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Dislocation dynamics : a non-local moving boundary
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In this article, we present briefly the mathematical study of the dynamics of line defects called dislocations, in crystals. The mathematical model is an eikonal equation describing the motion of the dislocation line with a velocity which is a non-local function of the whole shape of the dislocation. We present some partial existence and uniqueness results. Finally we also show that the self-dynamics of a dislocation line at large scale is asymptotically described by an anisotropic mean curvature motion.

Introduction

What are dislocations ?

The crystal defects called dislocations are lines whose typical length in metallic alloys is of the order of 10 -6 m, with thickness of the order of 10 -9 m (see Figure 1 for an example of observations of dislocations by electron microscopy).

In the face centered cubic structure, dislocations move at low temperature in well defined crystallographic planes (the slip planes), at velocities of the order of 10 ms -1 . We refer for instance to Hirth and Lothe [START_REF] Hirth | Theory of dislocations[END_REF] for a description at the atomic level of these dislocations.

The concept of dislocations has been introduced and developed in the XXth century, as the main microscopic explanation of the macroscopic plastic behaviour of metallic crystals (see for instance the physical monographs Nabarro [START_REF] Nabarro | Theory of crystal dislocations[END_REF], Hirth and Lothe [START_REF] Hirth | Theory of dislocations[END_REF], or Lardner [START_REF] Lardner | Mathematical theory of dislocations and fracture[END_REF] for a mathematical presentation). Since the beginning of the 90's, the research field of dislocations has enjoyed a new boom based on the increasing power of computers, allowing simulations with a large number of dislocations (see for instance Kubin et al. [START_REF] Kubin | Dislocation Microstructures and Plastic Flow: A 3D Simulation[END_REF]). This simultaneously motivated new theoretical developments for the modelling of dislocations. Recently Rodney, Le Bouar and Finel introduced in [START_REF] Rodney | Phase field methods and dislocations[END_REF] a new model that we present and study mathematically in this paper. We also refer the reader to [START_REF] Alvarez | Dislocation dynamics: short time existence and uniqueness of the solution[END_REF] and the references therein for a more detailed introduction to dislocations dynamics. This model has Figure 1. Dislocations in a Al-Mg alloy (from [23]) also been numerically studied by Alvarez, Carlini, Monneau and Rouy in [START_REF] Alvarez | Convergence of a first order scheme for a non local eikonal equation[END_REF] and [START_REF] Alvarez | A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics[END_REF]; see also Alvarez, Carlini, Hoch, Le Bouar and Monneau [START_REF] Alvarez | Dislocation dynamics described by non-local Hamilton-Jacobi equations[END_REF] 1.2. Mathematical modelling of dislocations dynamics An idealization consists in assuming that the thickness of these lines is zero, and in the case of a single line, in assuming that this line is contained and moves in the x = (x 1 , x 2 ) plane. The motion of the line Γ t (where the subscript t denotes the time) is simply given by the normal velocity c (see Figure 2). The velocity c is proportional to the shear stress in the material. This stress can be computed solving the equations of linearized elasticity where the shape of the dislocation line appears as a source term. This gives a coupled system where the dislocation line evolution is a function of the velocity c, and the velocity c is a function of the dislocation line Γ t itself. In the case of a single dislocation line it is possible to write the velocity c as a non-local quantity depending on the whole shape of the dislocation line (see Alvarez et al. [START_REF] Alvarez | Dislocation dynamics: short time existence and uniqueness of the solution[END_REF]):
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c(x, t) = (c 0 ρ(•, t)) (x) + c 1 (x, t)
where ρ is the characteristic function of an open set Ω t ⊂ R 2 whose the boundary is the dislocation line Γ t = ∂Ω t :

ρ(x, t) = 1 Ωt := 1 if x ∈ Ω t 0 if x ∈ R 2 \Ω t ,
and c 0 (x) is a given kernel depending on the material. Here the convolution is only done in space on R 2 . It can be easily checked (at least formally), that the evolution on the time interval (0, T ) of the dislocation line Γ t is described by the equation of dislocations dynamics:

(1.1)

     ∂ρ ∂t = (c 0 ρ + c 1 ) |Dρ| on R 2 × (0, T ) ρ(•, 0) = ρ 0 (•) := 1 Ω0 on R 2
where Ω 0 is an open set whose boundary Γ 0 = ∂Ω 0 is the position of the dislocation line at initial time t = 0.

