
Empirical Software Engineering           (2023) 28:22 
https://doi.org/10.1007/s10664-022-10249-9

Assessing the opportunity of combining
state-of-the-art Android malware detectors

Nadia Daoudi1 ·Kevin Allix2 ·Tegawendé F. Bissyandé1 · Jacques Klein1

Accepted: 9 October 2022
© The Author(s) 2022

Abstract
Research on Android malware detection based on Machine learning has been prolific in
recent years. In this paper, we show, through a large-scale evaluation of four state-of-the-art
approaches that their achieved performance fluctuates when applied to different datasets.
Combining existing approaches appears as an appealing method to stabilise performance.
We therefore proceed to empirically investigate the effect of such combinations on the
overall detection performance. In our study, we evaluated 22 methods to combine feature
sets or predictions from the state-of-the-art approaches. Our results showed that no method
has significantly enhanced the detection performance reported by the state-of-the-art mal-
ware detectors. Nevertheless, the performance achieved is on par with the best individual
classifiers for all settings. Overall, we conduct extensive experiments on the opportunity
to combine state-of-the-art detectors. Our main conclusion is that combining state-of-the-
art malware detectors leads to a stabilisation of the detection performance, and a research
agenda on how they should be combined effectively is required to boost malware detection.
All artefacts of our large-scale study (i.e., the dataset of ∼0.5 million apks and all extracted
features) are made available for replicability.

Keywords Android · Malware · Machine learning · Ensemble learning

1 Introduction

Early 2021, an Antivirus provider has reported having flagged more than 1.4 million mal-
ware apps during the first quarter of 2021, which represents an increase of 298998 malware
compared to the same quarter of 2020 (Kaspersky 2021). Moreover, a recent investigation
made by a security company has reported that an Android malware app is published every
eight seconds, indicating that malware is growing at an alarming rate (DATA 2020).

Communicated by: Zhi Jin

� Nadia Daoudi
nadia.daoudi@uni.lu

1 SnT, University of Luxembourg 29, Avenue J.F Kennedy, L-1359, Luxembourg, Luxembourg
2 CentraleSupélec, Avenue de la Boulaie, CS 47601, F-35576 Cesson-Sévigné Cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10249-9&domain=pdf
http://orcid.org/0000-0002-1437-667X
mailto: nadia.daoudi@uni.lu


   22 Page 2 of 42 Empir Software Eng           (2023) 28:22 

Due to its ability to learn automatically from input data, Machine Learning techniques
have been extensively leveraged to develop approaches for Android malware detection (Arp
et al. 2014; Onwuzurike et al. 2019; Garcia et al. 2018; Wu et al. 2019; Wu et al. 2012;
Fereidooni et al. 2016; Afonso et al. 2015). In the literature, several of such approaches pro-
duced detectors that were reported to be highly effective, and each new publication claims
to now achieve state-of-the-art performance. In 2014, DREBIN (Arp et al. 2014) has made
a breakthrough in Android malware detection by proposing an approach that detects mal-
ware using a large variety of app features. Three years later, MAMADROID (Mariconti et al.
2017) has been proposed and has claimed to be more generic and robust than DREBIN.
Other approaches have followed the same ongoing trend by reporting detection scores that
are all above 90%. The spread of Android malware, however, hints that the challenges of
detection remain intact for practitioners. This situation calls for a thorough revisitation of
Android malware detection literature.

A first step in this direction is to conduct independent evaluations of state-of-the-art
malware detectors to highlight limitations and opportunities for improvement.

When facing weak detectors (e.g., state-of-the-art approaches that are not effective under
all settings), an immediate solution could be to investigate their combination, e.g., using
Ensemble Learning (Brown 2010). Ensemble Learning has been evaluated in the literature
of malware detection using some selected features and ML algorithms (Yerima et al. 2015;
Zhang and Jin 2016; Zhao et al. 2018; Zhu et al. 2020; Zhang et al. 2015). Researchers
have then relied on Ensemble Learning techniques to propose independent approachesfor
malware detection. These approaches are developed by selecting a set of features (e.g.,
permission and intents (Idrees et al. 2017)) and a method to combine the base learners
(e.g., Majority Voting (Christianah et al. 2020)). To date, however, no study has considered
combining existing state-of-the-art Android malware detectors in an attempt to advance
the research field in a clear and principled manner. Unfortunately, this focus on proposing
new detectors without first thoroughly assessing and building on existing work impedes the
progress of the research domain.
This paper Building on large-scale datasets and re-executing existing approaches, we
empirically show that state-of-the-art Android malware detectors yield performance results
that significantly depend on the evaluation dataset. Indeed, none of the studied approaches
has been reported to reach the highest prediction performance on all the evaluation settings.
This finding suggests that trusting a single approach in a real world setting is unrealistic.

To overcome this limitation, we investigate whether the combination of state-of-the-
art Android malware detectors can yield better detection performance. We build on a
recent study on the Reproducibility/Replicability of ML-based Android malware detec-
tors (Daoudi et al. 2021b) which has considered research works from 16 major venues in
Machine Learning, Security, and Software Engineering. In this study, Daoudi et al. (2021b)
were able to successfully reproduce/replicate four state-of-the-art malware detectors. These
detectors will be used as the basis for our work.

Our work assesses the impact of combining the best approaches from the literature,
each of which contributing with a specific way of modelling Android apps. Specifically,
DREBIN extracts eight types of string features from the Manifest file and the DEX byte-
code, including permissions, intents, hardware components, and suspicious API calls. On
the other hand, MAMADROID models the behaviour of the apps using Markov Chains repre-
sentation of the abstracted API calls. As for REVEALDROID (Garcia et al. 2018), it focuses
on features related to API usage, reflection, and native calls. Finally, MALSCAN (Wu et al.
2019) borrows methods from social networks analysis to detect malware. This approach
models the call graph of the app as a social network graph and performs different centrality
analyses.



Empir Software Eng           (2023) 28:22 Page 3 of 42   22 

Each of the studied approaches relies on an ML algorithm that performs best with its set
of features since their authors have already evaluated and configured them using the best
hyper-parameters.

