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Abstract 

Groundwater level (GWL) simulations allow the generation of reconstructions for exploring the past temporal 

variability of groundwater resources or provide the means for generating projections under climate change on 

decadal scales. In this context, analyzing GWLs affected by low-frequency variations is crucial. In this study, 

we assess the capabilities of three deep learning (DL) models (long short-term memory (LSTM), gated 5 

recurrent unit (GRU), and bidirectional LSTM (BiLSTM)) in simulating three types of GWLs affected by 

varying low-frequency behavior: inertial (dominated by low-frequency), annual (dominated by annual 

cyclicity) and mixed (in which both annual and low-frequency variations have high amplitude). We also tested 

if maximal overlap discrete wavelet transform pre-processing (MODWT) of input variables helps to better 

identify the frequency content most relevant for the models (MODWT-DL models). Only external variables 10 

(i.e., precipitation, air temperature as raw data, and effective precipitation (EP)) were used as input. Results 

indicate that for inertial-type GWLs, MODWT-DL models with raw data were notably more accurate than 

standalone models. However, DL models performed well for annual-type  GWLs, while using EP as input, 

with MODWT-DL models exhibiting only minor improvements. Using raw data as input improved MODWT-

DL models compared to standalone models; nevertheless, all models using EP performed better for annual-15 

type GWLs. For mixed-type GWLs, while using EP as input, MODWT-DL models performed well, with 

substantial improvements over standalone models. Using raw data as input, improvement of MODWT-DL 

models is marginal compared to that of standalone models; nevertheless, they perform better than standalone 

models with EP. The Shapley Additive exPlanations (SHAP) approach used to interpret models highlighted 

that they preferentially learned from low-frequency in precipitation data to achieve the best simulations for 20 

inertial and mixed GWLs. This study showed that MODWT-based input pre-processing is highly suitable to 

better simulate low-frequency varying GWLs.  
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1. Introduction 

Accurate and reliable groundwater level (GWL) simulations and forecasting play vital roles in water resource 25 

management (Q. Liu et al., 2022; Rahman et al., 2020). While the terms simulations and forecasting are 

inherently different, they are often used synonymously in an inappropriate way in groundwater studies (e.g., 

(Ghazi et al., 2021)), even after (Beven & Young, 2013) provided clear definitions of these terms. According 

to (Beven & Young, 2013), “simulation” is defined as quantitative reproduction of system behavior without 

reference to observed output; “forecasting” is defined as reproduction of system behavior ahead of time with 30 

observed outputs up until the onset of forecast included.  

Traditionally, GWL simulations have been performed using physically based models, such as MODFLOW 

(Mcdonald et al., 1988) and ParFlow (Maxwell et al., 2015), in which a set of physical properties of the aquifer 

is implicitly used in the numerical solution of the groundwater equation. However, this type of calculation is 

often cumbersome and complicates the calibration of the model for approximating the hydrodynamic behavior 35 

of the aquifer expressed in observational data. Owing to the high computational and data requirements 

(Maxwell et al., 2015) of these models, data-driven approaches have gained traction in recent years as viable 

alternatives (Rahman et al., 2020; Rajaee et al., 2019; Tao et al., 2022). Furthermore, earlier studies on these 

approaches mainly focused on the classical multi-layer perceptron (MLP), i.e., a basic form of artificial neural 

network (ANN), which has outperformed MOFLOW in groundwater flow simulations (Mohanty et al., 2013). 40 

This simple network, which is considered to be the cornerstone of deep learning (DL), has demonstrated 

through several studies its effectiveness to approximate in black box form the highly nonlinear relationships 

that can link piezometric fluctuations to climate signals (Coulibaly et al., 2001; Wunsch et al., 2021). However, 
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the popularity of MLP networks in processing time series is decreasing in favor of a new generation of neural 

networks (such as LSTM and GRU). These neural networks include memory effect modules that handle 45 

temporal dependencies not accounted for in traditional neural networks, such as the MLP. This popularity is 

reflected in the numerous articles published in recent years that use this type of approach and highlights the 

effectiveness of standalone LSTMs in GWL simulations (Zhang et al., 2018), forecasting (Bowes et al., 2019), 

and reconstructing missing values (Vu et al., 2021). 

To further improve the GWL forecasting performance of artificial intelligence (AI) algorithms, a new 50 

generation of algorithms called hybrids has been developed. These algorithms combine time-series pre-

processing tools, such as principal component analysis (Cai et al., 2021), singular spectrum analysis (Yadav 

et al., 2020), DWT (C. Wu et al., 2021), and maximal overlap discrete wavelet pre-processing (MODWT) 

(Rahman et al., 2020) with AI tools. Among these, wavelet transform based pre-processing coupled with data-

driven models has shown increased efficiency regarding GWL forecasting because of its ability to extract 55 

time-varying behavior (Rahman et al., 2020; Rajaee et al., 2019). However, a recent study by Quilty & 

Adamowski (2018) highlighted the frequent incorrect usage of wavelet transform in hydrological forecasting 

and recommended using boundary-corrected MODWT. This approach is now gaining traction in hydrological 

time series forecasting; for example, Mouatadid et al. (2019) combined LSTM with BC-MODWT for 

irrigation flow forecasting and found it to perform better than standalone LSTM. Rahman et al. (2020) used 60 

BC-MODWT along with random forest and XGBoost and found the approach promising for forecasting 

GWLs. Finally, a more recent study by Barzegar et al., (2021) coupled BC-MODWT with CNN-LSTM and 

found it promising for multiscale lake water level forecasting. However, it further highlighted that efforts are 

required to find a suitable wavelet family, filter length, and decomposition level. Even after (Quilty & 

Adamowski, 2018) suggested using BC-MODWT or AT, a few studies (Liang et al., 2021; C. Wu et al., 2021) 65 

continued to use DWT coupled with LSTM for groundwater forecasting. Other pre-processing techniques 
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have also been used for GWL forecasting; for example, (M. Wu et al., 2021) combined variational mode 

decomposition with an extreme learning machine (ELM), and (W. Liu et al., 2021) coupled CEEMDAN with 

the deep belief network (DBN) model. 

 All of these pre-processing techniques coupled with DL are mainly focused on forecasting, i.e., they use 70 

previous target values in the input. A recent study by (Bahmani & Ouarda, 2021) coupled EEMD and CEEMD 

with GEP and M5 with the aim of simulating GWL; however, they used GWLs as input, which contradicts 

the definition of simulation by (Beven & Young, 2013). Hence, the primary purpose of this study is to 

appropriately assess these approaches in simulations. 