In what follows, we will study this equation in the framework of discontinuous voscosity solutions (see Barles [7] for an introduction to this notion). To simplify the presentation we will state results in dimension n = 2, assuming smooth (C ∞ ) regularity of the initial position Γ 0 of the dislocation line, of the kernel c 0 , and of the velocity c 1 .

We also assume the following behaviour of the kernel at infinity (for some function g)

(1.2) c 0 (x) = 1 |x| 3 g x |x| for |x| ≥ 1
which is a natural assumption for dislocations.

For considerably weakened assumptions and in any dimensions n, we refer the reader to the original articles cited in the references.

Organization of the paper

Altought equation (1.1) seems very simple, general results of existence and uniqueness are unkown up to our knowledge. Technically, the main difficulty comes from the fact that we have no sign conditions on the kernel c 0 , and then that there is no inclusion principle for this evolution.

In this paper we present some partial results. In section 2, we give a short time existence (and uniqueness) result for a smooth initial dislocation loop. In section 3, we give a long time existence (and uniqueness) result for a smooth initial curve with non-negative velocity. Finally in section 4, we consider the "monotone case" where the kernel satisfies c 0 ≥ 0. In this particular case, a Slepčev "level sets" formulation of equation (1.1) is available. In this framework, we show that at large scales, the dislocation dynamics is asymptotically described by an (anisotropic) mean curvature motion related to the behaviour of the kernel c 0 (x) as |x| → +∞.

Short time existence results in the general case

We will make the following global assumptions on the smooth velocity c 1 (x, t) and the smooth kernel c 0 (x, t) := c 0 (x), for i = 0, 1 and some constants M, L 0 , L 1 :

(2.1)    i) |c i (y, t)| ≤ M ∀(y, t) ∈ R 2 × [0, +∞) ii) |c i (y 2 , t) -c i (y 1 , t)| ≤ L 0 |y 2 -y 1 | ∀(y 1 , y 2 , t) ∈ R 2 × R 2 × [0, +∞) iii) |Dc i (y 2 , t) -Dc i (y 1 , t)| ≤ L 1 |y 2 -y 1 | ∀(y 1 , y 2 , t) ∈ R 2 × R 2 × [0, +∞)
To state our results, we first need to recall the notion of discontinuous viscosity solution. We recall that for a function ρ locally bounded on R 2 × [0, T ), the function ρ * designates its upper-semicontinuous envelope (i.e. the smallest u.s.c. function ≥ ρ), and the function ρ * its lower semi-continuous envelope.

Definition 2.1. i)We say that a function ρ ∈ C [0, T ); L 1 (R 2 ) ∩ L ∞ R 2 × (0, T ) is a discontinuous viscosity subsolution (resp. supersolution) of (1.1), if ρ * (•, 0) ≤ (ρ 0 ) * (resp. ρ * (•, 0) ≥ (ρ 0 ) * )
and for every point (x, t) ∈ R 2 × (0, T ) and every test function

φ ∈ C 1 (R 2 × (0, T )) satisfying ρ * ≤ φ (resp. ρ * ≥ φ) in R 2 × (0, T ) and ρ * (x, t) = φ(x, t),
we have with c = c 0 ρ + c 1 :

∂φ ∂t (x, t) ≤ c(x, t)|Dφ(x, t)| resp. ∂φ ∂t (x, t) ≤ c(x, t)|Dφ(x, t)|
ii) We say that ρ is a discontinuous viscosity solution of (1.1), if it is a discontinuous viscosity subsolution and a discontinuous viscosity supersolution.

We are now able to state the first result 

t ∈ [0, T * ), ρ 1 (•, t) = ρ 2 (•, t) a.e. on R 2 .
Let us remark that on the time interval (0, T * ) where the Theorem is proved to hold, the solution can be written ρ(•, t) = 1 Ωt where Ω t is a Lipschitz open set. Theorem 2.2 says nothing when Ω t ceases to be a Lipschitz open set. This is for instance the case when the topology of Ω t changes.

The proof of Theorem 2.2 is based on the application of a fixed point theorem in the framework of viscosity solutions.

Up to our knowledge, existence and uniqueness for all times (excepted in the case of non-negative velocities (see Theorem 3.1 below)) is still an open problem in general.

