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Abstract. Aircraft operational performance is a key driving factor to flight punctuality and
airline profitability. The ability of a system to meet its operational requirements in terms of
reliability, availability and costs is termed as ‘Operability’. It is of high importance for aircraft
manufacturers to project operability during the early stages of development of an aircraft in
order to make trade-off studies. This paper proposes a hybrid approach of using machine
learning and expert knowledge to aid the projection of aircraft operational performance during
the early design stages. This approach aims to benefit from the huge amount of in-service data
available from the current and past fleet of aircraft. Hence, machine learning techniques are
used to learn how different technical issues and their associated maintenance activities impact
aircraft operations. Expert knowledge is used to establish the default rules of the simulation
model used for the operability projection. Results from machine learning are used to improve
these rules allowing one to make holistic projections of the operational performance of future
aircraft. This approach allows one to estimate the elapsed time in different operational states of
an aircraft like flying, turn-around, etc. which can then be used to calculate different operability
Key Performance Indicators (KPIs) like aircraft reliability and maintenance unavailability.

1. Introduction
In recent years, huge progress has been made towards achieving on-time flights and minimal
interruptions to the flight schedule. However, airline operations can still be disrupted due to
both technical and non-technical factors arising from the inherent complexity involved in air
travel [1]. The ability of an aircraft to meet its operational requirements in terms of reliability,
availability and costs is termed as ‘Operability’. It is of high importance to consider aircraft
operability during early stages of development of aircraft so that aircraft manufacturers can
develop an aircraft that can best fulfill the operational demands of airlines. This can be achieved
by projection of aircraft operability which refers to the estimation of aircraft operability during
the design of an aircraft by the aircraft manufacturers.

A common way of classifying the major systems and structures of an aircraft is through the Air
Transport Association (ATA) standard which specifies 100 numbered categories [2]. E.g., ATA 27
corresponds to the ‘Flight controls’ of an aircraft. Currently, quantitative operability projection
is performed at an advanced aircraft design stage when a well defined systems architecture and
knowledge of failure modes is available. But, at this stage the architecture of major systems
of the aircraft is already determined and any big design changes to improve the operability
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performance are very expensive with significant impacts on the aircraft development program
[3]. In this paper, it is proposed to address operability at a higher level i.e. ATA 2D (2-Digit)
level corresponding to major aircraft systems and structures. This can help in making operability
trade-offs during early aircraft architecting phases.

Operability is measured by different Key Performance indicators (KPIs) which help to assess
the impact of design on the operational performance [4]. The main operability KPIs are
Operational Reliability (OR), Maintenance Unavailability (MU), Operational Availability (OA)
and Direct Maintenance Cost (DMC).

The objective of this paper is to propose a method to holistically project the operability of
major aircraft systems and structures during early aircraft design. This paper aims to develop a
hybrid approach of combining expert knowledge and machine learning to benefit from both the
domain knowledge of operability experts and in-service data available from the current and past
fleet of aircraft. The proposed framework of the hybrid approach is presented in this paper.

The rest of the paper is organized as follows: Section 2 surveys the related work in the
domain of operability projection, machine learning and hybrid techniques. Section 3 describes
the hybrid approach proposed in the paper. Section 4 discusses some preliminary results obtained
through this approach. Section 5 concludes the paper by summarizing the main advantages and
limitations of the hybrid approach along with the envisaged future work.

2. Related Work
The prediction of different attributes of aircraft operability like reliability and maintenance
cost have been targeted by some previous studies. But as per authors’ knowledge, the use of
quantitative methods using in-service data to address operability projection during early design
stages have been very limited. The related works have been divided into two sub-sections: (i)
Operability evaluation and (ii) Machine learning and hybrid techniques.

