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Abstract

The limiting amplitude principle is a well-known
result connecting the solution of the Helmholtz
equation with the large-time behavior of time-
dependent wave equations with a source term
which is periodic in time. Motivated by numeri-
cal analysis of time-domain methods for station-
ary scattering problems in heterogeneous me-
dia, we quantify the solution convergence of such
time-dependent wave equation towards the sta-
tionary solution, under some assumptions on the
coefficients and the source term. We also gener-
alise the formulation of the limiting amplitude
principle to the one-dimensional setting where
the classical statement of the principle is known
to be violated.
Keywords: limiting amplitude principle, time-
domain wave equation, Helmholtz equation, large
time behavior

1 An introduction

It is a common engineering wisdom that the
wave equation with a periodic-in-time source term
yields a solution that stabilises for large times
to the solution of the corresponding Helmholtz
equation modulated by a time-harmonic factor.
This link between time- and frequency-domain
wave problems is known as the limiting ampli-
tude principle. This principle has been been a
subject of extensive research started nearly 70
years ago aiming at developing tools for the se-
lection of a physically relevant unique solution
of the Helmholtz equation in an unbounded do-
main. However, this viewpoint can be altered,
and one can start with a problem governed by
the Helmholtz equation (supplemented by clas-
sical Sommerfeld radiation conditions) which is
known to admit a unique solution, and one can
employ time-domain methods in order to effi-
ciently find this solution. Despite a seemingly
increased computational burden (due to the ad-

ditional temporal dimension), some special time-
domain methods such as [4,5] can be useful when
wavenumber (frequency) is large and the origi-
nal Helmholtz equation is difficult to solve nu-
merically. In particular, in the time domain,
one can take advantage of the presence of sharp
wavefronts and resolve the problem on a suit-
ably adapted mesh [1]. In the present com-
munication, summarising [3], we focus on an-
other aspect of evaluation of the efficiency of a
time-domain approach to the Helmholtz equa-
tion. Namely, we are concerned with the speed
of the convergence in time of the solution of the
time-dependent wave equation to the solution of
the underlying stationary problem.

2 Results

Given a frequency ω > 0, a compactly sup-
ported source term F ∈ L2

(
Rd
)
and non-trapping

material parameters αmin < α (x) ∈ C∞
(
Rd
)
,

βmin < β (x) ∈ C∞
(
Rd
)
such that α (x) = α0,

β (x) ≡ β0 for x ∈ Rd\Ω0 with some bounded
set Ω0 ⊂ Rd and constants αmin, βmin > 0, we
consider the Helmholtz equation, for x ∈ Rd,

−∇ · (α (x)∇U (x))− ω2β (x)U (x) = F (x) ,
(1)

supplemented by the Sommerfeld condition

lim
|x|→∞

[
∂|x|U (x)− iω

√
β0/α0U (x)

]
= 0.

The corresponding time-domain wave equation,
for x ∈ Rd, t > 0,

β (x) ∂2
t u (x, t)−∇·(α (x)∇u (x, t)) = e−iωtF (x)

(2)
is supplemented by the initial conditions

u (x, 0) = 0, ∂tu (x, 0) = 0, x ∈ Rd.

Our main result pertaining the convergence
in time of the solution u (x, t) and its deriva-
tives can be formulated as the following theo-
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rem which establishes and quantifies the limit-
ing amplitude principle in the aforementioned
setting.

Theorem 1 Let U and u be the solutions to
problems (1) and (2), respectively. Then, for
any bounded domain Ω ⊂ Rd and t > 0, the
following estimates hold true.

For d = 3:∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ C1

(1 + t2)1/2
.

For d = 2:∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤
C2

(
1 + log

(
1 + t2

))
(1 + t2)1/2

.

For d = 1:∥∥u (·, t)− e−iωtU − U∞
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ C3e
−Λt.

Here, the constants C1, C2, C3 > 0,

U∞ :=
1

2iω
√
α0β0

∫
R
F (x)β (x) dx,

and the decay rate Λ > 0 can be estimated ex-
plicitly.

Our proof of Theorem 1 is due to reduction
towards several results concerning temporal de-
cay for wave equations with sufficiently localised
initial data or a source term. In particular, we
build up on recent resolvent estimates from [6]
and analysis of the one-dimensional wave equa-
tion [2].

Note that, in contrast to our setting, clas-
sical works (such as [7–10]) rarely quantify the
limiting amplitude principle, and they deal with
either constant-coefficient equations or variable-
coefficient equations in the divergent form, with
the main focus on the physical case d = 3. We
also stress that our results show that, with a
minor modification (by accounting for the ad-
ditional constant term U∞), the validity of the
limiting amplitude principle extends to the case
d = 1.

During the talk, I will briefly describe some
of the ingredients of the proof, touch on sharp-
ness and non-sharpness aspects of the estimates
in Theorem 1 and discuss further possible ex-
tensions of our results.
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