Long time existence for non-negative velocities

In this section we make the following assumption

(3.1) c 1 (y, t) ≥ ||c 0 || L 1 (R 2 ) ∀(y, t) ∈ R 2 × [0, +∞)
Because we are interested in solutions ρ satisfying 0 ≤ ρ ≤ 1, we see that condition In [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF], Alvarez et al. used a geometrical proof. A similar result was also proved by Barles and Ley [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF] using a level sets approach and arguments based on a nice L 1 estimate on the level sets of the solution. We also refer to Cardaliaguet, Marchi [START_REF] Cardaliaguet | Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms[END_REF] for a geometrical study of a similar problem on a bounded set in the plane with Neumann boundary conditions. The proof of Theorem 3.1 in [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF] uses strongly the following monotonicity formula that we state in any dimension N : Theorem 3.2. [Monotonicity formula, [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF]] Let K be a compact subset of R N , and d K the distance to the set K. Then for any t 2 > t 1 > 0, we have

1 t N -1 2 H N -1 ({d K (x) = t 2 }) ≤ 1 t N -1 1 H N -1 ({d K (x) = t 1 })
Here H N -1 stands for the (N -1)-dimensional Hausdorff measure.

Main formal arguments in the proof of Theorem 3.1 Argument 1 : interior ball condition: Let us call R(t) > 0 the radius of the largest ball included in Ω t and tangent at any point of the boundary ∂Ω t . Then we can easily check (at least formally) that this radius satisfies the following ODE:

Ṙ = c -R (n • Dc) + R 2 D 2 τ τ c
where n is the outward unit normal to Ω t and τ is a tangent unit vector to Γ t = ∂Ω t . Using the fact that c ≥ 0, we deduce that

R(t) ≥ C 1 e -γt
for some constants C 1 , γ > 0.

Argument 2 : length of the dislocation: We denote by |Γ t | the length of Γ t . Then using the fact that the curvature K of Γ t satisfies K ≤ 1/R(t), we deduce 

d dt |Γ t | = Γt cK ≤ Γt c R(t) ≤ ||c|| L ∞ R(
     ∂ρ i ∂t = c i |Dρ i | on R 2 × (0, T ) ρ i (•, 0) = 1 Ω0 on R 2
then we have for any t small enough and some constant C 2 > 0:

||ρ 2 (•, t) -ρ 2 (•, t)|| L ∞ (R 2 ) ≤ C 2 l(t)||c 2 -c 1 || L ∞ (R 2 ×(0,T )) e L0t -1 L 0 Combined with the fact that for dislocation dynamics c i = c 0 ρ i + c 1 , we get ||ρ 2 (•, t) -ρ 2 (•, t)|| L 1 (R 2 ) ≤ α(t)||ρ 2 -ρ 1 || L ∞ ((0,T );L 1 (R 2 )) with α(t) = C 2 l(t)||c 0 || L ∞ (R 2 ) e L 0 t -1 L0
. This shows in particular the uniqueness of the solution for small time, which can also be used as a contraction argument for a fixed point theorem.

Convergence to the mean curvature motion at large scale for nonnegative kernels

In this section we assume that the kernel c 0 satisfies the following condition

(4.1) c 0 (-x) = c 0 (x) ≥ 0 ∀x ∈ R 2
and consider solutions ρ of (1.1) with c 1 = -1 2 R 2 c 0 . This particular choice of c 1 insures the equilibrium of straight dislocations lines and is physically relevant for the description at large scales of isolated dislocations lines without exterior stress.

In this section, we are interested in the dynamics of dislocations lines of large diameter of the order of 1/ε and in the limit as ε → 0. To this end, we define for ε > 0 the rescalled characteristic function

ρ ε (x, t) = ρ x ε , t ε 2 | ln ε| .
which satisfies the following equation

(4.2) ∂ρ ε ∂t = c ε 0 ρ ε - 1 2 R 2 c ε 0 |Dρ ε |
with the rescalled kernel

c ε 0 (x) = 1 ε 3 | ln ε| c 0 x ε .
¿From the fact that c ε 0 ≥ 0, it can be seen (at least formally) that equation (4.2) preserves the inclusion principle. In this section we do not study directly equation (4.2), but prefer to use the following Slepčev "level sets" formulation for a continuous function u ε :