Such efforts need to be exploited to further advance Android malware detection research.
To this end, we set a research agenda to assess the value of combining, with Ensemble

Learning, the features sets or the predictions proposed in state-of-the-art approaches.
We rely on Ensemble Learning to mitigate the dependence of individual approaches on

the evaluation settings. Our work evaluates the four state-of-the-art approaches on two large
datasets of over 197k and 265k apps and studies the impact of either combining their feature
sets or combining the detectors themselves using Ensemble Learning.

Overall, we make the following contributions:

– We conduct a comparative evaluation of four state-of-the-art Android malware detec-
tors (+ variants) using the same experimental setup to identify the best performing
approach. The studied detectors are: DREBIN, MAMADROID FAMILY (two variants of
the approach), REVEALDROID, MALSCAN (six variants of the approach).

– We examine the similarities/difference in the malware detected by state-of-the-art
approaches.

– We investigate the impact of merging feature sets from state-of-the-art Android
malware approaches on the detection performance.

– We investigate the impact of combining predictions from state-of-the-art malware
detectors using 16 combination methods.

Our work has resulted in the following findings:

The performance of state-of-the-art Android malware detectors is highly dependent
on the experimental dataset. None of the studied approaches has reported the best
detection performance on all the evaluation settings.
Some families of malware are detected very accurately by some state-of-the-art
approaches, but almost completely escape detection of some other approaches.
Combining features and predictions from state-of-the-art malware detectors (i.e., using
Bagging and Ensemble Selection) is promising to leverage the capabilities of
the best detectors and maintain a stable detection rate on all the evaluation settings.

2 Study design

In this section we introduce the research questions, present the datasets, overview the
experimental setup and enumerate the state-of-the-art malware detectors that are leveraged.

2.1 Research questions

In previous works, Allix et al. (2016a) then Pendlebury et al. (2019) have presented study
results which suggest that literature evaluation of Android malware detection approaches
generally suffers from spatial and temporal biases. Most of the times, each approach is
assessed only on a specific dataset, with limited comparison to existing work. Thus, there
is a missed opportunity to definitively understand the contribution of each approach and
eventually build up on existing works for improved detection.

Given that each new approach claims to outperform others, a first step towards addressing
the biased comparison issues would be to undertake an independent and fair assessment of
state-of-the-art approaches in order to compare their results under different settings:



   22 Page 4 of 42 Empir Software Eng           (2023) 28:22 

– RQ1: Is there a state-of-the-art malware detector that outperforms all others across all
datasets?

To further investigate the similarities and differences between state-of-the-art malware
detectors, a possible direction would be to examine the similarities and differences in the
malware detected by these approaches.

– RQ2: To what extent do state-of-the-art approaches detect similar/different malware?

In the literature, authors often insist on the engineering of a new feature set, but do not
generally investigate in detail the added value of their feature set compared to previous
approaches. We hypothesise that if each feature set brings its own value, combining them
should noticeably improve the detection performance.

– RQ3: Does merging the feature sets from state-of-the-art approaches lead to a high-
performing malware detector in all the settings?

Another way of exploiting the combined value of different approaches would be to con-
sider each approach as a whole. Instead of combining feature sets before classifier training,
we can combine prediction results after training each approach (i.e., feature set + algorithm)
independently.

– RQ4: Does combining predictions from state-of-the-art approaches lead to a high-
performing malware detector in all the settings?

Finally, we statistically compare the detection performance of state-of-the-art approaches
and the classifiers produced by the combination of features and predictions:

– RQ5: Does combining feature sets or predictions from state-of-the-art approaches lead
to classifiers that significantly outperform the original detectors?

2.2 Dataset

Our study considers two main datasets, which are summarised in Table 1:

Literature dataset This dataset is constructed by collecting app samples used in
the literature1 to validate state-of-the-art malware detection approaches (cf. Section 2.4).
Apps in this dataset span from 2010 to 2018. Overall, the literature dataset includes 43819
malware and 153616 benign apps. In our experiments, we evaluate our classifiers not only
on the whole literature dataset, but also on each of its subsets separately (i.e., the dataset
used for DREBIN, for MAMADROID, for REVEALDROID, and for MALSCAN).

AndroZoo dataset This dataset is collected from the AndroZoo (Allix et al. 2016b)
repository whose maintainers continuously crawl Android apps from different sources
(including Google Play, AppChina, etc.). We consider that an app is labelled as benign if it
has not been detected by any Antivirus engine from VirusTotal2. Following up on previous
work (Arp et al. 2014), we consider an app to be a malware if it has been detected by at
least two Antivirus from VirusTotal. For this dataset we focused on recent apps created3 in
2019 and 2020. Overall our AndroZoo dataset includes 78002 malware samples and 187797

1Since some of these apps are not shared by their original authors, we rely on the replicated datasets described
in the reproduction study (Daoudi et al. 2021b)
2https://www.virustotal.com/
3We consider the compilation dates

https://www.virustotal.com/


Empir Software Eng           (2023) 28:22 Page 5 of 42   22 

Table 1 Dataset summary

Subsets Malicious apps Benign apps Total

Literature dataset DREBIN 5363 111592 116955

MAMADROID 30895 7756 38651

REVEALDROID 18924 22480 41404

MALSCAN 12943 14038 26981

Total∗∗ 43819 153616 197435

AndroZoo dataset 2019 59256 122966 182222

2020 18746 64831 83577

Total 78002 187797 265799

**The total is calculated after removing redundant apps

benign samples. Similarly, we also conduct our experiments on the whole AndroZoo dataset
as well as its subsets (i.e., 2019 and 2020 subsets).

2.3 Experimental setup

All experiments (to evaluate the literature approaches, the merged feature sets, and the
combinations of predictions) are performed on each of the collected datasets. We consider
two evaluation scenarios per experiment and per dataset, following up on previous work
(Pendlebury et al. 2019; Allix et al. 2015) which highlighted biases in empirical evaluation
of machine learning-based malware detection:

– Temporally-consistent: The classifiers are trained on old apps, and tested on
new apps (i.e., the dataset is split based on the apps’ creation dates).