2.1. Operability evaluation
Operability of a system of interest is its ability to meet its operational requirements in terms
of reliability, availability and costs. Operability is also closely related to ‘Dependability’ and
‘Supportability’ which are commonly used by some research communities. Classical techniques
for dependability evaluation are fault trees, reliability block diagrams, Markov processes and
Petri-nets [5]. More recently, in the last couple of decades, there has been a growing interest
towards the use of Bayesian networks and its extensions for reliability modeling [6]. Different
techniques have been used in the past in the aerospace domain to estimate some characteristics
of aircraft operability like reliability of aircraft and its systems. Most of these studies have
been focused on evaluating the operational performance at equipment or system level [7, 8]
which require detailed definition of the system and knowledge of its failure modes. This kind of
information is usually not available during early stages of aircraft development. There have been
some studies which have addressed computing the aircraft reliability during in-service operations
in order to assist airline operations and mission planning [9, 10]. Unlike these studies, the focus
of this paper is to develop a methodology to predict the operational performance of aircraft at
major systems and structures level during early design stages, which is sparsely addressed in
the literature.

2.2. Machine learning and hybrid techniques
There has been an increasing trend in the use of machine learning and artificial intelligence
techniques in the aviation industry owing to the availability of a growing in-service database.
Machine learning techniques have been researched previously for aeronautics in the field of
prognostics of aircraft systems [11]. But in the case of operability projection at ATA 2D level,
pure data-driven solutions might be limiting in terms of data availability and accuracy as there
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could be new systems which have never been used before in aeronautics. E.g., hydrogen tanks
in commercial aviation. Hence, there is a need to adopt an hybrid approach of expert knowledge
and machine learning. These kind of hybrid approaches have been investigated recently in other
domains like medicine and biology where they seem to deliver promising results [12]. There exist
different types of hybrid approaches depending on the method of coupling between machine
learning and simulation [13]. A type of hybrid approach called ‘machine-learning assisted
simulation’ where machine learning is used to support the simulation process has been used
in the approach proposed in this paper.

3. Hybrid approach
There are several factors that influence aircraft operability like aircraft design, maintenance,
operational context, human factors, etc. Uncertainty and variability is also inherent in aviation
due to the large diversity of airlines and randomness of phenomena like weather, system
failures, etc. Therefore, projection of aircraft operability is characterized by heterogeneity and
multi-disciplinary nature which necessitates a hybrid approach of machine learning and expert
knowledge. The proposed methodology to project aircraft operability is shown in Fig. 1.

Figure 1. High-level overview of the proposed methodology.

Generic state machine models of aircraft operations were created by the authors in previous
works [4] to represent the different states an aircraft can occupy in operation (e.g., in flight,
in planned stop) and their dynamic behaviour . All the possible transitions between different
aircraft states were specified using the domain knowledge of operability experts.

3.1. Step 1: Establishing reference baseline using in-service data
In step 1 of the proposed methodology shown in Fig. 1, in-service data of existing aircraft is
used to populate the different states of the aircraft state machine. Different data sets regarding
scheduled flight timings, actual flight timings, operational interruptions, etc. are analysed to
compute the elapsed time of the aircraft in each of these states. This mapping of elapsed time
distribution on the aircraft-level state machine allows calculating the different operability KPIs.
In step 1, elapsed time distribution for a reference baseline i.e. ‘AS-IS’ aircraft is established.
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3.2. Step 2: Developing operability model using expert knowledge
In step 2, major aircraft systems and structures (ATA 2D level) are modeled from an operability
point of view using expert knowledge. These models are composed of a list of high-level
operability properties as shown in Fig. 2. These operability properties have an impact on
the operational performance of the aircraft and were selected by operability experts. Such
properties have also been identified in previous works concerning maintainability [14]. The
operability properties are grouped into two categories: ‘technical issue’ and ‘maintenance’.
Technical issue properties of a system of interest help to characterize the operational impact
caused by just the occurrence of technical issues like system failure, structural damage, etc. On
the other hand, maintenance properties characterize the operational impact caused due to the
maintenance actions performed to resolve the technical issues.

These operability properties are defined as probabilistic distributions over a range of discrete
values like ‘low’,‘medium’ and ‘high’. E.g., ‘Performance impact’ of an ATA 2D is a technical
issue parameter that characterizes the ability of technical issues of an ATA 2D to degrade the
technical, commercial or operational performance. As shown in Fig. 3, the performance impact
is ‘high’ 15% of the times, ‘medium’ 60% of the times and ‘low’ 25% of the times. These
distributions for different properties have to be manually specified by the operability engineers
by experience or by referring to in-service data.