(4.3)        ∂u ε ∂t = c ε 0 1 {u ε (•,t)>u ε (x,t)} (x) - 1 2 R 2 c ε 0 |Du ε | on R 2 × (0, T ) u ε (•, 0) = u 0 on R 2
In this new formulation each level set {u ε = λ} represents a dislocation line associated to a function ρ ε λ = 1 {u ε >λ} which satisfies (4.2) (at least formally). In the limit ε → 0, this dynamics is well approximated by the following anisotropic mean curvature motion (see for instance Crandall, Ishii, Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for a definition of viscosity solutions of the second order equation (4.4)):

(4.4)      ∂u 0 ∂t + F (D 2 u 0 , Du 0 ) = 0 on R 2 × (0, T ) u 0 (•, 0) = u 0 on R 2 with F (M, p) = -g p ⊥ |p| trace M • Id - p |p| ⊗
p |p| where g is introduced in (1.2). In particular we see that equation (4.4) describes the anisotropic mean curvature motion with velocity g(τ ) κ where κ is the curvature of the level line of u 0 and τ is a unit tangent vector to the level line of u 0 . Before to state our convergence result as ε → 0, we need to give the precise definition of viscosity solutions we use for the non-local equation (4.3) which is less standard. This definition has been introduced by Slepčev [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF] (see also Da Lio, Kim, Slepčev [START_REF] Da Lio | Nonlocal front propagation problems in bounded domains with Nemann-type boundary conditions and applications[END_REF]). (i) u ε (x, t = 0) ≤ u 0 (x) in R 2 , (ii) for every (x 0 , t 0 ) ∈ R 2 ×(0, ∞) and for every test function

Φ ∈ C ∞ R 2 × [0, ∞) ,
that is tangent from above to u ε at (x 0 , t 0 ), the following holds:

(4.5) Φ ε t (x 0 , t 0 ) ≤ (c ε 0 1 {u ε (•,t0)≥u ε (x0,t0)} )(x 0 ) - 1 2 R 2 c ε 0 |DΦ ε (x 0 , t 0 )|
A locally bounded lower semicontinuous (lsc) function u ε is a viscosity supersolution of (4.3) if it satisfies:

(i) u ε (x, t = 0) ≥ u 0 (x) in R 2 , (ii) for every (x 0 , t 0 ) ∈ R 2 ×(0, ∞) and for every test function Φ ∈ C ∞ R 2 × [0, ∞) ,
that is tangent from below to u ε at (x 0 , t 0 ), the following holds:

(4.6) Φ ε t (x 0 , t 0 ) ≥ (c ε 0 1 {u ε (•,t0)>u ε (x0,t0)} )(x 0 ) - 1 2 R 2 c ε 0 |DΦ ε (x 0 , t 0 )|
A locally bounded continuous function u ε is a viscosity solution of (4.3) if, and only if, it is a sub and a supersolution of (4.3).

Then the main result of this section is Theorem 4.2. [Convergence of dislocations dynamics to mean curvature motion, [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion[END_REF]] There exists a constant C 0 > 0 only depending on

||c 0 || L ∞ (R 2 ) . Given ε ∈ (0, 1)
and a bounded and globally Lipschitz continuous function u 0 , there exists a unique viscosity solution

u ε ∈ L ∞ loc R 2 × [0, +∞) of problem (4.3). The function u ε sat- isfies ||Du ε || L ∞ (R 2 ×[0,+∞)) ≤ ||Du 0 || L ∞ (R 2 )
and for every ε ∈ (0, 1/2):

|u ε (x, t + s) -u ε (x, s)| ≤ C 0 ||Du 0 || L ∞ (R 2 ) √ t, ∀(x, s, t) ∈ R 2 × [0, +∞) × [0, 1]
Moreover, the solution u ε converges locally uniformly in compact sets of R 2 × [0, +∞) to the unique solution u 0 of (4.4) with the same initial condition u 0 .

Remark 4.3. In a future work, we will apply this result to propose a numerical scheme for anisotropic mean curvature motion or crystalline motion.

While the proof of this convergent result is quite simple in the case where the gradient of the limit function u 0 is non-zero, the case where the gradient of u 0 vanishes is quite delicate and requires more attention.