– Temporally-inconsistent: the classification experiment does not take into
account the creation time of the apps (i.e., the dataset is shuffled before the split into
training, validation, and test sets)

In our experiments, each dataset is split into training (80%), validation (10%),
and test (10%). For the Temporally-inconsistent settings, we repeat each
experiment ten times after randomly shuffling and splitting the datasets. As for the
Temporally-consistent settings, we also repeat the experiments ten times by ran-
domly selecting 90% of the apps from the training, validation, and test splits (i.e., the
training and the test contain the oldest and the newest apps, respectively). For both settings
we report an average detection performance.

We rely on Recall, Precision, F1-score, and the Accuracy to measure the classification
performance. In our evaluation, we use these metrics to refer to the average detection scores
since our experiments are repeated ten times. We present the formulas of these metrics
below:

Precision = T P

T P + FN
(1)

Recall = T P

T P + FN
(2)

F1score = 2.
precision . recall

precision + recall
(3)



   22 Page 6 of 42 Empir Software Eng           (2023) 28:22 

Accuracy = T P + T N

T P + T N + FP + FN
(4)

All the algorithms trained on the merged feature sets (c.f., Section 3.3) or trained to
combine the predictions (c.f., Section 3.4) are used with their default parameters provided
by the scikit-learn framework4.

2.4 Study subjects: literature detectors

Our work builds on four state-of-the-art Android malware detectors presented at major
venues. These approaches have been identified in a recent study (Daoudi et al. 2021b)
that assessed the reproducibility/replicability of Machine Learning-based Android malware
detection approaches in the literature. We have considered these malware detectors for two
main reasons:

– Indeed, a tremendous number of malware detection papers are published in the lit-
erature, but our study focuses on the best approaches with the most significant
contributions in the field. Thus, our study subjects are selected among papers published
in 16 top venues in Software Engineering, Security, and Machine Learning: EMSE,
TIFS, TOSEM, TSE, FSE, ASE, ICSE, NDSS, S&P, Usenix Security, CCS, AsiaCCS,
SIGKDD, NIPS, ICML, and IJCAI.

– In order to accurately and fairly assess the detection performance of the studied
approaches, they need to be reproducible. Specifically, our evaluation results can be
attributed to the original approaches only in the case when the reproducibility of these
detectors is verified and confirmed. In the reproduction study from which we select our
approaches (Daoudi et al. 2021b), ten years of Android malware detection papers from
major venues have been considered. However, only four approaches have been suc-
cessfully reproduced. Our study subjects are the only state-of-the-art malware detectors
whose reproducibility has been validated in the literature.

We present below a brief description of these approaches. We also represent in Table 2
a summary of the features and ML algorithms used by these approaches and we refer the
reader to the reproduction study, or the original papers for further details.

2.4.1 DREBIN (Arp et al. 2014)

It trains a LinearSVC classifier using eight types of features that are extracted from the
DEX and the Manifest files: hardware components, requested permissions, app components,
filtered intents, restricted API calls, used permissions, suspicious API calls, and network
addresses.

2.4.2 MAMADROID (Mariconti et al. 2017)

For each app, it first generates a call graph with abstracted API calls to then build a fea-
ture vector. MAMADROID proposes two variants to abstract the API calls: either by only

4https://scikit-learn.org

https://scikit-learn.org


Empir Software Eng           (2023) 28:22 Page 7 of 42   22 

Table 2 Study subjects

Features set ML algorithm

DREBIN Hardware components, requested permissions, app compo-
nents, filtered intents, restricted API calls, used permissions,
suspicious API calls, and network addresses

LinearSVC

MAMADROID Markov Chain representation of the abstracted API calls Random Forest

REVEALDROID Android API usage, Reflective, and Native Call Features LinearSVC

MALSCAN Centrality analysis on the social network representation of the
call graph

KNN

considering their package name (MAMADROID PACKAGE model), or by considering the
first component of their package name (MAMADROID FAMILY model). In both cases, the
Markov Chain representation of the abstracted API calls is then used to create the feature
vectors. The two variants of the approach (i.e., MAMADROID FAMILY and MAMADROID

PACKAGE) rely on Random Forest (RF) classifier.

2.4.3 REVEALDROID (Garcia et al. 2018)

It trains a LinearSVC classifier using three types of features: Android API usage (Number
of invocations of Android API methods and packages), Reflective, and Native Call features.

2.4.4 MALSCAN (Wu et al. 2019)

It represents the call graph of the apps as a social network to perform centrality analysis.
Six variants of this approach are proposed and they are all trained using KNN algorithm.
The type of the model is determined by the type of the centrality measure: MALSCAN

DEGREE, MALSCAN KATZ, MALSCAN CLOSENESS, MALSCAN HARMONIC, MALSCAN

AVERAGE (it uses as features the average of the feature vectors from the four previous mod-
els) and MALSCAN CONCATENATE (the feature vectors are the concatenation of the feature
vectors from MALSCAN DEGREE, MALSCAN KATZ, MALSCAN CLOSENESS, MALSCAN

HARMONIC).

3 Study results

To answer our research questions, we have conducted our experiments using Literature
dataset, AndroZoo dataset, and their subsets.

3.1 RQ1: Is there a state-of-the-art malware detector that outperforms all others
across all datasets?

Android malware detectors in the literature are usually evaluated using different exper-
imental setups and datasets. In this section, we aim to assess the performance of the
state-of-the-art malware detection approaches under consistent experimental conditions.
Specifically, we evaluate the effectiveness of the four state-of-the-art malware detectors
(and their variants) using the datasets described in Section 2.2 and under the experimental



   22 Page 8 of 42 Empir Software Eng           (2023) 28:22 

Table 3 Summary of our experimental setting

Temporally-inconsistent Temporally-consistent

Literature dataset LITTEMPINCONSIST LITTEMPCONSIST

AndroZoo dataset ANDTEMPINCONSIST ANDTEMPCONSIST

setup described in Section 2.3. For conciseness, we use, for instance, LITTEMPINCON-
SIST to refer to the experimental setup where we use a Literature dataset in a
temporally-inconsistent experiment. Table 3 describes our experimental settings.

