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For a precise GNSS (Global Navigation Satellite System) positioning, carrier phase measurements are required. However, cycle slipping in classical phase locked loop (PLL) can lead to a local or permanent loss of lock. To address this problem, we propose a robust nonlinear filter for carrier phase tracking based on Variational Bayes (VB) inference. So far, the algorithm is designed only for slow phase dynamics (i.e., first order loop). Interestingly, the estimator update equation can be expressed in closed form. Performance of our algorithm is assessed on synthetic and experimental GNSS data and compared to that of conventional PLL-based techniques. Results show that the proposed method brings significant improvement in terms of cycle slipping.

I. INTRODUCTION

Precise GNSS positioning is crucial in a wide range of applications (e.g., surveying [START_REF] Leick | GPS satellite surveying[END_REF]). Carrier-based techniques such as Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) have been accordingly developed [START_REF] Hofmann-Wellenhof | GNSS -Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more[END_REF]. They can provide positions that are orders of magnitude more accurate than code-based GNSS [START_REF] Kaplan | Understanding GPS: principles and applications[END_REF]. However, phase measurements obtained by conventional phase tracking algorithms can be severely impaired by the presence of ambiguous phase jumps known as cycle slips. They particularly arise in degraded environments. These local losses of lock can even lead the tracking loop to a complete drop-lock from which it never recovers. Reacquisition is then necessary which severely afflicts the positioning efficiency. Cycle slip phenomenon has been extensively studied in literature, e.g., [START_REF] Kaplan | Understanding GPS: principles and applications[END_REF]- [START_REF] Brunt | Cycle-slipping probability of first-order phase-locked loop using transient analysis[END_REF]. To guarantee a robust carrier tracking in the presence of singular inputs or harsh environmental conditions, different techniques have been developed [START_REF] Lopez-Salcedo | Survey on robust carrier tracking techniques[END_REF].

In this paper, we propose a nonlinear filtering technique for robust GNSS phase tracking based on the VB approximation [START_REF] Smidl | Variational bayesian filtering[END_REF]. This study is the continuation of the work presented in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF] where a VB-based phase tracking technique was developed for correlated bi-frequency measurements. Herein, we consider instead a conventional mono-frequency GNSS channel and show that the signal model allows the same tracking methodology to be applied. Particularly, unlike conventional
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PLL-based techniques, no linear approximation is made about the phase measurement which is a distinct advantage especially at low signal-to-noise-ratio (SNR). We thus obtain a closedform nonlinear update equation that is simple to implement. Our work is so far limited to slow phase dynamics.

The paper is organized as follows. Section II describes the scenario into the GNSS framework and the signal model considered. The variational Bayes approximation is recalled and applied accordingly in Section III. Numerical results are then presented in Section IV. Conclusions are summarized in the last section.

II. SIGNAL MODEL

A. Scenario

We consider a GNSS receiver with a scalar tracking architecture, i.e., the signal received is processed independently on a satellite basis and that for each available frequency channel. The proposed phase tracking algorithm is developed assuming that either delay or both delay and frequency are perfectly synchronized after the satellite acquisition stage. Actually, this assumption could be related to two possible receiver's architecture:

1) the tracking block entails only a Delay Lock Loop (DLL) and the frequency is compensated with that estimated at the acquisition stage; this architecture is realistic only during a certain amount of time since an integration loss will appear due to a non-tracked frequency; 2) the tracking block entails both a DLL-FLL (Frequency Lock Loop). In both cases, the proposed phase tracking technique estimates the (residual) phase of the prompt. In addition, no feedback of the estimated phase is provided to the DLL. In this study, results provided on real data are obtained with the former architecture.

B. Measurement model

We consider the prompt signal as described in Section II-A while assuming that both delay and frequency are perfectly synchronized. The resulting baseband signal at the instant k can be expressed as

z k = αe jφ k + n k ( 1 
)
where α is the real amplitude on receive, φ k is the remaining phase to be tracked and n k is the internal receiver noise. In [START_REF] Leick | GPS satellite surveying[END_REF], it is also assumed that there is no navigation message (i.e., either a pilot channel is considered or data wipe-off is applied) 1) Likehood function: The noise component n k is supposed to be complex white and Gaussian with known power σ2 n , hence

n k ∼ CN (0, σ 2 n ). (2) 
Using ( 1) and ( 2), the likelihood function can be expressed as

f (z k |φ k , α, σ 2 n ) = 1 πσ 2 n exp - |z k -αe jφk | 2 σ 2 n = 1 πσ 2 n exp - 1 σ 2 n |z k | 2 + α 2 -2α|z k | cos(φ k -ψ k ) (3) with ψ k = atan2( {z k }, {z k }) the angle that lies between [-π, π].
In this work, we assume to know the value of the amplitude α and noise power σ 2 n from a lock estimator, we will thus omit them from the conditional terms. Accordingly, the likelihood function (3) can be simply written f (z k |φ k ). The sensor factor associated to the likelihood (3) is

