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Abstract The Canny-Emiris formula [4] gives the sparse resultant as a ratio between the determinant
of a Sylvester-type matrix and a minor of it, by a subdivision algorithm. The most complete proof
of the formula was given by D’Andrea, Sombra and Jerónimo in [11] under general conditions on the
underlying mixed subdivision. Well before this proof, Canny and Pedersen had proposed [6] a greedy
algorithm which provides smaller matrices, in general. The goal of this paper is to give an explicit class
of mixed subdivisions for the greedy approach such that the formula holds, and the dimensions of the
matrices are reduced compared to the subdivision algorithm. We measure this reduction for the case when
the Newton polytopes are zonotopes generated by n line segments (where n is the rank of the underlying
lattice), and for the case of multihomogeneous systems. This article comes with a Julia implementation
of the treated cases.

Keywords Combinatorics, resultant theory, mixed subdivision, zonotopes, tropical geometry

1 Introduction

Sparse resultants offer a standard and efficient way of studying algebraic systems while exploiting their
structure. They have applications in elimination and implicitization theory and many other areas of
algebraic geometry. We examine matrix-based methods for expressing and computing this resultant.
This paper contains the the results of [7] which was published in the proceedings of ISSAC’22 and
provides a bigger family of examples. We also add a new result in Section 2 with which we give a broader
view of the subdivision refinement in Theorem 2 through tropical geometry.

The Canny-Emiris formula was conjectured in [4] as a rational formula for the sparse resultant that
generalizes Macaulay’s classic formula in [17]. It gives a combinatorial construction of a Sylvester-type
matrix HA,ρ depending on the family of supports A = (A0, . . . ,An) in a lattice M of rank n, and a mixed
subdivision S(ρ) defined from a lifting function ρ on the Minkowski sum ∆ of the Newton polytopes
∆i = conv(Ai). Each row of this matrix corresponds to a lattice point b ∈M contained in a translation
δ of the polytope ∆. Moreover, to each lattice point we can associate a type vector tb = (tb,0, . . . , tb,n)
corresponding to the dimensions of the components Di ⊂ ∆i of the cell D ∈ S(ρ) in which b is lying.
Imposing that

n∑
i=0

tb,i = n ∀b ∈ (∆+ δ) ∩M,

it is possible to build such matrix HA,ρ and a principal submatrix EA,ρ of HA,ρ so that the sparse
resultant can be expressed in the form:

ResA =
det(HA,ρ)

det(EA,ρ)
.

D’Andrea, Jerónimo, and Sombra proved this formula in [11] under the assumption that S(ρ) admits
an incremental chain of mixed subdivisions:

S(θ0) ⪯ · · · ⪯ S(θn) ⪯ S(ρ)
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1 INTRODUCTION

satisfying some combinatorial properties, where ⪯ denotes that S(θi) refines S(θi−1), namely each cell
D ∈ S(θi) is contained in a cell of S(θi−1). This proof extended the first proof given by D’Andrea in [9]
for generalized unmixed systems.

On the other hand, Canny and Pedersen gave in [6] another approach for the construction of the
matrix HA,ρ. Starting at a lattice point b ∈ M , one can construct the matrix by only adding the rows
corresponding to the columns that have a nonzero entry in a previously considered row. This is a greedy
way of understanding these matrices: their construction only considers the strictly necessary rows and
columns given the mixed subdivision S(ρ).

This paper aims to give a family of lifting functions ρ that correspond to mixed subdivisions for
which:

i) the proof of the formula in [11] holds and
ii) the size of the matrices is reduced.

The family that we propose is associated with a vector v ∈ Hom(MR,R) outside the hyperplane arrange-
ment associated with the polytope ∆.

We expect this family of lifting functions to reduce the size of the Canny-Emiris matrices obtained
by the greedy algorithm for a general sparse system. We measure this reduction only for the case where
the Newton polytopes are zonotopes generated by n independent line segments. Namely, we simplify the
computations to the case where the supports A0, . . . ,An are:

Ai =
{

(bj)j=1,...,n ∈ Zn | 0 ≤ bj ≤ aij
}

i = 0, . . . , n

assuming that 0 < a0j ≤ · · · ≤ an−1j for all j = 1, . . . , n. The main results of this paper are Theorem 5
and Theorem 6 and show that the greedy algorithm will end by reaching only those lattice points with
type vector tb satisfying:

I∑
i=0

tb,i ≤ I + 1 ∀I < n.

To find all the lattice points in cells with a given type vector, we introduce the type functions:

φb : {1, . . . , n} −→ {0, . . . , n} tb,i = |φ−1
b (i)|.

These combinatorial objects contain all the information of the cells of the mixed subdivision and can
help us construct the matrices. In Corollary 4, we give a combinatorial measure of the number of rows
of the matrix HG given by the greedy algorithm as:

∑
φb:{1,...,n}−→{0,...,n}

n∏
j=1

aφb(j)j

where φb satisfies |φ−1
b ({0, . . . , I})| ≤ I + 1. This result is not optimal amongst all the possible mixed

subdivsions of an n-zonotopesystem, but it might be amongst the ones given by affine lifting functions;
see Examples 1, 6.

We show that some multihomogeneous resultant matrices can be seen as an instance of the previous
case by embedding their Newton polytopes and the mixed subdivisions of their Minkowski sum into an
n-zonotope. Moreover, we add restrictions to the type functions so that they also count the size of these
matrices; see Corollary 5. Despite the existence of many exact determinantal formulas for some of these
cases; see [3, 2, 14, 22, 5], we expect our approach to have an easier generalization to general sparse
systems through the use of the type functions and the underlying combinatorics.

The paper is organized as follows. In Section 1, we summarize the proof of the Canny-Emiris formula
in [11] and we explain the greedy approach in [6]. In Section 2, a concrete family of mixed subdivisions
is given by considering a hyperplane arrangement associated with the Newton polytopes and it is proved
that the Canny-Emiris formula holds in this case. Section 3 is devoted to combinatorially finding the size
of the Canny-Emiris matrices when the Newton polytopes are zonotopes generated by n line segments.
In Section 4, the multihomogeneous resultant is seen as an instance of the previous case. Moreover, we
count the number of lattice points that the greedy approach gives on these mixed subdivisions in a
combinatorial way. In the conclusions, we present a list of possible ways to generalize our measure of the
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1 INTRODUCTION 1.1 The Canny-Emiris formula

Canny-Emiris matrices to other sparse systems.

This article comes with a JULIA implementation of the treated cases (n-zonotopes and multihomo-
geneous systems); see https://github.com/carleschecanualart/CannyEmiris. More than improving the
existing formulas (which give, in general, smaller Sylvester matrices), the goal of this implementation is
to introduce the type functions in the construction of the matrices.

1.1 The Canny-Emiris formula

Let M be a lattice of rank n and MR = M ⊗R the corresponding real vector space. Let N = Hom(M,Z)
be its dual and TN = N ⊗ C× the underlying torus. Let A0, . . . ,An ⊂ M be a family of supports
corresponding to the polynomials:

Fi =
∑
a∈Ai

ui,aχ
a ∈ Z[ui,a][M ] a ∈ Ai i = 0, . . . , n

where χa are the characters in TN of the lattice points a ∈ Ai. Let ∆i = conv(Ai) ⊂MR for i = 0, . . . , n
be the convex hulls of the supports, also known as Newton polytopes, and ∆ their Minkowski sum in MR.

