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Abstract: New technologies for monitoring grip forces during hand and finger movements in non-

standard task contexts have provided unprecedented functional insights into somatosensory cogni-

tion. Somatosensory cognition is the basis of our ability to manipulate and transform objects of the 

physical world and to grasp them with the right amount of force. In previous work, the wireless 

tracking of grip-force signals recorded from biosensors in the palm of the human hand has permit-

ted us to unravel some of the functional synergies that underlie perceptual and motor learning un-

der conditions of non-standard and essentially unreliable sensory input. This paper builds on this 

previous work and discusses further, functionally motivated, analyses of individual grip-force data 

in manual robot control. Grip forces were recorded from various loci in the dominant and non-

dominant hands of individuals with wearable wireless sensor technology. Statistical analyses bring 

to the fore skill-specific temporal variations in thousands of grip forces of a complete novice and a 

highly proficient expert in manual robot control. A brain-inspired neural network model that uses 

the output metric of a self-organizing pap with unsupervised winner-take-all learning was run on 

the sensor output from both hands of each user. The neural network metric expresses the difference 

between an input representation and its model representation at any given moment in time and 

reliably captures the differences between novice and expert performance in terms of grip-force var-

iability.Functionally motivated spatiotemporal analysis of individual average grip forces, com-

puted for time windows of constant size in the output of a restricted amount of task-relevant sensors 

in the dominant (preferred) hand, reveal finger-specific synergies reflecting robotic task skill. The 

analyses lead the way towards grip-force monitoring in real time. This will permit tracking task 

skill evolution in trainees, or identify individual proficiency levels in human robot-interaction, 

which represents unprecedented challenges for perceptual and motor adaptation in environmental 

contexts of high sensory uncertainty. Cross-disciplinary insights from systems neuroscience and 

cognitive behavioral science, and the predictive modeling of operator skills using parsimonious Ar-

tificial Intelligence (AI), will contribute towards improving the outcome of new types of surgery, in 

particular the single-port approaches such as NOTES (Natural Orifice Transluminal Endoscopic 

Surgery) and SILS (Single-Incision Laparoscopic Surgery). 

Keywords: wearable biosensors; human grip force; spatiotemporal analysis; somatosensory  

neurons; motor control; robotic task expertise; variability; neural networks; self-organizing  

functional principles 
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1. Introduction 

Analysis of grip-force signals tailored to hand and finger movement evolution for 

grip-force control during task execution provides insight into the fundamental mecha-

nisms of somatosensory cognition [1]. Recent technology has permitted the wireless mon-

itoring of grip-force signals recorded from biosensors in the palm of the human hand to 

track and trace human grip forces deployed in image-guided precision tasks under con-

ditions of restricted sensory input [2,3]. Such grip-force sensing permits profiling operator 

strategies and, at the same time, exploring functional interactions between somatosensory 

and motor control during the strategic planning and execution of hand movements, with 

a potential for generating benchmarks for human–robot interaction [4–6]. Somatosensory 

cognition is the basis of our ability to manipulate and transform physical objects [1,7], to 

recognize them on the basis of touch alone [8,9], and to grasp them with the right amount 

of force for lifting, manipulation, or transformation [10–14]. Sensorial and cognitive pro-

cesses underlying hand-specific grip-force variation (dominant versus non-dominant 

hand) in manual tasks have been studied in a variety of contexts by selectively probing 

multiple measurement locations in the fingers and palm of the human hand [12–17]. Grip-

force modulation is governed by neuronal connections that are potentiated on the basis of 

self-organized learning [18–20], which drives the development of functionally specific 

neural networks in the continuously learning brain. The neural activities in these net-

works are modulated by sensory signals processed in the somatosensory cortex, the so-

called S1 map [21]. S1 corresponds to a neocortical area that responds primarily to tactile 

stimulation on the skin or hair and plays a critical role in grip-force control in interaction 

with multiple sensory areas. Somatosensory neurons have the smallest receptive fields, 

receiving the shortest-latency input from their peripheral receptors. Their cortical func-

tional organization is conceptualized in the current state of the art [22–24] in terms of a 

single neural network map of the receptor periphery, with a modular functional architec-

ture and highly specific connectivity patterns, coordinating functionally distinct neuronal 

subpopulations from other cortical areas involved in sensory processing into motor circuit 

modules at several hierarchical levels [23–27]. These functionally specific modules display 

a hierarchy of interleaved circuitry connecting via inter-neurons in the spinal cord, in the 

visual, auditory, and olfactory sensory areas, and in the motor cortex, with feedback loops 

and bilateral communication with the supraspinal centers [21,22]. Anatomically adjacent 

to the motor cortex, S1 is thus functionally connected to all sensory areas [28,29] respond-

ing to stimuli from the environment (Figure 1). 

 

Figure 1. Anatomically adjacent to the motor cortex, the somatosensory brain (S1) controls mecha-

noreceptors and plays a critical role in grip-force production through functional interactions with 

multiple sensory areas. The prefrontal lobe controls the conscious modulation of grip forces and 

motor behavior (not illustrated here). 