As models grow in complexity, there is increasing interest in their explanation and interpretation through 75 

approaches like SHapley Additive exPlanations (SHAP) which is mainly helpful in understanding the 

influence of input variables on the model simulations. According to recent literature, this is particularly true 

for ML and DL methods; for example, (Q. Liu et al., 2022) used the SHAP approach to interpret machine-

learning models for near-term GWL simulations. This approach allowed the authors to identify that the flow 

volume and distance to the river and reservoir played significant roles in groundwater changes. (Anderson & 80 

Radić, 2022) also showed that DL models learn the contribution of glacial runoff from meteorological 

variables in streamflow modelling. Even though research in this direction is only beginning, there is significant 

potential for interpreting DL models, thereby increasing their credibility for wider adoption across different 

decision-making levels. However, SHAP interpretation is still not very common in hydrology; in particular, 

it has not been used to explore the impacts of pre-processing. 85 

We identified the following lack of scientific and technical information in the existing literature: Most of the 

previous studies exploring wavelet usage were limited to forecasting, with previous GWLs being used as 

input. Consequently, these models relied heavily on high autocorrelation in previous GWLs values, resulting 
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in high accuracy. In contrast, our study focuses on simulation (not forecasting), in which only external factors 

influencing GWLs are used as input. Furthermore, we noticed a clear lack of studies looking at either 90 

forecasting or simulating GWL time series with the low-frequency variability (i.e., interannual to decadal) 

explaining most of the GWL variations. Indeed, being able to reproduce and establish simulations (e.g., 

projections) is critical for accounting for the influence of low-frequency climate variability, which can either 

mask or aggravate the effects of climate change on hydrology  (Boé & Habets, 2014; Bonnet et al., 2022; 

Kingston et al., 2020). 95 

We hypothesize that wavelet expansion, by extracting the most relevant high- to low-frequency variability 

information from external input variables (i.e., precipitation, air temperature, and effective precipitation), will 

help in achieving better simulations of GWL variations, even when these are dominated by low-frequency 

variability that is barely visible or even invisible in input variables. In this study, we evaluate the effectiveness 

of coupling recurrent-based DL algorithms (i.e., LSTM, bidirectional LSTM (BiLSTM), and GRU) with BC-100 

MODWT signal decomposition for simulating GWL variations in the case of three piezometric time series 

representative of the most contrasting temporal behaviors in northern France (Baulon et al., 2022).  

To test this hypothesis, we 1) evaluate the effectiveness of using raw data (i.e., precipitation and air 

temperature) as input against using processed data, such as effective precipitation (EP), as input, 2) compare 

DL methods with and without wavelet pre-processing while quantifying the performance of each method, and 105 

3) investigate the internal functioning and plausibility testing of the DL models through the SHAP 

interpretative approach. The remainder of this paper is structured as follows: Section 2 presents the data and 

normalization. Section 3 presents the theoretical background of the methods and pre-processing techniques 

employed in this study. Section 4 presents the analysis and interpretation of the results. Section 5 presents our 

conclusions. 110 
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2. Data  

We used a database consisting of a relatively long GWL time series initially taken from the ADES 

(Accès aux Données sur les Eaux Souterraines) database (https://ades.eaufrance.fr/; Winckel et al., 2022). 

These GWL data were especially selected because the anthropogenic impact on them was relatively low 

(Baulon et al., 2022). From this database, we selected three GWL time series that fluctuated over a 50-year 115 

period (i.e., 1970–2020) in contrasting manners: the first GWL time series has an inertial nature where the 

low-frequency component dominates the signal; the second is the so-called mixed GWL time series because 

the fluctuations are reflected by the annual and interannual components, with the latter being largely 

influenced by the annual cycle. Thus, the numerical simulation tools presented here are confronted with the 

prediction of piezometric fluctuations in aquifers with well-contrasted hydrodynamic regimes. The locations 120 

of the three stations are shown in Figure 1. The GWL time series of the three stations are shown in Figure 2. 

The work presented herein is part of a much more comprehensive project study. At this stage, the current work 

uses precipitation, air temperature, or EP as input variables (Figure 3: Example for one station). The numerical 

simulation consists of training different types of DL networks with meteorological data as input. Specifically, 

EP is used as one input variable on the one hand, and precipitation and air temperature combined are used as 125 

input on the other hand; the output variable is piezometric responses. 

Precipitation and mean air temperature data were retrieved from the SAFRAN (Système d’Analyse 

Fournissant des Renseignements Atmosphériques à la Neige) Reanalysis (Vidal et al., 2010), which is 

available at a daily time step with a spatial resolution of 8 × 8 km2. Although the input time series is available 

at the daily time step, only the monthly averages between 1970–2020 were used to match the monthly time 130 

step of the piezometer data. EP was derived from a calculation using the water budget method of Edijatno & 
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Michel (1989). Conversely, the processed data came from areas in France with limited anthropogenic impacts; 

hence, the piezometric variations were essentially due to the climatic signal. 

All data used as input and output are normalized into the network to facilitate stable convergence in the 

learning phase. The following equation is used for this normalization so that all data can vary in (0, 1) intervals: 135 

 ������ = (� − �
��)/(�
�� − �
��), (1) 

 

Where xmin and xmax represent the minimum and maximum values of the data, respectively, whereas x and xscale 

denote the original and scaled data, respectively. 

We note that there is a common pitfall in this step, i.e., where the previous studies scaled all available data—

including test data—together; this step results in data leakage by allowing the model to be influenced by the 

test data, which should not have been made available at this stage. Consequently, this can lead to overestimated 140 

results and undesirable expectations regarding the model’s performance. In this study, this was taken into 

consideration, and we scaled out each input variable individually to be in the (0,1) range. 

After normalization, the database is divided into two main subsets: the training and testing sets (constituting 

80 and 20% of the database, respectively). Furthermore, the last 20% of the training set which is equivalent to 

16% of total dataset available was used for validation as shown in Figure 4. The purpose of each split is as 145 

follows: the training data are used for fitting the model on them; the validation data are used for 

hyperparameter optimization and early stopping; and the testing data are used for obtaining the performance 

of the models on the unseen data. 
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Using only meteorological variables as input in this study utilizes the long time series of gridded data available 

at a finer spatiotemporal resolution across metropolitan France, with no missing values. For instance, 150 

SAFRAN reanalysis data are available on a daily scale for 70 years (i.e., 1951–2019) which is not the case for 

the GWL time series data, which are heterogeneous with missing values. 

3. Theoretical background  

The overall modeling methodology developed here involves the use and comparison of three types of 

recurrent-based deep neural networks, as well as a MODWT pre-processing approach to improve the recovery 155 

of the most useful information from the input data.   

3.1 Wavelet decomposition pre-processing 

In this study, we intended to test the usefulness of wavelet decomposition for detecting scale-dependent 

information to be used as input signals in high- to low-frequency wavelet components, thereby helping AI 

models to better simulate GWL variations. For instance, pre-processing approaches using wavelet transform 160 

have received particular attention in recent years; however, one significant contribution to the field (i.e., Quilty 

& Adamowski, 2018) highlighted the incorrect use of wavelet transform as a pre-processing tool for 

hydrological forecasting. In particular, the authors revealed associated future data issues when using DWT-

MRA and MODWT-MRA; they suggested some best practices while testing them on wavelet-based ML 

methods for urban water demand forecasting.  165 

 In this methodological framework, we aim to develop the so-called direct approach (Quilty & Adamowski, 

2018) and address the crucial constraints emphasized in this paper. In this approach, wavelet decomposition 

of the training dataset using MODWT is applied to the input signals only, thereby resulting in several high- to 

low-frequency wavelet components, each being used as input to the selected models.  