The incidence variety Z(F) is defined as the zero set in TN ×
∏n

i=0 PAi of the polynomials F =
(F0, . . . , Fn). Denote by π : TN ×

∏n
i=0 PAi −→

∏n
i=0 PAi the projection onto the second factor and let

π∗(Z(F)) be the direct image of the zero set of F0, . . . , Fn.

Definition 1 The sparse resultant, denoted as ResA, is any primitive polynomial in Z[ui,a] defining the
direct image π∗(Z(F)).

There are some lattice operations that can help us simplify the computation of these objects.

Lemma 1 [11, Proposition 3.2] Let ϕ : M −→ M ′ be a monomorphism of lattices of rank n. Then,

Resϕ(A) = Res
[M ′:ϕ(M)]
A .

Remark 1 Moreover, the sparse resultant is invariant under translations. Therefore, we can always assume
0 ∈ Ai for all i = 0, . . . , n.

Definition 2 A mixed subdivision of ∆ is a decomposition of this polytope in a union of cells ∆ = ∪D
such that:

i) the intersection of two cells is either a cell or empty,
ii) every face of a cell is also a cell of the subdivision and,

iii) every cell D has a component structure D = D0 + · · · + Dn where Di is a cell of the subdivision in
∆i.

The usual way to construct mixed subdivisions is by considering piecewise affine convex lifting func-
tions ρi : ∆i −→ R as explained in [16]. A global lifting function ρ : ∆ −→ R is obtained after taking the
inf-convolution of the previous functions, as explained in [11, Sec. 2].

Definition 3 A mixed subdivision of ∆ is tight if, for every n-cell D, its components satisfy:

n∑
i=0

dimDi = n.

In the case of n + 1 polynomials and n variables, this property guarantees that every n-cell has a
component that is 0-dimensional. The cells that have a single 0-dimensional component are called mixed
(i-mixed if it is the i-th component). The rest of the cells are called non-mixed.

Let δ be a generic vector such that the lattice points in the interior of ∆ + δ lie in n-cells. Then,
consider:

B = (∆+ δ) ∩M.

Each element b ∈ B lies in one of these translated cells D + δ and let Di be the components of this cell.
As the subdivision is tight, there is at least one i such that dimDi = 0.

Following the language of [19], we call tb = (tb,0, . . . , tb,n) the type vector associated with b, defined
as tb,i = dimDi for b ∈ D + δ.
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1.1 The Canny-Emiris formula 1 INTRODUCTION

Definition 4 The row content is a function

rc : B −→ ∪n
i=0{i} × Ai

where, for b ∈ B lying in an n-cell D, rc(b) is a pair (i(b), a(b)) with i(b) = max{i ∈ {0, . . . , n} | tb,i = 0}
and a(b) = Di(b).

This provides a partition of B into subsets:

Bi = {b ∈ B | i(b) = i}.

Finally, we construct the Canny-Emiris matrices HA,ρ whose rows correspond to the coefficients of the
polynomials χb−a(b)Fi(b) for each of the b ∈ B. In particular, the entry corresponding to a pair b, b′ ∈ B
is:

HA,ρ[b, b′] =

{
ui(b),b′−b+a(b) b′ − b+ a(b) ∈ Ai

0 otherwise

Remark 2 Each entry contains, at most, a single coefficient ui,a. In particular, the row content allows
us to choose a maximal submatrix of HA,ρ from the matrix of a map sending a tuple of polynomials
(G0, . . . , Gn) to G0F0 + · · · +GnFn. These class of matrices are called Sylvester-type matrices.

Let C ⊂ B be a subset of the supports in translated cells. The matrix HA,ρ,C is defined by considering
the submatrix of the corresponding rows and columns associated with elements in C. In particular, we
look at the set of lattice points lying in translated non-mixed cells and consider:

B◦ = {b ∈ B | b lies in a translated non-mixed cell}.

With this, we form the principal submatrix:

EA,ρ = HA,ρ,B◦

The Canny-Emiris conjecture states that the sparse resultant is the quotient of the determinants of these
two matrices:

ResA =
det(HA,ρ)

det(EA,ρ)
.

This result was conjectured by Canny and Emiris and proved by D’Andrea, Jerónimo, and Sombra; see
[4, 11], under the restriction that the mixed subdivision S(ρ) given by the lifting ρ satisfies a certain
condition. This condition is given on a chain of mixed subdivisions.

Definition 5 Let S(ϕ), S(ψ) be two mixed subdivisions of ∆ =
∑n

n=0∆i. We say that S(ψ) refines
S(ϕ) and write S(ϕ) ⪯ S(ψ) if for every cell C ∈ S(ψ) there is a cell D ∈ S(ϕ) such that C ⊂ D.
An incremental chain of mixed subdivisions S(θ0) ⪯ · · · ⪯ S(θn) is a chain of mixed subdivisions of ∆
refining each other.

Remark 3 In [11, Definition 2.4], a common lifting function ω ∈
∏n

i=0 RAi is considered and the S(θi) are
given by the lifting functions ω<i = (ω0, . . . , ωi−1, 0) as long as S(θi) ⪯ S(θi+1). The last zero represents
the lifting on (∆i, . . . ,∆n). The resulting mixed subdivision is the same as if we considered the zero
lifting in

∑n
j=i∆j .

Definition 6 The mixed volume of n polytopes P1, . . . , Pn ⊂MR, denoted as MVM (P1, . . . , Pn), is the
coefficient of

∏n
i=1 λi in:

Voln(λ1P1 + · · · + λnPn)

which is a polynomial in λ1, . . . , λn [8, Theorem 6.7].

Proposition 1 [15, Theorem 3.4] Let S(ρ) be a tight mixed subdivision of ∆ = (∆0, . . . ,∆n). For
i = 0, . . . , n, the mixed volume of all the polytopes except ∆i equals the volume of the i-mixed cells.

MV(∆0, . . . ,∆i−1, ∆i+1, . . . ,∆n) =
∑

D i-mixed

VolnD
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1 INTRODUCTION 1.2 The greedy algorithm

In particular, MV(∆0, . . . ,∆i−1, ∆i+1, . . . ,∆n) equals the degree of the sparse resultant in the coeffi-
cients of Fi; see [8, Chapter 7, Theorem 6.3]. Each of the rows of HA,ρ will correspond to a lattice point
b and each entry on that row will have degree 1 with respect to the coefficients of Fi(b) and zero with
respect to the coefficients of the rest of polynomials. Therefore, if we add the lattice points in i-mixed
cells, the degree of HA,ρ with respect to the coefficients of Fi will be at least the degree of the resultant
with respect to the same coefficients.

Definition 7 [11, Definition 3.4] The fundamental subfamily of A is the minimal family of supports
AI = (Ai)i∈I such that the resultant has positive degree with respect to the coefficients of Fi for i ∈ I.
This definition can be given in other equivalent terms as shown in [21, Corollary 1.1].

Remark 4 Using Proposition 1, we can see that if the fundamental subfamily is empty, then the resultant
is equal to 1 while if the fundamental subfamily is {i} then Ai is given by a single point {a} and the
resultant is umi

i,a for mi = MV(∆0, . . . ,∆i−1, ∆i+1, . . . ,∆n). The Canny-Emiris formula holds naturally
[11, Proposition 4.26] in both cases.

Definition 8 An incremental chain S(θ0) ⪯ · · · ⪯ S(θn) is admissible if for each i = 0, . . . , n, each n-cell
D of the subdivision S(θi) satisfies either of the following two conditions

i) the fundamental subfamily of AD contains at most one support or
ii) BD,i is contained in the union of the translated i-mixed cells of S(ρD).

