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A B S T R A C T   

Mountain ecosystems are particularly sensitive to climate change, which in part causes encroachment of woody 
plants at the treeline ecotone, with repercussions on treeline advance and ecosystem carbon balance. Yet, studies 
investigating the long-term trends in radial growth as well as year-to-year response of several tree and shrub 
species to climate change are scarce, especially in the Pyrenees where dendroecological studies are hitherto 
critically lacking. Here, we estimate and compare the long-term growth trends of two shrub (Rhododendron 
ferrugineum and Juniperus communis) and one tree (Pinus uncinata) species, and investigate their year-to-year 
growth response to changing climatic conditions and advancing snow melt-out timings. We used the Age-Class 
Isolation method (ACI) to derive growth trends from the ring width series of trees and shrubs. Climate-growth 
relationships were evaluated using fixed- and moving-window bootstrap correlation functions with the aim to 
determine the effects of changing climate and snowpack on shrub and tree growth. Overall, our results show that 
all species at our site, especially shrubs, have grown increasingly well over at least the last century, probably in 
response to increasing temperatures during the growing season and earlier snow melt-out dates. Nevertheless, 
the two shrub species differ quite strongly in their response to climate. Whereas the climate signal of J. communis 
has been relatively stable in recent decades despite the persistent and significant warming trend, R. ferrugineum 
shows a strong shift in climate sensitivity and is increasingly affected negatively by climate change. Altogether, 
our results address the different climate sensitivity of the two most common shrubs in the Pyrenees. They also 
contribute to a better understanding of vegetation dynamics in the Pyrenean treeline ecotone in the context of 
global change.   

1. Introduction 

High elevation ecosystems have faced unprecedented warming in 
recent decades, leading to accelerated changes in their productivity and 
functioning (Carlson et al., 2017; Choler, 2015; Choler et al., 2021; 
Filippa et al., 2019; Rumpf et al., 2022). Shrub encroachment at the 
treeline ecotone and beyond, a landscape-scale phenomenon, has been 
observed on the Tibetan Plateau and in the Himalayas (Brandt et al., 
2013; Klein et al., 2014; Lehnert et al., 2016), in the Rocky Mountains 
(Formica et al., 2014), Scandes (Hallinger et al., 2010; Kullman, 2002; 
Rundqvist et al., 2011), European Alps (Cannone et al., 2007; Dullinger 
et al., 2003) and the Pyrenees (Grau et al., 2019; Montané et al., 2007; 

Urbina et al., 2020). Specifically in the Pyrenees, shrub and tree 
encroachment has been found to be triggered primarily by land aban-
donment after centuries to millennia of intense agro-silvo-pastoral ac-
tivities and by climate change (Ameztegui et al., 2016; Améztegui et al., 
2010; Galop and Jalut, 1994; Gartzia et al., 2014). Shrub encroachment 
has direct effects on surface albedo, vegetation roughness, snowpack 
dynamics and litter input, which in turn has various impacts on alpine 
tundra carbon balance by increasing ecosystem carbon uptake and 
altering ecosystem respiration (Mekonnen et al., 2021; Urbina et al., 
2020). In the Pyrenees, shrub encroachment plays a complex but 
important role in the first stage of tree re-colonization at treelines. 
Treeline advance is mainly driven by Pinus uncinata establishment 
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(Améztegui et al., 2010; Camarero and Gutiérrez, 2004), in interaction 
with the spread of Juniperus communis and/or Rhododendron ferrugineum 
dominated heathlands (Angulo et al., 2019; Batllori et al., 2009; Gartzia 
et al., 2014; Pasche et al., 2004; Urbina et al., 2020). Indeed, scattered 
shrubs have a beneficial effect on tree establishment by sheltering 
seedlings, but dense, encroached heaths inhibit their development 
(Angulo et al., 2019; Batllori et al., 2009; Camarero and Gutièrrez, 
1999). Even if land abandonment plays a key role for the establishment 
of new individuals, climatic conditions are also responsible for the 
success of the initial recruitment and the velocity of subsequent shrub 
encroachment dynamics through vegetative growth (Formica et al., 
2014). However, the exact climatic factors that determine the growth of 
co-occurring tree and shrub species at the treeline ecotone remain 
poorly understood. 

Dendroecology, the analysis of growth rings of woody plants, has 
been widely used to fill this knowledge gap (Forbes et al., 2010; 
Mekonnen et al., 2021; Myers-Smith et al., 2015b), because growth rings 
contain information on the response of trees and shrubs to climatic 
variables at different timescales. Variations in ring width over decades 
or centuries reflect the effects of gradual changes in environmental 
factors that limit growth (e.g. temperature, precipitation, CO2 concen-
tration), but also biological and geometric age-related growth trends 
(Peters et al., 2015). Studies on long-term growth trends have been used 

in different contexts to detect growth changes and biomass increase 
(Bouriaud et al., 2005; Nehrbass-Ahles et al., 2014; van der Sleen et al., 
2015), but were only rarely employed to analyze encroaching alpine 
environments (see Šenfeldr et al., 2021). 