We will now present a further property of the limit mean curvature motion. To this end, we need the following:

Definition 4.4. Let g ∈ C ∞ (R 2 \ {0}) satisfying g(λp) = g(p) |λ| 3 , ∀λ ∈ R\{0}, ∀p ∈ R 2 .
We then associate to g a temperate distribution L g defined by

L g , ϕ = R 2 dx g x |x| |x| 3 ϕ(x) -ϕ(0) -x • Dϕ(0)1 B1(0) (x)
for ϕ ∈ S(R 2 ), where S(R 2 ) is the Schwarz space of test functions on R 2 , and B 1 (0) denotes the unit ball centered in zero. We define the Fourier transform

φ(ξ) = R 2 dx ϕ(x)e -iξ•x
Then we have Remark 4.6. Physically the quantity Lg is naturally given, and then the function g can be computed using (4.7)-(4.8) where we can check if g is non negative or not.

In the simplest case of applications for dislocation dynamics, the crystal is described by isotropic elasticity. When the Burgers vector is along the x 1 direction, we have

G(p) = p 2 2 + 1 1-ν p 2 1 |p| with ν ∈ (-1, 1 2 ) 
where ν is the Poisson ratio of the material, and

g(θ) = (2γ -1)(θ 1 ) 2 + (2 -γ)(θ 2 ) 2 |θ| 5 ≥ 0 with γ = 1 1 -ν ∈ ( 1 2 , 2).
Our result is very natural for dislocation dynamics. Indeed, in many references in physics, the authors describe dislocations dynamics by line tension terms deriving from an energy associated to the dislocation line. See for instance Brown [START_REF] Brown | The self-stress of dislocations and the shape of extended nodes[END_REF], Barnet, Gavazza [START_REF] Barnett | The self-force on a planar dislocation loop in an anisotropic linear-elastic medium[END_REF] for physical references and Garroni, Müller [START_REF] Garroni | A variational model for dislocations in the line tension limit[END_REF] for a variational approach. We also refer to Forcadel [START_REF] Forcadel | Dislocations dynamics with a mean curvature term: short time existence and uniqueness[END_REF] for the study of dislocation dynamics with a mean curvature term. As far as we know, Theorem 4.2, completed by Theorem 4.5, is the first rigourous proof for the convergence of dislocations dynamics to mean curvature motion.

Theorem 2 . 2 .

 22 [Short time existence and uniqueness,[START_REF] Alvarez | Résolution en temps court d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation[END_REF],[START_REF] Alvarez | Dislocation dynamics: short time existence and uniqueness of the solution[END_REF]] Let us assume (1.2)-(2.1), and that Ω 0 is a smooth bounded open set in R 2 . Then there exists a time T * > 0 and let us consider functions ρ ∈ C [0, T * ); L 1 (R 2 ) with 0 ≤ ρ ≤ 1, solutions of equation (1.1) on the interval of time (0, T * ) with initial data ρ(•, 0) = 1 Ω0 . Then i) (existence) : There exists such a solution ρ. ii) (uniqueness) : The solution is unique, where the uniqueness has the following meaning: if ρ 1 and ρ 2 are two such solutions, then (ρ 1 ) * = (ρ 2 ) * , (ρ 1 ) * = (ρ 2 ) * and for every

  (3.1) implies that c = c 0 ρ + c 1 ≥ 0. Theorem 3.1. [existence and uniqueness for all time for non-negative velocity, [1]] Let us assume (1.2)-(2.1)-(3.1), and that Ω 0 is a smooth bounded open set in R 2 . Then there exists a unique function ρ ∈ C [0, +∞); L 1 (R 2 ) with 0 ≤ ρ ≤ 1, solution of equation (1.1) on the interval of time (0, +∞) with initial data ρ(•, 0) = 1 Ω0 .

Definition 4 . 1 .

 41 (Viscosity sub/super/solution for the non-local eikonal equation) A locally bounded upper semicontinuous (usc) function u ε is a viscosity subsolution of (4.3) if it satisfies:

Theorem 4 . 5 .

 45 [Variational origin of the anisotropic mean curvature motion,[START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion[END_REF]]Let g ∈ C ∞ (R 2 \ {0}) satisfying g(λp) = g(p) |λ| 3 , ∀λ ∈ R\{0}, ∀p ∈ R 2 . Let (4.7) G := -1 2π Lgwhere Lg is the Fourier transform ofL g . Then G(λp) = |λ|G(p), ∀λ ∈ R\ {0}, ∀p ∈ R 2 ,andIn particular, we see that G is convex if and only if g ≥ 0. Moreover (4.8) means that in (4.4), we have-F (D 2 u 0 , Du 0 ) = div ∇G Du 0 |Du 0 | |Du 0 |,i.e. this anisotropic mean curvature motion derives from a convex energy G Du 0 ) .
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