A mixed subdivision S(ρ) is called admissible if it admits an admissible incremental chain S(θ0) ⪯ · · · ⪯
S(θn) ⪯ S(ρ) refining it.

With all these properties, together with the use of the product formulas, see [21, 12, 11], one can
reproduce the proof of the Canny-Emiris formula given in [11, Theorem 4.27] under the conditions of
admissibility in S(ρ).

1.2 The greedy algorithm

Using the previous notation, we state the greedy algorithm in [6] for the construction of the matrix. Let
b ∈ B be a lattice point in a translated cell. The first step of the algorithm is to add the row of the matrix
corresponding to b, and then continue by considering the lattice points corresponding to the columns
that have a nonzero entry in this row. These lattice points are:

b− a(b) + Ai(b).

All these lattice points will have to be added as rows of the matrix. If we add the lattice point b′ at some
point of the algorithm after having added another lattice point b, we say that we reach b′ from b. The
algorithm terminates when there are no more lattice points to add and it might give a square matrix
HG which has less rows and columns than HA,ρ, which was constructed using all the lattice points in B.
The rows and columns associated to lattice points in non-mixed cells also provide a minor EG of HG .

It was not proved by Canny and Pedersen whether this approach would always include all the lattice
points in mixed cells as rows of the matrix, independently of the starting point. As these points are
necessary to achieve the degree of the resultant, see Proposition 1, we consider them to be the starting
points of the algorithm.

Remark 5 We know that the entry corresponding to the diagonal of the matrix HA,ρ,C will be
∏

b∈C ui(b),a(b)
for any subset C ⊂ B. This term can be used in order to deduce that these matrices have non-zero de-
terminant; see [11, Proposition 4.13].

Theorem 1 If the Canny-Emiris formula holds for a mixed subdivision S(ρ) and the greedy algorithm
provides matrices HG and EG by starting at the lattice points in mixed cells, then:

ResA =
det(HG)

det(EG)
.
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1.2 The greedy algorithm 1 INTRODUCTION

Proof In general, there is a subset G ⊂ B corresponding to the rows and columns of HG . We are assuming
that G contains all the lattice points in translated mixed cells. Let HA,ρ be the matrix containing all
lattice points in translated cells of S(ρ). Without loss of generality, we can assume that the matrix takes
the following form:

HA,ρ =

(
HG 0
• HB−G

)
where HG is the minor corresponding to the lattice points in G and HB−G is the minor corresponding to
the lattice points not in G. The zeros appear due to the fact that there is no pair b /∈ G, b′ ∈ G such that
b ∈ b′ − a(b′) + Ai(b). The same block-triangular structure also appears in the principal submatrix EA,ρ

and all the lattice points that are not in G must be non-mixed, implying that EB−G = HB−G .

Finally, using the fact that the determinant of a block-triangular matrix is the product of the deter-
minants of the diagonal blocks, we can prove the resultant formula:

ResA =
det(HA,ρ)

det(EA,ρ)
=

det(HG) det(HB−G)

det(EG) det(HB−G)
=

det(HG)

det(EG)
.

Example 1 Let f0, f1, f2 be three bilinear equations corresponding to the supports A0 = A1 = A2 =
{(0, 0), (1, 0), (0, 1), (1, 1)}. A possible mixed subdivision S(ρ) is the following:

where the dots indicate the lattice points in translated mixed cells. The number of lattice points in
translated cells is 9. However, if we construct the matrix greedily starting from the lattice points in
translated mixed cells, we have an 8 × 8 matrix.

Example 2 Let f0, f1, f2 be three bihomogeneous equations with supports

A0 = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)},

A1 = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}, A2 = {(0, 0), (1, 0), (0, 1), (0, 1)}.
The expected number of supports lying in translated cells is 16. Let ρ0 = (0, 3, 6, 3, 6, 9), ρ1 = (0, 2, 2, 4, 4, 6)
and ρ2 = (0, 1, 1, 2) be the lifting functions and δ = (− 1

2 ,
1
2 ) give the following mixed subdivision:

.

If we take the greedy approach the resulting matrix is 15 × 15, whereas otherwise it would be 16 × 16.

Example 3 Let f0, f1, f2, f3 be four polynomials with

A0 = A1 = A2 = A3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}

and ρ0 = (0, 3, 6, 3, 6, 9), ρ1 = (0, 2, 4, 2, 4, 6), ρ2 = (0, 1, 2, 1, 2, 3) and ρ3 = (0, 0, 0, 0, 0, 0) gives the mixed
subdivision:
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2 A FAMILY OF MIXED SUBDIVISIONS WITH TROPICAL REFINEMENT

If we take the traslation δ = (−2/3,−2/3,−1/2) the number of points in traslated mixed cells is 24, but
the degree of the resultant is 3 + 3 + 3 + 3 = 12. We want to show that we can construct a smaller matrix
using the greedy algorithm. If we start at the point (0, 0, 0), we get the matrix and we achieve a matrix
of size 20, with the principal submatrix marked in green.

2 A family of mixed subdivisions with tropical refinement

In this section, we give a family of lifting functions associated to the polytopes ∆0, . . . ,∆n and we prove
that the Canny-Emiris formula holds for the corresponding mixed subdivisions.

Definition 9 We can define a hyperplane arrangement H ⊂ NR by considering the span of the (n− 1)-
dimensional cones of the normal fan of ∆; see [23] for more on polytopes and hyperplane arrangements.

Example 4 A polytope ∆ (green), together with its normal fan (blue) and the hyperplane arrangement
H∆ (red).

Definition 10 Let H be the hyperplane arrangement associated to ∆ and take a vector v ∈ NR which
does not lie in H. We consider lifting functions ωi : Ai −→ R defined as:

ωi(x) = λi⟨v, x⟩ i = 0, . . . , n x ∈ ∆i

for λ0, . . . , λn ∈ R satisfying λ0 > · · · > λn ≥ 0 and small enough. Let ρ = (ω0, . . . , ωn) be a lifting
giving a mixed subdivision S(ρ).

Remark 6 This choice of the lifting function can also be seen as a case of the approach of [9], in a first
proof of the rational formula for generalized unmixed systems. In particular, it is possible to think of
the choice of the row content a(b) associated to each lattice point as trying to solve the simplex method
with the lifting function as objective. This family guarantees that we are always choosing this point in
the same direction.

Theorem 2 S(ρ) is an admissible mixed subdivision.

Proving that S(ρ) is an admissible mixed subdivision consists on both proving that it has an in-
cremental chain satisfying S(θ0) ⪯ · · · ⪯ S(θn) ⪯ S(ρ) and that this incremental chain satisfies the
conditions in Definition 8.

The easiest way to prove the chain condition would be to use [11, Proposition 2.11], which claims
that for each i = 0, . . . , n, there is an open neighboorhood of 0 ∈ U ⊂ RAi such that for ωi ∈ U we have
S(θi) ⪯ S(θi+1). In this case, for λi+1 small enough satisfying λi > λi+1 > 0, ωi lies in U . Therefore, the
S(θi) form an incremental chain.

However, we can drop the restriction that λi+1 is small enough by proving a more general result on
refinement of mixed subdivisions.

2.1 Tropical refinement

This section constitutes an independent section inside this article in which we describe, in much broader
generality than we need, the refinement of mixed dsubdivisions. In particular, we draw the full picture
of when a coherent mixed subdivision refines another one, by only changing the lifting function in ∆i.
In terms of the previous notation, we would like to know whether S(θi) ⪯ S(θi+1) for some i = 0, . . . , n.
Instead of studying a given mixed subdivision, we define a dual of such object by introducing tropical
geometry. After proving such result using tropical geometry, the family of lifting functions given in
Section 2 will satisfy the refinement.

