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Abstract

The ΛCDM standard model of cosmology involves two dark components of the universe, dark energy and dark matter.
Whereas dark energy is usually associated with the (positive) cosmological constant Λ associated with a de Sitter geometry, we
propose to explain dark matter as a pure QCD effect, namely a gluonic Bose Einstein condensate with the status of a Cosmic
Gluonic Background (CGB). This effect is due to the trace anomaly viewed as an effective negative cosmological constant
determining an Anti de Sitter geometry and accompanying baryonic matter at the hadronization transition from the quark gluon
plasma phase to the colorless hadronic phase. Our approach also allows to assume a ratio Dark/Visible equal to 11/2.

(Submitted to Proceedings of the 34th International Colloquium on Group Theoretical Methods in Physics Strasbourg, 18-22
July 2022, doi:10.21468/SciPostPhysProc.?)

1. INTRODUCTION

Let us start out this group theoretical oriented contribution with three motivating quotes. The first one from Newton and
Wigner (1949) [1] is about the concept of elementary system.

The concept of an “elementary system” requires that all states of the system be obtainable from the relativistic
transforms of any state by superpositions. In other words, there must be no relativistically invariant distinction
between the various states of the system which would allow for the principle of superposition. This condition is
often referred to as irreducibility condition ...
The concept of an elementary system (...) is a description of a set of states which forms, in mathematical language,
an irreducible representation space for the inhomogeneous Lorentz (' Poincaré) group

The second one from Fronsdal (1965) [2] is about curvature versus flatness of space-time.

A physical theory that treats spacetime as Minkowskian flat must be obtainable as a well-defined limit of a more
general physical theory, for which the assumption of flatness is not essential.

The third one from Sakharov [3], quoted by Adler in [4].

The presence of the action

Sgrav =
1

16πG

∫
d4x
√
−g(R− 2Λ) . (1)

leads to a metrical elasticity of space, i.e.,, to generalized forces which oppose the curving of space. Here we
consider the hypothesis which identifies the action (1) with the change in the action of quantum fluctuations of the
vacuum if space is curved.

These statements are the leitmotiv guiding our interpretation of dark matter, as it will be exposed in the sequel. Section 2
is devoted to the description of three fundamental space-time symmetries, Poincaré group and its two deformations, de Sitter
(dS) and Anti de Sitter (AdS) groups, and their respective significance in terms of invariants, spin, mass, and “energy at rest”.
Cosmology chronology is put in perspective in Section 3 with regard to our interpretation [5] of the dark matter as a gluonic
Bose-Einstein condensate emerging at the end of the so-called quark period (see also [7–9] about the genesis of our common
work). Following the short conclusion (Section 4), we give in Appendix A some insight in relation with the ΛCDM standard
model.
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2. THREE MAXIMAL SYMMETRIES, POINCARÉ, DS, ADS

2.1. The place of the cosmological constant

Firstly let us observe that there exist two standpoints about the Einstein equation of general relativity [10] :

• Standpoint 1

Rµν −
1

2
R gµν︸ ︷︷ ︸

geometrical content

= −κTµν − Λ gµν︸ ︷︷ ︸
matter content

, κ =
8πG

c4
. (2)

Here, the fundamental state that contains the maximum number of symmetries is the Minkowskian geometry, and the
cosmological term Λgµν may be interpreted as an extra pressure, named world matter by de Sitter in his debate with
Einstein:

Λ > 0 ∼ “dark energy” , Λ < 0 ∼ “dark matter”?

• Standpoint 2

Rµν −
1

2
R gµν + Λ gµν︸ ︷︷ ︸

geometrical content

= −κTµν︸ ︷︷ ︸
matter content

. (3)

Here, the fundamental states that contain the maximum number of symmetries are the de-Sitter (dS) (Λ ≡ ΛdS > 0) and
the Anti-de-Sitter (AdS) (Λ ≡ ΛAdS < 0) geometries.