Since we consider five Literature datasets and three AndroZoo datasets
(i.e., whole datasets and their subsets), the total number of our experimental settings reaches
16. In the remainder of this paper, we use “dataset” and “setting” interchangeably.

We report the average F1 score for the considered malware detection approaches in the
upper part of Table 4. We also present the Recall, Precision, and Accuracy scores of our
experiments in Tables 7, 8, 9, and 10 in the Appendix.

We observe that the performance of the classifiers varies considerably across datasets.
On the whole LITTEMPCONSIST, all the approaches have reported detection scores that are
significantly low, with a best F1 score of 0.44. This result is consistent with the finding
of Tesseract (Pendlebury et al. 2019) on a temporally-consistent setting. For the
other datasets (i.e., AndroZoo datasets and Literature subsets), the detection
performance on the temporally-consistent experiment is also generally lower than
the performance reported in the temporally-inconsistent experiment. The detec-
tion performance on the whole LITTEMPCONSIST is much lower due to the composition of
this dataset.

We remind that the whole AndroZoo dataset contains apps that span over two years
(i.e., apps from 2019 and 2020). As for the whole Literature dataset, it contains
Android apps that are spanning over eight years (i.e., apps from 2010 to 2018), which makes
this dataset considerably difficult for all the classifiers.

In the experiments involving Literature datasets, DREBIN yielded the high-
est F1 score in nine out of ten experiments. DREBIN’s feature set seems to be more
suitable to detect the apps created before and until 2018, which is demonstrated by
the temporally-inconsistent and the temporally-consistent experiments,
respectively.

Indeed, DREBIN has not outperformed the other detectors only on the whole
Literature dataset but also on its subsets created in the sub-years of 2010-2018.
As for the AndroZoo datasets, no approach has reported the highest detection per-
formance in all the experiments. Consequently, no specific feature set from the evaluated
state-of-the-art approaches consistently helps to detect the highest number of malware
created between 2019 and 2020.

We also observe that no approach has reported the highest detection performance on
all the datasets. Specifically, DREBIN has achieved the best F1 score in nine out of 16
experiments. MAMADROID PACKAGE is considered the best approach in three experi-
ments. As for MALSCAN CLOSENESS, MALSCAN DEGREE, MALSCAN HARMONIC, and
MAMADROID FAMILY, each of them has reported the highest F1 score on one dataset. In
the seven experiments where DREBIN has not reported the highest detection performance,
the difference in the F1 score between DREBIN and the best approach on each dataset varies
from 1 to 8 percentage points.



Empir Software Eng           (2023) 28:22 Page 9 of 42   22 

Ta
bl
e
4

T
he

av
er

ag
e

F1
sc

or
e

re
po

rt
ed

by
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

fe
at

ur
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

cl
as

si
fi

er
s

Te
m

po
ra

lly
in

co
ns

is
te

nt
Te

m
po

ra
lly

co
ns

is
te

nt

L
ite

ra
tu

re
da

ta
se

t
A

nd
ro

Z
oo

da
ta

se
t

L
ite

ra
tu

re
da

ta
se

t
A

nd
ro

Z
oo

da
ta

se
t

W
h

D
r

R
v

M
m

M
l

W
h

19
20

W
h

D
r

R
v

M
m

M
l

W
h

19
20

R
Q

1
D

R
E

B
IN

0.
92

0.
94

0.
97

0.
98

0.
96

0.
96

0.
96

0.
97

0.
44

0.
87

0.
94

0.
92

0.
86

0.
85

0.
94

0.
82

R
ev

ea
l

0.
68

0.
44

0.
9

0.
94

0.
89

0.
95

0.
95

0.
95

0.
38

0.
41

0.
81

0.
83

0.
62

0.
89

0.
94

0.
85

M
aM

aF
0.

48
0.

31
0.

9
0.

94
0.

82
0.

95
0.

95
0.

97
0.

19
0.

32
0.

88
0.

89
0.

64
0.

92
0.
98

0.
86

M
aM

aP
0.

71
0.

48
0.

94
0.

95
0.

95
0.

96
0.
97

0.
98

0.
22

0.
14

0.
94

0.
85

0.
74

0.
92

0.
98

0.
87

M
al

D
0.

88
0.

87
0.

94
0.

95
0.

95
0.

96
0.

96
0.

97
0.

33
0.

7
0.

86
0.

79
0.

87
0.
93

0.
96

0.
87

M
al

H
0.

89
0.

89
0.

95
0.

96
0.

96
0.

97
0.

96
0.

97
0.

33
0.

7
0.

89
0.

83
0.
88

0.
93

0.
96

0.
87

M
al

K
0.

89
0.

9
0.

95
0.

96
0.

95
0.

96
0.

96
0.

97
0.

36
0.

69
0.

89
0.

81
0.

87
0.

9
0.

95
0.

86

M
al

C
l

0.
89

0.
88

0.
95

0.
96

0.
96

0.
97

0.
96

0.
97

0.
4

0.
77

0.
89

0.
84

0.
88

0.
93

0.
96

0.
87

M
al

A
0.

89
0.

89
0.

95
0.

96
0.

96
0.

96
0.

95
0.

97
0.

34
0.

71
0.

89
0.

83
0.

87
0.

91
0.

96
0.

87

M
al

C
o

0.
89

0.
89

0.
95

0.
96

0.
96

0.
96

0.
96

0.
97

0.
34

0.
7

0.
89

0.
83

0.
87

0.
91

0.
96

0.
87

R
Q

3
L

in
ea

rS
V

C
0.

78
0.

83
0.

94
0.

93
0.

89
0.

87
0.

85
0.

87
0.

48
0.

73
0.

87
0.

81
0.

71
0.

81
0.

86
0.

