie Curie, he proposed an early version of
the back-propagation learning algorithm for
neural networks. He joined the Department of
Computer Science at the University of Toronto,

Toronto, Ont., Canada, as a Research Associate in 1987. In 1988, he joined
the Adaptive Systems Research Department at AT&T Bell Laboratories,
Holmdel, NJ, where he worked on neural networks, machine learning, and
handwriting recognition. In 1996 he became Head of the Image Processing
Services Research Department at AT&T Labs-Research, Red Bank, NJ.
He has published over 70 technical papers and book chapters on neural
networks, machine learning, pattern recognition, handwriting recognition,
document understanding, image processing, very large scale integration
(VLSI) design, and information theory. In addition to the above topics, his
current interests include video-based user interfaces, image compression,
and content-based indexing of multimedia material.

Dr. LeCun serves on the board of the Machine Learning Journal and
has served as Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS. He is General Chair of the “Machines That Learn” workshop,
which has been held every year since 1986 in Snowbird, UT. He has
served as Program Co-Chair of IJCNN’89, INNC’90, and NIPS’90,
’94, and ’95. He is a member of the IEEE Neural Network for Signal
Processing Technical Committee.

Léon Bottou received the Dipôme degree from
Ecole Polytechnique, Paris, in 1987, the Mag-
istère en Mathématiques Fondamentales et Ap-
pliquées et Informatiques degree from Ecole
Normale Supérieure, Paris in 1988, and the
Ph.D. degree in computer science from Univer-
sité de Paris-Sud in 1991.

During his time at Université de Paris-Sud he
worked on speech recognition and proposed a
framework for stochastic gradient learning and
global training. He then joined the Adaptive

Systems Research Department at AT&T Bell Laboratories, Holmdel, NJ,
where he worked on neural networks, statistical learning theory, and local
learning algorithms. He returned to France in 1992 as a Research Engineer
at ONERA. He then became Chairman of Neuristique S.A., a company
that makes neural network simulators and traffic forecasting software.
He returned to AT&T Bell Laboratories in 1995 where he worked on
graph transformer networks for optical character recognition. He is now a
Member of the Image Processing Services Research Department at AT&T
Labs-Research, Red Bank, NJ. Besides learning algorithms, his current
interests include arithmetic coding, image compression, and indexing.

46



Yoshua Bengio received the B.Eng. degree in
electrical engineering and the M.Sc. and Ph.D.
degrees in computer science from McGill Uni-
versity, Montreal, P.Q., Canada, in 1986, 1988,
and 1991, respectively.

In 1991–1992 he was a Postdoctoral Fel-
low at the Massachusetts Institute of Technol-
ogy, Cambridge. In 1992 he joined AT&T Bell
Laboratories, which later became AT&T Labs-
Research, Red Bank, NJ. In 1993 he joined the
faculty of the computer science department of

the Université de Montréal, Montréal, P.Q., Canada, where he is now an
Associate Professor. Since his first work on neural networks in 1986,
his research interests have been centered around learning algorithms,
especially for data with a sequential or spatial nature, such as speech,
handwriting, and time-series.

Patrick Haffner graduated from Ecole Poly-
technique, Paris, in 1987 and from Ecole
Nationale Supérieure des Télécommunications
(ENST), Paris, in 1989. He received the Ph.D
degree in speech and signal processing from
ENST in 1994.

In 1988 and 1990, he worked on the design of
the TDNN and the MS-TDNN architectures at
ATR (Japan) and Carnegie Mellon University.
From 1989 to 1995, as a Research Scientist
for CNET/France-Télécom in Lannion, France,

he developed connectionist learning algorithms for telephone speech
recognition. In 1995, he joined AT&T Bell Laboratories, Holmdel, NJ, and
worked on the application of optical character recognition and transducers
to the processing of financial documents. In 1997, he joined the Image
Processing Services Research Department at AT&T Labs-Research, Red
Bank, NJ. His research interests include statistical and connectionist
models for sequence recognition, machine learning, speech and image
recognition, and information theory.

47