Somatosensory afferents reach the frontal lobe and feed into circuitry for prefrontal 

responses to somatosensation (touch) and the conscious control of motor and grip-force 

behaviors [30,31]. There is a strong functional link between visual and somatosensory 
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cognition in sighted individuals, who have learnt to rely on visual input for motor plan-

ning and control, as visual input permits anticipation of the grip forces required for ma-

nipulating objects [32]. When visual cues are suddenly no longer available and the subject 

is confronted with high uncertainty about digit-force-related object properties, sensorimo-

tor memories take over [9,33]. Such memories form during life-long brain learning on the 

basis of previous grasp experience to permit cognitively controlled grip-force adaptation 

when physical object properties and behavioral consequences cannot be reliably sensed. 

The contribution of each finger to overall grip strength, coarse adjustments, and finer grip-

force control vary across cognitive tasks and their diverse requirements for motor plan-

ning and execution. While the middle finger is critical for lifting and manipulating heavy 

objects in three dimensions [12], the ring finger and the small finger mostly control fine 

grip-force modulation [34–40]. Subtle grip-force deployment with minimal variation is 

necessary for precision tasks such as surgery. In precision tasks, the contribution of the 

index finger to total grip force is often the smallest, and there seem to be no significant 

differences between men and women, yet, the amount of force applied by each digit de-

pends on several factors including where the digits are placed when grasping [34]. In the 

absence of external constraints, the complex anatomy of the human hand allows for a large 

variety of postures and force combinations to attain stable grips, generating functional 

synergies that permit solving the problem of motor redundancy [15,35]. Multi-finger grip-

force control relies on the self-organizing principles of from-local-to-global functional in-

teraction and multiple feedback loops at several hierarchical stages, from hand to brain 

and back [3,10,11,12]. The adaptive scaling of both magnitude and rate of hand or finger 

force is skill-specific and controlled centrally by memory processes [33]. In the true expert, 

such scaling relies on high-level cognitive control mechanisms, finely tailored to the skill 

in question [1,3,36]. Expert surgeons, for example, not only deploy grip forces more par-

simoniously than novices [41,42], but their spatiotemporal grip-force profiles reveal pat-

terns characteristic of expertise in comparison with novices or trainee surgeons [2,3]. Ro-

bot-assisted surgical training illustrates novel perspectives offered by modern grip-force 

sensor technology for the study of functionally significant changes during task skill ac-

quisition. Hand and finger grip forces directly impact on the trajectory and velocity of 

surgical tool displacements. Optimal hand grip force produces optimal object displace-

ment trajectories and movement [10,11]. Minimally invasive robotic surgery is an image-

guided high-precision task where the absence of haptic force feedback spontaneously 

yields stronger, often excessive (i.e., non-optimal) hand grip forces, especially in novices 

[42]. This can result in unnecessary or excessive tissue damage in a patient, and novices 

therefore have to learn to overcome this problem by scaling their finger forces accordingly. 

Such learning requires adaptation to unusual constraints, because robot-assisted surgical 

systems impose conditions of limited Degrees of Freedom (DoF) for hand and finger 

movements during the manipulation of the surgical tools attached to the system. The tools 

cannot straightforwardly be moved in any direction as in traditional surgery. This repre-

sents a considerable constraint for motor planning and control to which novices need to 

adapt. Also, veridical information about real-world depth is missing from the image rep-

resentations on the screen of such surgical systems, and instead of looking down on 

his/her hands, the surgeon only sees the tool-ends controlled by the system. Camera and 

image calibration problems added, the tool movements displayed on a screen may not 

match the real-world movements in time and space, and the combined loss of real-world 

depth input and veridical space scale information significantly affects the performance of 

novices and experts who are not familiar with the system [4,5]. Robot-assisted surgery 

thus profoundly challenges solidly formed perceptual, somatosensory, and cognitive rep-

resentations of space, scale, and relative distance for eye-hand coordination [1,3,10,32,33]. 

Here in this work, we exploit thousands of individual grip-force data recorded from wire-

less sensors in functionally relevant locations of the dominant hands of an expert and a 

novice to account for the evolution of each individual’s motor behaviour during training 
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in a four-step pick-and-drop simulation task on a robotic platform designed for single-

access transluminal endoscopic surgery. 

2. Materials and Methods 

A wireless wearable (glove) sensor system was used for collecting thousands of grip-

force data per sensor location and individual user in real time. The glove system does not 

provide haptic user feedback, and the sensors therein were positioned to fit the cylindrical 

shape of the control handles of a robotic system designed for bi-manual intervention in 

transluminal endoscopic surgery. Task simulations may solicit either the dominant, the 

non-dominant, or both hands at the same time depending on the complexity of the task. 

Here, grip-force data recorded from the dominant and non-dominant hands of an expert 

and a novice tested in ten successive sessions, performed without breaks between ses-

sions, of a four-step pick-and-drop task were generated. All sensors of the glove system 

were carefully calibrated, as explained in further detail below in Section 2.2. The calibra-

tion results are displayed in the Results sections. 

2.1. Robotic System 

The robotic system is built on the Anubis®  platform of Karl Storz. The slave system 

consists of three flexible, cable-driven sub-units for robot-assisted endoscopic surgery 

with ten motorized DoF, which are described in further detail in previous work [5,35,38]. 