76

R
F

0.
91

0.
92

0.
97

0.
97

0.
97

0.
98

0.
98

0.
98

0.
38

0.
85

0.
79

0.
77

0.
86

0.
93

0.
98

0.
87

K
N

N
0.

86
0.

83
0.

92
0.

95
0.

91
0.

94
0.

94
0.

93
0.

3
0.

76
0.

72
0.

74
0.

82
0.

85
0.

88
0.

74

A
da

B
oo

st
0.

86
0.

86
0.

97
0.

96
0.

95
0.

96
0.

95
0.

97
0.

45
0.
91

0.
95

0.
9

0.
81

0.
93

0.
97

0.
86

B
ag

gi
ng

0.
94

0.
96

0.
98

0.
97

0.
97

0.
98

0.
98

0.
99

0.
49

0.
85

0.
94

0.
86

0.
85

0.
94

0.
98

0.
87

G
ra

dB
oo

st
in

g
0.

9
0.

92
0.

98
0.

97
0.

97
0.

97
0.

97
0.

98
0.

48
0.

82
0.
96

0.
9

0.
88

0.
93

0.
98

0.
87



   22 Page 10 of 42 Empir Software Eng           (2023) 28:22 
Ta
bl
e
4

(c
on

tin
ue

d)

Te
m

po
ra

lly
in

co
ns

is
te

nt
Te

m
po

ra
lly

co
ns

is
te

nt

L
ite

ra
tu

re
da

ta
se

t
A

nd
ro

Z
oo

da
ta

se
t

L
ite

ra
tu

re
da

ta
se

t
A

nd
ro

Z
oo

da
ta

se
t

W
h

D
r

R
v

M
m

M
l

W
h

19
20

W
h

D
r

R
v

M
m

M
l

W
h

19
20

R
Q

4
M

aj
or

V
ot

e
0.

92
0.

92
0.

96
0.

97
0.

97
0.

97
0.

97
0.

98
0.

33
0.

85
0.

91
0.

85
0.

87
0.

93
0.

97
0.

87

A
vg

Pr
ob

a
0.

91
0.

92
0.

96
0.

96
0.

97
0.

97
0.

97
0.

97
0.

32
0.

83
0.

91
0.

85
0.

89
0.

94
0.

97
0.

87

A
cc

W
Pr

ob
a

0.
91

0.
92

0.
96

0.
96

0.
97

0.
97

0.
97

0.
97

0.
32

0.
84

0.
91

0.
85

0.
89

0.
94

0.
97

0.
87

F1
W

Pr
ob

a
0.

91
0.

91
0.

96
0.

96
0.

97
0.

97
0.

97
0.

97
0.

33
0.

81
0.

91
0.

85
0.

89
0.

94
0.

97
0.

87

M
in

Pr
ob

a
0.

3
0.

14
0.

92
0.

94
0.

82
0.

93
0.

93
0.

93
0.

12
0.

0
0.

63
0.

62
0.

38
0.

83
0.

96
0.

79

M
ax

Pr
ob

a
0.

83
0.

81
0.

86
0.

93
0.

86
0.

94
0.

94
0.

95
0.

4
0.

54
0.

95
0.
93

0.
85

0.
89

0.
89

0.
86

Pr
od

Pr
ob

a
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0

St
aP

re
dS

V
M

0.
93

0.
93

0.
97

0.
97

0.
96

0.
96

0.
96

0.
97

0.
33

0.
82

0.
95

0.
87

0.
85

0.
85

0.
94

0.
83

St
aP

ro
bS

V
M

0.
94

0.
95

0.
97

0.
97

0.
98

0.
97

0.
97

0.
98

0.
39

0.
84

0.
92

0.
84

0.
9

0.
89

0.
95

0.
85

St
aP

re
dR

F
0.

92
0.

93
0.

97
0.

97
0.

97
0.

97
0.

97
0.

97
0.

34
0.

79
0.

94
0.

88
0.

85
0.

85
0.

94
0.

83

St
aP

ro
bR

F
0.

94
0.

95
0.

97
0.

97
0.

97
0.

97
0.

97
0.

98
0.

38
0.

8
0.

94
0.

89
0.

89
0.

9
0.

95
0.

85

St
aP

re
dK

N
N

0.
92

0.
92

0.
97

0.
97

0.
97

0.
97

0.
97

0.
97

0.
39

0.
79

0.
92

0.
87

0.
86

0.
86

0.
94

0.
82

St
aP

ro
bK

N
N

0.
92

0.
94

0.
96

0.
97

0.
97

0.
97

0.
97

0.
98

0.
42

0.
8

0.
92

0.
83

0.
9

0.
9

0.
94

0.
87

St
aP

re
dM

L
P

0.
93

0.
93

0.
97

0.
97

0.
97

0.
97

0.
97

0.
97

0.
38

0.
8

0.
94

0.
88

0.
85

0.
86

0.
94

0.
83

St
aP

ro
bM

L
P

0.
94

0.
95

0.
97

0.
97

0.
97

0.
97

0.
97

0.
98

0.
39

0.
81

0.
95

0.
85

0.
89

0.
87

0.
95

0.
85

E
ns

em
Se

le
ct

0.
94

0.
95

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
43

0.
89

0.
96

0.
91

0.
89

0.
94

0.
98

0.
88

W
h:

W
ho

le
da

ta
se

t,
D
r:

D
R

E
B

IN
da

ta
se

t,
R
v:

R
E

V
E

A
L

D
R

O
ID

da
ta

se
t,
M
m

:M
A

M
A

D
R

O
ID

da
ta

se
t,

M
l:

M
A

L
S

C
A

N
da

ta
se

t,
19

:2
01

9
da

ta
se

t,
20

:2
02

0
da

ta
se

t

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
da

ta
se

ta
nd

fo
r

ea
ch

R
Q

ba
se

d
on

th
e

F1
sc

or
e

be
fo

re
ro

un
di

ng
*
W

e
no

te
th

at
w

e
ha

ve
ve

ri
fi

ed
th

e
st

an
da

rd
de

vi
at

io
n

of
th

e
F1

sc
or

es
ov

er
th

e
te

n
ru

ns
of

th
e

ex
pe

ri
m

en
ts

,a
nd

ou
r

re
su

lts
sh

ow
ed

th
at

th
e

F1
sc

or
es

do
no

tv
ar

y
se

ns
ib

ly



Empir Software Eng           (2023) 28:22 Page 11 of 42   22 

We further conduct a statistical test to compare the F1 scores reported by the state-of-
the-art classifiers in all the datasets.