Remark 7 As in this paper we are mainly interested in affine lifting functions, we restrict to such case.
However, the following results could be reproduced for any piecewise affine lifting function.
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2.1 Tropical refinement2 A FAMILY OF MIXED SUBDIVISIONS WITH TROPICAL REFINEMENT

The general context of tropical geometry consists of working over rings of polynomials over R with
the tropical operations:

x⊕ y = min(x, y) x⊗ y = x+ y

Definition 11 A tropical polynomial is the expression:

trop(f)(x) = ⊕a∈Aωax
⊗a = min

a∈A
(ωa + ax)

for x ∈ Rn where A is the support of f . A tropical hypersurface V (trop(f))) in Rn is the set of points
where the previous minimum is attained, at least, twice.

Remark 8 We can consider the coefficients ωa to be the values of a lifting function. If the lifting is affine,
we have ωa = ⟨v, a⟩ for some vector v ∈ NR. Therefore, the tropical polynomial with coefficients ωa

would be:
min
a∈A

(a(x+ v))

Definition 12 A tropical system Tr is formed by r+ 1 tropical polynomials with supports P0, . . . , Pr ⊂
M :

trop(fωi
i )(x) =

⊕
ai∈Pi

ωi,a ⊗ x⊗a = min
a∈Pi

(
ωi,a + a · x

)
where the coefficients of the system are given by some lifting function of the Pi. In some references like
[18], it is important to specify a valuation in the field but here we can suppose it to be trivial.

In our context, we have a family of tropical systems Ti for i = 0, . . . , n of the supports:

A0, . . . ,Ai−1,

n∑
j=i

Aj ⊂M

The last tropical polynomial is formed by imposing 0 coefficients, therefore, it is defined by:

min
a∈

∑n
j=r ∆j

⟨a, x⟩

which corresponds to the normal fan of
∑n

j=r∆j . This coincides with the assumptions for S(θi) in
Remark 3.

Proposition 2 The expression mina∈A⟨a, x⟩ is achieved twice in the (n − 1)-dimensional cones of the
normal fan of ∆ = conv(A).

Proof A j-th dimensional cone NF ⊂MR is a of the normal fan of ∆ corresponds to a n− j-dimensional
face of ∆. Take v ∈ NF , then mina∈∆⟨a, x⟩ is the same for all a ∈ F , which is a face. Therefore, it is
achieved, at least twice. On the other hand, if the minimum is achieved at least twice at v, then consider
the convex hull

conv{ai ∈ ∆ min⟨ai, v⟩ is achieved}

and it is a positive dimensional face F of ∆, therefore v is in the a cone of dimension at most (n− 1) in
F .

Proposition 3 The expression mina∈A⟨a, x+ v⟩ is achieved twice in the (n− 1)-skeleton of the normal
fan of ∆ translated after v ∈ NR.

Proof The same proof as the previous works after translating by v.

In this context, we can see the tropical system Ti as the superposition in NR of the normal fans
F0, . . . ,Fn centered at different points vi ∈ NR which correspond to each of the lifting functions ωi :
∆i −→ R.

Definition 13 A polyhedral complex P is a union of cells (bounded or unbounded) in NR such that:

– Every face of a cell in P is also in P.
– The (possibly empty) intersection of two cells in P is also in P.

Fans are a good example of polyhedral complexes. Thereofre, a tropical system defines a polyhedral
complex.
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2 A FAMILY OF MIXED SUBDIVISIONS WITH TROPICAL REFINEMENT2.1 Tropical refinement

Proposition 4 Let A0, . . . ,An be a family of supports and ω :
∑n

i=0 Ai −→ R be a lifting function. The
polyhedral complex defined by tropical system T taking the values of ω as coefficients is dual to the mixed
subdivision S(ω).

This duality happens in the following sense: the j-dimensional cells of the polyhedral complex corre-
spond to the (n− j)-dimensional cells of the mixed subdivision.

Proof Let p be a 0-dimensional cell of the polyhedral complex defined by T . As it is the intersection
of cones of each of the fans Fi, there is a cell of S(ρ) corresponding to the sum of the faces associated
to each of the fans. On the other hand, an n-cell D on the mixed subdivision corresponds to a point
p, which is the intersection of the normal cones of each of the summands Di. Each of the faces of D
corresponds to a cell of the polyhedral complex in which p is contained.

Let’s denote by Hi, the hyperplane arrangement in Rn associated to the tropical system Ti. Before
stating the main theorem, we will put an example of the refining construction.

Example 5 Let A0 = {(0, 0), (1, 0), (0, 1), (1, 1)}, A1 = A2 = {(0, 0), (1, 0), (0, 1)} with corresponding
convex hulls ∆0, ∆1, ∆2. Start with the trivial mixed subdivision:

0
0

0 0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

In this case, the corresponding tropical system is given by the inner normal fan to the Minkowski sum,
which corresponds to the superposition of the normal fans of each summand.

The dashed drawing represents the central hyperplane arrangement which we will denote as H0. Any
lifting of ∆0 will refine the subdivision. However, we can see that refinement corresponds to moving the
point (0, 0) of the blue fan to an adjacent chamber H0. Let’s take (2, 2) as a normal vector. This means
lifting ∆0 after an affine function of type c − 2x − 2y. We can choose any constant c as it will give the
same lifting. I choose c = 4 in order to get positive values in the lifting. Now, the subdivision looks like:

4
2

2 0

0
0

0

0
0

0

4

2

2

2

2

0

0

2

0

2

0

0

0

0

and the corresponding tropical system T1 and the corresponding (not central) hyperplane arrangement
H1 look like:
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2.1 Tropical refinement2 A FAMILY OF MIXED SUBDIVISIONS WITH TROPICAL REFINEMENT

Now, we claim that moving the orange fan close enough, we will be refining the mixed subdivision. In
particular, moving the orange fan to each of the adjacent cells on the hyperplane arrangement corresponds
to all the possible ways to refine the previous mixed subdivision. For instance, if we take the traslation
given by the vector (1,−1), which would be the normal vector to the affine lifting c− x+ y with c = 1.
The mixed subdivision looks like:

4
2

2 0

1
0

2

0
0

0

5

3

3

4

3

1

1

2

0

2

0

2

0

0

and the tropical system after the traslation vector (1,−1), corresponds to:

Let’s do a recap of all the notation we have so far. Let ωi : Ai −→ R be the lifting function. As
in Theorem 2, S(θi) be the mixed subdivisions of the candidate incremental chain given by the lifting
functions (ω0, . . . , ωi−1, 0, . . . , 0). Let Ti be the tropical systems dual to each of the mixed subdivisions
S(θi) for i = 0, . . . , n. Let Hi be the hyperplane arrangement associated to each of the tropical systems.

At this point, we have all the ingredients to state and prove the tropical refinement result.

Theorem 3 (Tropical refinement) Let i = 1, . . . , n. The mixed subdivision S(θi) refines S(θi−1), if and
only if, the normal vector to the lifting function ωi−1 : A −→ R lives in a chamber of Hi adjacent to
0 ∈ Rn.

Let’s construct the tools we need for proving this result.

Definition 14 We say that a ray r of the normal fan Fi preserves adjacencies if it is adjacent to the
same cells in Ti and Ti−1

Lemma 2 Let S(θi) be a mixed subdivision of ∆0, . . . ,∆i−1,
∑n

j=i∆j for i = 0, . . . , n. The lifting of ∆i

will give S(θi) ⪯ S(θi+1), if and only if, each ray of Fi preserves the adjacencies after the translation.