Note that the split between these two standpoints should not be considered as absolute, since we could as well model situations
in a mixed way:

• Standpoint 3

Rµν −
1

2
R gµν + ΛL gµν︸ ︷︷ ︸

geometrical content

= −κTµν − ΛR gµν︸ ︷︷ ︸
matter content

. (4)

2.2. Two unique deformations of Poincaré symmetry

From the above di-or tri-lemna let us give present some points in favor of dS/AdS studies

• dS and AdS are maximally symmetric (remind that in a metric space of dimension n, the maximum number of metric
preserving symmetries is n(n+ 1)/2, here 10 since n = 4).

• Their symmetries are one-parameter deformations of Minkowskian symmetry with

– negative curvature −κdS = −
√

ΛdS/3 (= −H/c, H : Hubble parameter)

– positive curvature κAdS =
√
|ΛAdS|/3

respectively

• As soon as a constant curvature is present, we lose some of our so familiar conservation laws like energy-momentum
conservation!

• Then what is the physical meaning of a scattering experiment (“space” in dS is like the sphere S3, let alone the fact that
time is ambiguous)?

• Which relevant “physical” quantities are going to be considered as (asymptotically? contractively?) experimentally avail-
able?
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In addition to the previous observations, we should insist on the fact that dS and AdS symmetries are the two unique deforma-
tions of the Poincaré symmetry. They occupy the extreme vertex of the cubic diagram in Figure 1 showing the eleven kinematics
classified by Bacry & Levy-Leblond (1968) [11]. More precisely, under the assumptions that space is isotropic (rotation invari-
ance), parity and time-reversal are automorphisms of the kinematical groups, and inertial transformations in any given direction
form a noncompact subgroup then there are eight types of Lie algebras for kinematical groups corresponding to eleven possible
kinematics. These algebras are [11]:

R1 The two de Sitter Lie algebras isomorphic, respectively, to the Lie algebras of SO(4,1) and SO(3,2);

R2 The Poincaré Lie algebra;

R3 Two “para-Poincaré” Lie algebras, of which one is isomorphic to the ordinary Poincaré Lie algebra but physically different
and the other is the Lie algebra of an inhomogeneous SO(4) group;

R4 The Carroll Lie algebra;

A1 The two “nonrelativistic cosmological” Lie algebras;

A2 The Galilei Lie algebra;

A3 The “para-Galilei” Lie algebra;

A4 The “static” Lie algebra.

While the Lie algebras of class R have no nontrivial central extensions by a one-parameter Lie algebra, those of class A each
have one class of such extensions.

FIG. 1: The eleven kinematics (Bacry & Levy-Leblond, JMP (1968)). From [12].

Hence, with the requirements of kinematical rotation, parity, and time-reversal invariance, there exists only one way to deform
the proper orthochronous Poincaré group R1,3o SO0(1, 3) (or R1,3o SL(2,C)), namely, in endowing space-time with a certain
curvature. This leads to the two simple Lie groups, namely the ten-parameter de Sitter group SO0(1, 4) (or its universal covering
Sp(2, 2)) and the ten-parameter Anti de Sitter group SO0(2, 3) (or its two-fold covering Sp(4,R)).

2.3. de Sitter and Anti-de-Sitter Geometries

The de Sitter space may be viewed (on the left in Fig. 2) as a one-sheeted hyperboloid embedded in a five-dimensional
Minkowski space with metric ηαβ = diag(1,−1,−1,−1,−1) (but keep in mind that all points are physically equivalent):

MdS ≡
{
x ∈ R5; x2 = ηαβ x

αxβ = − 3

ΛdS

}
, α, β = 0, 1, 2, 3, 4 . (5)
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FIG. 2: Left: the one-sheeted de Sitter hyperboloid as a manifold embedded in the 1 + 4 Minkowski space-time. x0 might be chosen as a time
parameter, but there is no global time-like Killing vector. Right: the one-sheeted Anti de Sitter hyperboloid as a manifold embedded in the
2 + 3 ambient space. Angular position along the central belt can be chosen as a local time coordinate, and it is in one-to-one correspondence
with a global time-like Killing vector.