S(φ k ) def = f (z k |φ k ) ∝ exp β k cos(φ k -ψ k ) (4) 
where

β k = 2α|z k | σ 2 n . (5) 
In ( 4), we recognize a Von Mises distribution with concentration parameter β k and mean direction ψ k . Considering (1), β k is distributed according to a Rice distribution with probability density function (pdf) [START_REF] Oppenheim | Discrete-time Signal Processing[END_REF] 

f β k |m, σ 2 n 2 = 2β k σ 2 n exp -(β 2 k + m 2 ) σ 2 n I 0 2β k m σ 2 n ( 6 
)
where m = α and I 0 is the modified Bessel function of first kind at zeroth order.

C. Phase process

The phase evolution is modeled by a Markov Random Field (MRF). The latter has been widely used as Bayesian prior in many phase processing problems; [START_REF] Leitao | Absolute phase image reconstruction: a stochastic nonlinear filtering approach[END_REF]- [START_REF] Barrett | Frequency tracking using hidden markov models with amplitude and phase information[END_REF] are just few of them. In this study, a first order Gaussian MRF is chosen in order to ensure some smoothness in the estimated phase sequence [START_REF] Giovannelli | Unsupervised frequency tracking beyond the nyquist frequency using markov chains[END_REF], i.e.,

φ k = φ k-1 + w k (7) 
where w k ∼ N (0, σ 2 φ ) is a white Gaussian noise. The initial state φ 1 is supposed to be uniformly distributed over the set I = [-π, π]. The a priori phase dynamics model can thus be summarized by

f (φ 1 ) ∝ I [-π,π] (φ 1 ) (8a) f (φ k |φ k-1 , σ 2 φ ) = 1 2πσ 2 φ exp - [φ k -φ k-1 ] 2 2σ 2 φ . (8b) 
III. VARIATIONAL BAYES TRACKING ALGORITHM Herein, as discussed in the Introduction, the Restricted Variational Bayesian (RVB) approximation is used in the phase tracking problem. The methodology is actually the same as that presented in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF].

A. Distributional approximations in Bayes filtering problem

The problem of inferring the state variable is described by

f (z k |φ k ) and f (φ k |φ k-1 ).
Let denote by Z k = [z 1 , . . . , z k ] the set of observations till the instant k. The optimal Bayes filtering that evaluates iteratively the filtering distribution f (φ k |Z k ) is obtained by alternating between the two following equations

f (φ k |Z k-1 ) = f (φ 1 ) k = 1 f (φ k |Z k-1 ) = f (φ k |φ k-1 )f (φ k-1 |Z k-1 )dφ k-1 k > 1 (9) and f (φ k |Z k ) ∝ f (z k |φ k )f (φ k |Z k-1 ) k > 1. (10) 
Though, to make the Bayesian filtering tractable and thus guarantee the iteration of its procedure, we will enforce the functional form of the marginal distribution f (φ k |Z k ) to remain unchanged along the iteration. A typical way to proceed is to use distribution approximation [START_REF] Ristic | Beyond the Kalman filter: Particle filters for tracking applications[END_REF] f

(φ k |Z k ) ∼ f (φ k |Z k ). (11) 
In this study, we focus our attention on the RVB approximation [START_REF] Smidl | Variational bayesian filtering[END_REF].

B. Local Variational Bayesian filtering

The RVB method is based on two approximations applied during the optimal filtering procedure. The first one consists in locally imposing conditional independence between φ k and φ k-1 [START_REF] Smidl | Variational bayesian filtering[END_REF] 

f (φ k , φ k-1 |Z k ) = f (φ k |Z k ) f (φ k-1 |Z k ) (12) 
where f (•) refers to the approximated posterior distribution. The latter are then chosen to minimize the Kullback Leibler (KL) divergence [START_REF] Smidl | Variational bayesian filtering[END_REF]; the prediction distribution can therefore be expressed as