Interannual variations in temperature, precipitation and snow cover 
drive short-term variations in ring widths (i.e. year-to-year variations). 
Dendroecological studies show that trees occurring at their uppermost 
distribution margin are cold-limited and therefore highly sensitive to 
summer temperature (Körner, 2012). Alpine dwarf shrubs, on the other 
hand, do not only exhibit a summer temperature signal but also a 
snowpack signal, with the latter determining growing season length 
(Carrer et al., 2019; Francon et al., 2020a). Yet, we are not aware of any 
study that investigated climatic drivers of growth of structuring 
co-occurring long-lived dwarf shrub species to compare them with those 
of neighboring trees in European mountains. Furthermore, few studies 
have performed combined analyses of short-term climate-growth re-
lations and long-term growth trends in shrubs (Pellizzari et al.,2016; 
Šenfeldr et al., 2021), which we hypothesize could facilitate under-
standing of the missing link between shrub encroachment and climate 
signals retrieved from growth rings (Babst et al., 2014; Nehrbass-Ahles 
et al., 2014). 

In this paper, we attempt to fill this gap and to explore, for the first 
time in the Pyrenees, the climate-growth responses of three shrub and 

Fig. 1. Location and overview of our study site located at 1800 m asl in the Bassiès valley (French Pyrenees).  
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tree species co-occurring at a site where intense encroachment is 
ongoing. Our objective is twofold, namely: (1) to estimate, in the longer 
term, the evolution of shrub and tree woody biomass by investigating 
growth trends over the last decades/centuries; and (2) to compare 
growth responses of R. ferrugineum and J. communis shrubs and 
P. uncinata trees to year-to-year climate variability. 

2. Methods 

2.1. Study site 

Our study site (42◦45′30′′N, 1◦24′50′′E, Fig. 1) is located in the 
central-eastern part of the French Pyrenees, in the hanging Bassiès val-
ley, a tributary of the Ariège basin. Bedrock at Bassiès valley (15 km2) 
consists mostly of granitic roches moutonnées that were formed during 
the last glaciation (Delmas et al., 2011). Microtopography at the sam-
pling site is rugged and consists of medium-sized rocks covering the talus 
slopes. Vegetation consists primarily of subalpine meadows and dwarf 
shrubs (65%), whereas forest and tall shrubs occupy 5% and 2% of the 
valley surface, respectively. Vegetation-free rock and bare soils occupy 
25% and water 3% of the surface (Marti et al., 2016; Szczypta et al., 
2015). Since the 1950s, successional processes involving tree 
(P. uncinata and Betula pendula) and shrub (Calluna vulgaris, R. ferrugi-
neum and J. communis) encroachment of open grasslands occur rapidly 
across the valley and are driven by changing pastoral practices and 
under-grazing (Galop et al., 2011). At 1800 m asl, average annual 
temperature over the period 1981–2010 was 5.3 ◦C (June–August mean 
temperature was 12.3 ◦C) and mean annual precipitation was 1245 mm 
(May is the moistest month with 133 mm and July the driest, with 73 
mm precipitation) according to the SAFRAN-Crocus dataset (Durand 
et al., 2009). Precipitation falls as snow generally as of November–De-
cember (Marti et al., 2016) and snow melt-out timing occurs around the 
second week of May (See Fig. S1). 

2.2. Study species 

Pinus uncinata Ram. (Pu) is a tree species growing in the subalpine 
belt of the central and eastern Pyrenees, where it forms most treelines. 
At our site, the treeline has been lowered due to past human activities. A 
few remaining groups of trees form the current treeline, which is below 
2000 m asl. Pu is a shade-intolerant species occurring in different soil 
and slope aspects. P. uncinata is the main contributor to vegetation 
encroachment in the Pyrenees (Ameztegui et al., 2016; Améztegui et al., 
2010; Ninot et al., 2008), it also is the most widely investigated taxa in 
dendrochronological studies from the Pyrenees (Büntgen et al., 2008; 
Diego Galván et al., 2015; Reid and Wilson, 2020; Sangüesa-Barreda 
et al., 2018; Sanmiguel-Vallelado et al., 2019). Juniperus communis (L.) 
(Jc) and Rhododendron ferrugineum (L.) (Rf) are both long-lived, late--
successional, multi-stemmed dwarf shrub species (Cannone et al., 2022), 
widely distributed in the European high mountains, in the subalpine and 
alpine belt. Both species have been shown to be able to rapidly invade 
meadows, and ultimately form dense closed heathlands (Escaravage 
et al., 1997; Pasche et al., 2004). While R. ferrugineum occurs mainly on 
north-facing slopes in the Pyrenees, J. communis is more tolerant and 
occurs on slopes of varying aspect (Gracia et al., 2007). Both species 
have been shown to be suitable for dendrochronological analyses (Car-
rer et al., 2019; Francon et al., 2017), although no studies have 
compared their growth response to climate at a site where they co-occur. 
In the Alps, J. communis shows high sensitivity to snowpack, which is 
consistent across contrasting topoclimatic sites (Ninot et al., 2008). 
R. ferrugineum, on the other hand, shows a more complex response to 
climate and snowpack, varying considerably along environmental gra-
dients (Francon et al., 2020a; Francon et al., 2021). 