The Anti de Sitter space may as well be viewed (on the right in Fig. 2) as a one-sheeted hyperboloid embedded in another
five-dimensional space with metric ηαβ = diag(1,−1,−1,−1, 1) (here too all points are physically equivalent) :

MAdS ≡ {x ∈ R5; x2 = ηαβ x
αxβ =

3

|ΛAdS|
} , α, β = 0, 1, 2, 3, 5 . (6)

Note that the fifth dimension is space-like in dS whereas it is time-like in AdS.

2.4. Compared classifications of Poincaré, dS and AdS UIR’s for quantum elementary systems

In a given unitary irreducible representation (UIR) of dS and AdS groups, (∼ elementary system in Wigner’s sense) their
respective generators map to self-adjoint operators in Hilbert spaces of spinor-tensor valued fields on dS and AdS respectively:

Kαβ 7→ Lαβ = Mαβ + Sαβ , (7)

with orbital part Mαβ = −i(xα∂β − xβ∂α) and spinorial part Sαβ acting on the field components.
The physically relevant UIR’s of the Poincaré, dS and AdS groups are denoted by P>(m, s) (“>” for positive energies),

UdS(ςdS , s), and UAdS(ςAdS, s), respectively. These UIR’s are specified by the spectral values 〈·〉 of their quadratic and quartic
Casimir operators. The latter define two invariants, the most basic ones being predicted by the relativity principle, namely proper
mass m for Poincaré and ςdS , ςAdS for dS and AdS respectively, and spin s for the three cases (see [12] and references therein).

Poincaré

For Poincaré the Casimir operators are fixed as

Q
(1)
Poincaré = Pµ Pµ = P02 −P2 = m2 c2 ,

Q
(2)
Poincaré = WµWµ = −m2 c2 s(s+ 1)~2, Wµ :=

1

2
εµνρσJνρPσ .

(8)

de Sitter

For de Sitter,

Q
(1)
dS = −1

2
LαβLαβ = ς2

dS
−
(
s− 1

2

)2

+ 2 ≡ 〈Q(1)
dS 〉 ,

Q
(2)
dS = −WαWα =

(
ς2

dS
+

1

4

)
s(s+ 1) , Wα := −1

8
εαβγδηLβγLδη .

(9)
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Anti-de-Sitter

For Anti-de Sitter,

Q
(1)
AdS = −1

2
LαβLαβ = ςAdS(ςAdS − 3) + s(s+ 1) ≡ 〈Q(1)

AdS〉 ,

Q
(2)
AdS = −WαWα = −(ςAdS − 1)(ςAdS − 2)s(s+ 1) , Wα := −1

8
εαβγδηLβγLδη .

(10)

2.5. Proper mass versus “at rest” energy in de Sitter and Anti-de-Sitter

While the proper mass is identified as the at rest energy, which means the energy spectrum infimum in Minkowski, these two
quantities come apart in de Sitterian/Anti-de Sitterian geometry. They have to be devised from a flat-limit viewpoint, i.e., from
the study of the contraction limit Λ→ 0 of these representations

Proper mass versus at rest energy in de Sitter: Garidi mass

In this respect, a mass formula for dS has been established by Garidi (2003) [13]:

m2
dS :=

~2ΛdS

3c2
(〈Q(1)

dS 〉 − 2) =
~2ΛdS

3c2

(
ς2dS +

(
s− 1

2

)2
)
. (11)

This definition should be understood through the contraction limit of representations:

dS UIR −→ Poincaré UIR .