 

 

9 

 

When using MODWT-assisted DL modeling, all wavelet components of precipitation (Figure 5) and air 170 

temperature or EP time series (not shown) were used as input. 

The MODWT algorithm was used to decompose the input variables into various scale levels and extract the 

variability of the decomposed signal at each time scale. This method is well-suited to real-world signals, as it 

enables the decomposition of a given signal (here, precipitation and air temperature or EP) into several 

components across different time scales (i.e., from high to low-frequencies), while keeping the amplitudes of 175 

the transform aligned with the amplitude in the original signal (Percival & Walden, 2000). This means that 

the discrete wavelet component still bears some “physical” meaning compared to the original decimated and 

non-redundant discrete wavelet transform. Decomposition can be achieved up to the maximum decomposition 

level depending on the length of the time-series; however, the decomposition depth (or filter length) must be 

constrained to avoid computing values being affected by boundary effects, which is even more critical when 180 

decomposition is included in a modeling framework (Quilty & Adamowski, 2018). In this study, the boundary-

affected coefficients (LJ) were removed from the beginning of the input and target variables using the equation 

recommended by Quilty and Adamowski (2018): 

LJ = (2J-1)(L-1)+1. 

Here, J is the number of decomposition levels, which has been set to 4, and L is the length of the filter used, 185 

i.e., eight wavelet/scaling values for La8, 12 for La12, and so on. Regarding the choice of wavelet filter, we 

chose the least asymmetric filters (i.e, La8 to La16), with periodic boundary conditions selected for the wavelet 

transform, meaning that the original signal is repeated after its last value is reached. The combined use of the 

MODWT and La filters, along with circular shifting of the computed wavelet and scaling coefficients, ensured 

the preservation of the phase alignment between the data and the calculated wavelet and scaling coefficients 190 

at each scale as much as possible. Scaling coefficients are not retained at all levels, but only at the final level; 
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in other words, all MODWT components except the last one correspond to wavelet coefficients, while the last 

component corresponds to scaling coefficients. Figure 5 shows the decomposed components of the 

precipitation at the conservative level. Further explanation of the MODWT and its main interest in 

hydrological applications can be found in Baulon et al. (2022) and Massei et al. (2017); for full mathematical 195 

details, we refer to Cornish et al. (2006) and Percival and Walden (2000). 

3.2 Recurrent-based deep neural networks models 

The long-term memory deep neural network (LSTM, Hochreiter, 1997) is a recurrent network designed to 

overcome leakage gradient problems and preserve long-term dependence through the inclusion of a hidden 

state, ct, that retains historical information. In addition, LSTM has internal mechanisms in the form of control 200 

gates—namely forget, input, and output gates—for regulating the flow of information. The flow of processed 

information in simple LSTM is described in Appendix A and formulated mathematically below in three steps: 

In step 1, the forget gate manages the information from the prior cell state, ����, while subsequently adding it 

to the present state with the help of the element-wise multiplication operator (⊗) in the form of �� ⊗  ����. 

This gate gives the binary output [0,1], with 0 and 1 indicating the deletion and retention of all previous 205 

information, respectively. 

 �� =  �� ����  + ��ℎ���  + ���. (2) 

In the second step, the present cell state is computed in three phases. The first phase involves converting the 

values of �� and ℎ��� into the range of [-1,1] to obtain a new cell state, �̃�, using an activation function (tanh). 

 �"# =  #$%ℎ(���#  + ��ℎ#��  + ��). (3) 
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In the second phase, values resulting from the input gate (&�) are used to reorganize the present cell state, ��, 210 

as &� ⊗ �̃�. The input gate regulates both the sequence of input data at present (��) and the hidden state 

information at t−1 (ℎ���), which is incorporated into the cell state as follows: 

 &�  =  �(����  + ��ℎ���  + ��). (4) 

 

In the final phase, the new cell state, ��, is obtained by adding a revised cell state in step 1 (�� ⊗ ����) with 

the updated cell state in previous phases (2. b) (&�  ⊗  �̃� ). 215 

 �#  =  �# ⊗  �#−1  +  &#  ⊗  �"#. (5) 

 

In the third and last step, the information in the new cell state that must pass as an output of the present LSTM 

and the new hidden state to the upcoming cell is managed by the output gate (Alizadeh et al., 2021). 

 (#  =  �(�(�#  + �(ℎ #−1 + �(), (6) 

 ℎ#  =  (#  ⊗  #$%ℎ(�#), (7) 
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where W and U are the network weight matrices; �#, &#, and (# constitute the output of the forget, input, and 

output gates, respectively; �#, �#−1 are the cell states at t and t−1; � is the  sigmoid activation function; ℎ# and ℎ#−1 220 

are the current and previous hidden states, respectively; �"# is the cell candidate value; and b is the bias vector. 

Bidirectional LSTM trains two LSTM models, as shown in Appendix B. The first model learns the input 

sequence, i.e., through the forward state. In contrast, the second model learns from the opposite direction of 

the input sequence, i.e., through the backward state (Saeed et al., 2020), as depicted in Appendix B. Both 

models are merged using the concatenation mechanism by default. In other words, BiLSTMs include an 225 

additional layer of training data compared with simple LSTMs. Siami-Namini et al. (2019) showed that 

BiLSTMs outperformed regular LSTMs and ARIMA in time series forecasting because of the additional 

training layer in BiLSTM, which improves the learning of long-term dependencies. The internal processes of 

the cells used in BiLSTMs are explained above for the LSTM. 

The gated recurrent unit (GRU) was developed by Cho et al. (2014) to address the complexity of LSTM and 230 

improve computational efficiency. While GRU is relatively similar to LSTM as shown in Appendix C, unlike 

LSTM, it has on gates (i.e., reset (-�) and update (.�)), as it does not have separate memory cells. The cell 

structure of GRU is shown in Appendix C. GRU and, LSTM are modified versions of RNN, where RNN is a 

type of ANN used for sequential data. Moreover, the GRU is computationally less expensive, with a faster 

learning curve owing to the lower number of learnable parameters. The GRU phases are summarized as 235 

follows: 

 .� =  �( �/��  + �/ℎ���  + �/ ), (8) 

 -� =  �( �0��  + �0ℎ���  + �0 ), (9) 
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  �̃� =  #$%ℎ(����  + ��(-� ⊗ ℎ���)  + ��), (10) 

 ��  =  (1 − .�) ⊗  ����  +  .�  ⊗ �̃�, (11) 

Where ut and rt are the update and reset gates, respectively; and b is the bias vector. 