Proof Suppose there is a ray r that doesn’t preserve an adjacencies. Then, take the 0-dimensional cell of
the corresponding polyhedral complex where this adjacency fails and it must correspond to an n-cell of
S(θi+1) that is not contained in the cell of S(θi) corresponding to such adjacency.

On the other hand, take a cell C of S(θi+1) that is not contained in any of the cells of S(θi) and, as
we only lifted the polytope ∆i, the corresponding dual cell on the polyhedral complex has to fail to be
adjacent to the same rays.

Proof (of the Theorem 3) Consider p as a point (0-dimensional cell) in the polyhedral complex that is
dual to an n-cell D of S(θi−1). Let v be the normal vector to the lifting function ωi : Ai −→ R. We have
to prove that v lies in an adjacent cell to 0 in Hi, if and only if, D is contained in a cell D′ of S(θk).

Firstly, suppose there was not such cell D′. This would mean that the adjacencies would not be
preserved and we can find a ray r in Fi where this property is failing. Consider the ray of a fan Fk for
k = 0, . . . , i − 1 where this adjacency has changed and this means that we have crossed a hyperplane
containing such ray in the previous fan.

On the other hand, if there is such cell D′, then the lifting of ∆i preserves adjacencies. However, if
we had moved v to a non-adjacent cell to 0, we would have crossed a hyperplane therefore, we would be
able to find rays in such hyperplane where the adjacencies are not preserved.
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3 THE CASE OF N -ZONOTOPES 2.2 The proof of Theorem 2.1

This result extends the proposition 2.11 on [11, Proposition 2.11] and gives a full picture of refinement
of mixed subdivisions. Therefore, we naturally understand all the ways to refine a given mixed subdivision
S(θi) with affine lifting functions on ∆i.

Corollary 1 The chambers of the hyperplane arrangement Hi are in one to one correspondence to all
the possible ways to refine S(θi). In particular, if S(θi) is tight, the chambers of Hi correspond to tight
mixed subdivisions.

In the context of Theorem 2, in the direction of v /∈ H∆, the function ⟨λiv, x⟩ will reach the hyperplane
arrangement Hi when λi = λi−1. Therefore, for any 0 < λi < λi−1, the subdivision S(θi+1) will refine
S(θi) for i = 0, . . . , n.

2.2 The proof of Theorem 2.1

We close here the parentheses of tropical refinement and go back to the proof of Theorem 2.

Theorem 4 The mixed subdivision S(ρ) in Definition 8 is admissible.

Proof All the lattice points with row content 0 are 0-mixed. Therefore, S(θ0) satisfies ii) in Definition
8. Let D be an n-cell of S(θi). If dimDi = 0, then the fundamental subfamily of AD is at most {i} as
shown in Remark 4. We show that, for our choice of the lifting function, the rest of cells D satisfy ii) in
Definition 8.

Let D ∈ S(θi) such that dimDi > 0. Suppose that this cell contains a lattice point b ∈ B that has row
content i but is not i-mixed. Therefore, this lattice point b will be in a cell of S(ρ) with a 0-dimensional j-
th component for some j < i. Take C ⊃ D in S(θj) containing the previous lattice point b. If dimCj > 0,
then the lifting function ωj = λj⟨v, x⟩ takes the same value in all the points of Cj . Therefore, the vector
v is normal to Cj and has to be contained in the hyperplane arrangement associated to ∆. As this is not
the case, dimCj = 0 and consequently dimDj = 0, contradicting the initial hypothesis.

This proves that the family of lifting functions that we have defined, always provides an admissible
mixed subdivision.

3 The case of n-zonotopes

For simplicity, we suppose that the lattice is M = Zn.

Definition 15 A zonotope is a polytope given as a sum of line segments. An n-zonotope is generated
by n line segments, which span a lattice of dimension n.

Consider linearly independent v1, . . . , vn ∈ Zn and the line segments 0v1, . . . , 0vn ⊂ Rn forming an
n-zonotope Z ⊂ Rn. If the Newton polytopes are n-zonotopes whose defining line segments are integer
multiples of the 0vj , we can write the supports of the system as:

A′
i =

{ n∑
j=1

λjvj ∈ Zn | λj ∈ Z, 0 ≤ λj ≤ aij
}
.

for some aij ∈ Z>0. Let V be the nonsingular matrix whose columns are the coordinates of the vj in the
canonical basis of Zn for j = 1, . . . , n and consider it as a monomorphism of lattices V : Zn −→ Zn of
rank n. Let e1, . . . , en be the canonical basis of Zn.

Corollary 2 Let A′
0, . . . ,A′

n be the previous family of supports, then ResA′ = Res
| det(V )|
A , where:

Ai =
{

(bj)j=1,...,n ∈ Zn | 0 ≤ bj ≤ aij
}

i = 0, . . . , n

Proof Using Lemma 1, we can view the map V : Zn −→ Zn as a monomorphism of lattices sending the
canonical basis ei to vi for i = 1, . . . , n. The absolute value of the determinant |det(V )| is the index of
the image. This last result follows from the reduction of V to its Smith normal form [20, Theorem 2.3].

Remark 9 The normal vectors of the n-zonotope are given by n pairs (ηj ,−ηj)j=1,...,n in N . The results
that follow in this section could be proved without using Corollary 2, after changing bj by ⟨b, ηj⟩ for
j = 1, . . . , n, choosing ηj to be the element in the pair such that 0 ≤ ⟨b, ηj⟩ ≤ aij .
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3 THE CASE OF N -ZONOTOPES

In order to prove our results, we assume that the aij are ordered, meaning that 0 < a0j ≤ a1j ≤ · · · ≤
an−1j and j = 1, . . . , n, where we exclude An form this assumption; notice that Example 6 wouldn’t
satisfy this property without excluding An. Consider a translation δ ∈ Rn which is negative in each
component and small enough. Then, the lattice points in translated cells of a mixed subdivision of the
previous system are:

B =
{

(bj)j=1,...,n ∈ Zn | 0 ≤ bj <

n∑
i=0

aij
}
.

Let v /∈ ∪n
i=1{xj = 0} define the mixed subdivision S(ρ) as in the previous section. We assume vj < 0

for j = 1, . . . , n and get the following result.

Proposition 5 Let b ∈ B and i ∈ {0, . . . , n}. Then:

tb,i =
∣∣{j ∈ {1, . . . , n} |

i−1∑
k=0

akj ≤ bj <

i∑
k=0

akj
}∣∣

and the row content i(b) is the maximum index in {0, . . . , n} such that:

̸ ∃j ∈ {1, . . . , n} :

i(b)−1∑
k=0

akj ≤ bj <

i(b)∑
k=0

akj

with the support a(b) ∈ Ai(b) satisfying:

a(b)j =

{
0 bj <

∑i(b)−1
k=0 akj ,

ai(b)j bj ≥
∑i(b)

k=0 akj .