More precisely, with

ΛdS → 0 ςdS →∞ , while fixing ςdS~
√

ΛdS/
√

3c = mPoincaré ≡ m, (12)

we have

UdS(ςdS, s) −→
ΛdS→0 , |ςdS|→∞
|ςdS|
√

ΛdS/
√

3= mc
~

c>P>(m, s)⊕ c<P<(m, s) . (13)

This result was proved in [14] and discussed in [15]. Note the breaking of dS irreducibility into a direct sum of two Poincaré
UIR’s with positive and negative energy respectively. To some extent the choice of the factors c<, c>, is left to a local tangent
observer. The latter will naturally fix one of these factors to 1 and so the other one is forced to vanish. This crucial dS feature
originates from the dS group symmetry mapping any point (x0,P) ∈ HdS into its mirror image (x0,−P) ∈ HdS with respect
to the x0-axis. Under such a symmetry the four dS generators La0, a = 1, 2, 3, 4, (and particularly L40 which contracts to
energy operator!) transform into their respective opposite −La0, whereas the six Lab’s remain unchanged. We think that the
mathematical fact (13) should be carefully revisited with regard to the inflation scenario and the breaking of the matter-antimatter
symmetry [16].

Proper mass versus at rest energy in de Anti de Sitter

Concerning AdS a mass formula similar to that one for dS exists
[10, 17]:

m2
AdS =

~2|ΛAdS|
3c2

(
〈Q(1)

AdS〉 − 〈Q
(1)
AdS|ςAdS=s+1〉

)
=

~2|ΛAdS|
3c2

[(
ςAdS −

3

2

)2

−
(
s− 1

2

)2
]
.

(14)

One here deals with the AdS group representations UAdS(ςAdS, s) with ςAdS ≥ s + 1 (discrete series and its lowest limit), and
their contraction limit holds with no ambiguity:

UAdS(ςAdS, s) −→
ΛAdS→0 , ςAdS→∞
ςAdS

√
|ΛAdS|/3= mc

~

P>(m, s) . (15)
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Proper mass as an absolute invariant

Now, contraction formulae for both dS and AdS give us the freedom to write

mdS = mAdS = m,

This agrees with the Einstein position that the proper mass of an elementary system should be independent of the geometry of
space-time, or equivalently it should not exist any difference between inertial and gravitational mass.

Rest energy of a free particle in AdS versus dS and Poincaré

Each Anti-deSitterian quantum elementary system (in the Wigner sense) has a discrete energy spectrum bounded below by its
rest energy [18–20]

Erest
AdS =

[
m2c4 + ~2c2

|ΛAdS|
3

(
s− 1

2

)2
]1/2

+
3

2
~
√
|ΛAdS|

3
c , (16)

Hence, to the order of ~, a “massive” AdS elementary system is a deformation of both a relativistic free particle with rest energy
mc2 and a 3d isotropic quantum harmonic oscillator with ground state energy 3/2 ~

√
|ΛAdS|/3 c ≡ 3/2 ~ωAdS [21, 22].

In contrast to AdS, energy is ill-defined for dS. However a local tangent observer will naturally choose the invariant with
positive sign:

Erest
dS =

[
m2c4 − ~2c2

ΛdS

3

(
s− 1

2

)2
]1/2

. (17)

Noticeable simplification in both AdS and dS for fermions s = 1/2 :

for dS : Erest
dS = mc2 , (18)

for AdS: Erest
AdS = mc2 +

3

2
~ωAdS . (19)

In the massless case and spin s, we have

for dS : Erest
dS = ±i~

√
ΛdS

3
c

(
s− 1

2

)
, (20)

for AdS: Erest
AdS = ~

√
|ΛAdS|

3
c(s+ 1) . (21)

Therefore, while for dS the energy at rest makes sense only for massless fermionic systems and is just zero, for AdS the energy
at rest makes sense for any spin, and in particular for spin 1 massless bosons we get

Erest
AdS = 2~ωAdS . (22)

and for scalar massless bosons

Erest
AdS = ~ωAdS . (23)

3. DARK MATTER FROM QCD: A RELIC OF QUARK PERIOD

We now explain the rôle of the above material in our interpretation of Dark Matter.
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3.1. Cosmology chronology: the salient stages

Let us start out with the cosmology chronology depicted in Figures 3 and 4 (see for instance [25] for a comprehensive account
of early cosmology versus particle physics). In Figure 4, the cosmic evolution is schematized on the thick line, on which the
cosmic time, that is proportional to the logarithm of the scale factor, is made implicit, by replacing all dimensioned quantities
depending on the local time t, by “effective co-moving densities” that are scaled by the scale factor depending on a global time.