The main endoscope carries a fisheye camera at its end, providing visual feedback. The 

lateral and longitudinal control of the endoscope is user-dependent, and the endoscope 

can be bent in two orthogonal directions, moving the endoscopic view from left to right, 

and up and down at any given position. The distal instruments at the tool-end are inserted 

in the channels of the endoscope, and they have bending extremities. This system has a 

tree-like architecture, where movements of the endoscope, controlled by the user via two 

cylindrically shaped handles, impact also upon the position and orientation of the distal 

extremities (tool-tips) (Figure 2). Each of these has three DoF, two for translation and ro-

tation in the endoscope channel, and one for the deflection of the active distal extrem-

ity/tool-tip. Translation, rotation, and deflection are electrically actuated (motorized) via 

cables running through the endoscope from its proximal part to the distal end. The distal 

extremities/tool-tips open and close mechanically when a trigger is pulled by the user. The 

slave robot is controlled by a position loop running at 1000 Hz on the CPU of the master 

system, which consists of two specially designed interfaces, which are passive mobile me-

chanical systems. The user is to put his hands tightly around each of the two handles, each 

of which has three DoF for controlling the tool-tips’ translational and rotational move-

ments, and those around the axis of movement of the initial DoF for the lateral or longitu-

dinal control of the endoscope via a given handle, which the user manipulates with the 

left or the right hand depending on the task. The master interfaces are statically balanced 

and all joints exhibit low friction, which means that only minimal forces are required to 

produce movement in any direction. 
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Figure 2. The sensor gloves in action (top left) on the handles of the robot master system. Joints of 

the master control system handles and directions of movement (top middle). Slave instruments at 

the distal extremities of the endoscope and directions of movement (top right). Master–slave move-

ment mapping (bottom right). 

The controller of the robot master system runs on a DELL Precision T5810 model 

computer equipped with an Intel Xeon CPU E5-1620 with 16 Gigabytes memory (RAM) 

under real-time Linux. The real-time Linux mapping control software communicates with 

the master interface and the slave system. 

Joint positions of the master interfaces are obtained from encoders read at 1 kHz by 

the central controller of the master CPU, which maps the positions individually to the 

corresponding joints of the slave systems to compute reference positions. The master CPU 

sends these reference positions to the drivers controlling the slave motors at 1 kHz. The 

slave joints are individually servoed to their reference positions by their drivers. The mas-

ter–slave control flow chart of the robotic system is illustrated schematically here above 

(Figure 3). The mapping scales from master to slave are 1:1 for rotations, 1:2 for bending, 

and 1:2:1 for translations. Each of the two handles has a trigger for controlling the me-

chanical opening and closing of the grippers at the tool-tips, and a small four-way joystick 

for controlling specific camera movements not required for the study (NB, this joystick 

was not used in any of the experimental sessions here). In the experimental task, the trig-

ger controlling the tool-tip graspers was operated with the index finger of the hand in 

action. The user sits in front of the master console and looks at the endoscopic camera 

view displayed on the screen in front of him/her at a distance of about 80 cm while holding 

the two master handles, which are about 50 cm away from each other. Seat and screen 

heights are adjustable to optimal individual comfort. Left and right master interfaces are 

identical and the two slave instruments they control are also identical. Therefore, for a 

given task the same movements need to be produced by the user whatever the hand 

he/she uses (left or right). A snapshot view of a user wearing the sensor gloves while ma-

nipulating the handles of the system is shown above (Figure 2 top left). 
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Figure 3. Master–slave control flow chart of the robotic system. In the ‘mapping’ block, the horizon-

tal rotation of the master system handle is mapped to the rotation of the follower, the translation of 

the master is mapped to that of the follower, and the vertical rotation of the master is mapped to the 

bending angle of the follower as shown at the bottom of Figure 2. The mapping scales are indicated 

in the text here below. 

2.2. Sensor Gloves 

A wearable sensor system consisting of two gloves, one for each hand, with inbuilt 

Force Sensitive Resistors (FSR) was developed. Each of the two gloves has 12 FSR that are 

in contact with specific locations on the inner surface of the hand, as illustrated below 

(Figure 4). The sensor locations were chosen for optimal contact with the surface of the 

cylindrically shaped robotic handles when holding them with each hand. The FSR were 

inserted between two layers of cloth and did not interact directly with either the skin of 

the subject or the surface of the master handles, which provided a comfortable feel during 

manipulations. FSR were sewn with needle and thread into the cloth layer around their 

conducting surfaces (active areas). The electrical connections of the sensors were individ-

ually routed to the dorsal side of the hand and brought to a soft ribbon cable, connected 

to a small and very light electrical casing, strapped onto the upper part of the forearm and 

equipped with an Arduino microcontroller. Eight of the FSR, positioned in the palm of 

the hand and on the finger tips, had a 10 mm diameter, while the remaining four located 

on middle phalanges had a 5 mm diameter. Each FSR was soldered to 10 KΩ pull-down 

resistors to create a voltage divider, and the voltage read by the analog input of the Ar-

duino is given by 

𝑉𝑜𝑢𝑡 = 𝑅𝑃𝐷𝑉3.3/(𝑅𝑃𝐷 + 𝑅𝐹𝑆𝑅) (1) 

where 𝑅𝑃𝐷 is the resistance of the pull-down resistor, 𝑅𝐹𝑆𝑅 is the FSR resistance, and 𝑉3.3 is 

the 3.3 V supply voltage. FSR resistances can vary from 250 Ω when subject to 20 Newtons 