3.3 Hyperparameter tuning  

Data-driven models involve using hyperparameters that must be defined during model initialization. 

Hyperparameters play a crucial role in controlling the overall training behavior of the model and substantially 240 

impact its performance; therefore, it is necessary to determine their optimal values. There are multiple 

approaches used in data-driven models for optimizing hyperparameters, the most common of which are the 

trial-and-error approach (Zhang et al., 2019), grid search (Afan et al., 2021), and random search. However, in 

recent years, an informed approach known as Bayesian optimization has gained traction in hydrological 

forecasting (Barzegar et al., 2021; Quilty et al., 2022; Rahman et al., 2020; Wunsch et al., 2022). The main 245 

advantage of this informed approach is that it takes less time to get comparable results as in random search, 

as it learns from previous iterations while allowing automatic hyperparameter selection. Here, Bayesian 

optimization was performed to minimize the mean squared error. The hyperparameters of all the models were 

tuned using Bayesian optimization, with the range of values shown in Table 1. 

Based on hyperparameter space exploration, as well as on previous works revealing substantial  hydrological 250 

variabilities at scales between 2–4 and 5–9 years over metropolitan France(Baulon et al., 2022; Fossa et al., 

2021), northern France (Massei et al., 2010, 2017), and even Great Britain (Rust et al., 2019), the sequence 

length was eventually set to 48 months (i.e., four years), as shown in Table 1. Such variability is immediately 

evident, particularly in Figure 2 (a, c),  and was found to originate from precipitation and large-scale climate 
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variability in the studies referenced earlier. For instance, such variability was also found in the North Atlantic 255 

Oscillation index (Massei et al., 2010; Massei & Fournier, 2012) or more directly related to particular sea-

level pressure patterns over the Euro-Atlantic sector(Massei et al., 2017). The dropout approach was adapted 

to avoid overfitting the models during training. We subsequently tested values from 0.1 to 0.5 within the 

Bayesian optimization but noticed minimal changes, so we finally opted for the commonly used dropout value 

of 0.2, i.e., dropping out 20% of the neurons. 260 

After identifying the best hyperparameters from 100 trials of Bayesian optimization using the validation set, 

we trained an ensemble of 30 pseudo-randomly initialized models and fitted them to the training set. This was 

performed to deal with epistemic uncertainty, which was mainly due to the initial model weights obtained 

from the random number generator seed; in other words, it addressed the uncertainties generated by the model 

structure. These ensemble models were tested on an unseen test set to evaluate their performances. Simulations 265 

obtained with different initializations were used to compute confidence intervals. The confidence interval 

limits were computed by adding and subtracting the 1.96 times standard deviation to the mean of the resulting 

distribution at each timestep. 

3.4 Evaluation and interpretation 

The current framework involved two models: 1. MODWT-assisted, i.e., including MODWT pre-processing, 270 

and 2. standalone models, i.e., without pre-processing. 

Three common performance evaluation statistics were chosen to evaluate the models on both the training and 

test sets, namely the mean absolute error (MAE), root-mean-squared error (RMSE), and squared Pearson’s 

correlation coefficient (R2). Furthermore, the RMSE percentage change for MODWT-assisted models was 

computed with respect to standalone models to compare the performance improvement. 275 
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 345 = �
6 ∑ |9�:��
 − 9�:;<� |,��>�             0 ≤ 345 < +∞, (12) 

 RMSE = G∑ (HIJKLM�HIJNOK  )PQLRS
� ,                     0 ≤ T3U5 < +∞, (13) 

 

 R2=  1 − ∑(HIJKLM�HIJNOK  )P
∑(HIJKLM�HIJNOKMWXQ    )P,                                     -∞<R2<1 (14) 

 

 % Improvement in RMSE = Z[\]^_` – [\]^bc
defghi j ∗ 100.   0<%Improv in RMSE <100 (15) 

Finally, the SHAP approach (Lundberg & Lee, 2017) was implemented to interpret the results. Shapley 

additive explanation (also known as SHAP) is a game-centric approach gaining traction in interpreting DL 

models. The SHAP summary plot helps to explain the contribution of each input feature to the final 

simulated/predicted value through two major aspects: i) the relative importance of each variable through the 

magnitude of the effect, wherein a higher mean of absolute SHAP value means a higher influence and ii) the 280 

direction of the influence, whether it is a positive or negative relationship, where a higher number of points 

on the right side (indicated in red) shows positive relationships, and vice versa. 

3.5 Software used 

Deep-learning models were built using TensorFlow ((Abadi et al., 2016)) and Keras ((Chollet, 2015)). Scikit 

learn was used as the machine-learning framework(Pedregosa et al., 2011). All figures were prepared using 285 

Matplotlib (Hunter, 2007), pandas (McKinney, 2010), and NumPy (Van Der Walt et al., 2011). Bayesian 

optimization was performed using the Optuna software(Akiba et al., 2019). All this work was conducted in 

Python version 3.8.13, using a Dell workstation with an NVIDIA Quadro RTX 5000 GPU and 128GB RAM. 
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4. Performance and interpretability of the developed models  

4.1 On the performances of standalone and MODWT-assisted models for GWL simulations 290 

All MODWT-assisted and standalone models using different inputs were tested to simulate the GWLs of three 

types of variability. Figures 6, 7, and 8 present the comparison between observed and simulated GWL for each 

variability type (i.e., inertial, mixed, and annual) for different models and input types; the yellow-shaded 

region represents the 95% confidence interval obtained from simulations with different initializations (as 

explained in section 3.3). The red line shows the mean of these different simulations, whereas the black line 295 

represents the observed GWL. In addition, Tables 2 and 3 show a comparison summary of the performance 

evaluation metrics (i.e., MAE, RMSE, and R2) on the test set for each of the three DL methods tested (i.e., 

GRU, BiLSTM, and LSTM) for each variability type. Optimal hyperparameters obtained for each of the tests 

are shown in Appendix D.  

 300 

From the overall results, the following key aspects are evident. For the inertial type, in simulations using 

precipitation and air temperature as input, the performance of the MODWT-assisted models (1.52 < RMSE < 

1.80; Figures 6d-6f) is substantially improved compared to that of the standalone models (2.46 < RMSE < 

2.93; Figures 6a-6c). In addition, the MODWT-GRU model (RMSE = 1.52; Figure 6d) outperformed the 

standalone GRU (RMSE = 2.93; Figure 6a). The standalone GRU performed similarly in both cases, i.e., with 305 

EP (Figure 6g) and precipitation and air temperature as input, with RMSEs of 2.89 and 2.93, respectively. In 

contrast, improvement in MODWT-assisted models was only apparent with precipitation and air temperature 

as input. So, in the case of the inertial type of GWLs, models with raw data (i.e., precipitation and air 
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temperature) as input (Figures 6a-6f) outperformed models with processed data (i.e., effective precipitation) 

(Figures 6g-6l). 310 

For the annual type, both the standalone (1.72<RMSE<1.92; Figures 7g-7i) and MODWT-assisted models 

(1.69<RMSE<1.86; Figures 7j-7l) with EP as input always performed better than those with precipitation and 

air temperature as input (Figures 7a-7f). However, all these models resulted in better simulations, with the 

differences among these models with EP being very small. On the other hand, standalone models 

(2.30<RMSE<4.28; Figures 7a-7c) with precipitation and air temperature as input yielded less accurate 315 

results; the MODWT-assisted models (2.06<RMSE<2.44; Figures 7d-7f) improved the results but were not 

better than those obtained with EP as input.  