FIG. 3: Cosmology chronology (from http://zebu.uoregon.edu/images/bb history.gif).



8

FIG. 4: Cosmology chronology: Hubble radius L(a) ≡ H−1(a) (c = 1) is plotted versus the scale factor a(t) ≡ R(t) in logarithmic scale.
(from [7])

In Figure 4 Greek letters represent noticeable events, to be understood as phase transitions for γ (electroweak symmetry
breaking), δ (hadronization or color confinement), ε (dominance of matter over radiation), as Universe temperature (∼ thermal
time) is decreasing from the “Planck epoch” to ours. Futhermore, one should not omit the neutrino decoupling, lying between δ
and ε, at a temperature T ≈ 1 MeV, as shown in Figure 3 (electroweak phase transition). Now, the cosmic microwave background
(CMB) is the relic of the photon decoupling, i.e., when photons started to travel freely through space rather than constantly being
scattered by electrons and protons in plasma. This represents a pure QED effect, and one of its outcome is precisely that we see
or experience those photons. Similarly, the cosmic neutrino background (CNB) is the relic of the neutrino decoupling when the
rate of weak interactions between neutrinos and other forms of matter dropped below the rate of expansion of the universe, which
produced a cosmic neutrino background of freely streaming neutrinos. In turn, this represents a pure electroweak effect, Our
interpretation of Dark Matter is based on a similar scenario: gluonic component of the quark epoch (quark-gluon plasma) freely
subsists after hadronization within an effective AdS environment. This represents a pure QCD effect, and we do not observe
those gluons but we observe their gravitational effects. Hence, dark matter could be as well named cosmic gluonic background
(CGB)... But let us tell more about dark matter.

According to the Planck 2018 analysis [26] of the CMB power spectrum, our Universe is spatially flat, accelerating, and
composed of 5% baryonic matter, 27% cold dark matter (CDM, non baryonic) and 68% dark energy (Λ) [27]. (Cold) dark
matter is observed by its gravitational influence on luminous, baryonic matter The dark matter mass halo and the total stellar
mass are coupled through a function that varies smoothly with mass (with controversial exception(s)). One can notice that, up to
now, all hypothetical particle models (WIMP, Axions, Neutrinos ...) failed direct or indirect detection tests. Similarly, alternative
theories (e.g. MOND) to dark matter have failed to explain clusters and the observed pattern in the CMB, despite recurrent
propitious announcements...

3.2. Quark-Gluon Plasma: experimental evidence

The main physical ingredient of our interpretation [5] is the specific state of matter Quark-Gluon Plasma (QGP), e.g., see
Figure 5 characteristic of the Quark Epoch quark, i.e. from 10−12s to 10−6s, with temperature T > 1012K (point δ in Figure 4).
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FIG. 5: From Strong interactions News: Protons probe quark-gluon plasma at CMS, 13 January 2017.

Theories predicting the existence of quark-gluon plasma were developed in the late 1970s and early 1980s (Satz, Rafelsky,
Kapusta, Müller, Letessier...), and the quark-gluon plasma was detected for the first time at CERN (2000). Lead and gold nuclei
have been used for collisions yielding QGP at CERN SPS and BNL RHIC, respectively The current estimate of the hadronization
temperature for light quarks is Tcf = 156.5 ± 1.5 MeV ≈ 1.8 × 1012 K (“chemical freeze-out temperature”). See for instance
[28–30].