2.3. Sample collection and preparation 

A total of 22 R. ferrugineum and 21 J. communis were sampled in the 
Bassiès valley at a site where they co-occur, on a north-facing slope, at an 
elevation between 1800 and 1900 m asl (Fig. 1). For each species, we 
sampled shrubs at a minimum distance of four meters from each other to 
avoid sampling the same clone. Two to three sections were sampled from 
each shrub, starting at the root collar if accessible, or as low as possible 
on the main stem. Sampling was designed to perform a serial-sectioning 
approach in which ring widths are measured at different stem levels to 
detect missing rings and improve cross-dating, i.e. assigning exact cal-
endar years to the formation of each ring (Kolishchuk, 1990). However, 
after successful cross-dating, we retained only the lower section for 
climate signal extraction as recommended by Ropars et al. (2017). Since 
sufficiently old individuals of P. uncinata were not found in large 
numbers in the closed heath where we sampled the shrubs, we collected 
tree samples that were growing on the same slope and at the same 
elevation, but c. 200 m away from the shrub sampling site where they 
occur in larger numbers due to the presence of a less closed heath. 
Finally, 21 P. uncinata trees were cored at breast height (two cores per 
tree) using an increment borer. 

For R. ferrugineum, 20 μm-thick micro-sections were obtained using a 
rotary microtome. Each section was stained with safranin and astra blue 
dyes to enhance ring boundaries and finally mounted on slides 
(Schweingruber and Poschold, 2005). High-resolution digital pictures 
were captured by a Carl Zeiss Axio Observer Z1 coupled to a Zeiss 
AxioCamMR R3 camera. The images were merged automatically with 
the Zeiss Zen 2011 software to cover entire cross-sections. Because ring 
widths are roughly three times larger in J. communis than in 
R. ferrugineum, the preparation of microsections is not necessary and we 
simply air-dried sections and sanded them with gradually finer sand-
papers according to standard procedures used in dendrochronology 
(Bräker, 2002). Similarly, for P. uncinata, increment cores were air-dried 
and sanded. Subsequently, sections and increment cores were scanned 
with a resolution of 1200 dpi using a high-resolution Epson 11000XL 
scanner. 

2.4. Ring-width chronologies 

For all species, growth rings were measured from digital images with 
the CooRecorder 7.6 software (CYBIS Elektonik & Data AB). For shrubs, 
ring widths were measured at three radii to detect partial rings. Cross- 
dating was done with Cdendro (CYBIS Elektonik & Data AB) following 
the three-step procedure described in Francon et al. (2017) for shrubs 
and the traditional dendrochronological protocol for trees (Bräker, 
2002). Visual cross-dating was statistically validated using COFECHA 
(Holmes, 1994). Only carefully dated sections were retained for further 
analysis. Individual tree and shrub-ring series were standardized using 
the R (R Core Team, 2016) dplR package (Bunn, 2008) to eliminate 
non-climatic trends (e.g., age related growth trends, effects of natural or 
human-induced disturbances) and to maximize climatic information. 
We used a cubic smoothing spline with a 50% frequency response at 25 
years (Cook and Peters, 1981) to detrend each series. Besides the stan-
dardized series, we also calculated residual (or pre-whitened) time series 
where auto-correlation was removed. After standardization, ring-width 
indices (RWI) were averaged for each individual with a bi-weighted 
robust mean so as to reduce the influence of outliers (Cook and Pe-
ters, 1981). 

Descriptive statistics including standard deviation (SD), mean 
sensitivity (MS), and autocorrelation (AC) were computed using the R (R 
Core Team, 2016) dplR package (Bunn, 2008) for the three chronolo-
gies. In addition, the subsample signal strength (SSS), expressed popu-
lation signal (EPS; Wigley et al., 1984) and mean inter-series correlation 
(rbar) were computed using dplR to evaluate their robustness. The SSS 
statistic quantifies the strength of the common climate signal in the 
tree-ring proxies by calculating how well a finite subsample represents 
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the reference chronology – and a theoretical infinite sample in the case 
of EPS (Buras, 2017; Wigley et al., 1984). We used a SSS threshold >0.85 
to determine the period over which each chronology is reliable. Finally, 
we computed Pearson correlations between the three mean residual 
chronologies over this period. 

2.5. Trend analysis 

We used the Age-Class Isolation (ACI) method to derive growth 
trends from tree and shrub ring-width series (Peters et al. 2015). This 
method compares growth rates within fixed age classes, thereby 
removing age trends from the raw growth rates. In our case, we used 
20-year age classes. For each individual, we calculated the average raw 
ring width in each age class, centered on the 10-, 20-, 30- etc. cambial 
age. We discarded age classes as soon as the number of individuals 
included in the age class dropped below 10. To detect significant posi-
tive or negative growth trends by age class, we calculated linear re-
gressions and Pearson’s correlation coefficients between time and mean 
ring width (significance level p < 0.05, see Cook and Peters, 1981). We 
also used linear mixed models (LMMs) available from the R (R Core 
Team, 2016) nlme package (Pinheiro and Bates, 2000) to test the sig-
nificance of trends among age class. Year was used as a fixed effect, and 
we chose individual ID as a random factor. We calculated a pseudo-R2 of 
the selected models following Nakagawa and Schielzeth (2013), which 
comprises marginal (R2m) and conditional (R2c) R2 values. R2m ac-
counts for the proportion of variance explained by the fixed factors, and 
R2c accounts for the proportion of variance explained by the whole 
model, i.e. fixed plus random factors. Statistical analyses were realized 
with R (R Core Team, 2016). 

