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Abstract: This paper concerns an optimal control problem on the space of probability measures
over a compact Riemannian manifold. The motivation behind it is to model certain situations
where the central planner of a deterministic controlled system has only a probabilistic knowledge
of the initial condition. The lack of information here is very specific. In particular, we show that
the value function verifies a dynamic programming principle and we prove that it is the unique
viscosity solution to a suitable Hamilton Jacobi Bellman equation. The notion of viscosity is
defined using test functions that are directionally differentiable in the the space of probability
measures.
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1. INTRODUCTION

The study of optimal control problems and viscosity the-
ory in the space of probability measures has been an
active area of research in the mathematical community
in the last years, in particular because of its potential
real-world applications in the modeling of multi-agent sys-
tems. The potential applications include crowd dynamics
modeling Cristiani et al. (2014), opinion formation pro-
cess modeling Bellomo et al. (2012), herd analysis Topaz
and Bertozzi (2004), autonomous multi-vehicle navigation
Ren and Beard (2008) and the modeling of uncertainties
on the initial state of a deterministic controlled system
Cardaliaguet and Quincampoix (2008).
At the individual level, the behavior of each agent is
dictated not only by local interactions but also by the
non local interactions that depend on the distribution of
all agents. When the number of agents is assumed to be
very large, the complexity of the system grows extremely
fast. A suitable way to modelize this problem is through
a macroscopic approach, where the discrete collection of
agents is replaced by a spatial density that evolves in
time. If we assume further that the total number of agents
remains constant at all times during the evolution of the
system, then one can normalize the density of the agents
and assume that its total mass is equal to 1.
Hence, the evolution of the multi-agent system, seen as
normalized spatial density in a given base space X (typi-
cally the Euclidean space or a Riemannian manifold), is
described by a curve t → µt ∈ P(X), where P(X) is
the space of Borel probability measures over X, and µt

represents the spatial density of the multi-agent system at

a given time t ≥ 0. The conservation of the mass along the
trajectory t → µt is described by the following continuity
equation

∂tµt + div(vtµt) = 0,

where vt(.) is a time-dependent Borel vector field, and the
equation is understood in the sense of distributions.
In this paper, we take the base space X = M to be
a compact Riemannian manifold without boundary. We
propose to study a simple model of multi-agent systems,
where the non local interactions between the agents are
not considered. This problem can be interpreted as a
deterministic control system with imperfect information
on the initial condition, i.e. the initial condition is not
known precisely by the controller, but they only know that
the initial condition follows a probability distribution µ0 ∈
P(M). More precisely, consider the following controlled
equation:

{
Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(1)

where f : M × U → TM is the dynamics, assumed to be
Lipschitz with respect to the first variable and continuous
with respect to the second variable, x0 ∈ M and t0 ∈ [0, T ].
The set U is the set of admissible control values which is
assumed to be a compact subset of some metric space. The
control function u(.) ∈ U is a Borel measurable function
u : [t0, T ] → U . The main feature of this problem is that
the initial position x0 is not perfectly known, but rather
distributed along the probability measure µ0. Notice that,
since f(., u(t)) is Lipschitz continuous and bounded, the
evolution curve of the uncertainty, t → µt starting from
µ0, is the unique solution to the equation
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modeling Cristiani et al. (2014), opinion formation pro-
cess modeling Bellomo et al. (2012), herd analysis Topaz
and Bertozzi (2004), autonomous multi-vehicle navigation
Ren and Beard (2008) and the modeling of uncertainties
on the initial state of a deterministic controlled system
Cardaliaguet and Quincampoix (2008).
At the individual level, the behavior of each agent is
dictated not only by local interactions but also by the
non local interactions that depend on the distribution of
all agents. When the number of agents is assumed to be
very large, the complexity of the system grows extremely
fast. A suitable way to modelize this problem is through
a macroscopic approach, where the discrete collection of
agents is replaced by a spatial density that evolves in
time. If we assume further that the total number of agents
remains constant at all times during the evolution of the
system, then one can normalize the density of the agents
and assume that its total mass is equal to 1.
Hence, the evolution of the multi-agent system, seen as
normalized spatial density in a given base space X (typi-
cally the Euclidean space or a Riemannian manifold), is
described by a curve t → µt ∈ P(X), where P(X) is
the space of Borel probability measures over X, and µt

represents the spatial density of the multi-agent system at

a given time t ≥ 0. The conservation of the mass along the
trajectory t → µt is described by the following continuity
equation