Proof It can be deduced from Definition 10 that the mixed subdivision S(θi) is given by the lifting
function θi =

∑n
j=1 θi,j where the lifting in the component xj only depends on θij . As we said in Definition

2, each of the θij are given as the inf-convolution of the lifting function in each of the polytopes. The first
non-trivial lifting function is S(θ1): it is piecewise linear and by Remark 3 depends only on the lifting
given in ∆0. Therefore, after taking the inf-convolution, we get:

θ0j =


0 {xj = 0}
λ0vj {xj = a0j}
λ0vj {xj =

∑n
i=0 aij}

This structure is guaranteed by the fact that λ0vj < 0. One can see that S(θ1) has two types of cells
D with respect to the j-th coordinates: those in which 0aj,0ej ⊂ D0 (which have to be in xj ≤ a0j for
x ∈ D) and those with 0aj,0ej ̸⊂ D0 (in xj ≥ a0j). In terms of the lattice points, as we are considering
δj < 0, those b ∈ B lying in a cell D with 0aj,0ej ⊂ D0 satisfy that 0 ≤ bj < a0j and the rest satisfy
bj ≥ a0j . As a consequence, tb,0 must be the number of j ∈ {1, . . . , n} such that 0 ≤ bj < a0j .

Consider now the structure of the mixed subdivision S(θi+1) with respect to the j-th coordinate.
Using the inf-convolution, we get:

θij =



0 {xj = 0}
λ0vj {xj = a0j}
(λ0 + λ1)vj {xj = a0j + a1j}
. . .

(λ0 + · · · + λi−1)vj {xj =
∑i−1

i=0 aij}
(λ0 + · · · + λi−1)vj {xj =

∑n
i=0 aij}

Again, this structure is guaranteed by λivj < 0 and by λi−1 > λi. With the same argument as before,

the cells in which 0aijej ⊂ Di are precisely those that satisfy
∑i−1

k=0 akj ≤ bj <
∑i

k=0 akj for b ∈ D. As

before, this also proves that tb,i is the number of j ∈ {1, . . . , n} such that
∑i−1

k=0 akj ≤ bj <
∑i

k=0 akj .
An explicit example of how this construction looks like can be found in Figure 1.

The second claim follows from the definition of row content with respect to the type vector tb. Let

b ∈ B and let i(b) be its row content. For j = 1, . . . , n, we either have bj <
∑i(b)−1

k=0 akj or bj ≥
∑i(b)

k=0 akj .
In the first case, the vertex associated to the row content, will be in the face of ∆i(b) defined by the
equality {xj = 0} and in the second case, the one defined by the equality {xj = ai(b)j}.
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3 THE CASE OF N -ZONOTOPES

Step Lifting Subdivision

S(θ0)
0 0 0 a0,0 + a1,0 + a2,0

S(θ1)

0

λ0vj
λ0vj 0

a0,0

a0,0 + a1,0 + a2,0

S(θ2)

0

λ0vj

(λ0 + λ1)vj

(λ0 + λ1)vj 0
a0,0

a0,0 + a1,0
a0,0 + a1,0 + a2,0

S(ρ)

0

λ0vj

(λ0 + λ1)vj

(λ0 + λ1 + λ2)vj

0
a0,0

a0,0 + a1,0
a0,0 + a1,0 + a2,0

Fig. 1 This table explains how the process of passing from the proposed lifting on ∆0, ∆1,∆2 to the mixed subdivision
works in the j-th coordinate for vj < 0 for any of the two components of Example 1. One clearly sees that, for instance,
0a0,0e0 ⊂ D0, if and only if, x0 ≤ a0,0 for x ∈ D. The product of two subdivisions of this form gives the mixed subdivision
in the figure of Example 1.

Remark 10 If vj > 0, we would change the inequalities by
∑n

k=i akj ≤ bj <
∑i

k=i−1 akj , but the results
that follow would not change. Any other mixed subdivisions of this particular system can also be formed
this way.

Definition 16 The type function φb : {1, . . . , n} −→ {0, . . . , n} associated to each lattice point b ∈ B is
defined as the vector of indices satisfying:

φb(j)−1∑
k=0

akj ≤ bj <

φb(j)∑
k=0

akj

Following Proposition 5, it satisfies that tb,i = |φ−1
b (i)|.

From the components of a(b) in Proposition 5, we deduce that the range of values for (b−a(b)+Ai(b))j
is: {

[bj , bj + ai(b)j ] bj <
∑i(b)−1

k=0 akj

[bj − ai(b)j , bj ] bj ≥
∑i(b)

k=0 akj

Corollary 3 The range of possible type functions for b′ ∈ b− a(b) + Ai(b) are:

φb′(j) ∈

{
{φb(j) − 1, φb(j)} i(b) < φb(j)

{φb(j), . . . , i(b)} i(b) > φb(j)

Proof Take I to be the index such that
∑I−1

k=0 akj ≤ bj <
∑I

k=0 akj and we get the inequalities:

{
bj − ai(b)j ≥

∑I−1
k=0 akj − ai(b)j ≥

∑I−2
k=0 akj i(b) < I

bj + ai(b)j <
∑I

k=0 akj + ai(b)j ≤
∑i(b)

k=0 akj i(b) > I
.

In the first row, we used that ai(b)j ≤ aI−1j .

Definition 17 We define the greedy subset G ⊂ B to be formed by all the lattice points b ∈ B such
that:

I∑
i=0

tb,i ≤ I + 1 ∀I < n.

Theorem 5 Let b ∈ G and b′ /∈ G. Then, b′ /∈ b− a(b) + Ai(b)
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3 THE CASE OF N -ZONOTOPES

Proof Let I be the greatest index such that
∑I

i=0 tb′,i > I + 1. As it is the greatest, we must have
tb′,I+1 = 0 and

∑n
i=I+2 tb′,i < n− I − 1.

On the other hand,
∑I

i=0 tb,i ≤ I+1. Using Corollary 3, the previous sum cannot grow in b−a(b)+Ai(b)

when i(b) > I. If
∑I

i=0 tb,i = I + 1, then
∑n

i=I+1 tb,i < n − I which implies that there is i > I with
tb,i = 0 and i(b) > I.

Suppose
∑I

i=0 tb,i < I + 1 and i(b) < I. Using Corollary 3, we have:

n∑
i=I+1

tb,i ≥ n− I and

n∑
i=I+1

tb,i ≥ n− I − 1

for b ∈ b− a(b) + Ai(b). Therefore,

n∑
i=I+2

tb′,i < n− I − 1 ≤
n∑

i=I+2

tb,i

meaning that it is not possible that b′ has a type function on the range of b− a(b) + Ai(b).

Definition 18 Let Ib ∈ {0, . . . , n} be the index satisfying:

Ib =

{
max{i ∈ {0, . . . , n} | tb,i ≥ 2} b lies in a non-mixed cell

0 b lies in a mixed cell

Let gb = |{i < Ib | ti,b = 0}| be the number of zeros that tb has before Ib.

Lemma 3 Let b ∈ G and suppose that gb = 0. Then, b lies in a mixed cell.

Proof Suppose that b lies in a non-mixed cell. This would mean that there is no zero before Ib implying
that

∑Ib
i=0 tb,i =

∑Ib−1
i=0 tb,i + tb,Ib ≥ Ib + 2.

Lemma 4 If tb,I = 0 and b ∈ G,
∑I

i=0 tb,i < I + 1.

Proof Otherwise,
∑I−1

i=0 tb,i ≥ I + 1.

Theorem 6 Let G be the greedy subset and b ∈ G such that gb = K for K > 0. Then, there is b′ ∈ G
with gb′ = K − 1 such that for some b ∈ b′ − a(b′) + Ai(b), φb = φb. As a consequence, we reach b from
b′.

Proof Consider tb to be the type vector of b and suppose that tb has two or more zeros after Ib. Then,

n∑
i=Ib+1

tb,i ≤ n− Ib − 2

implying that
∑Ib

i=0 tb,i ≥ Ib + 2, and b /∈ G.