(N) to more than 10 MΩ when no force is applied at all. The generated voltage varies 

monotonically between 0 and 3.22 Volts, as a function of the force applied, which is as-

sumed uniform on the sensor surface. In the experimental task here, forces applied did 

not exceed 1100 grams (g), which corresponds to ~10 Newtons. The relation between force 

and voltage is linear within the range of output voltages measured in the experiments 

here for variations within the range of [0; 1500] mV. Careful calibration of all sensors was 

performed prior to the experiments to ensure that all sensors provided similar calibration 

curves. The relationship between force (g) and tension (mV) here is shown graphically in 

the Results section. Regulated 3.3 V was provided to the sensors from the Arduino. Power 

was provided using a 4.2 V Li-Po battery enabling use of the glove system without any 

cable connections. The battery voltage level was controlled during the whole duration of 

the experiments with the Arduino electronic prototyping platform and displayed contin-

uously via the user interface. The glove system was connected to a computer for data stor-

age via Bluetooth-enabled wireless communication at a rate of 115,200 bits per second 

(bps). 
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Figure 4. The sensor glove system has twelve sensors positioned mirror-symmetrically across the 

left and right hands. The spatiotemporal grip-force profiles for expert and novice described under 

3.3 in the Results section were drawn from a functionally relevant subset of three sensors (red cir-

cles) in the dominant hand, translating optimal grip-force deployment by the pinky (S7), and mini-

mized gross grip-force deployment by the ring and middle fingers (S5, S6) characteristic of expertise 

in controlling the master–slave system of the surgical robot. The data from ten of the twelve sensors 

(S2, S3, S5, S6, S7, S8, S9, S10, S11, S12) in the dominant and non-dominant hands of the two users 

were fed into the variability (standard deviations) and neural network analyses (SOM). Sensors S4 

and S1 produced too little significant output and were not taken into account. 

2.3. Software 

The software of the glove system has two parts: one running on the gloves, and one 

for data collection. Each of the two gloves sends data to the computer separately, and the 

software reads the input values and stores them on the computer according to their header 

values indicating their origin. The software is run on Arduino and designed to acquire 

analog voltages provided by each FSR every 20 milliseconds (50 Hz). In every loop, input 

voltages were merged with their time stamps and sensor identification. This data package 

was sent to the computer via Bluetooth, and was decoded by the computer software. The 

voltage data were saved in a text file for each sensor with their time stamps and identifi-

cations. Furthermore, the computer software monitored the voltage values received from 

the gloves via a user interface showing the battery level. In case the battery level drops 

below 3.7 V, the system warns the user to change or charge the battery. However, this 

never occurred during the experiments reported here. 

2.4. Experimental Precision Grip Task 

A 4-step pick-and-drop precision grip task requiring specific device movements in 

all directions (left, right, forwards, and backwards) had to be performed as swiftly and 

accurately as possible. A verbal description for each task step is provided below (Table 1). 

Visual illustrations are shown further below (Figure 5). 

Table 1. Verbal description of each of the four task steps. The colored boxes correspond to task steps 

as visualized in the spatiotemporal profiles shown in the Results section. 

Task Step Hand–Tool Interaction Required 

1 Activate and move tool forwards towards the pick-up target box 

2 
Move tool downwards towards object, open grippers, close grippers on 

object, lift object 

3 Move tool in lateral direction towards the destination box for dropping object 
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4 Open grippers to drop object in the destination box 

During the experiments, only one of the two instruments controlling the tool-tips (left 

or right, depending on the task session) was moved, while the main endoscope and the 

camera image remained still. The experimental task starts with the right or left hand grip-

per being pulled back. Then the user has to approach the object with a forward movement 

in depth (step 1) of the distal tool extremity by manipulating the handles of the master 

system effectively. This forward movement in depth is the most difficult to perform under 

the conditions given (2D image guidance) because veridical depth information is 

unavailable [43–47]. 

 

Figure 5. Image illustrations of each of the four steps, described verbally in Table 1, of the pick-and-

drop task when performed with the right hand. At the beginning of each session, the object was 

replaced in the departure box at the same position and with the same orientation (see image 1, top 

left). 

Once the distal tool was correctly positioned, the object has to be grasped with the 

tool-tips (step 2). Once firmly held by the gripper, the object has to be moved laterally to a 

position on top of the target box (step 3) with the distal extremity of the tool in the correct 

position for dropping the object into the target box without missing (step 4). A user starts 

and ends a given task session by pushing a button that is wirelessly connected to the com-

puter receiving the data. The robot-assisted precision grip task involves positioning the 

instrument tip through movements from left to right, from up to down, and from forward 

to backwards. Manipulation of one instrument is required to perform this task here. Given 

the limited degrees of freedom for hand and finger movements, the user is bound to per-

form the task with each hand in rather the same way. The locally deployed grip forces will 

vary depending on how skilled a user has become in performing the task. Here, grip-force 

data collected from two users with distinct levels of task skill (expert vs. novice) were 

analyzed. The hand preference profiles of these two users were different. The expert user 

has been practicing on the system since its manufacture and become a highly proficient 

user, with years of user experience and more than 100 h of training in this specific task. 

This expert is proficient in using the system with his dominant (left) hand, and has only a 

moderate preference for using his left hand in everyday manual tasks. The other user was 

a complete novice who had never used the system before, nor had he any prior experience 

with any similar system, with a strong preference for right hand use in everyday manual 

tasks. He was given one hour to familiarize himself with the system with both hands prior 

to the experiments. Their hand sizes were about the same, and the sensor gloves were 
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developed specifically to fit the hands of average-proportioned male individuals. Exper-

tise in this type of task is consistently reflected by specific performance parameters such 

as the average task time taken in a session and the number of incidents, accounting for the 

number of times an object is dropped, and the number of unsuccessful grasp attempts or 

tool-trajectory readjustments. Each user performed the task with the dominant and the 

non-dominant hand in ten successive sessions for each hand without major breaks be-

tween sessions. 