∂tµt + div(vtµt) = 0,

where vt(.) is a time-dependent Borel vector field, and the
equation is understood in the sense of distributions.
In this paper, we take the base space X = M to be
a compact Riemannian manifold without boundary. We
propose to study a simple model of multi-agent systems,
where the non local interactions between the agents are
not considered. This problem can be interpreted as a
deterministic control system with imperfect information
on the initial condition, i.e. the initial condition is not
known precisely by the controller, but they only know that
the initial condition follows a probability distribution µ0 ∈
P(M). More precisely, consider the following controlled
equation:

{
Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(1)

where f : M × U → TM is the dynamics, assumed to be
Lipschitz with respect to the first variable and continuous
with respect to the second variable, x0 ∈ M and t0 ∈ [0, T ].
The set U is the set of admissible control values which is
assumed to be a compact subset of some metric space. The
control function u(.) ∈ U is a Borel measurable function
u : [t0, T ] → U . The main feature of this problem is that
the initial position x0 is not perfectly known, but rather
distributed along the probability measure µ0. Notice that,
since f(., u(t)) is Lipschitz continuous and bounded, the
evolution curve of the uncertainty, t → µt starting from
µ0, is the unique solution to the equation
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1. INTRODUCTION

The study of optimal control problems and viscosity the-
ory in the space of probability measures has been an
active area of research in the mathematical community
in the last years, in particular because of its potential
real-world applications in the modeling of multi-agent sys-
tems. The potential applications include crowd dynamics
modeling Cristiani et al. (2014), opinion formation pro-
cess modeling Bellomo et al. (2012), herd analysis Topaz
and Bertozzi (2004), autonomous multi-vehicle navigation
Ren and Beard (2008) and the modeling of uncertainties
on the initial state of a deterministic controlled system
Cardaliaguet and Quincampoix (2008).
At the individual level, the behavior of each agent is
dictated not only by local interactions but also by the
non local interactions that depend on the distribution of
all agents. When the number of agents is assumed to be
very large, the complexity of the system grows extremely
fast. A suitable way to modelize this problem is through
a macroscopic approach, where the discrete collection of
agents is replaced by a spatial density that evolves in
time. If we assume further that the total number of agents
remains constant at all times during the evolution of the
system, then one can normalize the density of the agents
and assume that its total mass is equal to 1.
Hence, the evolution of the multi-agent system, seen as
normalized spatial density in a given base space X (typi-
cally the Euclidean space or a Riemannian manifold), is
described by a curve t → µt ∈ P(X), where P(X) is
the space of Borel probability measures over X, and µt

represents the spatial density of the multi-agent system at

a given time t ≥ 0. The conservation of the mass along the
trajectory t → µt is described by the following continuity
equation

∂tµt + div(vtµt) = 0,

where vt(.) is a time-dependent Borel vector field, and the
equation is understood in the sense of distributions.
In this paper, we take the base space X = M to be
a compact Riemannian manifold without boundary. We
propose to study a simple model of multi-agent systems,
where the non local interactions between the agents are
not considered. This problem can be interpreted as a
deterministic control system with imperfect information
on the initial condition, i.e. the initial condition is not
known precisely by the controller, but they only know that
the initial condition follows a probability distribution µ0 ∈
P(M). More precisely, consider the following controlled
equation:

{
Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(1)

where f : M × U → TM is the dynamics, assumed to be
Lipschitz with respect to the first variable and continuous
with respect to the second variable, x0 ∈ M and t0 ∈ [0, T ].
The set U is the set of admissible control values which is
assumed to be a compact subset of some metric space. The
control function u(.) ∈ U is a Borel measurable function
u : [t0, T ] → U . The main feature of this problem is that
the initial position x0 is not perfectly known, but rather
distributed along the probability measure µ0. Notice that,
since f(., u(t)) is Lipschitz continuous and bounded, the
evolution curve of the uncertainty, t → µt starting from
µ0, is the unique solution to the equation

{
∂tµt + div(f(., u(t))µt) = 0, t ∈ (t0, T ),

µt0 = µ0,

in the distributional sense. The measures µt are obtained
by the pushforward of µ0 by the flow at time t of the
controlled equation (1).
The controller aims at minimizing the following final cost:

L(µ) =

∫
l(y)dµ(y),

where l : M → R is a Lipschitz function. An immediate
consequence of this assumption is that the function L :
P(M) → R inherits the Lipschitz property from l as
well. The quantity L(µT ) represents the expectation of the
deterministic final cost with respect to the measure µT .

To this optimal control problem, we associate the following
value function:

ϑ(t0, µ0) = inf
u(.)∈U

L(µT ).