2.6. Year-to-year climate-growth relationships 

To identify effects of interannual climate variability on year-to-year 
ring-width variability in the three species, we computed bootstrapped 
correlation functions (BCFs) between the spline-detrended and residual 
chronologies on the one hand and mean monthly air temperature (◦C), 
precipitation totals (mm) and melt-out dates on the other hand using the 
R (R Core Team, 2016) Treeclim package (Zang and Biondi, 2015). In 
addition, we computed a 30-year moving window only for the month-
ly/seasonal climate parameters that were found to be significant in the 
BCF to determine possible changes in the strength, sign and significance 
of correlations among themselves. We extracted monthly meteorological 
and snowpack variables from the SAFRAN-Crocus reanalyses dataset for 
the period 1959–2017 (S2M, Durand et al. 2009; Vionnet et al. 2012). 
This dataset combines in situ meteorological observations with synoptic 
scale meteorological fields to provide continuous time series of meteo-
rological variables at hourly resolution for elevation bands of 300 m, 
different slope aspects and angles within spatial units referred to as 
"massifs" (i.e. Couserans in our case). In addition, S2M also provides 
snow depth values. Vegetation and microtopography are simplified in 
the simulations and a continuous grass cover is assumed to simulate 
typical snow conditions for open areas (Vionnet et al., 2012). The 
simulated snow depth was found to be very comparable to observations 
in a recent S2M evaluation (Vernay et al., 2022), ensuring reliable snow 
data for our study. 

We included monthly predictors from June of the year preceding ring 
formation (n-1) to October of the year of actual growth (n). We also 
considered mean temperature of the vegetative period (i.e. the period 
without snow cover, starting around May and ending in October), mean 
temperature of the growing season (around July and August, based on 
unpublished dendrometric data) and precipitation accumulated from 
December to February, falling mainly in the form of snow, as indicators 
of snow accumulation. Finally, we derived snow melt-out dates from 
S2M according to elevation, slope aspect and slope angle at the study 
sites. Melt-out dates correspond to the date by which thickness of 
continuous snowpack falls below 10 cm (see Fig. S1). All climate data 

were detrended using the same approaches as for ring widths (see 
Chapter 2.4), as the focus of this analysis was on the interannual radial 
growth response to climate. 

3. Results 

3.1. Chronology statistics 

A total of 15, 13, and 20 individuals were included in the chronol-
ogies of R. ferrugineum (hereafter referred to as Rf), J. communis (Jc) and 
P. uncinate (Pu), respectively, corresponding to rejection rates (i.e. the 
percentage of misdated individuals) of 32, 38, and 5%. The average ring 
widths are 0.16, 0.47 and 1.31 mm for Rf, Jc, and Pu, respectively 
(Table 1). The oldest individual sampled was a 212-year-old Rf shrub. 
Signal strength statistics computed for the standardized, residual chro-
nologies (mean intercorrelation, Rbar, EPS and SSS) show lower values 
for the Rf and Jc chronologies as compared to the Pu chronology 
(Table 1, Fig. 2). For instance, the Rbar amounts to 0.26 for both shrub 
chronologies, and to 0.37 in the case of Pu. Yet, between 1960 and 2017, 
that is the period for which climate data is available, all species exceed 
the 0.85 SSS threshold. Mean sensitivity (MS) is higher in the case of Rf 
(0.53) than in Jc (0.24) or Pu (0.19). On the contrary, first-order auto-
correlation (AR1), computed before pre-whitening, was much higher in 
Pu (0.74) than in the shrubs (Rf: 0.27 and Jc: 0.34). The Pearson cor-
relation coefficient (p<0.05) between Jc and Pu, Rf and Jc, as well as Rf 
and Pu are 0.49, 0.25 and 0.00, respectively. 

3.2. Long-term growth trends 

Results obtained from the growth trend analysis show a general in-
crease in woody biomass for the different species. In Fig. 3A-B, ACI in-
dicates that trends for each 20-years age classes are positive in all cases, 
but not always significant. For Rf, individuals being younger than 40 
show the strongest positive trends, whereas older individuals exhibit 
weaker trends. For Jc, we could not find any trend differences between 
age classes. Very young Pu individuals (c. 10 years old) and individuals 
aged 60+ show stronger positive trends than individuals aged 20–50. 
Linear mixed-effects models computed between age-classes for each 
species separately confirm the significance of the positive temporal 
trends for each species (Table 2, Fig. 3C). Specifically, Jc shows the 
strongest growth increase, followed by Rf and Pu (Fig. 3C). The pro-
portion of variance explained by fixed effects (R2m) reaches 100% for 
Jc, while it is lower for Rf and particularly for Ju, where random effects 
explain most of the variance. 

3.3. High frequency climate-growth response 

Correlations computed with the monthly and seasonal climate vari-
ables and snow melt-out timing over the period 1960–2017 are shown in 
Fig. 4. Overall, we observe that Pu and Jc respond similarly to year-to- 
year climate variability and that their response to snow melt-out timing 
is significant: years with early melt-out dates are indeed significantly 
related with larger rings in Jc (-0.52, p<0.05) and, to a lesser extent, also 
in Pu (− 0.41, p<0.05). Both species also show a bimodal response to 
monthly temperature in the year of ring formation, as Pu is positively 
and significantly correlated with May (0.36, p<0.05) and September 
(0.25, p<0.05) temperatures, whereas ring formation in Jc is controlled 
by April (0.39, p<0.05), May (0.33, p<0.05), September (0.27, p<0.05) 
and October (0.23, p<0.05) temperatures. However, Pu, which is posi-
tively affected by temperature in previous November and negatively by 
temperature in previous August, is overall more sensitive to conditions 
in the previous year than Jc. In addition, we find that wet conditions in 
early summer of the year preceding ring formation (n-1) have a positive 
effect on Pu growth, whereas they have a negative effect if occurring in 
late summer of the year of ring formation (n). Rf, on the other hand, 
reacts somewhat differently to climate: whereas growth correlates 
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positively as well with temperatures during the vegetative season 
(May–October), the climatic signal is clearly strongest during the 
warmest summer months (July and August, r = 0.41, p<0.05). Rf also 
correlates positively with previous June, September and November 
temperatures, but is negatively influenced by current February mean 
temperature. 