f (φ k |Z k-1 ) ∝ exp E f (φ k-1 |Z k ) ln(f (φ k |φ k-1 )) (13) 
with

f (φ k-1 |Z k ) ∝ exp E f (φ k |Z k ) ln(f (φ k |φ k-1 )) × f (φ k-1 |Z k-1 ) (14) 
where E f (x /i |Z) g(x)1 denotes the expected value of the function g(x) with respect to the function f (x). Accordingly, the filtering distribution is now expressed as

f (φ k |Z k ) ∝ f (z k |φ k ) f (φ k |Z k-1 ). ( 15 
)
At this stage, the data update equation ( 15) describes an implicit equation in f (φ k |Z k ) since the prediction distribution depends itself via ( 14) of the latter. To have a closed-form solution, a second approximation is applied [START_REF] Smidl | Variational bayesian filtering[END_REF]. This is done through the RVB approximation which finally replaces the distribution f (φ k-1 |Z k ) in ( 13) by the fixed posterior distribution f (φ k-1 |Z k-1 ). The prediction distribution becomes then

f (φ k |Z k-1 ) ∝ exp E f (φ k-1 |Z k-1 ) ln(f (φ k |φ k-1 )) .
(16) Using the sensor factor (4) and the phase dynamics distributions [START_REF] Brunt | Cycle-slipping probability of first-order phase-locked loop using transient analysis[END_REF], it can be shown that, following the same path as in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF], the RVB filtering has the following closed form expression

• Prediction and data update for k = 1 f (φ 1 |Z 0 ) def = f (φ 1 ) (17a) f (φ 1 |Z 1 ) ∝ f (φ 1 )exp β 1 cos(φ 1 -ψ 1 ) . (17b) 
• Prediction and data update for k > 1

φ k |Z k-1 ∼ f N E f (φ k-1 |Z k-1 ) [φ k-1 ], σ 2 φ (18a) f (φ k |Z k ) ∝ exp β k cos(φ k -ψ k ) (18b) - φ k -E f (φ k-1 |Z k-1 ) [φ k-1 ] 2σ 2 φ . (18c) 

C. Phase tracking estimator

Hence, the RVB approach gives an iterative and tractable solution as long as the approximated posterior mean of φ k-1 can be evaluated. As in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF], the RVB estimator can be expressed as

• φrvb k for k = 1 φrvb 1 = -2 ∞ q=1 (-1) q I q (β 1 ) sin(qψ1) q I 0 (β 1 ) (19) 
• φrvb

k for k > 1 φrvb k = φrvb k-1 + 2σ 2 φ +∞ q=1 qIq(βk) sin[q(ψk-φrvb k-1 )]e - q 2 σ 2 φ 2 I0(βk)+2 +∞ q=1 Iq(βk) cos[q(ψk-φrvb k-1 )]e - q 2 σ 2 φ 2 (20)
where the I q (•)'s are the modified Bessel functions of the first kind at qth order. As remarked in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF], since I q (β k ) decreases rapidly with respect to q, an implementable form of ( 19) and ( 20) is obtained by truncating the sum involved for q = 1, ...q max where q max is the highest chosen order. Interestingly, the estimate update equation (20) depends non linearly on the innovation term ψ k -φ rvb k-1 .

IV. NUMERICAL SIMULATION

In this section, performance of the proposed RVB estimator (19)-( 20) is assessed via synthetic and real GNSS data.

A. Scenario

The received signal is generated as in [START_REF] Leick | GPS satellite surveying[END_REF]. Considering then an update interval T , the carrier-to-noise-density ratio is defined by

C/N 0 = |α| 2 σ 2 n T .
In our simulations, the integration time T is chosen equal to 20 ms. The phase dynamics considered are of polynomial form up to the second order, namely

φ k+1 = φ 0 + φ0 k + φ0 k 2 2 ( 21 
)
where φ 0 , φ0 , φ0 are respectively the initial phase (step), the initial phase rate (ramp) and the initial phase acceleration (parabola). In what follows, the proposed RVB algorithm is compared to a conventional DPLL. Concerning the former, we fix the highest order to q max = 50 as proposed in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF].

The value of σ φ is chosen in the interval [0,π] considering that taking a standard deviation greater than half a cycle may favor cycle slip. Concerning the latter and in search of fairness, an ATAN2 discriminator is used and a first order DPLL is considered. Additionally, its phase at initialization φP LL 0 is considered equal to zero and its loop filter coefficient is fixed according to [START_REF] Stephens | Controlled-root formulation for digital phase-locked loops[END_REF]. Therefore the time-bandwidth product B L T may vary between [0,0.5]. Performance of phase tracking loops is then monitored by statistically studying the phase error process defined as e k = φ k -φk .