A similar problem was studied in Cardaliaguet and Quin-
campoix (2008) in the context of differential games and
in Marigonda and Quincampoix (2018) for Mayer optimal
control problems. We stress on the difference between the
set of trajectories t → µt considered here and the set of
trajectories t → µt considered in Marigonda and Quincam-
poix (2018). Indeed, in the latter case, the minimization is
considered over a set of trajectories t → µt that appears
to be larger. The trajectories t → µt are solutions to the
following continuity equation{

∂tµt + div(vtµt) = 0, t ∈ (t0, T ),

µt0 = µ0,

where vt(.) is a vector field such that

vt(.) ∈ {f(., u) : u ∈ U}.
In this manuscript, we want to study the evolution of the
lack of information on the initial condition in (1), modeled
by a Borel probability measure µ0. Hence, we only consider
trajectories t → µt that are obtained by the pushforward
of the initial uncertainty µ0 by the flow at time t of the
controlled equation (1).

The first main goal of this paper is to study the properties
and the regularity of the value function. In particular we
will show that the value function is Lipschitz continuous
with respect to both variables and that it verifies the
dynamic programming principle. The second goal of the
paper is to prove that value function can be characterized
as the unique viscosity solution of a suitable Hamilton
Jacobi Bellman equation (HJB in short) of the form{

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ),

in the space of probability measures P(M). In the lit-
erature, the study of HJB equations or Hamilton Jacobi
equations in general in P(M), is heavily based on defin-
ing a suitable notion of sub/super-differentials to define
the notion of viscosity (see for example Cardaliaguet and
Quincampoix (2008); Jimenez et al. (2020); Gangbo et al.
(2008); Gangbo and Tudorascu (2019)). Our approach is
different. We aim at transposing the viscosity theory tech-
niques that are used in the classical theory (Crandall et al.
(1992)) to the space of Borel probability measures P2(M).
In particular, we define a suitable notion of viscosity using
a class of real valued functions that admit directional

derivatives at all points µ ∈ P2(M). We then prove a
local comparison principle between any bounded upper
semicontinuous subsolution and any lower semicontinuous
supersolution. Finally, we prove that the value function is
the unique viscosity solution to the above HJB equation
by using the dynamic programming principle verified by
the value function.
This paper is expository. All the results asserted in here
are proven in Jean et al. (2022). The paper is structured
as follows. In Section 2, we recall some classical notions of
optimal transport theory and the geometry of the space
of probability measures. In Section 3, we formulate the
Mayer problem in the space of probability measures and
we give the main properties of the value functions. Section
4 is devoted to the study of a suitable HJB equation that
characterizes the value function. In particular, we define
the Hamiltonian we are going to work with, then we define
a notion of viscosity using a class of test functions that
are directionally differentiable, we show the comparison
principle and we show that the value function is the unique
viscosity of the HJB equation.

2. PRELIMINARIES

In this section, we recall some facts about optimal trans-
port and the geometry of Wasserstein spaces. Let (M, ⟨., .⟩)
be a finite dimensional, compact and connected Rieman-
nian manifold without boundary. We denote by | . | the
associated norm on the tangent bundle TM , and by d(., .)
its Riemannian distance on M . The metric space (M,d), is
a complete, separable and compact space and its topology
is equivalent to the topology of the differentiable manifold
M . The tangent bundle TM is itself a complete and
separable Riemannian manifold when endowed with the
Sasaki metric (Sasaki (1962)). We denote by dTM (., .) the
Riemannian distance on TM associated with the Sasaki
metric.

2.1 The Wasserstein space P2(M)

We denote by P(M) the set of Borel probability measures
over M and P2(M) the set of Borel probability measures
with bounded second moments:

P2(M) := {µ ∈ P(M) :

∫
d2(x, x0)dµ(x) < ∞, ∀x0 ∈ M}

Actually, since M is compact, we have P2(M) = P(M)
but we will keep using the notation P2(M). Recall that for
any two topological spaces X and Y , any Borel probability
measure µ on X and any Borel function g : X → Y , the
pushforward measure g♯µ on Y is defined by

g♯µ(A) = µ(g−1(A)) ∀A ⊂ Y, a Borel set,

or equivalently, for all h : Y → R, a Borel measurable and
bounded function, we have:∫

h dg♯µ =

∫
h ◦ g dµ.

We define the Wasserstein distance W2(., .) over P2(M) by

W2(µ, ν) :=

√
inf

{ ∫
d2(x, y)dγ(x, y)

}
,

where the infimum is taken over all Borel probability
measures of M ×M that have marginals µ and ν, i.e. for
all A,B, Borel sets of M , we have