The moving-window correlations between radial growth and climate 
parameters show a significant change for Pu and especially for Rf since 
the 1990s (Fig. 5A and C). We observe a negative effect of January and 
February temperature on Rf, which only becomes significant from the 
period 1979–2008. Furthermore, correlations between winter precipi-
tation, melt-out timing and Rf gradually change from negative to posi-
tive over the period of analysis. We observe no change in the correlation 
sign for Pu, but note an increasing negative effect of winter temperature 
and an increasing positive signal of previous year’s growing season 
(June–October) precipitation. In comparison, Jc shows a very strong, 
stable signal of the melt-out timing over the entire period (Fig. 5B), 
whereas correlation with growing season temperature is declining and 
not significant anymore since the 2000s. 

4. Discussion 

4.1. Chronology quality 

In this study, we established two robust shrub-ring and one tree-ring 
chronologies to compare growth of different species from the same 
environment. In the case of shrubs, cross-dating was especially complex 
in the specific case of J. communis (Jc) due to its narrow, partial and 
missing rings as well as eccentric or lobed growth (Buras and Wilmking, 
2014; Francon et al., 2017). R. ferrugineum (Rf) has thinner rings than Jc 
and P. uncinata (Pu) at our site. In the case of both shrub species, mean 
ring width is slightly higher than in those collected in the Alps (for Rf see 
Francon et al., 2017, 2020b; for Jc see Carrer et al., 2019). In addition, 
we counted 212 annual rings on one of the Rf specimens, making it the 
oldest dated individual of R. ferrugineum found so far. It exceeds the 202 
years of an individual sampled in the Central Alps (Schweingruber and 
Poschold, 2005) and opens perspectives for multi-centennial climate 
reconstructions. 

Yet, both shrub chronologies (1) also have high rates of rejection and 
(2) a lower common signal strength than Pu. The rejection rates of both 
shrubs chronologies are comparable or even lower than those of other 
studies (Carrer et al., 2019; Francon et al., 2020a). Likewise, the signal 
strength over the whole period is rather low in shrubs when compared to 

Table 1 
Characteristics of R. ferrugineum (Rf), J. communis (Jc) and P. uncinata (Pu) ring-width chronologies: mean ring-width (RW), chronology length (calendar years), 
number of individuals (Nb.), mean intercorrelation between individual series, signal strength (Rbar and EPS calculated for the entire chronology and for 1960–2017, 
respectively), first year in which SSS > 0.85 (and number of individuals included in the chronology), first order autocorrelation (AR1) and mean sensitivity (MS). 
Values (except for mean RW) refer to chronologies after detrending.  

Chrono. (mean RW) Length Nb. Mean inter-corr Rbar EPS Rbar (1960–2017) EPS (1960–2017) Year SSS >0.85 (Nb.) AR1 MS 

Rf (0.16) 1805–2017 15 0.42 0.26 0.65 0.30 0.85 1928 (7) 0.27 0.53 
Jc (0.47) 1879–2017 13 0.45 0.26 0.68 0.25 0.80 1951 (7) 0.34 0.24 
Pu (1.31) 1859–2017 20 0.56 0.37 0.88 0.38 0.92 1892 (7) 0.74 0.19  

Fig. 2. Detrended Pinus uncinata (yellow), 
Juniperus communis (blue) and Rhododendron 
ferrugineum (red) ring-width chronologies 
(Panel B) with their confidence intervals (± 1 
SD) and their respective subsample signal 
strength (SSS, solid lines) and mean inter-series 
correlation (rbar, dashed lines) (panel A) 
computed with a 30-year moving window. The 
vertical dashed line indicates 1960, the starting 
year for climate–growth analyses. Colored 
background surfaces represent sample depth on 
panel B.   
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trees. We speculate that this could probably be due to the low stature of 
shrubs and the related, stronger influence of microclimate as compared 
to erect trees for which mesoscale conditions play a decisive role 
(Francon et al., 2021; Šenfeldr et al., 2021). At our site, it seems that 
microsite effects are critical as chronologies were built from samples 
that were growing on a highly heterogeneous and rugged topography 
consisting primarily of scree. Nevertheless, the EPS statistic shows that 
all chronologies are robust for dendroecological analyses over the period 
1960-2017 for which climate data is available (Wigley et al., 1984). 
Lower MS and higher AR1 for Pu suggest that the tree species is less 
sensitive to interannual climate fluctuations than shrubs. Its lower po-
sition relative to the potential tree line and higher needle longevity 
(Chropeňová et al., 2016) relative to Jc and Rf (Pornon and Lamaze, 
2007) are potential explanations. 