For the mixed type, such as the annual, models with EP as input performed well; however, there were 

improvements in MODWT-assisted models (1.19<RMSE<1.51; Figures 8j-8l) with EP as input as against 

standalone models (1.37<RMSE<1.76; Figures 8g-8i) with EP as input. However, MODWT-assisted models 320 

(1.41<RMSE<1.59; Figures 8d-8f) with precipitation and air temperature gave comparable results with 

standalone models (1.50<RMSE<1.68; Figures 8a-8c) with little to no improvement. 

To summarize, the improvement in the inertial type of GWL simulations using precipitation and air 

temperature in MODWT-assisted models was consistently high against standalone models, with an 

improvement in mean RMSE ranging between 26% and 48%, as shown in Table 3. While improvement varied 325 

from 10% to 47% for the annual type, it was much lowerfor the the mixed type, varying from 0.7% to 6%. On 

the other hand, Using EP, MODWT-assisted models improved consistently only with annual (8%-32%) and 

is very minor in mixed type (2%-4%). Assuming that we can process data (i.e., EP), the best combination, 

along with metrics, is shown in Table 4. When only precipitation and air temperature are available, the best 

combination, along with metrics, is shown in Table 5. Table 6 shows the best model combination for each 330 
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GWL variability. This table shows that GRU combined with MODWT decomposed inputs (precipitation and 

air temperature) leads to the best results for the inertial type. Conversely, BiLSTM combined with MODWT 

with effective precipitation was superior for the annual type. Finally, GRU combined with MODWT and 

effective precipitation gave better results for mixed type. But overall, GRU seemed to perform better than 

other models. 335 

It is noticeable that even though effective precipitation considers both precipitation and air temperature in its 

computation, it did not appear capable of capturing the low-frequency variability even after MODWT 

decomposition. Instead, precipitation and air temperature inputs combined with MODWT-based input pre-

processing seemed necessary to achieve the best simulations. Although the results indicate that MODWT-

assisted models perform well, we did not find any consistent way to select the most appropriate filter length 340 

among those used in our study.  

4.2. Towards a deeper investigation of what and how the models learn 

Figure 9a shows the simple summary plot of standalone models with precipitation and air temperature. Figure 

9b shows the SHAP summary plot for the inertial GWL type, indicating the order of importance of each 

decomposed component. Here, P1 to P5 represent the MODWT components of precipitation, i.e., P1 to P4 are 345 

wavelet coefficients, with P1 and P4 being the highest and lowest-frequency coefficients, respectively, while 

P5 represents the retained scaling coefficient. The same applies to the air temperature components T1–T5. 

Using the terminology defined earlier, SHAP summary plots were generated for all three GWL variability 

types, and three DL models were tested, as shown in Figure 10. The SHAP summary plots show that the order 

of importance of different features was the same for LSTM and GRU but was slightly different for the 350 

bidirectional LSTM. This might be attributed to the basic difference in the architectures of LSTM, GRU, and 

BiLSTM, i.e., in LSTM and GRU, information flows in only one direction. 
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In contrast, in bidirectional LSTM, information flows in both directions. For example, In mixed type, SHAP 

results showed that only BiLSTM could capture the low-frequency variability in precipitation (P5) as a major  

contributor to the simulations. Simulation results showed that, in this case, BiLSTM was the most efficient 355 

model (RMSE=1.41;  Figure 8f ).  

The SHAP plots show that the inertial type always had low-frequency precipitation components as major 

contributors. We note that the difference in performance among the MODWT-assisted DL models is relatively 

small, indicating that retrieving useful information plays a more important role than the model itself. Our 

results (Figure 10) show that the models mainly use the air temperature input to explain/represent the annual 360 

periodic variability within GWL; the air temperature is mainly dominated by annual cyclicity. This is 

confirmed by the SHAP analysis, which clearly shows that the MODWT component (T3) corresponding to 

the annual time scale has the highest impact on simulating the annual GWL type. Barzegar et 2021 highlighted 

that LSTM is efficient in modeling seasonality, which explains why standalone models result in high accuracy 

in annual GWL time series but failed to perform accurate simulations in the case of low-frequency dominated 365 

(inertial) GWLs. 

However, as emphasized in Table 6, the best results for the so-called inertial GWL type could be achieved 

using precipitation and air temperature time series as input and a MODWT-assisted model (best results 

obtained with GRU). For low-frequency dominated GWL, the DL models must access low-frequency 

information in the input variables to learn from it. Our experiments highlighted that, in such cases, pre-370 

processing using MODWT helped access the information required. Figure 11a shows the normalized 

precipitation used as input and the lowest-frequency component it contains (red line). Although the variability 

explained by the low-frequency P5 component remains relatively low compared to that of the original 

precipitation signal (standard deviation of resp. 0.05 and 0.16 in Figure11a), it can be easily seen that the P5 
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component (displayed on its full range in Figure11b) matches very well the targeted GWL time series 375 

(Figure11c). One should notice here that in this case, although la10-based filters were used to ensure limited 

boundary effects, pre-processing still revealed capable of reaching the desired low-frequency information 

required to feed the model.  

 

The GWL data used in this study are relatively free from anthropogenic influences; hence, pumping was not 380 

considered. Nevertheless, for further generalization, wherever possible, pumping data should also be 

considered. The GWL data can also be used for long-term historical reconstructions or direct downscaling 

using large-scale climate/atmospheric variables (e.g., NAO) and climate fields from reanalyses, which could 

also help study the hydrological evolution of GWL time series over the last century. In a benchmark study, 

Hagen et al. (2021) used machine learning models to identify drivers of atmospheric variables for the direct 385 

downscaling of streamflow and highlighted the need for such benchmark studies for DL. Similar studies 

focusing on interpretable DL for GWL downscaling are required to exploit the full potential of these models. 

 

5. Concluding remarks 

This study assessed the effectiveness of DL models for simulating different types of GWLs, including inertial, 390 

annual, and mixed. The DL models considered different input types, 1) precipitation and air temperature or 2) 

effective precipitation, and also considered the case where the inputs were pre-processed by the MODWT. 

The MODWT-assisted GRU seemed to perform well with all three types of GWLs, mainly when only 

precipitation and air temperature data were used as input. However, MODWT-assisted BiLSTM performed 
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slightly better for mixed type; interestingly, although improvement was very small (approx. 7% improvement 395 

in RMSE), SHAP results indicated the BiLSTM prioritized low-frequency better than that GRU in this case. 