B. Phase tracking from a noise-free observation

First, to better understand the role played by the process noise power σ φ , RVB responses to noise-free signal (i.e., z k def = αe jφ k ) are presented in Fig. 1. As could be expected, the proposed first order RVB estimator tracks with no bias a step input, with a finite bias a ramp input (with slow slope) and with an infinite bias an acceleration. Additionally, the parameter σ φ strongly influences the response of the estimator in terms of acquisition time and bias. It thus plays a similar role as that of the loop bandwidth in a conventional DPLL though performance depends nonlinearly on σ φ .

C. Performance metrics

We describe hereafter the performance metrics used to evaluate the RVB estimator ( 19)-(20). In an attempt to study the tracking algorithm in its linear and nonlinear regimes, we study on the one hand the statistical behavior of the phase error modulo-2π, ẽk = (φ k -φk ) [-π,π] [START_REF] Gardner | Phaselock techniques[END_REF], and on the other hand the statistics of the cycle slip event, respectively. More specifically, the following performance metrics are considered.

1) RMSE-mod: To assess the precision of estimation aside cycle slip events, we consider the Root Mean Square Error (RMSE) modulo-2π (denoted as RMSE-mod), i.e., 2) Acquisition time: We define it here as the time required for the RMSE-mod to remain constant with respect to the time.

RMSE-mod

= E ẽ2 k } def = 1 M c Mc n=1 ẽ2 k (n). (22) 
3) Mean time to first cycle slip (or mean time of loss of lock): It is evaluated as the average time required to observe the first cycle slip when the tracking is initialized at steadystate [START_REF] Stephens | Controlled-root formulation for digital phase-locked loops[END_REF]. According to Viterbi's criterion [START_REF] Viterbi | Phase-locked loop dynamics in the presence of noise by Fokker-Planck techniques[END_REF], a cycle slip is detected as soon as the phase error crosses a new equilibrium line [START_REF] Viterbi | Phase-locked loop dynamics in the presence of noise by Fokker-Planck techniques[END_REF], i.e., when |e rvb k | > 2π since steady-state is initially enforced. Furthermore, the incoming phase is tracked until the first cycle slip occurs. Note that due to the nonlinear nature of the RVB algorithm (20), defining theoretically steady-state is not straightforward. In the simulations, we say that steadystate is reached when the phase error remains constant while assuming a noise-free signal (i.e., z k def = αe jφ k ) and a fixed input phase dynamics. Steady-state is checked and assessed numerically in what follows.

4) Cycle slip rate (or frequency of skipping cycles): It is estimated while fixing a number of cycle slips N cs to be observed. The rate is then estimated as Cycle slip rate

def = 1 M c Mc n=1 N cs T last slip (n)
where M c is the number of Monte-Carlo runs and T last slip is the time necessary to observe these N cs slips. Also this metrics is evaluated starting the track at steady-state [START_REF] Stephens | Controlled-root formulation for digital phase-locked loops[END_REF].

D. Phase-step response

RMSE-mod of the RVB and DPLL are depicted in Fig. 2 for different standard deviations σ φ and loop bandwidths B L , respectively. As can be noted, the RMSE-mod reaches a constant value after a given time for each value of σ φ and B L considered, so that the acquisition time as defined earlier is finite. In Fig. 2, a parametric representation of the RMSEmod as a function of this acquisition time is given. As is wellknown, increasing the DPLL loop bandwidth leads to a faster acquisition (in ≈ 1/(B L T ) samples) at the expense of a lower estimation precision. For the RVB, the standard deviation σ φ has a similar influence as that of the loop bandwidth but beyond a given value σ φ ≈ 0.5π rad the influence is reversed so that the acquisition time increases while reaching a higher precision. This is due to the nonlinear dependence of the innovation term on σ 2 φ in (20). As a consequence, the same RMSE-mod can be obtained for two different values of σ φ . Additionally, for any fixed acquisition time, the RMSE-mod of the RVB estimator is always lower than that of DPLL. Note also that very low acquisition time can be reached only by the DPLL for very high time-bandwidth product B L T at the expense of an increased RMSE-mod. Finally, cycle slip rate is depicted in Fig. 4 as a function of σ φ and B L , respectively. We observe that the RVB algorithm can reach extremely low cycle slip occurrence (around zero slip per second for each σ φ ), contrarily to the DPLL. As expected, for the latter the cycle slip rate increases with the loop bandwidth B L . Note that, in practice, if after a very long time of simulation no cycle slip occurs, we set the rate to zero. Accordingly, we choose here not to display the mean to first slip.