Strong interspecific differences in growth patterns are evidenced by 
the low correlations between the three chronologies, especially between 
Rf and Pu. The reasons for these contrasts between chronologies might 
be related to differences between shrubs and trees (Šenfeldr et al., 2021) 
on the one hand, and between conifer and broadleaf evergreen (Martí-
nez-Vilalta et al., 2016) growth forms on the other hand. Indeed, shrubs 
differ from trees in how they distribute carbon between and along the 
stems (Blok et al., 2011; Götmark et al., 2016; Li et al., 2013; Wilmking 
et al., 2012) and in how they balance radial and apical growth 
(Myers-Smith et al., 2019). Furthermore, due to their low stature, shrubs 
are more directly tied to microclimatic conditions than to regional 
climate, which may explain the contrasting species-specific growth 
patterns further (Buras and Wilmking, 2014; Šenfeldr et al., 2021). Leaf 
longevity between the three species could also explain diverging growth 
patterns (Poljanšek et al., 2015). Finally, conifers also differ from ev-
ergreens in the way they use their reserves throughout the year (Mar-
tínez-Vilalta et al., 2016). 

4.2. Growth trends 

Our results provide clear evidence of increased secondary growth 
and woody biomass of two dwarf shrub and a co-occurring tree species 
in the French Pyrenees, at least over the 20th century, thereby sup-
porting global observations of shrub encroachment into the tundra 
biome (Myers-Smith et al., 2011) and, more particularly, into the Pyr-
enees (Galop et al., 2011; Pasche et al., 2004). Increased growth rates for 
co-occurring shrubs and trees have also been reported by Šenfeldr et al. 
(2021) in the High Tatras and by Pellizzari et al. (2016) in the Alps. Such 
an increased secondary growth has previously been associated with 
shrub biomass accumulation and vertical growth, which eventually al-
lows them to become dominant and encroach the landscape (Bret-Harte 
et al., 2002; Hallinger et al., 2010). Moreover, increased growth rates 
are also likely to impact tree and shrub net carbon uptake (Eldridge 
et al., 2011; Mekonnen et al., 2021; Peters et al., 2015), but will also 
affect soil carbon stocks by altering ecosystem respiration (Doche et al., 
2005; Mekonnen et al., 2021) or slowing down biogeochemical cycles 
(Urbina et al., 2020), depending on plant traits, local climate, and soil 
conditions (Collins et al., 2020). In the specific case of R. ferrugineum and 
J. communis encroachment in the Pyrenees, Urbina et al. (2020) high-
light their role in increasing carbon sequestration at the treeline 
ecotone. 

Rising temperatures during the 20th century probably explains most 

(caption on next column) 

Fig. 3. Results of the Age-Class isolation (ACI) analysis of long-term growth 
trends on ring-width series of R. ferrugineum, J. communis (Panel A) and P. 
uncinata (Panel B). Trends are presented for different age classes (20-years age- 
classes) centered on the 10-, 20-, 30- etc. cambial age. For growth trends, sig-
nificant linear trends and Pearson’s correlation coefficients between time and 
mean ring width (significance level p < 0.05) are indicated with solid lines and 
circled dots (dashed lines and simple dots if p > 0.05). Panel C shows linear 
mixed models of each species mean ring-width within 20-years age-classes as a 
function of the year. 
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of the increasing growth trends for all three species investigated at the 
study site. Global warming has been described by Šenfeldr et al. (2021) 
and Pellizzari et al. (2016) as the main cause of increasing radial growth 
trends in shrubs and trees in the Alps and High Tatras. The positive effect 
of increasing temperatures is also supported by climate-growth relations 
evidencing that growing season temperatures will positively influence 
radial growth year-to-year variability in all species. In addition, the 
observed positive effect is consistent with several studies showing a 
warming-triggered increase in growth of tundra shrubs both in the 
Arctic (Myers-Smith et al., 2015a; Tape et al., 2006) and in alpine en-
vironments (Carlson et al., 2017; Francon et al., 2017; Pellizzari et al., 
2016). 

Table 2 
Fixed effect coefficients (value) and Student’s t values of the linear mixed-effects 
models predicting R. ferrugineum, J. communis and P. uncinata growth trends. 
Conditional R2 (R2c), marginal R2 (R2m) are given for each model. All variables 
are scaled. *** (p < 0.001), ** (p < 0.01), * (p < 0.05) indicate the level of 
significance.   

R. ferrugineum 
R2c=0.40: 
R2m=0.27 

J. communis 
R2c=0.28; R2m 
=0.28 

P. uncinata 
R2c=0.39; 
R2m=0.11 

Parameter value t-value value t-value value t-value 
Intercept − 0.03 − 0.17 0.00 1.00 − 0.10 6.37 
Year 4.54*** 5.56 3.56*** 4.16 4.25*** 4.60  

Fig. 4. Bootstrapped correlations computed between R. ferrugineum (Rf, red), J. communis (Jc, blue) and P. uncinata (Pu, yellow) detrended chronologies and 
monthly (seasonal) mean temperatures (Panel A) and precipitation sums, snow melt-out dates (Panel B) for 1960–2017. Months of the year prior to ring formation are 
shown with lowercase letters; current year periods are shown with capital letters. 
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Besides rising temperature, we also hypothesize that the growth rate 
increase over the last century may have been triggered by rising CO2 
concentrations and changing competition level. We tend to exclude any 
anthropogenic influence through land abandonment, as none of the 
species studied is grazed by livestock, which probably influences the 
establishment of woody plants (Améztegui et al., 2010; Galop et al., 
2011), but not the radial growth of already established individuals 
(Vuorinen et al., 2022). Yet, uncertainties remain about possible 
changes in the level of competition between plants in a context where 
shrubs have been favored over herbaceous species in the past. Regarding 
the potential effects of CO2 increase, some studies at high-elevation sites 
have shown evidence of growth stimulation of some plant species under 
CO2 enrichment (Dawes et al., 2015, 2011, 2010) through increased 
water use efficiency (Camarero et al., 2015; Lara et al., 2020; Song et al., 
2019), while other studies have not found such a growth response 
(Hättenschwiler and Körner, 1997; Inauen et al., 2012; Körner et al., 
1997). Anadon-Rosell et al. (2018) show that CO2 enrichment has a 
smaller impact on Vaccinium myrtillus shrub growth in the Alps than has 
a temperature increase. Secondly, competition for water, light and 