Figure 2. Representation of Operability model framework
for major aircraft systems and structures

Figure 3. Example of
probabilistic distribution
of an operability prop-
erty ‘Performance im-
pact’

3.3. Step 3: Machine Learning
In step 3, machine learning techniques are used to learn the holistic models (e.g., information
related to aircraft technical issues) from the results previously obtained in step 1. For a use-
case of flight control computer (part of ATA 27), neural networks were used to predict which
aircraft states were impacted by different technical issues and their associated maintenance. It
was modelled as a multi-class classification problem. These learned models can then be used
by operability engineers to predict the values for new designs and the results can be used to
calibrate the simulation model developed in step 4.
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3.4. Step 4: Simulation framework
A simulation framework is used to make operability projections for new designs i.e. ‘TO-BE’
aircraft using both expert knowledge and machine learning. The simulation framework was built
using Simpy which is an open-source python framework for Discrete-Event Simulation (DES)
shown in Fig. 4. DES is well suited for simulating a series of events [15] and since technical
issues can be represented as a series of events, DES was selected as the modeling technique.

Figure 4. Workflow of the simulation framework (step 4) for evaluating impact of new designs.

During the simulation, an ATA 2D generates a series of Technical Issues (TI) according to
the specified distribution for frequency of TI. Each TI then assumes a value for each of the
TI properties according to the specified probability distributions for the ATA 2D. The impact
of a TI is calculated based on three criteria: ‘airworthiness impact’, ‘performance impact’ and
‘report phase impact’ with weights of 0.5, 0.25 and 0.25 respectively and an overall score is
assigned. The technical issue parameters used in the simulation are listed in Table 1.

Table 1. Technical Issue parameters used in the simulation.

Parameter Expression

Frequency of TI probabilistic distribution (e.g., Lognormal)

Report phase distribution over discrete values : Taxi-out / Flying / Stop

Airworthiness impact distribution over discrete values : Low / Medium / High

Performance impact distribution over discrete values : Low / Medium / High

Predictability distribution over discrete values : Low / Medium / High
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Based upon the calculated overall score of the technical issue, a maintenance scenario is
selected probabilistically based on the predefined distribution of maintenance scenarios for each
score. A maintenance scenario is a sequence of maintenance actions that are required to fully
resolve a technical issue. The impact of each individual maintenance action constituting the
maintenance scenario is computed. Simulation is executed for a given amount of time and
the aggregated impact of all the technical issues and their associated maintenance is used for
calculating the operability KPIs.

Initially, simulation rules have to be defined by experts regarding how different operability
properties of the operability model created in step 2 impact the operational performance and
how the scores for different technical issues are to be calculated. The input values for the
distributions of the operability properties should also be defined by operability experts. But
wherever sufficient in-service data is available, in-service figures for the properties can be
analysed using data processing to replace the input values given by experts. For instance,
distribution pattern for the frequency of occurrence of technical issues was computed from in-
service data and updated in the simulation model.

Similarly, insights from machine learning obtained in step 3 were used to revise the simulation
rules in order to achieve more realistic projections. A current limitation is that the process of
analysing machine learning results and improving the simulation rules has to be performed
manually by expert judgement. In future models, the simulation framework is expected to be
automatically updated using results of machine learning through a tighter coupling of simulation
and machine learning models.

The results obtained for the new design in terms of elapsed time distribution and operability
KPIs can be then compared to the results obtained for the reference baseline in step 1 i.e.
comparison of TO-BE versus AS-IS aircraft. This allows to see the change in operational
performance of the new design versus the reference aircraft, and also make trade-off studies
between different candidate designs.