γ(A×M) = µ(A) and γ(M ×B) = ν(B).
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by the pushforward of µ0 by the flow at time t of the
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∫
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consequence of this assumption is that the function L :
P(M) → R inherits the Lipschitz property from l as
well. The quantity L(µT ) represents the expectation of the
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value function:
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by a Borel probability measure µ0. Hence, we only consider
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will show that the value function is Lipschitz continuous
with respect to both variables and that it verifies the
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the notion of viscosity (see for example Cardaliaguet and
Quincampoix (2008); Jimenez et al. (2020); Gangbo et al.
(2008); Gangbo and Tudorascu (2019)). Our approach is
different. We aim at transposing the viscosity theory tech-
niques that are used in the classical theory (Crandall et al.
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In particular, we define a suitable notion of viscosity using
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semicontinuous subsolution and any lower semicontinuous
supersolution. Finally, we prove that the value function is
the unique viscosity solution to the above HJB equation
by using the dynamic programming principle verified by
the value function.
This paper is expository. All the results asserted in here
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as follows. In Section 2, we recall some classical notions of
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of probability measures. In Section 3, we formulate the
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we give the main properties of the value functions. Section
4 is devoted to the study of a suitable HJB equation that
characterizes the value function. In particular, we define
the Hamiltonian we are going to work with, then we define
a notion of viscosity using a class of test functions that
are directionally differentiable, we show the comparison
principle and we show that the value function is the unique
viscosity of the HJB equation.
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associated norm on the tangent bundle TM , and by d(., .)
its Riemannian distance on M . The metric space (M,d), is
a complete, separable and compact space and its topology
is equivalent to the topology of the differentiable manifold
M . The tangent bundle TM is itself a complete and
separable Riemannian manifold when endowed with the
Sasaki metric (Sasaki (1962)). We denote by dTM (., .) the
Riemannian distance on TM associated with the Sasaki
metric.

2.1 The Wasserstein space P2(M)

We denote by P(M) the set of Borel probability measures
over M and P2(M) the set of Borel probability measures
with bounded second moments:

P2(M) := {µ ∈ P(M) :

∫
d2(x, x0)dµ(x) < ∞, ∀x0 ∈ M}

Actually, since M is compact, we have P2(M) = P(M)
but we will keep using the notation P2(M). Recall that for
any two topological spaces X and Y , any Borel probability
measure µ on X and any Borel function g : X → Y , the
pushforward measure g♯µ on Y is defined by

g♯µ(A) = µ(g−1(A)) ∀A ⊂ Y, a Borel set,

or equivalently, for all h : Y → R, a Borel measurable and
bounded function, we have:∫

h dg♯µ =

∫
h ◦ g dµ.

We define the Wasserstein distance W2(., .) over P2(M) by
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{ ∫
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Such Borel probability measures are called admissible
plans of µ and ν and the set of such plans is denoted
Adm(µ, ν). It is well known that W2 verifies all the axioms
of a distance and that the infinimum is always reached
(Ambrosio and Gigli, 2013, Theorem 1.5). The admissible
plans where the minimum is achieved are called optimal
transport plans and the set of such plans is denoted
Opt(µ, ν) ⊂ Adm(µ, ν).
The metric space (P2(M),W2) is complete and separable.
Furthermore, it is a geodesic space, i.e. any two points of
P2(M) can be joined by at least one geodesic. We recall
that a curve α : [0, 1] → P2 is a geodesic if

W2(αt, αs) ≤|t− s|W2(α0, α1), ∀t, s ∈ [0, 1].

2.2 The tangent space Tµ(P2(M))

In this subsection, we will adopt a purely metric perspec-
tive to define the tangent space of (P2(M),W2) at a given
point µ. First, Let P(TM) be the set of Borel probabil-
ity measures over TM . Since (TM, dTM ) is a complete
geodesic space, we can define the Wasserstein space over
TM as the set of all η ∈ P(TM) such that∫

d2TM

(
(x, v), (x0, v0)

)
dη(x, v) < ∞,

for all (x0, v0) ∈ TM . We denote it by P2(TM). We
endow it with the usual Wasserstein distance for any
η, γ ∈ P2(TM):

W2(γ, η) :=

√
inf

{ ∫
d2TM (x, y)dβ(x, y)

}
,

the infinimum is taken over all admissible plans β with
marginals γ and η. Notice that we kept the same notation
for the Wasserstein distance. It would be clear from the
context which base space is considered. We are now able
to define the tangent space at a point µ ∈ P2(M).

Definition 1. (Tangent space). Let µ ∈ P2(M). The tan-
gent space Tµ(P2(M)) ⊂ P2(TM), is the set of measures
γ ∈ P2(TM) such that πM ♯γ = µ, where πM : TM → M
is the canonical projection onto M .

The tangent space at a point µ has a geometric meaning.
In fact, it encodes all the information about geodesics
emanating from µ as we describe hereafter.
Let exp : TM → M be the exponential map of (M, ⟨., .⟩).
The exponential expµ(γ) of a measure γ ∈ Tµ(P2(M)) is
defined by

expµ(γ) := exp ♯γ ∈ P2(M).