When effective precipitation was used as input, both standalone and MODWT-assisted models consistently 

gave better results for annual and mixed types, but underperformed for inertial type (i.e., in such a case, using 

effective precipitation as input did not improve the simulation results). However effective precipitation relies 

on evapotranspiration, a complex variable by itself which may also be affected by high uncertainty owing to 400 

its assessment and computation. This is why capturing relevant information directly from source variables 

may be a better option. Nevertheless, the MODWT was still helpful in improving the results of all three models 

in almost all cases. Improvements were more substantial when using precipitation and air temperature as input, 

while they were much smaller when effective precipitation was used. 

The whole framework presented in this study is flexible and reproducible, which means that each of the 405 

internal steps can be modified or replaced to check for further advancements, and can be used to adapt different 

types of GWL that are not currently considered here. For example, pre-processing steps can be replaced with 

other types of signal analysis and processing techniques, or interpretability with SHAP can be replaced with 

the local interpretable model-agnostic explanations  or integrated gradient approach. In conclusion, using 

relevant information and pre-processing techniques, such as MODWT, helps DL models generate better GWL 410 

simulations. 

The models presented in this study used only meteorological variables. However, in the current situation of 

growing concerns over frequent extreme events, such as heat waves and droughts, other input variables, such 

as climate indices or large-scale climate projections, should be considered when simulating the historical and 

future GWLs, thereby improving the decision-making processes. Hence, the models developed in the current 415 

study can project near long-term GWL simulations under different climate scenarios using GCM projections 
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as input. In addition, this study addressed only the epistemic uncertainty owing to the randomness in model 

weights. Future studies should also consider other sources of uncertainty, particularly in input data 

(Evapotranspiration model when using EP. Precipitation and temperature uncertainty associated with the 

reanalysis products used) using the current approach. 420 

In light of this research, several questions can be raised that could serve as a basis for future studies. Does 

having additional variables (e.g., regional-scale hydrological/hydrometeorological variables, temporally static 

variables indicative of basins' physical properties, large-scale climate indices, or large-scale climate field 

variables from gridded reanalysis data) still require pre-processing to extract consistent information? Would 

other types of signal processing techniques (such as empirical/variational mode decomposed-based methods, 425 

successive LOESS or Savitzky-Golay smoothing of input data to extract low-frequency content) improve the 

simulations even further? Although approaches such as multi-basin training are being studied in rainfall-runoff 

modeling, they are yet to be explored in the context of GWL simulations. Future work should determine 

whether one global model is sufficient for learning various GWL variations across multiple sites 

simultaneously without developing a single model for each site. Concerning DL approaches, attention-based 430 

models are receiving increasing interest in recent years.  However, further studies would then be required to 

assess whether such models would successfully account for low-frequency variations in GWLs without any 

help from signal pre-processing. 
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Figures: 

 

Figure 1: Study area (Red dots indicates the stations GWL1 (Inertial), GWL2 (Annual) and 

GWL3 (Mixed)).  5 



 

Figure 2: a) Inertial, b) annual, and c) mixed types of GWLs. 
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Figure 3: Time series of a) air temperature, b) precipitation, and c) effective precipitation. 
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Figure 4: Data partitioning and the corresponding proportions. 



 

Figure 5: Decomposed components of precipitation with la10 wavelet. (a) Original signal of 

precipitation b-e) Wavelet coefficients (PW1 to PW4) f) Scaling coefficients (PS1)  

 20 



 

 

Figure 6: Results obtained for different inputs for inertial type with GRU, LSTM, and BILSTM: precipitation and air temperature (PT)(a-c), PT with wavelet 

transform (PTWT)(d-f), effective precipitation (PE)(g-i), and PE with wavelet transform (PEWT)(j-l). Red lines indicate the mean of the simulations and black 

lines indicate the observed GWL. Yellow shading represents the 95% confidence interval. 25 



 

Figure 7: Results obtained for the annual type with GRU, LSTM, and BILSTM: precipitation and air temperature (PT)(a-c), PT with wavelet transform (PTWT)(d-

f), effective precipitation (PE)(g-i), and PE with wavelet transform (PEWT)(j-l). Red lines indicate the mean of the simulations and black lines indicate the 

observed GWL. Yellow shading represents the 95% confidence interval. 

 30 



 

 

Figure 8: Results obtained for the mixed type with GRU, LSTM, and BILSTM: precipitation and air temperature (PT)(a-c), PT with wavelet transform (PTWT)(d-

f), effective precipitation (PE)(g-i), and PE with wavelet transform (PEWT)(j-l). Red lines indicate the mean of the simulations and black lines indicate the 

observed GWL. Yellow shading represents the 95% confidence interval. 35 



 

 

  

Figure 9: SHAP summary results with feature importance of each variable in the GRU: a) with precipitation and air temperature (PT) as input and b) with PT 

with la10 wavelet as input for the inertial type. Here P1 to P4 and T1 to T4 represents wavelet coefficients for precipitation and air temperature respectively. P5 40 

and T5 represents scaling coefficients of precipitation and air temperature. 
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Figure 10: Comparison of SHAP summary plots for different types of GWL time series and different deep learning models. Here P1 to P4 and T1 to T4 represents wavelet 

coefficients for precipitation and air temperature respectively. P5 and T5 represents scaling coefficients of precipitation and air temperature. 



   

Figure 11: Comparison of a) precipitation, b) the last MODWT component (approximation) of precipitation (P5), and c) the original GWL timeseries. 45 
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Figure 12: Schematic representation of the simple LSTM cell. 

ht ct 

ht ht-1 

xt 

Tanh  σ  σ 

ct-1 

ft it ot 

⊗ ⊕ 

⊗ 

σ 

�̃t 

Tanh  



Appendix B 

 

Figure 13: Schematic representation of the bidirectional LSTM (adapted and modified from Saeed et al. (2020)). 
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Figure 14: Schematic representation of the simple GRU cell. 
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TABLES: 

 

Table 1: Hyperparameter values. 

Hyperparameter Value considered 

Sequence length 48 

Dropout 0.2 

Optimizer ADAM 

Early stopping 50 

Number of layers (1,2,3,4,5,6) 

Hidden neurons (10, 20, …,100) by 10 

Learning rate (0.001,0.01) (log values) 

Batch size (16, 32, …,256) by powers of 2 

Epoch (50, 100, …,500)  

 

 

 

 

 

 



Table 2: Performance metric comparison for models with effective precipitation as input. 