nutrients is likely to have increased during the last century as a result of 
shrub and tree encroachment at the site (Pornon et al., 2000). However, 
higher competition levels have usually negative impacts on plant growth 
and productivity (Coomes and Allen, 2007; Fernández-de-Uña et al., 
2017; Sánchez-Salguero et al., 2015), and thus may have rather 
hampered than boosted tree and shrub growth trends. Nevertheless, 
positive feedback loops can also occur in encroaching shrub heathlands: 
in fact, Doche et al. (2005) evidenced that Rf can improve edaphic and 
microclimatic conditions in closed heathlands, thereby promoting stem 
growth. Such a positive feedback loop could have promoted not only the 
growth of Rf at our site, but also that of co-occuring Jc, which also – like 
Rf – follows a colonization strategy via vegetative propagation. How-
ever, it may also have hindered the growth of Pu seedlings due to 
competition for light and nutrients (Angulo et al., 2019) and due to the 
high concentration of growth-inhibiting phenolic compounds in the 
leaves of Rf (Doche et al., 2005; Pellissier, 1994). Consequently, the 
lower growth rate prevalent in Pu (compared to Rf and Jc) could be 
explained by the development and closure of the shrub heath. This 
would also explain the low growth rates of young Pu trees (see Fig. 3B, 

Fig. 5. Bootstrapped 30-years moving-windows correlations computed between P. uncinata (Panel A), J. communis (Panel B) and R. ferrugineum (Panel C) 
detrended chronologies and seasonal mean May–October temperature (Temp. MJJASO), July-August temperature (Temp. JA), January–March temperature (Temp. 
JFM), previous December-current February precipitation (Prec. dJF), previous June–October precipitation (Prec. jjaso) and snow melt-out dates. * (p < 0.05) in-
dicates the level of significance. 

L. Francon et al.                                                                                                                                                                                                                                



Agricultural and Forest Meteorology 329 (2023) 109284

9

Angulo et al., 2019). 

4.3. Shrubs and trees year-to-year climate signal 

4.3.1. Temperature signal 
For the first time we compare the climatic response of Jc, Rf and Pu 

coexisting at the same site. In general, the year-to-year response of these 
shrub and tree species to climate is clearly positive and reflective of 
effect of increasing temperatures and/or growing season length on 
radial growth. This finding agrees with large-scale studies on the climate 
sensitivity of shrubs in the Arctic (Myers-Smith et al., 2015a), but also a 
large body of literature focused on the response of the three species to 
climate change in the Alps and Pyrenees (Büntgen et al., 2008; Carrer 
et al., 2019; Galván et al., 2015; Francon et al., 2021; Pellizzari et al., 
2014). More generally, our results are in line with numerous studies 
from Arctic and alpine environments showing that the accumulation of 
positive daily temperatures is indeed a key factor driving growth 
through cell division and differentiation (Hoch, 2015; Körner, 2003; 
Wheeler et al., 2016; Wipf, 2010) and phenological transitions (Kudo 
and Suzuki, 1999; Molau et al., 2005). 

Jc and Pu respond positively to warmer than average September 
temperature (and October in the case of Jc), but not in July and August. 
A comparable signal was detected by Galván et al. (2015) for Pu in the 
Pyrenees and by García-Cervigón et al. (2018) for Juniperus sabina in the 
southeastern Sierra Nevada, Spain. The latter authors interpret this 
signal as an evidence for the shrubs’ ability to benefit from an extension 
of the growing seasons beyond the meteorological summer for wood 
formation. We find that Rf shows a different climate sensitivity than the 
two conifers. The vegetative season signal is concentrated over the 
warmest summer months (July and August). This result is consistent 
with dendroecological studies realized with several alpine Rhododendron 
sp. (Francon et al., 2020a; Liang and Eckstein, 2009) and Arctic dwarf 
shrub species such like Salix sp., Betula sp., Alnus sp., or Empetrum nigrum 
(Forbes et al., 2010; Myers-Smith et al., 2015a). In addition, we find 
positive effects of above-average temperatures during the growing sea-
son of the year preceding ring formation, possibly leading to high 
photosynthetic rates in the year prior to ring formation. This could then 
lead to high carbon storage and thus increased growth in the following 
year (Babst et al., 2012; Fritts, 1976). Moreover, while summer 
temperature-growth relations have remained quite stable for Rf since 
the 1960s, we observe a gradual loss in temperature sensitivity in the 
case of the two conifers. This can probably be explained by an increasing 
moisture limitation driven by the temperature increase in recent de-
cades, in line with a previous study showing the importance of summer 
drought as a new limiting factor of pine growth in the Pyrenees (Galván 
et al., 2015). The increasingly positive effect of previous year precipi-
tation for Pu and Jc supports this hypothesis. Comparable shifts in the 
limiting factor from temperature to moisture availability for tree and 
shrub growth were observed at several sites in cold environments 
(D’Arrigo et al., 2008; Francon et al., 2020; Jochner et al., 2018; Juday 
et al., 2015). 