We define the map exp−1
µ : P2(M) → Tµ(P2(M)) by

exp−1
µ (ν) := { γ ∈ Tµ(P2(M)) : expµ(γ) = ν and∫

|v|2 dγ(x, v) = (W (µ, ν))2 },

or in other words, the set of measures γ ∈ P2(TM) such
that (πM , exp)♯γ is an optimal plan from µ to ν and∫
|v|2 dγ(x, v) = (W (µ, ν))2. We introduce the following

notation

∆t(x, v) = (x, tv), ∀t ∈ R, (x, v) ∈ TM.

Remark 2. The map exp−1
µ is not really an inverse map to

expµ since only the measures γ ∈ Tµ(P2(M)) such that

(πM , exp)♯γ are optimal plans in the inverse image of ν

are considered. While this might seem confusing, the map
exp−1

µ is defined this way so that for all γ ∈ exp−1
µ (ν),

the curve t → exp(∆t)♯γ is a geodesic connecting µ and ν,
see the theorem below.

Theorem 3. (Gigli, 2011, Theorem 1.11) Let µ, ν ∈
P2(M). A curve (µt) : [0, 1] → P2(M) is a geodesic
connecting µ to ν if and only if there exists a measure
γ ∈ exp−1

µ (ν) such that

µt := exp ◦∆t♯γ, ∀ t ∈ [0, 1]. (2)

The measure γ is uniquely identified by the geodesic.
Moreover, for any t ∈ (0, 1) there exists a unique optimal
plan from µ to µt. Finally, if there exist two different
geodesics connecting µ to ν, they do not intersect in
intermediate times (i.e. on (0, 1)).

Introducing the following rescaling of a measure:

t � γ = ∆t♯γ, ∀t ∈ R, γ ∈ P2(TM),

equation (2) can be rewritten in a more elegant way as

µt = exp ◦∆t♯γ = expµ(t � γ), ∀t ∈ [0, 1].

With the characterization of geodesics in Theorem 3, no-
tice that for any µ ∈ P2(M), all measures γ ∈ Tµ(P2(M))
that produce geodesics, i.e. such that

t → expµ(t � γ), (3)

is a geodesic defined in some right neighborhood of 0, say
[0, ε], can be seen as initial velocities of these geodesics.
We mention that not all curves of this form are necessarily
geodesics but all geodesics are of this form.
Moreover, using this characterization of geodesics, we can
define a class of real valued functions f : P2(M) → R
that are directionally differentiable along all geodesics. In
particular, the squared Wasserstein distance function

µ → W 2(µ, σ),

with σ ∈ P2(M) fixed, is directionally differentiable along
all geodesics. In fact, a much more general result holds: the
squared Wasserstein distance is directionally differentiable
along all curves of the form (3) even though they are not
geodesics. For more details on this, we refer to Gigli (2011);
Ohta (2009). We will only give the following result for the
squared Wasserstein distance, which we will need in order
to define test functions for viscosity notion in Section 4.

Theorem 4. (Gigli, 2011, Theorem 4.2) Let µ, σ ∈ P2(M),
and g : M → TM be a squared integrable vector field with
respect to µ. Let γ = g♯µ ∈ Tµ(P2(M)) and t → expµ(t�γ)
be a curve starting from µ, not necessarily a geodesic. Then
it holds
d

dt

∣∣∣
t=0

W 2
2 (expµ(t � γ), σ)

2 = −2 sup

∫
⟨g(x), v⟩dζ(x, v),

where the supremum is taken over all ζ ∈ exp−1
µ (σ). We

denote it by

DµW
2
2 (µ, σ) � (g♯µ) :=

d

dt

∣∣∣
t=0

W 2
2 (expµ(t � γ), σ)

2,

and is understood as the differential of W 2
2 (., σ) along g♯µ.

3. OPTIMAL CONTROL PROBLEM IN P2(M)

Let T > 0 and U be a compact subset of a metric space.
Consider the dynamics, defined for T > t0 ≥ 0 and
x0 ∈ M , as


Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(4)

where f : M × U → TM satisfies the following assump-
tions:

(H)





f : M × U → TM is continuous and Lipschitz

continuous with respect to the state, i.e.

∃k > 0 : dTM (f(x, u), f(y, u)) ≤ k d(x, y),

∀u ∈ U, (x, y) ∈ M ×M.

(H)co : for all x ∈ M , the set

f(x, U) := {f(x, u) : u ∈ U} is convex.