4. Preliminary results
The feasibility of the proposed approach was tested by instantiating the simulation framework for
ATA 27 (Flight controls system) with sample input values. Nine different maintenance scenarios
(MS1 to MS9) were identified which could be used to resolve the different technical issues. For
instance, MS1 corresponds to immediate full rectification of the technical issue whereas MS4
corresponds to deferred rectification meaning the flight operations can continue without having
fully rectified the technical issue.

Technical issue properties like frequency, report phase, etc. were instantiated using sample
values for the flight controls system commonly observed in operations. The probabilistic
distributions of maintenance scenarios were also defined for all the different scores of technical
issues. Results from machine learning performed on flight control computer allowed better
calibration of the distributions of maintenance scenarios. The discrete-event simulation was
executed for a time period of 30 years. Results for each technical issue that was generated
during the simulation were recorded along with their corresponding maintenance scenarios and
maintenance actions used to resolve them. Post-processing of the data yielded useful insights
like the global distribution of maintenance scenarios employed for ATA 27 shown in Fig. 5 and
the distribution of maintenance actions’ durations shown in Fig. 6.

These results from simulation allow calculating the different operability KPIs. For instance,
certain kinds of maintenance scenarios lead to an operational interruption like ‘Immediate
rectification’(MS1). There were 65 operational interruptions recorded during the entire
simulation time corresponding to an Operational Interruption (OI) rate of 0.12%. The
total maintenance unavailability (amount of time that an aircraft is under maintenance) was
calculated to be 0.92 days/year due to ATA 27. These kinds of results allow system architects to
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Figure 5. Distribution of maintenance
scenarios used to resolve the technical
issues for ATA 27

Figure 6. Distribution of maintenance
actions’ durations for ATA 27

compare different design alternatives during trade-off studies from an operability point of view.
It also helps architects to conduct sensitivity studies to check which input parameters have a
major impact on the operational performance.

5. Conclusion
Aircraft operability projection during early development stages helps aircraft manufacturers
to develop an aircraft that is fully mature and reliable from the entry-into-service. As seen
in the literature review, very few quantitative techniques exist today that can project aircraft
operability holistically during early design stages. A hybrid methodology of combining machine
learning and expert knowledge is proposed in this paper that can help project operability during
early design by utilizing both in-service data and expert knowledge. Aircraft-level state machines
were populated using in-service data that allowed establishing a reference baseline. Neural
network techniques were used to learn how different technical issues can impact the operational
performance of aircraft. A discrete-event simulation framework was built using expert knowledge
which was later improved using the insights from machine learning. Stochastic simulations of
these hybrid models were used to project the operability of future designs.

Combining in-service data along with expert knowledge allows obtaining more realistic
operability projections than pure knowledge-based or pure data-driven methods. As aircraft
design generally happens in a derivative fashion, there are a majority of aircraft systems that
are inspired or re-used from previous designs. The design of these aircraft systems can benefit
from in-service data which can yield useful information regarding the occurrence of technical
issues and their resolution in operations. During each new aircraft program, there are some
new systems which have never been used in any previous aircraft and hence no in-service data
is available. For these systems, operability projections have to be performed using inputs from
domain experts based on physical or mathematical modelling of system properties. Therefore,
employing a hybrid approach will allow one to complement the results available through one
method to the other. By default, expert knowledge is used to build the simulation models for
projection of future design. Wherever in-service data is available, results from machine learning
are used to replace the existing parameter values or rules deployed in the model.

A limitation of the proposed approach is that in-service data is currently given predominance
over expert knowledge. But in-service data can sometimes be affected by erroneous and
insufficient data which can in turn lead to poor projections. Hence, due care has to be taken
during data pre-processing to make sure that results from in-service data are validated by an
operability expert before injecting it into the hybrid model. Another issue with stochastic
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simulations is that several iterations have to be performed in order to attain sufficient confidence
in the results. Also, a large amount of good quality data is required to initialize the simulation
model. This limitation can be partially overcome with the careful injection of in-service data
wherever available.

In the future, a more synergistic combination of machine learning and expert knowledge
is envisaged to overcome the limitations posed by in-service data. Also, the operational
representativity of the model can be increased by incorporating airport and maintenance
organisation parameters.
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