GWL 

Type  

Metrics  

  
EP  EP-WT  

  

  

  

  
GRU  LSTM  BILSTM  GRU-WT  

LSTM-

WT  
BILSTM-WT  

Inertial  

R2  0.15  -0.57  -0.13  -0.09  -0.01  -0.04  

MAE  2.59  3.61  3.03  2.93  2.73  2.96  

RMSE  2.89  3.93  3.33  3.70  3.14  3.20  

RMSE improv. ( %)**  -  -  -  -13.30  19.97  3.91  

Annual  

R2  0.82  0.84  0.86  0.83  0.85  0.86  

MAE  1.54  1.51  1.41  1.55  1.43  1.33  

RMSE  1.92  1.82  1.72  1.86  1.74  1.69  

RMSE improv. ( %)  -  -  -  3.15  4.55  2.10  

Mixed  

R2  0.43  0.66  0.50  0.74  0.71  0.59  

MAE  1.36  1.01  1.19  0.87  0.98  1.12  

RMSE  1.76  1.37  1.65  1.19  1.26  1.51  

RMSE improv. ( %)  -  -  -  32.18  8.29  8.68  

 

** RMSE improv. (%) is improvement in RMSE in MODWT-assisted model against 

corresponding standalone model. 

 

 

 

 

 

 

 



Table 3:Performance metrics comparison for models with precipitation and air temperature as 

input. 

GWL Type  
Metrics  

  
PT  PT-WT*  

  

  

  

  
GRU  LSTM  BILSTM  GRU-WT  

LSTM-

WT  
BILSTM-WT  

Inertial  

R2  0.12  0.25  0.38  0.76  0.71  0.67  

MAE  2.30  1.73  1.72  1.17  1.28  1.44  

RMSE  2.93  2.71  2.46  1.52  1.67  1.80  

RMSE improv. ( %)  -  -  -  48.09  38.25  26.83  

Annual  

R2  0.74  0.10  0.62  0.79  0.75  0.71  

MAE  1.89  3.62  2.28  1.63  1.71  1.93  

RMSE  2.30  4.28  2.79  2.06  2.25  2.44  

RMSE improv. ( %)  -  -  -  10.58  47.39  12.54  

Mixed  

R2  0.57  0.48  0.59  0.58  0.54  0.64  

MAE  1.15  1.27  1.17  1.24  1.31  1.06  

RMSE  1.53  1.68  1.50  1.52  1.59  1.41  

RMSE improv. ( %)  -  -  -  0.74  5.17  6.00  

 

* Here, PT-WT indicates precipitation and air temperature as input along with the wavelet 

transform. 

Table 4: Best model combinations for each type of GWL, provided that effective precipitation 

is available. 

GWL 
variability 

Pre-
Processing 

Model Metrics 

Annual EP-WT BILSTM R2=0.86, MAE=1.33, RMSE=1.69 

Inertial EP  GRU R2=0.15, MAE=2.59, RMSE=2.89 

Mixed EP-WT  GRU R2=0.74, MAE=0.87, RMSE=1.19 



Table 5: Best model combinations for each type of GWL when only raw data (i.e., precipitation 

and air temperature) are available. 

GWL variability Pre-processing Model Metrics 

Annual PT-WT GRU R2=0.79, MAE=1.63, RMSE=2.06 

Inertial PT-WT  GRU R2=0.76, MAE=1.17, RMSE=1.52 

Mixed PT-WT BILSTM R2=0.64, MAE=1.06, RMSE=1.41 

 

Table 6: Overall best models for each type of GWL variability 

GWL variability  Best model    Metrics  

Inertial  GRU-PT-WT    R2=0.76, MAE=1.17, RMSE=1.52  

Annual  BILSTM-EP-WT    R2=0.86, MAE=1.33, RMSE=1.69  

Mixed  GRU-EP-WT    R2=0.74, MAE=0.87, RMSE=1.19  

 

 

 

 

 



Appendix D 

Table 7: Optimal parameters for standard and MODWT-assisted GRU Models for three types 

of GWLs (Mixed, inertial and annual) and two different input types (Effective precipitation (PE) 

or Precipitation and air temperature (PT)) 

GRU PT PTWT PE PEWT 

Mixed {'learning_rate': 

0.0068677276163

0292, 

 'optimizer': 

'adam', 

 'epochs': 300, 

 'batch_size': 64, 

 'n_layers': 2, 

 'n_units_l0': 80, 

 'dropout_l0': 0.2, 

 'n_units_l1': 40, 

 'dropout_l1': 0.2} 

{'learning_rate': 

0.0039906069391

87562, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

{'learning_rate': 

0.0064956252545

90144, 

 'optimizer': 

'adam', 

 'epochs': 350, 

 'batch_size': 192, 

 'n_layers': 2, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 80, 

 'dropout_l1': 0.2 

{'learning_rate': 

0.001240110471098

6497, 

 'optimizer': 'adam', 

 'epochs': 450, 

 'batch_size': 48, 

 'n_layers': 3, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 100, 

 'dropout_l1': 0.2, 

 'n_units_l2': 50, 

 'dropout_l2': 0.2} 

Inertial {'learning_rate': 

0.0021546271126

850858, 

 'optimizer': 

'adam', 

 'epochs': 400, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.0087837581354

56727, 

 'optimizer': 

'adam', 

 'epochs': 250, 

 'batch_size': 32, 

 'n_layers': 3, 

 'n_units_l0': 30, 

 'dropout_l0': 0.2, 

 'n_units_l1': 100, 

 'dropout_l1': 0.2, 

 'n_units_l2': 10, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.0011098849592

139203, 

 'optimizer': 

'adam', 

 'epochs': 350, 

 'batch_size': 32, 

 'n_layers': 6, 

 'n_units_l0': 60, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 90, 

 'dropout_l2': 0.2, 

 'n_units_l3': 70, 

 'dropout_l3': 0.2, 

 'n_units_l4': 50, 

{'learning_rate': 

0.003487742134799

628, 

 'optimizer': 'adam', 

 'epochs': 100, 

 'batch_size': 96, 

 'n_layers': 5, 

 'n_units_l0': 50, 

 'dropout_l0': 0.2, 

 'n_units_l1': 50, 

 'dropout_l1': 0.2, 

 'n_units_l2': 70, 

 'dropout_l2': 0.2, 

 'n_units_l3': 60, 

 'dropout_l3': 0.2, 

 'n_units_l4': 70, 

 'dropout_l4': 0.2} 



 'dropout_l4': 0.2, 

 'n_units_l5': 100, 

 'dropout_l5': 0.2} 

Annual {'learning_rate': 

0.0042816177733

80174, 

 'optimizer': 

'adam', 

 'epochs': 500, 

 'batch_size': 80, 

 'n_layers': 5, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 30, 

 'dropout_l1': 0.2, 

 'n_units_l2': 50, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 80, 

 'dropout_l4': 0.2} 

{'learning_rate': 

0.0092408799411

49954, 

 'optimizer': 

'adam', 

 'epochs': 200, 

 'batch_size': 32, 

 'n_layers': 5, 

 'n_units_l0': 60, 

 'dropout_l0': 0.2, 

 'n_units_l1': 50, 

 'dropout_l1': 0.2, 

 'n_units_l2': 10, 

 'dropout_l2': 0.2, 

 'n_units_l3': 50, 

 'dropout_l3': 0.2, 

 'n_units_l4': 80, 

 'dropout_l4': 0.2} 

{'learning_rate': 