E. Phase-ramp response

For the phase-ramp input, we provide directly in Fig. 5 the parametric curves established before giving the RMSE-mod as a function of the acquisition time. As before and for a given time, higher precision can be reached with the RVB estimator compared to the DPLL. Finally, cycle slip metrics are shown in Fig. 6. It clearly appears that using the RVB algorithm instead of a conventional DPLL can lead to a drastic decrease of cycle slip occurrence particularly when σ φ is chosen adequately, i.e., σ φ ≈ 0.15π rad and 0.8π rad.

In any event, the RVB technique is much less sensitive to the tuning of σ φ than the DPLL is to that of B L . Finally, note that we have depicted a vertical line that indicates the lowest σ φ where steady-state is reached. Actually, for very small σ φ the innovation term in (20) is not significant enough to compensate for the phase rotation taking place during the estimator update, i.e., for σ φ ≈ φ0 as already observed in [START_REF] Bidon | Variational bayes phase tracking for correlated dual-frequency measurements with slow dynamics[END_REF].

F. Real GNSS data

To finish, we present results using real GNSS data. The latter are collected from a static receiver (USRP X310). Samples are recorded at baseband with a sampling frequency of 4 MHz (2 × 4 bits per complex sample). To process the signal, we use a GNSS software-based receiver developed by ISAE-SUPAERO. In what follows a single satellite is tracked on its We then clearly see that the DPLL endures systematically a drop-lock beyond ca. 8 seconds whereas the RVB tracks do not show any cycle slip. Another typical behavior of the RVB, can be seen from the zoom in Fig. 7b. If the initial phase is near half a cycle, then the initial RVB estimate (19) may choose one ambiguity range rather than the other in which case a cycle slip does not really occur. Note also from the zoom in Fig. 7a that the RVB converges more rapidly than the DPLL with the values chosen for the processing parameters, namely σ φ = 0.8π rad and B L = 10 Hz. Both have been selected experimentally to provide a low cycle slip occurrence. Finally, it is worth noticing that the RVB performs quite well knowing that its parameters α and σ 2 n in (5) are estimated via an ad-hoc procedure in practice.

V. CONCLUSION

Carrier phase measurements are essential for an accurate GNSS-based user positioning. Though, the cycle slip phenomenon has an adverse effect on phase tracking. To obtain a robusitifed phase tracking technique compared to conventional PLL-based approaches, the RVB estimator is proposed. It uses a variational Bayes approximation in the optimal Bayesian filtering problem. The latter preserves the nonlinear nature of the measurement equation which is beneficial at low signal-tonoise ratio towards cycle slipping. Closed-form and easy-toimplement expressions are obtained for the RVB phase estima-tor. Simulations using synthetic data show that the proposed method offers improvement for both slow phase dynamics considered (viz step and ramp phase inputs) with respect to the cycle slip phenomenon. Finally, the two techniques are compared using real GNSS data at low C/N 0 ; RVB still outperforms the DPLL in terms of cycle slip occurrence. 
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 1 Fig. 1: Phase responses of the RVB estimator to a step-(up), ramp-(middle), and acceleration-(bottom) input: φ 0 = π/4 rad; φ0 = π/30 rad/sample; φ0 = π/(20 2 ) rad/sample 2 .
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 23 Fig. 2: RMSE-mod as a function of the time index for a step phase input: C/N 0 = 17 dB-Hz; φ 0 = π/4 rad; σ 2 n = 1.
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 4 Fig. 4: Cycle slip rate comparison for a step phase input: φ 0 = π/4 rad; σ 2 n = 1; C/N 0 = 15 dB-Hz.
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 5 Fig. 5: Precision of estimation metrics comparison for a ramp input: φ0 = π/30 rad/sample; σ 2 n = 1; C/N 0 = 17 dB-Hz.
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 6 Fig. 6: Cycle slip metrics for a ramp phase input: φ0 = π/30 rad/sample; σ 2 n = 1; C/N 0 = 15 dB-Hz.

Fig. 7 :

 7 Fig. 7: Phase estimation using real GNSS data; T = 1 ms; f s = 4 MHz; Satellite PRN 9; 1) RVB: σ φ = 0.8π rad; q max = 50; 2) DPLL: B L = 10 Hz.

x /i denotes the complement of x i in x (e.g., x /1 = x

).