2.5. Statistical Analyses 

The variability in the novice and the expert data for each hand across the ten sessions 

was statistically assessed for all sensors that produced meaningful output. The goal of this 

exercise is to bring to the fore skill-specific differences in grip-force variability across sen-

sors and sessions. This was achieved by computing and plotting the variance in the data 

in terms of standard deviations from the mean, which express the squared differences 

between the observations and the group mean divided by the number of data points for 

each group of observations. The statistical analyses (2-Way ANOVA) between the raw 

grip-force data from a functionally relevant subset (Table 2) of three of the twelve sensors 

(S5, S6, S7) for the expert and the novice from their first and last task sessions with the 

dominant hand was performed using the MATLAB toolbox. These statistical analyses 

were designed to test for functionally specific effects, and their probability limits, of the 

‘Expertise’ factor (expert vs. novice) and the ‘Session’ factor (first session vs. last session). 

Table 2. Functionally relevant sensors (S5, S6, S7) for the controlled manipulation of the cylindrical 

robotic handles. Output measures for these sensors from the expert’s and the novice’s first and last 

task sessions with the dominant hand were compared to bring to the fore proficiency-specific dif-

ferences. 

Sensor Finger Grip-Force Control 

S5 middle gross grip-force deployment 

S6 ring non-specific grip-force support 

S7 pinky precision grip control 

These same selected data were then submitted to spatiotemporal analysis in terms of 

Average peak amplitudes in milliVolts (AmV) for successive temporal windows of a fixed 

size of 2000 msec each in the given individual sessions. With one signal recorded every 20 

msec and 100 signals per time window of 2000 msec, we have AmV = mVtotal/100, which 

is the total sum of mV recorded in a given time window divided by the total number of 

signals in that time window. Since expert and novice had different hand-use preferences 

in everyday life, as explained above in Section 2.4, the differences shown for the dominant 

hand are likely to best reflect specific characteristics relating to the skill level in this task 

here. 

2.6. Neural Network Model 

A neural network architecture described in detail in previous work [48–51] referring 

to functional properties of the Quantization Error (QE) in the output of a Self-Organizing 

Map (SOM) was exploited for modeling the variability in the whole data set of grip forces 

recorded from ten sensors and ten successive task sessions with the dominant and non-

dominant hands of the expert and the novice. The SOM is described formally as a nonlin-

ear, ordered, smooth mapping of high-dimensional input data onto the elements of a reg-

ular, low-dimensional array. The input variables are defined here as a real vector 𝒙 of n 

dimensions (the input representation), and each element therein is associated with a par-

ametric real vector 𝒎𝒊 of n dimensions (the model representation). Assuming a general 

distance measure between 𝒙 and 𝒎𝒊, denoted by d(𝒙, 𝒎𝒊), the map of an input vector 𝒙 

on the SOM array is defined as the array element 𝒎𝒄  that best matches 𝒙 (smallest 
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d(𝒙, 𝒎𝒊)). During the learning process, models topographically close in the map up to a 

certain geometric distance, denoted 𝒉𝒄𝒊, will activate each other to learn something from 

their shared input 𝒙. This then results in a local relaxation, or smoothing effect, on the 

models in this neighborhood, which in continued learning leads to global ordering. SOM 

learning is represented with the equation 

𝒎 (t + 1) =  𝒎𝒊 (t) +α(t) 𝒉𝒄𝒊(𝐭) [𝒙 (t)- 𝒎𝒊 (t)] (2) 

where t = 1,2,3...is an integer, the discrete-time coordinate, 𝒉𝒄𝒊(t) is the neighborhood func-

tion (a smoothing kernel defined over the map points which converges towards zero with 

time), and 𝜶(t) is the learning rate. At the end of the winner-take-all learning process, each 

input vector 𝒙 becomes associated with, or mapped to, its best matching model. The dif-

ference between 𝒙 and 𝒎𝒄, ‖𝒙 − 𝒎𝒄‖, is reflected by the quantization error QE. The QE 

of 𝒙 is given by 

𝑸𝑬 = 𝟏 𝑵⁄ ∑ ‖𝒙𝒊 − 𝒎𝒄𝒊
‖

𝑵

𝒊=𝟏
 (3) 

where N is the number of input vectors 𝒙. 

2.7. Rationale for the Neural Network Architecture 

The SOM implemented here was designed to map a brain-inspired mechanoreceptor-

to-brain model network in terms of a 7 by 7 map generating a fully connected network of 

49 neurons where each of the sensors for which data were exploited contributes to the 

final synaptic weight of each neuron. The QE in the SOM output, the SOM-QE [48,49], 

expresses a difference between an input representation and its model representation at a 

given moment in time t, and captures variations in this difference with time [50,51]. The 

QE in the output of the brain-inspired neural network map reflects the amount of varia-

bility in the grip forces of the expert and the novice at any given moment in time, and the 

evolution of this variability with time, i.e., across the ten successive task sessions. Intra- 

and inter-individual grip-force variability directly translate skill levels [35,36,37], and tend 

to decrease with practice, converging towards an optimum characteristic of expert perfor-

mance [2,3,5]. 