3.3. Quark-Gluon Plasma and effective AdS geometry

Our scenario [5] is that the colorless gluonic component (e.g., digluons) of the quark epoch which freely subsists after
hadronization within an effective AdS environment (QCD effect) is the dark matter. As a matter of fact the contribution of
the so-called di-gluons through what is called by Adler [4] the gluon pairing amplitude to the QCD trace anomaly reads as〈

Tµµ
〉

0
= −1

8
[11Nc − 2Nf ]

〈αs
π

(
F aµνF

aµν
)r〉

0
, (24)

where Nc is the number (=3) of colors, and Nf the effective number of quark flavors which was put at 3 as a first guess, but
will rather be considered as an adjustable parameter in [16], with the purpose of matching the two standard models, the one of
particle phyics and the one of comology.. As asserted by G. Cohen-Tannoudji [8]

The minus sign in the right hand side shows that when the factor (11Nc − 2Nf ) is positive, all the QCD condensates
contribute negatively to the energy density, which means that the QCD world-matter is globally an AdS world-matter
(dominance of an AdS world-matter over a smaller dS world-matter),

and so

• the bosonic (gluon) loops, proportional to Nc, contribute to the AdS world matter,

• the fermionic (quark) loops, proportional to Nf , contribute to the normal dS world matter.

Compare the ratio
11

2

Nc
Nf
∼ 5.5 with the estimate [dark matter]/[visible matter] ∼ 27/5 = 5.4.

3.4. Cold dark matter: Bose-Einstein condensation of (di-)gluons in effective Anti-de Sitter geometry

We now explain the mechanism which makes the remaining gluonic component the dark matter or CGB. First we remind that
in an AdS geometry:

Erest
AdS =

[
m2c4 + ~2c2

|ΛAdS|
3

(
s− 1

2

)2
]1/2

+
3

2
~
√
|ΛAdS|

3
c . (25)

As an assembly of NG non-interacting (i.e., colorless) scalar bosonic di-gluons with individual energies En = Erest
AdS + n~ωAdS

with Erest
AdS is mc2 (m = mG can be zero or negligible) and degeneracy gn = (n + 1)(n + 3)/2, those remnant components,

analogous to isotropic harmonic oscillators in 3-space, are assumed to form a grand canonical Bose-Einstein ensemble whose
chemical potential µ is, at temperature T , fixed by the requirement that the sum over all occupation probabilities at temperature
T yields

NG =

∞∑
n=0

gn

exp
[
~ωAdS

kBT
(n+ ν0 − µ)

]
− 1

, ν0 :=
Erest

AdS

~ωAdS
. (26)
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The number NG is very large and so the gas condensates at temperature

Tc ≈
~ωAdS

kB

(
NG
ζ(3)

)1/3

ζ(3) ≈ 1.2 (Riemann zeta function) (27)

to become the currently observed dark matter. The above formula involving the value ζ(3) ≈ 1.2 of the Riemann function is
standard for all isotropic harmonic traps (see for instance [31]). Actually there is no harmonic trap here, it is the AdS geometry
due to QCD trace anomaly which originates the harmonic spectrum on the quantum level. To support this scenario it is known
from ultra-cold atoms physics that Bose Einstein condensation can occur in non-condensed matter but also in gas, and that this
phenomenon is not linked to interactions but rather to the correlations implied by quantum statistics.

Although we do not precisely know at which stage beyond the hadronization phase transition does take place the gluonic
Bose Einstein condensation, let us see if our estimate on Tc yields reasonable orders of magnitude. Take Tc equal to the current
CMB temperature, Tc = 2.78K, and |ΛAdS| ≈ 5.5

6.5 ×
11
24 × ΛdS = 0.39 × ΛdS (an estimate based on the ΛCDM model, see

complements), with ΛdS ≡ present Λ = 1.1×10−52m−2. We then get the estimate on the number of di-gluons in the condensate:

NG ≈ 5× 1088 (28)

This seems reasonable since the gluons are around 109 times the number of baryons, and the latter is estimated to be around
1080.

4. CONCLUSION

We have tentatively explained dark matter by actually asking a simple question (!): what becomes the huge amount of gluons
after the transition from QGP period to hadronization? Similarly to the emergence of the two validated CMB (QED effect) and
CNB (electroweak effect), we propose to consider Dark Matter, observed through its gravitational effects, as a pure QCD effect.
From our viewpoint it would legitimate to replace the puzzling expression “Dark Matter” with the realistic “Cosmic Gluonic
Background”.