We define the set of open-loop controls by

U := {u : [0, T ] → U : u(.) is measurable}.
Under the assumption (H), classical results of ordinary
differential equations hold. In particular, for any control
u(.) ∈ U and x0 ∈ M , there exists a unique Lipschitz

trajectory t → Y t0,x0,u
t defined on all [t0, T ]. Moreover, we

have the following estimates:

Proposition 5. There exist positive constants C1, C2 > 0
such that for all x0, z0 ∈ M , for all t0 ∈ [0, T ], and

t → Y t0,x0,u
t , t → Y t0,z0,u

t be solutions of (4), it holds:

d(Y t0,x0,u
T , Y t0,z0,u

T ) ≤ C1 d(x0, z0),

d(Y t0,x0,u
t , x0) ≤ C2 |t− t0|, t ∈ [t0, T ].

The control problem aims at minimizing the final cost

L(µ0) =


l(Y t0,x0,u

T ) dµ0(x0),

over all trajectories that are solutions of the dynamics
(4) with the initial condition x0 ∈ M , distributed along
the measure µ0 ∈ P2(M). We consider the following
assumption:

(Hl) l : M → R is Lipschitz continuous with constant

Lip(l).

When µ0 is equal to the Dirac mass δx0
, the resulting

system corresponds to the classical case without uncertain-
ties on the initial condition. This problem is thoroughly
studied in the literature. When µ0 is any probability
measure of P2(M), it is better to see this problem as
an optimal control problem defined on the space of Borel
probability measures P2(M). First we rewrite the final cost
the following way

L(µ0) =


l(Y t0,x0,u

T ) dµ0(x0) =


l(y) dY t0,.,.u

T ♯µ0 (y),

and we minimize this cost over the set of trajectories
t → µµ0,u

t of the space P2(M) that verify

µµ0,u
t = Y t0,.,u

t ♯µ0, t ∈ [t0, T ], and x → Y t0,x,u
t

is the flow of (4),

µt0 = µ0.

Since x → Y t0,x,u
t ∈ M and µ0 ∈ P2(M), then t →

Y t0,.,u
t ♯µ0 ∈ P2(M) for all t ∈ [t0, T ]. It is a known

fact, Ambrosio et al. (2008); Bernard (2008), that each
trajectory t → µµ0,u

t is the unique solution to the following
continuity equation

∂tµ
µ0,u
t + div(f(., u(t))µµ0,u

t ) = 0, t ∈ (t0, T )

µµ0,u
t0 = µ0.

(5)

In the distributional sense. Hence the optimal control
problem can be rewritten in the following way:


min
u(.)∈U


l(y)dµµ0,u

T (y),

such that


∂tµ

µ0,u
t + div(f(., u(t))µµ0,u

t ) = 0,

µµ0,u
t0 = µ0, t ∈ (t0, T ).

(6)

The associated value function to the above optimal control
problem is defined as

ϑ(t0, µ0) := inf
u(.)∈U


l(y) dµµ0,u

T (y).

Under hypotheses (H) and (Hl), we have the following
two properties of the value function.

Proposition 6. (Jean et al. (2022)). Assume (H) and (Hl).
Then, the value function ϑ is Lipschitz continuous on
[0, T ]× P2(M). In particular, ϑ is bounded.

Theorem 7. (Jean et al. (2022)). Let µ ∈ P2(M), t ∈
[0, T ] and h ∈ [t, T − t]. Then it holds

ϑ(t, µ) = inf
u∈U

ϑ(t+ h, µµ,u
t+h).

In the classical theory of viscosity solution, the value
function is the unique viscosity solution of the Hamilton
Jacobi Bellman equation. The goal of the next section is
to show that the value function, in this setting, is also a
viscosity solution to a Hamilton Jacobi Bellman equation
of the form

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ),

where the Hamiltonian and test functions will be defined
precisely.

4. HJB EQUATION IN P2(M)

We have defined all the elements we need to give a precise
definition of the Hamiltonian, viscosity solutions and test
functions. In this section, we prove that the value function
is the unique viscosity solution to an HJB equation.
The Hamiltonian we will work with has the following
expression:

H(µ,Dµv(t, µ)) = inf
u∈U

Dµv(t, µ) �

f(., u)♯µ


, (7)

with v : R × P2(M) → R is a real valued function that
admits directional derivatives along the time variable and
the measure variable. The function v represents a test
function that has the following form:

∀(t, µ) ∈ [0, T )× P2(M), v(t, µ) = ψ(t) + aW 2
2 (µ, σ),

with a ∈ R and σ ∈ P2(M) fixed and ψ : [0, T ) → R
is a continuously differentiable function, µ → W 2

2 (µ, σ) is
directionally differentiable in the sense of Theorem 4. We
consider the following Hamilton Jacobi Bellman equation:

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ).
(8)

Next, we define the test functions that we are going to use
to define the notion of viscosity solutions.