We rely on the non-parametric Friedman test (Friedman 1937) that is designed to com-
pare multiple data groups. Our selection of this test is motivated by the fact that our dataset
of F1 scores does not follow a normal distribution. Additionally, previous studies (Perinetti
2016; Parab and Bhalerao 2010; Sheldon et al. 1996) have recommended using the Fried-
man test to statistically compare more than two datasets. Furthermore, Demšar (2006) have
examined several statistical tests to compare ML classifiers and advised to use the Friedman
test when comparing multiple classifiers on multiple datasets.

The null hypothesis states that state-of-the-art malware detectors have statistically
equivalent detection performance.

The Friedman test has reported a p value of 3.75−81, which means that the null hypoth-
esis can be rejected. This result shows that our classifiers do not have the same detection
performance. To conduct a pairwise comparison on our classifiers, we proceed with the
Nemenyi (Nemenyi 1963) Post-Hoc test. This test aims to identify which classifiers have
different detection performances after the null hypothesis of the Friedman test is rejected.
We represent the p-values for the different pairs of classifiers in the sub-figure (a) of Fig. 1.

As shown in Fig. 1(a), many state-of-the-art malware detector pairs do not have the
same detection performance. For example, DREBIN’s performance is not similar to that
of five classifiers, including MAMADROID PACKAGE, which has outperformed it on six
datasets with a maximum difference of seven percentage points. This result confirms our
observations that state-of-the-art approaches do not perform equally in all the settings.

Overall, our results show that the performance of state-of-the-art Android malware detec-
tors is highly affected by the dataset used for the evaluation. Also, none of the studied
approaches has reported the best detection performance in all the settings. Such finding
motivates to further analyse the similarities and differences of state-of-the-art approaches
by examining the malware they detect.

3.2 RQ2: To what extent do state-of-the-art approaches detect similar/different
malware?

In this section, we propose to examine the type of malware detected by state-of-the-
art approaches in order to inspect their similarities/differences and assess whether some
classifiers perform better at detecting specific malware families. To this end, we first
collect the detection reports for malware samples from VirusTotal5. Then, we leverage
AVCLASS (Sebastián et al. 2016) to process the detection reports and assign a unique
family label to each malware app. We infer the family label for malware apps in both the
whole Literature dataset and the whole AndroZoo dataset. Overall, 642 and
204 unique malware families are present in Literature dataset and AndroZoo
dataset respectively.

We start our investigation by identifying the family labels present in the test sets. Specif-
ically, since we repeat the experiments ten times, we gather the family labels from the ten
test subsets. Then, we merge these family labels to identify the top families in the test sets

5www.virustotal.com

www.virustotal.com


   22 Page 12 of 42 Empir Software Eng           (2023) 28:22 

Fig. 1 The p values of the Nemenyi pairwise comparison of all the classifiers

on average. For each top family, we investigate how many samples belonging to that family
are correctly detected by our approaches in the ten test splits on average.

We conduct our s on the whole Literature dataset and the whole AndroZoo
dataset in both Temporally consistent and Temporally inconsistent
settings. We select four top families from each setting and we present them in Table 5. We
also report the results for the top 20 families in each setting in Tables 11 and 12 in Appendix.



Empir Software Eng           (2023) 28:22 Page 13 of 42   22 

Ta
bl
e
5

Pr
op

or
tio

n
of

m
al

w
ar

e
sa

m
pl

es
de

te
ct

ed
by

st
at

e-
of

-t
he

-a
rt

ap
pr

oa
ch

es
an

d
be

lo
ng

in
g

to
fo

ur
to

p
fa

m
ili

es

Fa
m

ili
es

#
D

R
E

B
IN

R
ev

ea
l

M
aM

aF
M

aM
aP

M
al

D
M

al
H

M
al

K
M

al
C

l
M

al
A

M
al

C
o

L
IT

T
E

M
P
IN

C
O

N
S

IS
T

do
w

gi
n

35
2

98
.6

68
.8

63
.1

86
.9

93
.2

94
.0

94
.3

94
.0

94
.0

94
.0

ai
rp

us
h

21
4

86
.4

57
.0

6.
1

72
.4

87
.4

91
.6

90
.2

91
.1

91
.6

90
.7

ad
w

o
19

5
82

.6
72

.8
11

.8
62

.6
85

.6
86

.2
86
.7

85
.6

86
.2

86
.2

yo
um

i
11

1
82
.9

66
.7

38
.7

51
.4

82
.0

82
.9

85
.6

82
.9

82
.9

82
.9

L
IT

T
E

M
P
C

O
N

S
IS

T
jia

gu
40

8
77
.2

64
.0

0.
0

0.
2

0.
7

10
.3

0.
7

0.
7

19
.9

19
.9

dn
ot

ua
30

3
5.

0
5.

0
0.

3
11

.2
94
.4

2.
6

94
.1

94
.1

2.
6

2.
6

sm
sr

eg
13

6
94
.1

77
.9

36
.0

52
.2

57
.4

66
.9

63
.2

63
.2

69
.1

69
.1

se
ca

pk
12

2
40

.2
92
.6

4.
9

4.
9

41
.8

43
.4

43
.4

43
.4

43
.4

43
.4

A
N

D
T

E
M

P
IN

C
O

N
S

IS
T

se
cn

eo
69

84
.1

98
.6

0
98
.6

79
.7

58
.0

79
.7

79
.7

78
.3

78
.3

ew
in

d
8

10
0.
0

62
.5

75
.0

10
0.
0

75
.0

75
.0

87
.5

75
.0

75
.0

75
.0

da
ta

co
lle

ct
or

7
10
0.
0

85
.7

0.
0

85
.7

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

ku
gu

o
6

83
.3

83
.3

0.
0

66
.7

66
.7

66
.7

66
.7

66
.7

66
.7

66
.7

A
N

D
T

E
M

P
C

O
N

S
IS

T
hi

dd
ad

32
0.