Appendix A: Complements: facts of ΛCDM standard model

Let us recall the cosmological formalism (c = 1) based on the Robertson metric. In an isotropic and homogeneous cosmology,
the Einstein’s equation reads as

Rµν −
1

2
gµνR = 8πGTµν + Λgµν , (A1)

where the stress energy momentum stands for a perfect fluid with density ρ and isotropic pressure P , i.e.,

Tµν = −Pgµν + (P + ρ)uµuν . (A2)

Its solution is the Robertson metric:

ds2 = dt2 −R2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

))
, (A3)

where k is the curvature index, and R(t) is the time-dependent radius of the universe. It is the cosmological scale factor (also
noted a(t)) which determines proper distances in terms of the comoving coordinates. The radial variable r is dimensionless.

The radius R, the density ρ, and the pressure P obey the Friedmann-Lemaı̂tre (FL) equations of a perfect fluid modelling the
material content of the universe.

H2 ≡

(
Ṙ

R

)2

=
8πGρ

3
− k

R2
+

Λ

3
(A4)

R̈

R
=

Λ

3
− 4πG

3
(ρ+ 3P ) (A5)

ρ̇ = −3H (ρ+ P ) (Conservation of the energy) . (A6)
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Note that the cosmological term Λgµν is taken to the right-hand side of the Einstein’s equation and may be interpreted as an
extra pressure, named world matter by de Sitter in his debate with Einstein:

Rµν −
1

2
gµνR = 8πG (P + ρ)uµuν + (Λ− 8πGP )gµν . (A7)

According to the sign of this extra pressure one talks of a de Sitter world matter (Λ positive, pressure negative) or an anti-de
Sitter world matter (Λ negative, pressure positive). From the first FL equation at Λ ≈ 0 one derives

k

R2
=

8πG

3
ρ−H2 ≡ 8πG

3
ρ− 8πG

3
ρc ρc :=

3H2

8πGN
, (A8)

where ρc is the so-called critical density. Since the (∼ observed) flatness rule k = 0 expresses the vanishing of the spatial
curvature one can write

ρ− ρc ≡ ρvis + ρDM + ρDE − ρc = 0 , (A9)

with

ρvis = ρbar + ρrad , ρDE =
Λ

8πGN
. (A10)

Hence ρc is the energy density at the boundaries in the far past and in the far future of the Hubble horizon in the absence of any
“integration constant” Λ and any spatial curvature (k = 0). Next, from the second FL equation

R̈

R
=

Λ

3
− 4πGN

3
(ρ+ 3P ) ≡ −4πGN

3
(ρ− 2ρDE + 3P ) ≡ −4πGN

3
(ρeffective + 3P ) (A11)

one infers that at the inflection points R̈ = 0 one has the “equation of state” (EoS)

winflexion ≡ P/ρeffective = −1/3 .

Inside the “confidence area” of the figure 6 in which ΩΛ = ρDE/ρc is expressed versus ΩM = ρm/ρc one finds the points

• (ΩDM,ΩDE + Ωvis),

• (Ωm = 1/3,ΩDE = 2/3).

The value ΩDE = 2/3 results from our assumption completing the flatness sum rule as which the total energy vanishes (from
the Robertson metric):

ρvis + ρDM + ρDE = ρc =
3

2
ρDE . (A12)
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FIG. 6: From [32]: 68.3 %, 95.4 % and 99.7% Confidence level contours on ΩΛ ≡ ΩDE and Ωm obtained from CMB, BAO and the Union
SN set (P/ρ ≡ w = −1). This is “Concordance Cosmology”: The contributions of the cosmological constant ΩΛ and of the (ordinary +
dark) matter Ωm to the ratio total density/critical density, i.e., the density for which the universe is spatially flat, are yielded (modulo their
uncertainty ranges) through Supernovae (SNe), Baryonic Acoustic Oscillations (BAO), and Cosmic Microwave Radiation (CMB). One sees
that alternative models to Big Bang (No Nig Bang) are excluded. The straight line ΩΛ + Ωm = 1 which is marked “flat” corresponds to a
spatially flat Universe.
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