3. Results 

The results from the sensor calibration procedure, the neural network modeling of 

skill-specific grip-force variability exploiting all the sensor data that produced significant 

output, and the individual spatiotemporal grip-force profiles for expert and novice dom-

inant-hand data for selected sensors with a particular functional significance (Table 2) in 

the precision grip task are presented here below. 

3.1. Sensor Calibration 

The relationship between force (g) and tension (mV) from the sensor calibrations, 

explained in Section 2.2. of the Materials and Methods section, was analyzed. The raw 

sensor output data in the experiments here vary essentially within the linear range of this 

relationship (Figure 6). All the following analyses and comparisons are therefore com-

puted directly on the voltage levels at the millivolt (mV) scale. 
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Figure 6. Relationship between force (in grams) and tension (in milliVolts) of the sensor output. The 

sensor output measured in the experiments varies essentially within the linear range (blue line). 

3.2. Skill-Specific Grip-Force Variability 

The numerical range of observations (in mV) was determined for each sensor across 

sessions (ten per hand), for expert and novice performing with the dominant and non-

dominant hand. The results of this descriptive analysis are shown above (Figure 7). The 

variability in grip forces deployed by the novice and the expert by the dominant and the 

non-dominant hands was then analyzed on the basis of the raw data from each individual 

session. Temporal variability in biosensor data expresses the evolution of the amount of 

functional “noise” in the living system under study, and was determined here in terms of 

standard deviations (STD) from the mean (not standard errors of the mean as shown in 

Figure 7). STD express the squared differences between observations (measurements) and 

the group mean (for a given individual session here), divided by the number of data points 

in the group. These were plotted as a function of the session order for all sensors that 

produced meaningful output (Figure 8). 

 

Figure 7. Sensor output range, with means across ten sessions and their standard errors for the ex-

pert and the novice performing with the dominant and the non-dominant hand. 
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Figure 8. Variability (STandard Deviations of the means) in grip forces deployed by the novice and 

the expert by the dominant and the non-dominant hands in ten successive task sessions. 

An increase in the variability in grip forces (STD) with time (sessions) during task 

performance with the non-dominant hand is observed in both users (Figure 8, right). It is 

therefore not skill-related, but may indicate a tendency to fatigue in the non-preferred 

hand when the number of repeated task sessions increases. This interpretation holds 

ground given the difference in forearm muscle size between dominant and non-dominant 

extremities [52]. 

3.3. Neural Network Model 

The neural network model (SOM) described in 2.6 was then run on the same varia-

bility data for each user type and session. The QE in the output of these analyses is plotted 

here below as a function of the session order (Figure 9). Further statistical analyses of the 

grip force and the SOM model data (t-test paired comparisons) yield significant effects of 

task expertise on the STD (t(1, 18) = 22.34; p < 0.001 for the dominant hand; t(1, 18) = 7.43; 

p < 001 for the non-dominant hand). These are mirrored by significant effects on the SOM-

QE (t(1, 18) = 9.27; p < 0.001 for the dominant hand; t(1, 18) = 4.09; p < 0.001 for the non-

dominant hand). These result show that task skill evolution reflected by grip-force varia-

bility as a function of time, in an expert in comparison to a novice, can be reliably predicted 

using unsupervised learning in an artificial neural network map mimicking functional 

properties of a biological receptor network in the somatosensory brain. These networks 

develop task-specific functional synergies aimed at reducing motor redundancy [11]. In 

our previous work [3], correlation analyses revealed skill-specific differences in co-varia-

tion patterns in individual grip-force profiles reflected by an optimum of significant and 

functionally specific co-variation in a few sensors in the expert dominant hand, and non-

specific co-variation in a large amount of sensors in the dominant hand of novices. 
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Figure 9. QE in the output of the brain-inspired neural network model (SOM) run on the grip-force 

data from the different sessions; the difference in grip-force variability between the expert and the 

novice is reliably predicted by the neural network map output metric. 

3.4. Functionally Motivated Spatiotemporal Profiling 

To highlight functionally specific task-relevant grip-force differences in the sensor 

profiles of expert and novice, the following spatiotemporal analysis zooms in on a selected 

number of functionally relevant sensors in the expert’s and the novice’s dominant hands. 

In [3] we had shown that robotic task skill is reflected by an optimum of significant posi-

tive correlations between the output of dominant-hand sensors with similar function (S5 

and S6) and significant negative correlations between dominant-hand sensors with differ-

ent functions (S6 and S7, for example). Conversely, a novice profile exhibits non-specific 

co-variation in a large amount of sensors in both hands, which translates functional re-

dundancy characteristic of unskilled manipulation [10,11]. Individual temporal grip-force 

profiles from sensors S5, S6, and S7 were submitted to spatiotemporal analysis. This was 

achieved by computing the Average peak amplitudes in milliVolts (AmV) for fixed suc-

cessive temporal windows of 2000 millliseconds (msec) from a given individual session, 

as explained in 2.5 above. These profiles, comparing the first and the last individual ses-

sions of the expert and the novice, are shown below (Figure 10). Statistical comparison (2-

Way ANOVA) between the original raw data of the expert and novice from their first and 

last task sessions reveal significant interactions between ‘expertise’ (two factor levels) and 