Definition 8. (Test functions).
Let T EST 1 be the set defined as:

T EST 1 := {(t, µ) →ψ(t) + a( (W 2
2 (µ, σ)) ) :

a ∈ R+, σ ∈ P2(M)},
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
Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(4)
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(H)




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trajectory t → Y t0,x0,u
t defined on all [t0, T ]. Moreover, we

have the following estimates:

Proposition 5. There exist positive constants C1, C2 > 0
such that for all x0, z0 ∈ M , for all t0 ∈ [0, T ], and

t → Y t0,x0,u
t , t → Y t0,z0,u

t be solutions of (4), it holds:

d(Y t0,x0,u
T , Y t0,z0,u

T ) ≤ C1 d(x0, z0),

d(Y t0,x0,u
t , x0) ≤ C2 |t− t0|, t ∈ [t0, T ].

The control problem aims at minimizing the final cost

L(µ0) =


l(Y t0,x0,u

T ) dµ0(x0),

over all trajectories that are solutions of the dynamics
(4) with the initial condition x0 ∈ M , distributed along
the measure µ0 ∈ P2(M). We consider the following
assumption:

(Hl) l : M → R is Lipschitz continuous with constant

Lip(l).

When µ0 is equal to the Dirac mass δx0
, the resulting

system corresponds to the classical case without uncertain-
ties on the initial condition. This problem is thoroughly
studied in the literature. When µ0 is any probability
measure of P2(M), it is better to see this problem as
an optimal control problem defined on the space of Borel
probability measures P2(M). First we rewrite the final cost
the following way

L(µ0) =


l(Y t0,x0,u

T ) dµ0(x0) =


l(y) dY t0,.,.u

T ♯µ0 (y),

and we minimize this cost over the set of trajectories
t → µµ0,u

t of the space P2(M) that verify

µµ0,u
t = Y t0,.,u

t ♯µ0, t ∈ [t0, T ], and x → Y t0,x,u
t

is the flow of (4),

µt0 = µ0.

Since x → Y t0,x,u
t ∈ M and µ0 ∈ P2(M), then t →

Y t0,.,u
t ♯µ0 ∈ P2(M) for all t ∈ [t0, T ]. It is a known

fact, Ambrosio et al. (2008); Bernard (2008), that each
trajectory t → µµ0,u

t is the unique solution to the following
continuity equation

∂tµ
µ0,u
t + div(f(., u(t))µµ0,u

t ) = 0, t ∈ (t0, T )

µµ0,u
t0 = µ0.

(5)

In the distributional sense. Hence the optimal control
problem can be rewritten in the following way:


min
u(.)∈U


l(y)dµµ0,u

T (y),

such that


∂tµ

µ0,u
t + div(f(., u(t))µµ0,u

t ) = 0,

µµ0,u
t0 = µ0, t ∈ (t0, T ).

(6)

The associated value function to the above optimal control
problem is defined as

ϑ(t0, µ0) := inf
u(.)∈U


l(y) dµµ0,u

T (y).

Under hypotheses (H) and (Hl), we have the following
two properties of the value function.

Proposition 6. (Jean et al. (2022)). Assume (H) and (Hl).
Then, the value function ϑ is Lipschitz continuous on
[0, T ]× P2(M). In particular, ϑ is bounded.

Theorem 7. (Jean et al. (2022)). Let µ ∈ P2(M), t ∈
[0, T ] and h ∈ [t, T − t]. Then it holds

ϑ(t, µ) = inf
u∈U

ϑ(t+ h, µµ,u
t+h).

In the classical theory of viscosity solution, the value
function is the unique viscosity solution of the Hamilton
Jacobi Bellman equation. The goal of the next section is
to show that the value function, in this setting, is also a
viscosity solution to a Hamilton Jacobi Bellman equation
of the form

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ),

where the Hamiltonian and test functions will be defined
precisely.

4. HJB EQUATION IN P2(M)

We have defined all the elements we need to give a precise
definition of the Hamiltonian, viscosity solutions and test
functions. In this section, we prove that the value function
is the unique viscosity solution to an HJB equation.
The Hamiltonian we will work with has the following
expression:

H(µ,Dµv(t, µ)) = inf
u∈U

Dµv(t, µ) �

f(., u)♯µ


, (7)

with v : R × P2(M) → R is a real valued function that
admits directional derivatives along the time variable and
the measure variable. The function v represents a test
function that has the following form:

∀(t, µ) ∈ [0, T )× P2(M), v(t, µ) = ψ(t) + aW 2
2 (µ, σ),

with a ∈ R and σ ∈ P2(M) fixed and ψ : [0, T ) → R
is a continuously differentiable function, µ → W 2

2 (µ, σ) is
directionally differentiable in the sense of Theorem 4. We
consider the following Hamilton Jacobi Bellman equation:

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ).
(8)

Next, we define the test functions that we are going to use
to define the notion of viscosity solutions.