4.3.2. Snowpack signal 
We found a prominent snow melt-out timing signal in ring width 

variability of Jc and to a lesser extent also of Pu. Moreover, the signal is 
stable, even in recent years, despite the recent trend towards earlier 
melt-out dates. This result is consistent with dendroecological studies on 
Jc in the Alps (Carrer et al., 2019) and Pu in the Pyrenees (Sanmi-
guel-Vallelado et al., 2019) but also in line with findings for other tree 
(see Franke et al., 2017; Kirdyanov et al., 2003; Vaganov et al., 1999 or 
shrub species (Francon et al., 2020a; Schmidt et al., 2010). Whereas 
Carrer et al. (2019) show a spatially consistent and temporally stable 
winter snowpack signal in Jc, Sanmiguel-Vallelado et al. (2019) evi-
dence that the effect of snowpack might depend on topoclimate in the 
specific case of Pu. Delayed melt-out timing in late spring and early 
summer, when air temperature and photoperiod peak – by decisively 

shortening the growing season – has strong effects on growing degree 
days and eventually on shrub or tree cambial initiation, cell division and 
growth (Carrer et al., 2019; Francon et al., 2020a; Franke et al., 2017; 
Hoch, 2015; Kirdyanov et al., 2003; Schmidt et al., 2010; Vaganov et al., 
1999; Wheeler et al., 2016). Finally, we interpret the May temperature 
signal, also found at our site for Jc and Pu, by the rushing effect of higher 
spring temperatures on melt-out dates (Carrer et al., 2019; Durand et al., 
1999; Francon et al., 2017; Klein et al., 2016). However, as a tree spe-
cies, Pu has vegetative parts that are not covered by snow in winter 
(unlike Jc). Therefore, potentially increased cambial activity remains 
possible as a direct response to warm temperatures in May in addition to 
the effect of snow (Galván et al., 2014; Tardif et al., 2003). 

In contrast to Jc and Pu, Rf shows no significant correlation with 
winter precipitation and snow melt-out timing. Similarly, the sensitivity 
of Rf to climate shifts towards more negative effects of warming and less 
snowy winters, which have become more frequent since the 1990s due 
to global change. This absence of snowpack sensitivity observed at 
Bassiès contrasts with the response of Rf individuals sampled above the 
treeline but are in line with Rf responses observed at comparable ele-
vations (1800 m asl) in the Alps (Francon et al., 2020a). Rf is a species 
that lives at sites characterized by deep, long-lasting winter snowpack, 
which protects the plant from late frost, winter drought and irradiation 
(Gracia et al., 2007; Larcher and Wagner, 2004). Increasingly negative 
impacts of decreasing snowpack on Rf have also been found in response 
to climate change in the Alps (Francon et al., 2021; Francon et al., 
2020ab). In the latter studies, Rf growth is reported to be negatively 
affected if melt-out dates occur too early in spring, which in our case 
could have offset the positive effect of extending growing season length. 
In addition, the negative response of Rf growth to February temperature 
is likely an indirect effect of winter temperature on Rf growth through 
changes in snowpack properties. One interpretation of this result could 
be that warmer temperature episodes in winter will lead to snow melt 
which in turn would reduce the insulating properties of the snowpack 
(Domine et al., 2016) and hence exacerbate hazardous frost events in 
winter and spring (Choler, 2015; Jonas et al., 2008). 

5. Conclusions 

This study represents the first dendroecological investigation 
comparing R. ferrugineum and J. communis. The two most widespread 
shrub species in the high mountains of Western Europe are studied 
together and compared with P. uncinata trees growing nearby. Overall, 
our results show that all species have increased their wood productivity 
over the last century, probably in response to increasing temperatures 
during the growing season, as shown by year-to-year climate-growth 
relations. Specifically, we hypothesize that shrubs appearance could 
have been favored more by global warming than that of trees due to 
positive feedback loops favoring them over trees in closed subalpine 
heathlands. At the interannual scale, shrubs show a stronger response to 
summer temperature than trees. Nevertheless, the two shrub species 
differ quite strongly in their response to climate, especially to snow melt- 
out dates, confirming the results of previous dendroecological studies in 
the European Alps (Carrer et al., 2019; Francon et al., 2020a). 

In contrast to J. communis, R. ferrugineum seems to be increasingly 
negatively affected by the acceleration of climate change observed since 
the 1990s and the resulting impacts on snowpack characteristics and 
melt-out dates. These results are consistent with the non-linear re-
lationships observed between R. ferrugineum growth and snowpack 
duration in the Alps since the 1990s (Francon et al., 2021). The effects of 
this shifting climate sensitivity of R. ferrugineum have not yet influenced 
growth trends of the species (mainly driven by summer temperature 
rather than a snowpack decrease), but could reflect a transitory state and 
affect growth trends in the future. Further investigation of shrub and 
tree growth trends using a more extensive sample size with the aim of 
exploring diverging growth trends would be a valuable research ques-
tion to explore in future studies. 
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Supplementary material 

Fig. S1: Snow melt-out dates (in day of year, D.O.Y.) evolution since 
1959 at our study site in the Bassiès valley. A spline function was fitted 
to the data to represent the decadal trend (grey line). 
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Camarero, J.J., Gutièrrez, E., 1999. Structure and recent recruitment at alpine forest- 
pasture ecotones in the Spanish central Pyrenees. Écoscience 6, 451–464. https:// 
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