‘session’ (two factor levels) for all three sensors considered here (S5, S6, S7). For sensor S5 

on the middle finger (gross grip-force deployment), the mean (m) grip forces and their 

standard errors (sem) from the first session yield m = 241 mV and sem = 4.3 for the expert 

and m = 790 mV and sem = 2.7 for the novice, showing that the latter deploys about three 

times as much unnecessary gross grip force compared to the expert. This expertise-specific 

difference in proportional gross grip force deployed by the middle finger is even larger in 

the last session, with m = 78 mV and sem = 4.9 for the expert, and m = 640 mV and sem = 3.6 

for the novice. The interaction between the ‘expertise’ and ‘session’ factors for sensor S5 

is significant with F(1, 2880) = 28.65; p < 0.001. For sensor S6 on the ring finger, which has 

no particular role in grip-force control, the differences between the grip-force profiles of 

novice and expert are minimal, as would be expected, in the first session with m = 576 mV 

and sem = 3.8 for the expert and m = 504 mV and sem = 2.4 for the novice, and in the last 

session with m = 474 mV and sem = 4.5 for the expert and m = 445 mV and sem = 3.3 for the 

novice. The interaction between the ‘expertise’ and ‘session’ factors for sensor S6 is, how-

ever, significant with F(1,2880) = 35.86; p < 0.001, which is explained by the fact that grip 

forces, i.e., amplitudes in mV, diminish in both users from the first to the last session, but 

not by the same amounts. For sensor S7 on the small finger (critically important for fine 

grip-force control), the expertise-specific difference between the two user profiles is char-

acterized by the novice deploying largely insufficient grip forces from the first session 
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with m = 98 mV and sem = 1.2 to the last with m = 78 mV and sem = 1.6, while the expert 

produces sufficient grip force for fine movement control from the first session with m = 

594 mV and sem = 1.8 to the last with m = 609 mV and sem = 2.2. 

 

Figure 10. Individual grip-force profiles showing average peak amplitudes (mV) from sensors 5, 6, 

and 7 for fixed successive temporal windows of 2000 milliseconds in a given session, for the first 

and last of ten sessions of the expert and the novice. Relative durations of each of the four critical 

task steps within a given session are highlighted by the colored boxes corresponding to those shown 

in Table 2 on the example of sensor 5 (top left and top right). 

The interaction between the ‘expertise’ and ‘session’ factors for sensor S7 is highly 

significant with F(1, 2880) = 188.53; p < 0.001. Average task times across sessions and hands 

are considerably shorter for the expert (Table 3), with 10.2 sec across hands in the first 

session and 7.5 s across hands in the last indicating a minor practice effect. The novice 

takes more than twice as long (~25 s) in the first session compared with the expert, with a 

30% time gain in the last session (18.8 s), indicating a temporal training effect. Regarding 

incidents (trajectory adjustments, grip failures, drop misses) across all sessions, the task 

videos reveal a total of 20 in the novice across sessions and hands, and only three small 

trajectory adjustments in the expert’s last three sessions with the non-dominant hand (Ta-

ble 3). Incidents during task completion directly impact the completion times. Their effect 

on grip force depends on the type of incident. While the minor tool trajectory corrections 

(cf. expert data) may be deemed to have little effect on magnitude and variability in grip 

force, the major incidents observed in all sessions of the novice most likely affect both [3–

5]. 
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Table 3. Average times taken to complete the task with the dominant and non-dominant hand in 

the first and last of ten sessions per hand. The total number of incidents across all sessions are shown 

in the last column. 

Skill Level 1st Session Duration Last Session Incidents 

Expert 10.20 7.48 3  

Novice 24.56 18.78 20 

4. Discussion 

The analyses reveal expertise-specific differences in the spatiotemporal grip-force 

profiles of an expert and a novice repeatedly performing a 2D image-guided robot-as-

sisted precision task. These differences are evaluated here with regard to their functional 

implications, in light of previous work on the role of finger grip forces and prehensile 

synergies, which are centrally controlled in the human brain for human motor perfor-

mance and control. Skill-related differences in grip-force deployment here are reflected 

by a larger general grip-force variability and higher grip-force magnitude across hands 

and sessions in the novice. One of the more particular aspects of task proficiency in this 

study context concerns the proportional gross grip force deployed by the middle finger of 

the dominant hand. While the novice deploys too much of it, the expert has learnt to op-

timize and deploy it parsimoniously, as shown by the detailed analyses here. Excessive 

grip-force deployment appears common in novice surgeons in robotic surgery when there 

is an absence of haptic feedback [41,42]. This may be corrected at the earliest stages of 

training through verbal feedback. Since grip-force modulation is under higher-level cor-

tical control [9,10,11,33,36,37] involving the frontal lobe, raising awareness in the novice 

verbally could promote faster adaptive learning. Another functionally important aspect 

concerns the precision grip-force control of the cylindrical handles by the small finger, 

critically important in surgical and other precision tasks. The difference between the two 

users here is characterized by the novice deploying insufficient small finger grip forces 

with the preferred (dominant) hand, with no major evolution between the first and the 

last task sessions. When looking at the grip forces deployed by the ring finger, which plays 

no meaningful role in grip-force control when manipulating cylindrical objects, differ-

ences between the profiles of novice and expert are minimal, as would be expected, and 

do not evolve much across sessions. Sensors were positioned in the glove to optimally fit 