If tb has one zero after Ib, it implies that i(b) > Ib. If gb > 0, it needs to have at least one zero before
Ib. Therefore, the type vector contains a sequence of the form

(. . . ,

I′︷︸︸︷
0 , 1, . . . , 1,

I︷︸︸︷
tb,I , . . . )

for some I ′ < I ≤ Ib with tb,I ≥ 2. Consider the type function:

φb′(j) =

{
φb(j) − 1 I ′ < φb(j) ≤ I

φb(j) otherwise

The corresponding type vector tb′ contains a sequence:

(. . . ,

I′︷︸︸︷
1 , 1, . . . , 1,

I︷ ︸︸ ︷
tb,Ib − 1, . . . ).
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3 THE CASE OF N -ZONOTOPES

Using Lemma 4,
∑I′

i=0 tb,i < I ′ + 1, therefore we will have:

I′∑
i=0

tb′,i ≤ I ′ + 1.

The same will hold for all the partial sums from I ′ to Ib implying there is b′ ∈ G with type function φb′ .
Using Corollary 3, φb is in the range of type functions in b′ − a(b′) + Ai(b′). As long as i(b′) < n, we can
find b′ ∈ G such that:

(b− b′ + a(b′))j ≤ aφb′ (j)j
≤ aj,i(b′)

so b ∈ b′ − a(b′) + Ai(b′).

If i(b) = i(b′) = n, we must have a(b) = a(b′) = 0, so we reach a point b ∈ b′ − a(b′) + Ai(b′) in the
same cell as b such that:

(b− b)j < (b− b′)j ∀I ′ < φb(j) ≤ I

As i(b) is always the same, after a finite number of steps, we have b ∈ b− a(b) + Ai(b).

If tb does not have any zero after Ib, then i(b) < Ib. The vector contains a sequence of the form

(. . . ,

i(b)︷︸︸︷
0 , tb,i(b)+1, . . . , tb,Ib , . . . )

for tb,I ≥ 1 with i(b) < I ≤ Ib. In this case, consider the type function:

φb′(j) =

{
φb(j) − 1 i(b) < φb(j) ≤ I

φb(j) otherwise

with type vector (. . . ,

i(b)︷ ︸︸ ︷
tb,i(b)+1, . . . ,

Ib−1︷︸︸︷
tb,Ib ,

Ib︷︸︸︷
0 , . . . ).

n∑
i=i(b′)+1

tb′,i ≥ n− i(b) +
∑

tb,i≥2

i>i(b′)

(tb′,i − 1) =⇒

i(b)∑
i=0

tb′,i ≤ i(b) −
∑

tb,i≥2 i>i(b′)

(tb′,i − 1) ≤ i(b) + 1

which implies that

i(b)∑
i=0

tb′,i + tb′,i(b′)+1 ≤ i(b) −
∑

tb,i≥2

i>i(b′)

(tb′,i−1) + tb′,i(b′)+1 ≤ i(b′) + 1

This argument holds for bounding the partial sums for I > i(b) so there is b′ ∈ G with type function φb′

and φb is in the range of type functions in b′ − a(b′) +Ai(b′). In this case, it is not possible that i(b′) = n
so the same argument on the previous case holds in order to say that b ∈ b′ − a(b′) + Ai(b′).

Theorem 5 and Theorem 6 imply that if we start the greedy algorithm from the lattice points in mixed
cells, we will reach exactly the lattice points in G. This actually reduces the size of the Canny-Emiris
matrices.

Corollary 4 The size of the matrix HG is:

∑
φb:{1,...,n}−→{0,...,n}

n∏
j=1

aφb(j)j

where the sum is over the functions that satisfy φ−1
b ({0, . . . , I}) ≤ I + 1 ∀I < n.
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4 MULTIHOMOGENEOUS FORMULAS

Dimension Canny-Emiris Greedy Resultant degree
2 9 8 6
3 64 50 24
4 625 432 360
5 7776 4802 3720

Fig. 2 This table represents the size of the matrices we achieve for zonotopes of dimensions from 2 to 5 with aij = 1 using
the greedy approach versus the original Canny-Emiris formula. We also compare to the degree of the resultant.

Proof Each type function φb corresponds to a cell D ∈ S(ρ). The lattice points b ∈ D satisfy Definition
16. Therefore, for each j, there are aφb(j)j possible values of bj . The product over all of them gives the
desired count.

We could not yet prove whether this is minimal with respect to the application of the greedy approach
to any other admissible mixed subdivision using affine liftings, but the many of the examples using that we
have verify it. However, some other known results of elimination theory suggest that using other piecewise
affine liftings might lead to more exact results; namely the relevance of degree reverse lexicographical
order when using Grobner basis[1]. We should remark that this combinatorial formula (and the one in
Corollary 4) should be compared with the same sum over all the type functions without the restriction.
For practical purposes, we show an example of our computations of the matrix dimensions in Figure 2.

4 Multihomogeneous formulas

Example 6 Let f0, f1, f2 be three homogeneous polynomials of degrees 2, 2, 1 respectively. We choose
v = (−1,−2) and δ = (−3/4,−3/4) and define an admissible mixed subdivision S(ρ) in the Minkowski
sum ∆ of their Newton polytopes ∆i. Let B be the set of lattice points in ∆ + δ. Consider a system
of polynomials whose Newton polytopes are n-zonotopes generated by the vectors w1 = (1, 0) and
w2 = (−1, 1) and let a0,1 = a0,2 = a1,1 = a1,2 = 2 and a2,1 = a2,2 = 1 be the bounds of the supports as
in Section 3. Let S(ρ) be the mixed subdivision in the Minkowski sum ∆ of ∆i of this system given by
the same v, δ as the previous, and let B be the set of lattice points in ∆+ δ.

.

It turns out that the mixed subdivision S(ρ) embeds, into S(ρ) implying that B = B ∩∆. As the greedy
reduction applies to the second system, it must apply to the first as well. Finally, we get a 9 × 9 matrix
HG for the homogeneous system, excluding the black lattice point in the figure.

Similar to Example 6, let’s now consider multihomogeneous polynomial systems and embed them
into n-zonotopes. Let n1, . . . , ns ∈ N>0 be natural numbers and let M = ⊕s

l=1Znl be our lattice. Each
multihomogeneous polynomial system can be written as:

Fi =
∑
a∈Ai

ui,aχ
a, i = 0, . . . , n

where the supports are:

Ai =
{

(bjl)
j=1,...,nl

l=1,...,s ∈ ⊕s
l=1Znl |bjl ≥ 0,

nl∑
j=0

bjl ≤ di,l
}

where di = (di,1, . . . , di,s) is the multidegree of Fi. Each of these supports can be embedded into the
following sets of supports:

Ai =
{

(bjl) ∈ ⊕s
j=1Znj | 0 ≤

nl∑
J=j

bJl ≤ di,l
}

l = 1, . . . , s j = 1, . . . , nl.

Let ∆i, ∆i be the Newton polytopes of each of the systems and ∆,∆ be their respective Minkowski
sums.
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4 MULTIHOMOGENEOUS FORMULAS

Lemma 5 The Newton polytopes ∆i of the system of polynomials with supports in Ai are n-zonotopes
whose line segments (wj,l)

j=1,...,nl

l=1,...,s are given by the columns of the matrix:

W =

W1 . . . 0
...

. . .

0 . . . Ws

 , Wl =


1 −1 0 . . . . . .
0 1 −1 0 . . .
...

...
...

...
...

0 . . . 0 1 −1
0 . . . 0 0 1


where the square blocks Wl are of size nl for l = 1, . . . , s. Moreover, H = ∪s

l=1 ∪
nl
j=1 {⟨x,wj,l⟩ = 0} ⊂∏s

l=1 Rnl is the hyperplane arrangement associated to ∆.