Definition 8. (Test functions).
Let T EST 1 be the set defined as:

T EST 1 := {(t, µ) →ψ(t) + a( (W 2
2 (µ, σ)) ) :

a ∈ R+, σ ∈ P2(M)},
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where ψ : [0, T ) → R is a C1 function.
We set T EST 2 = −T EST 1 := {−ϕ : ϕ ∈ T EST 1}.
Definition 9. (Viscosity solutions).

• We say that a function v : [0, T ) × P2(M) → R
satisfies the inequality

∂tv +H(µ,Dµv) ≥ 0,

at (t, µ) ∈ [0, T ) × P2(M) in the viscosity sense if v
is upper semicontinuous and for all T EST 1 functions
ϕ : [0, T ) × P2(M) → R such that v − ϕ attains a
maximum at (t, µ), we have

∂tϕ+H(µ,Dµϕ) ≥ 0.

A function v satisfying ∂tv + H(µ,Dµv) ≥ 0 on
[0, T ) × P2(M) in the viscosity sense is called a
viscosity subsolution of (8).

• Similarly, we say that a function v : [0, T )×P2(M) →
R satisfies the inequality

∂tv +H(µ,Dµv) ≤ 0,

at (t, µ) ∈ [0, T ) × P2(M) in the viscosity sense if v
is lower semicontinuous and for all T EST 2 functions
ϕ : [0, T ) × P2(M) → R such that v − ϕ attains a
minimum at (t, µ), then

∂tϕ+H(µ,Dµϕ) ≤ 0.

A function v satisfying ∂tv + H(µ,Dµv) ≤ 0 on
[0, T ) × P2(M) in the viscosity sense is called a
viscosity supersolution of (8).

• We say that a continuous function v : [0, T ] ×
P2(M) → R is a viscosity solution of (8) if it is both
a supersolution and a subsolution on [0, T )× P2(M)
and verifies

v(T, µ) = L(µ).

In the literature, the study of viscosity solutions for
HJB equations or general Hamilton Jacobi equations re-
lies heavily on defining a suitable notion of sub/super-
differentials and in defining a notion of smooth functions
in Wasserstein space in an extrinsic way using the so-
called Lions calculus (see for example Cardaliaguet and
Quincampoix (2008); Jimenez et al. (2020); Gangbo et al.
(2008); Gangbo and Tudorascu (2019)). In all these ap-
proaches, the squared Wasserstein distance is not included
in the set of test functions considered, which makes them
unsuitable to extend the common viscosity techniques
known in the classical theory. This is the reason why
in here, we adopt a different approach. We define the
viscosity notion using test functions that are directionally
differentiable along both the time variable and the measure
variable. Furthermore, using this approach of test func-
tions, we can prove the comparison principle for equation
(8) for any bounded upper semicontinuous subsolution
and bounded lower semicontinuous supersolution. First,
we need two key results.

Proposition 10. (Jean et al. (2022)). For all σ, µ ∈ P2(M)
and a > 0, we have:

H(µ, aDµW
2
2 (µ, σ))−H(σ,−aDσW

2
2 (µ, σ)) ≤

2aLip(f)W 2
2 (µ, σ).

Remark 11. The above result is of fundamental impor-
tance to prove the comparison principle. Indeed, it al-
lows us to use the variable doubling technique without

having any regularity assumptions on the Hamiltonian.
Furthermore, this result does not need any compactness
assumptions on the Wasserstein space. The proof can also
be adapted if for example the base space is the Euclidean
space RN , rather than the compact manifold M . This is
due to the fact that the squared Wasserstein distance in
P2(RN ) is directionally differentiable and has an expres-
sion similar to the one given in Theorem 4 (see (Ambrosio
et al., 2008, Theorem 7.3.2 and Proposition 7.3.6)).

Theorem 12. (Jean et al. (2022)). Assume (H) and (Hl).
Let u, v : [0, T ]×P2(M) → R be respectively bounded up-
per semicontinuous subsolution and lower semicontinuous
supersolution on [0, T ]× P2(M). Then it holds:

sup
[0,T ]×P2(M)

(v − w)+ ≤ sup
{T}×P2(M)

(v − w)+,

where (a)+ = max(a, 0).

Theorem 13. (Jean et al. (2022)). Assume (H), (Hl) and
(Hco). Then the value function ϑ is the unique continuous
viscosity solution to (8).

To prove that the value function is a viscosity solution to
(8), we use the dynamic programming principle asserted
in Theorem 7, whereas uniqueness comes from the com-
parison principle asserted in Theorem 12.
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