0
3.

1
0

3.
1

15
.6

21
.9

15
.6

21
.9

21
.9

21
.9

jo
ke

r
11

27
.3

0
0

0
63

.6
63

.6
63

.6
72
.7

63
.6

63
.6

em
ag

so
ft

w
ar

e
9

66
.7

33
.3

0
0

11
.1

11
.1

11
.1

11
.1

11
.1

11
.1

au
to

in
s

7
10
0.
0

10
0.
0

0
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
m

al
w

ar
e

fa
m

ily



   22 Page 14 of 42 Empir Software Eng           (2023) 28:22 

We observe that some state-of-the-art approaches detect some families in similar pro-
portions. For instance, DREBIN and some MALSCAN variants detect the same number
of malware from youmi family in the LITTEMPINCONSIST setting. Similarly, REVEAL-
DROID and MAMADROID PACKAGE detect the same proportion of apps from secneo
family in the ANDTEMPINCONSIST setting. Besides, compared to the other techniques,
some approaches seem more efficient at detecting specific families. For example, the
secapk family is effectively detected by REVEALDROID in the LITTEMPCONSIST set-
ting. In ANDTEMPCONSIST, DREBIN is the approach that detects the highest proportion
of malware from emagsoftware family.

Our results show that some state-of-the-art approaches share similarities since they detect
specific families in similar proportions. Moreover, our classifiers also exhibit differences
in their detected malware. Specifically, some approaches are more efficient than others at
detecting some malware families. These insights combined with the finding from the pre-
vious RQ motivate to combine knowledge from the state-of-the-art approaches (i.e., feature
sets or predictions) to improve or stabilise the detection performance.

3.3 RQ3: Doesmerging the feature sets from state-of-the-art approaches
lead to a high-performingmalware detector in all the settings?

In this section, we investigate whether merging features from Android malware detectors
has an added value on the detection performance.

Specifically, we aim to assess whether such a method can lead to high detection scores
independently of the dataset. In Section 3.1, we have considered an approach as a whole
(i.e., feature set + algorithm). In this experiment, we consider only the set of features pro-
posed by each detector, and we merge them to create a single set of features. This latter is
then used to train an ML algorithm to construct a new malware detector. Since the studied
state-of-the-art approaches rely on different ML algorithms, we train the merged feature set
using the same algorithms. Thus, we construct three malware detectors using LinearSVC,
Random Forest, and K-Nearest Neighbour, and we train them with the merged feature set.
Moreover, we also assess the detection performance of three additional ML algorithms:

– AdaBoost (Freund and Schapire 1997), which fits a series of base classifiers (e.g.,
Decision Tree) on the dataset such that each classifier focuses more on the incorrect
predictions made by the previous classifier. This method assigns higher weights to the
incorrectly predicted samples in order to enhance their prediction by the subsequent
classifiers.

– Bagging (Breiman 1996), which trains a series of base classifiers on random subsets
of the dataset and aggregates their predictions.

– GradientBoosting (Friedman 2001), which fits a series of base classifiers on the
dataset in order to improve the prediction performance. Each classifier is trained to
minimise the prediction errors of the previous classifier using the Gradient descent
algorithm.



Empir Software Eng           (2023) 28:22 Page 15 of 42   22 

We again conduct our experiments under various experimental setups similarly to RQ1
(cf. Section 3.1). We report the F1 scores of our experiments in the middle part of Table 4.
We also present the Recall, Precision, and Accuracy values of our evaluation in Tables 7, 8,
9, and 10 in the Appendix.

We observe that the six malware detectors that are trained with the merged feature set
also report detection performance that vary across datasets. Specifically, the whole LITTEM-
PCONSIST is still considered as the most difficult dataset since the highest F1 score reported
by these classifiers is 0.49. On the 2020 ANDTEMPINCONSIST, the highest F1 score has
reached a value of 0.99.

Compared to the other algorithms trained on the merged feature set, Bagging reports
the highest F1 score in 11 out of 16 experiments. For GradientBoosting and
AdaBoost, they achieve the best detection score in four and one experiment respectively.
In the five experiments where Bagging has not reported the highest detection scores, the
difference in the F1 score between this detector and the best approaches reaches a maximum
value of six percentage points.

We also compare the detection performance of these classifiers using the Friedman test.
The p value of the test is 8.85−111, which indicates that the classifiers trained on the merged
feature set do not have the same detection performance. We conduct the Nemenyi test and
report its results in the sub-figure (b) of Fig. 1.

We observe that Bagging has a different detection performance than that of the other
classifiers including those that have outperformed it on five datasets. Overall, our results
show that none of the classifiers trained on the merged feature set has reported the highest
detection performance on all the datasets.

3.4 RQ4: Does combining predictions from state-of-the-art approaches
lead to a high-performingmalware detector in all the settings?

Following up on the findings of RQ3, we hypothesise that the performance of state-of-
the-art approaches is brought by the right association between feature sets and learning
algorithms. Therefore, we investigate the possibility to exploit the combined value of
detectors via combining their independent predictions. To that end, we consider Ensemble
Learning and study its impact on the detection performance. In our experiment, we con-
sider the detectors trained in RQ1 (cf. Section 3.1) as base learners for Ensemble Learning,
and we examine whether the combination of their predictions produces a high-performing
malware detector on all the datasets.

Among the many ways of combining model predictions, which are commonly referred
to as Ensemble Learning in the literature (Sagi and Rokach 2018; Dong et al. 2020), we
consider the following cases:

– Majority Voting, where an app is considered as malware if it is detected by the
majority of the classifiers (i.e., in our case at least 6 out of the 10 classifiers). Otherwise
it is predicted as benign.