Proof Let b ∈ ⊕s
j=1Znj be a lattice point. As the columns of W form a basis of the lattice, we can write

b =
∑s

l=1

∑nl

j=1 λj,lwj,l and these coefficients are precisely λj,l =
∑nl

J=j bJ,l. Then,

b ∈ Ai ⇐⇒ 0 ≤ λj,l ≤ di,l l = 1, . . . , s j = 1, . . . , nl.

The normal vectors to the faces of ∆ are given by the columns (ηj,l)
j=1,...,nl

l=1,...,s of the matrix:

H =

H1 . . . 0
...

. . .

0 . . . Hs

 , Hl =


1 0 0 . . . . . .
1 1 0 0 . . .
...

...
...

...
...

1 . . . 1 1 0
1 . . . 1 1 1

.

One can check that ⟨wj,l, ηj′,l′⟩ ̸= 0, if and only if, l = l′ and j = j′. Therefore, v ∈ H, if and only if, it
belongs to the span of

∑s
l=1 nl − 1 columns of H, and this will only happen if ⟨v, wj,l⟩ = 0 for some pair

j, l.

Remark 11 As a consequence of Lemma 5, we can apply the results of Sec. 3 to the system with supports
Ai. The matrix H gives the normals to our polytopes, so we can use it in the sense of Remark 9.

Let v /∈ H and suppose that we take ⟨v, wj,l⟩ < 0, for l = 1, . . . , s and j = 1, . . . , nl. Consider S(ρ)
to be the admissible mixed subdivision of ∆ given by v as in Sec. 2. Let S(ρ) be the mixed subdivision
given by the same vector in ∆. Using ⟨v, wj,l⟩ < 0, one can check that this mixed subdivision is also
admissible as v does not belong to the hyperplane arrangement H associated to ∆. Let B,B be the sets
of lattice points in translated cells of ∆ and ∆, respectively. We can see the polytopes ∆i as a product
of simplices ∆i,1 × · · · ×∆i,s in each of the factors of MR =

∏s
l=1 Rnl .

Theorem 7 The mixed subdivision S(ρ) coincides with S(ρ) ∩∆.

Proof The vector v ∈
∏s

l=1 Rnl has to satisfy that:

v1,l < 0 vj+1,l − vj,l < 0 j = 1, . . . , nl − 1, l = 1, . . . , s

In other words vnl,l < vnl−1,l < . . . v1,l < 0. This means that the mixed subdivision S(θ1) lifts the
vertices of ∆0,l in the order 0, d0,lw1,l, . . . , d0,lwnl,l from higher to lower in the same lines of Proposition
5. This means that the cells D ∈ S(ρ) such that d0,lwj,l ⊂ Di are contained between the hyperplanes

{⟨x,wj,l⟩ =
∑i−1

j=0 dj,l} and {⟨x,wj,l⟩ =
∑i

j=0 dj,l} for l = 1, . . . , s j = 1, . . . , nl. S(ρ) has the same
structure. Therefore, S(ρ) coincides with S(ρ) ∩∆.

Therefore, if we apply the greedy algorithm to the multihomogeneous system with supports in the Ai,
we will obtain the same greedy subset G ⊂ B, with the restriction on the type vectors given in Definition
17. In particular, the domain of the type functions will now be a multiset in each group of variables:

φb : {{1, . . . , n1}, . . . , {1, . . . , ns}} −→ {0, . . . , n}.

The following proposition gives conditions to guarantee that the type function φb corresponds to a lattice
point b ∈ B.
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5 CONCLUSIONS

Proposition 6 A lattice point b ∈ B belongs to B iff its type function satisfies:

φb(j) ≤ φb(j
′), ∀j < j′ j, j′ = 1, . . . , nl, l = 1, . . . , s.

Proof Suppose that there is φb for b ∈ B such that for some l ∈ {1, . . . , s} and some pair j < j′

in {1, . . . , nl} the function satisfies φb(j) > φb(j
′). Using the definition of the type functions and the

matrix H, one sees that:

φb(j)−1∑
k=0

dk,l ≤
j∑

j=1

bj,l

φb(j
′)∑

k=0

dk,l >

j′∑
j=1

bj,l =⇒
j′∑

j=j

bj,l < 0.

Therefore, there must be j ∈ {j, . . . , j′} such that bj,l < 0 and b /∈ B. On the other hand, if we find
bj,l < 0, we can use the same argument to say that the type function φb cannot satisfy the previous
restriction.

Corollary 5 The size of the matrix HG for multihomogeneous systems is:

∑
φb

s∏
l=1

n∏
k=0

(
dk,l
nk,l,φb

)
where nl,k,φb

= |{j ∈ {1, . . . , nl} φb(j) = k}| and φb satisfies the restrictions of Corollary 4 and
Proposition 6.

Proof Let D ∈ S(ρ) be the cell associated to a type function φb for b ∈ G. We can consider that this cell
has a decomposition:

D =

n∑
k=0

s∑
l=1

Dk,l

where Dk,l is a cell of ∆k,l. The number of lattice points in D corresponds to the product over the number
of lattice points in each of the Dk,l. As a face of ∆k,l, Dk,l is a simplex of degree dk,l and dimension the
number of j ∈ {1, . . . , nl} such that φb(j) = k.

The count follows by noticing that the lattice points in a translated simplex of degree d and dimension
n of size length are contained in a simplex of degree d− n and same dimension. Therefore, there are

(
d
n

)
of them.

There exist exact determinantal resultant formulas for some multihomogeneous cases, obtained by
using the Weyman complex and other tecniques [3, 2, 13, 14, 22]. Our approach does not improve those
cases, but the use of type functions might be easier to generalize to a general case. Let’s give an example
of the size of these matrices with respect to some of the existsing formulas.

Example 7 For the polynomial system of Example 1, there are exact formulas of Sylvester type [13] which
give a matrix of size 6, smaller than that of size 8.

We could also exploit the incremental algorithm for constructing the Canny-Emiris formula [5], but
we would be losing the combinatorial properties. Therefore, we would not have a proof of the formula for
such matrices or we wouldn’t be able to guarantee that they have a non-zero determinant as in Remark
5. Moreover, such implementation requires the precomputation of mixed volumes.

5 Conclusions

The main contribution of this paper is a first approach to estimating of the possible reduction of the size
of the Canny-Emiris matrices produced by the greedy algorithm in [6]. Apart from the treated cases,
we could consider other systems for which the mixed subdivision can be embedded in an n-zonotope
and impose restrictions on the type functions accordingly. We could also try to drop the hypothesis that
a0j ≤ · · · ≤ an−1j : the examples show that, for that case, the reduction in the cells that are not in G is
lower. We also expect to measure when the Newton polytopes are m-zonotopes for m > n. In such cases,
the examples show that there will still be some reduction.
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Example 8 Here an example for

A0 = A1 = A2 = {(0, 0), (1, 0), (−1, 1), (1, 1), (−1, 2), (0, 2)} ⊂ Z2

and our choice of the mixed subdivision would give:

.

In this case, there is a reduction on the lattice points of the cells not in G (lattice points in black), but
not all the lattice points can be excluded.

This article includes an implementation of the Canny-Emiris formula in JULIA for the case of n-
zonotopes and multihomogeneous systems which does not depend on the choice of a lifting function
whose code and explanation can be found at this link . The practical use of the construction of symbolic
resultant matrices can be found in [10] and others.
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