0.0039906069391

87562, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

{'learning_rate': 

0.003966724265631

709, 

 'optimizer': 'adam', 

 'epochs': 400, 

 'batch_size': 80, 

 'n_layers': 3, 

 'n_units_l0': 70, 

 'dropout_l0': 0.2, 

 'n_units_l1': 50, 

 'dropout_l1': 0.2, 

 'n_units_l2': 10, 

 'dropout_l2': 0.2} 

 

 

 

Table 8:Optimal parameters for standard and MODWT-assisted LSTM Models for three types 

of GWLs (Mixed, inertial and annual) and two different input types (Effective precipitation (PE) 

or Precipitation and air temperature (PT)) 

LSTM PT PTWT PE PEWT 

Mixed {'learning_rate': 

0.0039906069391

87562, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

{'learning_rate': 

0.0016426020637

22058, 

 'optimizer': 

'adam', 

 'epochs': 500, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 100, 

 'dropout_l1': 0.2, 

 'n_units_l2': 30, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.0017243790893

987354, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 16, 

 'n_layers': 4, 

 'n_units_l0': 30, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

{'learning_rate': 

0.001128644869269

4375, 

 'optimizer': 'adam', 

 'epochs': 400, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 30, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2} 



 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

 'n_units_l3': 10, 

 'dropout_l3': 0.2} 

Inertial {'learning_rate': 

0.0019279681079

150224, 

 'optimizer': 

'adam', 

 'epochs': 250, 

 'batch_size': 80, 

 'n_layers': 4, 

 'n_units_l0': 70, 

 'dropout_l0': 0.2, 

 'n_units_l1': 80, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 10, 

 'dropout_l3': 0.2} 

{'learning_rate': 

0.0036725622777

068682, 

 'optimizer': 

'adam', 

 'epochs': 500, 

 'batch_size': 32, 

 'n_layers': 5, 

 'n_units_l0': 60, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 10, 

 'dropout_l2': 0.2, 

 'n_units_l3': 60, 

 'dropout_l3': 0.2, 

 'n_units_l4': 10, 

 'dropout_l4': 0.2} 

{'learning_rate': 

0.0062532462360

7946, 

 'optimizer': 

'adam', 

 'epochs': 350, 

 'batch_size': 80, 

 'n_layers': 3, 

 'n_units_l0': 30, 

 'dropout_l0': 0.2, 

 'n_units_l1': 40, 

 'dropout_l1': 0.2, 

 'n_units_l2': 20, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.003990606939187

562, 

 'optimizer': 'adam', 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

Annual {'learning_rate': 

0.0097372366661

14474, 

 'optimizer': 

'adam', 

 'epochs': 500, 

 'batch_size': 64, 

 'n_layers': 5, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 30, 

 'dropout_l2': 0.2, 

 'n_units_l3': 100, 

 'dropout_l3': 0.2, 

 'n_units_l4': 100, 

 'dropout_l4': 0.2} 

{'learning_rate': 

0.0064956252545

90144, 

 'optimizer': 

'adam', 

 'epochs': 350, 

 'batch_size': 192, 

 'n_layers': 2, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 80, 

 'dropout_l1': 0.2} 

{'learning_rate': 

0.0043121677192

285894, 

 'optimizer': 

'adam', 

 'epochs': 400, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 50, 

 'dropout_l0': 0.2, 

 'n_units_l1': 60, 

 'dropout_l1': 0.2} 

{'learning_rate': 

0.001562653587605

288, 

 'optimizer': 'adam', 

 'epochs': 450, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 90, 

 'dropout_l0': 0.2, 

 'n_units_l1': 100, 

 'dropout_l1': 0.2, 

 'n_units_l2': 50, 

 'dropout_l2': 0.2} 

 



Table 9: Optimal parameters for standard and MODWT-assisted BiLSTM Models for three 

types of GWLs (Mixed, inertial and annual) and two different input types (Effective 

precipitation (PE) or Precipitation and air temperature (PT)) 

BiLSTM PT PTWT PE PEWT 

Mixed {'learning_rate': 

0.0042127729443

31677, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 80, 

 'n_layers': 3, 

 'n_units_l0': 70, 

 'dropout_l0': 0.2, 

 'n_units_l1': 80, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.0034309766901

050947, 

 'optimizer': 

'adam', 

 'epochs': 350, 

 'batch_size': 16, 

 'n_layers': 4, 

 'n_units_l0': 70, 

 'dropout_l0': 0.2, 

 'n_units_l1': 30, 

 'dropout_l1': 0.2, 

 'n_units_l2': 80, 

 'dropout_l2': 0.2, 

 'n_units_l3': 50, 

 'dropout_l3': 0.2} 

{'learning_rate': 

0.0029663832084

85377, 

 'optimizer': 

'adam', 

 'epochs': 200, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 80, 

 'dropout_l0': 0.2, 

 'n_units_l1': 90, 

 'dropout_l1': 0.2, 

 'n_units_l2': 70, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.002181721018112

88, 

 'optimizer': 'adam', 

 'epochs': 450, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 100, 

 'dropout_l1': 0.2} 

Inertial {'learning_rate': 

0.0039906069391

87562, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

{'learning_rate': 

0.0013149445561

29716, 

 'optimizer': 

'adam', 

 'epochs': 500, 

 'batch_size': 16, 

 'n_layers': 6, 

 'n_units_l0': 60, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 20, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 30, 

 'dropout_l4': 0.2, 

 'n_units_l5': 30, 

 'dropout_l5': 0.2} 

{'learning_rate': 

0.0021415060811

44842, 

 'optimizer': 

'adam', 

 'epochs': 400, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2} 

{'learning_rate': 

0.003990606939187

562, 

 'optimizer': 'adam', 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

Annual {'learning_rate': 

0.0044099805678

05262, 

 'optimizer': 

'adam', 

{'learning_rate': 

0.0085159131948

5923, 

 'optimizer': 

'adam', 

{'learning_rate': 

0.0048497878478

78661, 

 'optimizer': 

'adam', 

{'learning_rate': 

0.002051217063543

3725, 

 'optimizer': 'adam', 

 'epochs': 400, 



 'epochs': 250, 

 'batch_size': 208, 

 'n_layers': 2, 

 'n_units_l0': 80, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2} 

 'epochs': 200, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 40, 

 'dropout_l1': 0.2} 

 'epochs': 350, 

 'batch_size': 48, 

 'n_layers': 3, 

 'n_units_l0': 10, 

 'dropout_l0': 0.2, 

 'n_units_l1': 60, 

 'dropout_l1': 0.2, 

 'n_units_l2': 60, 

 'dropout_l2': 0.2} 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 20, 

 'dropout_l2': 0.2} 
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