the cylindrical handles of the robotic control device. The functionally relevant subset in 

the spatiotemporal analyses were selected in this specific context on the basis of findings 

from previous studies on finger-specific functional implications for manipulation of ob-

jects with variable shape properties [10–12,16]. Previous work [16] has shown that force 

distributions for cylindrical grips differ between the dominant and non-dominant hand 

in healthy subjects, as shown in this study. For control handles with other shapes (elliptic, 

circular, etc.), finger- and hand-specific functional synergies may be different. These can 

then be benchmarked using the grip-force profiles of highly proficient experts. The syn-

ergy of finger grip function is self-organizing and highly plastic. The complex anatomy of 

the human hand allows for a large number of postures and finger combinations to attain 

optimal grip-force synergies in tasks with different constraints and the manipulation of 

objects with different shapes [33]. The total grip-force magnitude, or mV amplitude, 

tended to diminish across sessions with practice in both users here. Regarding task times, 

the novice took more than twice as long performing the precision task compared to the 

expert, but at the end scored a 30% time gain indicating a considerable temporal training 

effect, especially in the first critical task step, which is the most difficult to perform under 

2D image guidance given the absence of veridical depth cues in the camera image. Moving 

the tool along a virtual trajectory towards the object location requires movement away 

from the body in the surgeon’s peripersonal space and is difficult to scale under conditions 

of 2D image input. It requires compensating for physically missing depth information by 

slowing down, which not only results in longer task times but also in less precise tool 
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movements [43–46]. This explains why the largest training gain in the total task time of 

the novice was observed for task step 1. The 2D camera of the robotic system here repre-

sents a limitation. Using 3D camera systems, as recently demonstrated in laparoscopic 

approaches [53], may help overcome this problem. The grip-force analyses shown here 

can be performed in real time to monitor manual/bimanual precision tasks, control per-

formance quality, or prevent risks in surgery systems where excessive grip forces can di-

rectly cause tissue damage [42]. Task-skill-related variations in grip forces are reliably 

predicted, as illustrated here, by the output metric of the brain-inspired neural network 

architecture simulating functional properties of somatosensory feedback circuitry in the 

human brain. Combining grip-force sensor technology with predictive modeling using 

computationally parsimonious Artificial Intelligence promises functionally meaningful 

and economic automated analysis of surgical task skill evolution. The current state of the 

art in robotic assistance [54,55] for surgical procedures with unified master–slave control 

systems [56,57] has a considerable potential for augmenting the precision and technical 

capability of physicians, but some challenges still need to be met in terms of optimized 

system architecture, software, mechanical design, imaging systems, and user interface de-

sign and management for maximum safety. To avoid single-observer bias [58–60], objec-

tive quantitative performance criteria need to be worked out for defining gold standards 

of true expert performance in this emerging realm of assistive technology, pushing opti-

mal training programs for novices. Cogently designed and parsimoniously deployed Ar-

tificial Intelligence [20,59] can help move things forward in this direction. Finally, the con-

trol of the human hand by the brain has evolved as a function of environmental constraints 

in interaction with the other sensory systems, and grip-force profiles are a direct reflection 

of the complex cognitive and behavioral synergies these interactions have produced. Sen-

sory cues provided by somatosensation, vision, hearing, and smell play an important role 

in grip-force scaling [1]. When interacting with objects of uncertain properties providing 

insufficiently reliable somatosensory feedback, individuals use somatosensory memory 

representations from previous trials to plan grip forces [60], and patients with massive 

somatosensory loss can still scale and time grip forces and adjust them across different 

object handling tasks on the basis of memory-based, anticipatory, and online control pro-

cesses to compensate for the loss of somatosensory feedback [61]. The range of possibilities 

offered by wearable wireless sensor technology in the study of human cognitive pro-

cessing extends well beyond the field of human–robot interaction. 

5. Conclusions 

Wearable wireless sensor technology has permitted exploration of grip forces de-

ployed for grasping, lifting, and manipulating objects under conditions of variable exter-

nal constraints and sensory input in novel tasks that require the rescaling of perceptual 

responses to obtain behavioral success. Profiling the grip forces of individuals with vari-

able skill levels in image-guided tasks that require interaction with a robotic device reveals 

some of the dynamic functional changes that take place in the brain during practice and 

learning. Human–robot interaction represents unprecedented challenges for perceptual 

and motor adaptation in environmental contexts of high sensory uncertainty. The insights 

from this study may contribute to improving the outcome of new types of surgery, in 

particular the single-port approaches such as NOTES (Natural Orifice Transluminal En-

doscopic Surgery) and SILS (Single-Incision Laparoscopic Surgery). Beyond this particu-

lar context, grip-force analysis offers various perspectives for studying cognitive pro-

cesses in a larger realm, relating to multisensory interactions with hearing [30] or vision 

[32]. Successful grip-force deployment involves central processes of neural control [1], and 

grip force is currently explored as a marker of brain health [62] in clinical studies of cog-

nitive disorders such as major chronic depression [63], Parkinson’s disease [64], or the 

non-pathological cognitive decline in ageing [65–68]. As a directly measurable behavioral 

correlate of self-organizing control mechanisms in brain learning [69], grip-force patterns 
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and their evolution are suited for feeding theoretical approaches and hypotheses that ex-

ploit neural network architectures driven by unsupervised biological learning [20]. 
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