   22 Page 16 of 42 Empir Software Eng           (2023) 28:22 

– Average Probability, which represents the average of the probability6 scores
given by the ten classifiers in the prediction of maliciousness. An app is predicted as
malware if this Average probability is over 0.5.

– Accuracy Weighted Probability, where the probabilities of each classifier
are weighted according to their Accuracy metric. An app is predicted as malware if
the weighted Probability for malware class is higher than the weighted Probability for
benign class.

– F1 Weighted Probability, where the probabilities of each classifier are
weighted according to their F1 metric. An app is predicted as malware if the weighted
Probability for malware class is higher than the weighted Probability for benign class.

– Min Probability, which represents the minimum score among the probabil-
ity scores given by the ten classifiers. An app is predicted as malware if this Min
probability is over 0.5.

– Max Probability, which represents the maximum score among the probabil-
ity scores given by the ten classifiers. An app is predicted as malware if this Max
probability is over 0.5.

– Product Probability, which represents the product of the probability scores
given by the ten classifiers in the prediction of maliciousness. An app is predicted as
malware if this Product Probability is over 0.5.

– Stacking Prediction (Wolpert 1992), where the predictions of each classifier
are used to train a binary meta-classifier. We evaluated the Stacking method using four
meta-classifiers: SVM, RF, KNN, and Multi-Layer Perception (MLP), with three hid-
den layers of 32, 64, and 128 neurons, respectively. The final predictions of this method
are given by the meta-classifier.

– Stacking Probability, where the prediction probabilities of each classifier are
used to train a binary meta-classifier. Similarly, we evaluated Stacking Probability using
four meta-classifiers: SVM, RF, KNN, and Multi-Layer Perception (MLP), with the
same architecture as in Stacking Prediction.

– Ensemble Selection, where the probabilities of each classifier are weighted
according to its overall performance on specific metrics (i.e., F1-score, Recall, ...).
Since such a performance must be determined beforehand, we use a validation dataset
that serves to iteratively7 infer the weights for each classifier (Caruana et al. 2004).

Experimental results with the described Ensemble Learning techniques are provided in
the lower part of Table 4. Again, we provide the detailed scores in Tables 7, 8, 9, and 10 in
the Appendix.

We observe that the detection performance still varies significantly across datasets:
Min Probability sees the most important variation of 84 percentage points (0.12 for
the whole LITTEMPCONSIST to 0.96 for 2019 ANDTEMPCONSIST). The difficulty of
the whole LITTEMPCONSIST is also confirmed when combining the predictions since the
highest F1 score reported in that dataset is 0.43.

The evaluation results for the 16 prediction combination methods show that none of these
methods has reported the highest F1 score on all the datasets. Specifically, Ensemble
Selection is the best technique in 12 experiments. Stacking Probability with
SVM achieves the highest F1 score in three experiments. As for Max Probabilities, it

6The probability of prediction is a score returned by the classifiers. It is between 0 and 1
7In our experiment, we fix the number of iterations to 5000



Empir Software Eng           (2023) 28:22 Page 17 of 42   22 

outperformed the others on one dataset. When Ensemble Selection is not the highest
performing classifier, the difference in F1 score between Ensemble Selection and the
best method is at most two percentage points.

We again conduct the Friedman test to compare the detection performance of the Ensem-
ble Learning classifiers. The test reports a p value of 1.42−249, which confirms that these
classifiers do not have the same detection performance. We then proceed with the Nemenyi
test and report its results in the sub-figure (c) of Fig. 1.

The sub-figure shows that the classifiers used to combine the predictions do not per-
form similarly. Specifically, the detection performance of Ensemble Selection is
not similar to that of all the evaluated classifiers, including Max Probabilities and
Stacking Probability with SVM, which have outperformed it on four datasets. Our
results show that none of the Ensemble Learning classifiers has yielded the highest detection
performance on all the datasets.

3.5 RQ5: Does combining feature sets or predictions from state-of-the-art
approaches lead to classifiers that significantly outperform the original detectors?

In this section, we aim to compare the detection performance of the state-of-the-art classi-
fiers and the best methods to combine the features and the predictions. The evaluation of
the state-of-the-art malware detectors (c.f., Section 3.1) showed that no approach has out-
performed the others on all the datasets. For example, DREBIN has reported the highest F1
score in nine out of 16 experiments, but other approaches have remarkably outperformed it
on the AndroZoo datasets. In Section 3.3, we have assessed the added value of the
merged feature set using six classifiers. Our results showed that Bagging achieved the
highest F1 score in 11 out of 16 experiments. On the DREBIN LITTEMPCONSIST dataset,
AdaBoost has outperformed Bagging with 6 percentage points. With the combination of
predictions experiments, we have observed the same pattern: No Ensemble Learning method
has reported the highest F1 score in all the settings. For example, Ensemble Selection
achieved the best detection scores in 12 experiments, but other methods have outperformed
it in four evaluation experiments. However, the difference in F1 score between Ensemble
Selection and the best approaches in these four experiments is at most two percentage
points.

Before proceeding with the statistical test, we first compare the detection scores of the
best state-of-the-art malware detectors with those reported by the combination methods
in RQ3 and RQ4. Specifically, we select from each RQ the combination method that has
most often outperformed the others. For RQ3, we select Bagging as the best classifier
trained with the merged feature set. As for RQ4, Ensemble Selection is considered
the best method to combine the predictions. We refer to Table 4 to compare the detection
performance of these two methods with that of the best state-of-the-art classifiers on each
dataset.

Overall, Bagging has increased the detection performance in nine experiments. The
increase in the F1 score is at most two percentage points except for the whole LITTEMP-
CONSIST where it has reached five percentage points. This classifier has also decreased the
F1 score in four experiments by one, two, six, and one percentage point, respectively. In the



   22 Page 18 of 42 Empir Software Eng           (2023) 28:22 

remaining three experiments, Bagging has reported the same detection performance as
the best state-of-the-art approaches. As for Ensemble Selection, it has increased the
detection performance by at most two percentage points in 11 experiments. This method has
also reported the same detection performance as the best approaches in three experiments
and decreased the F1 score by one percentage point in two experiments.

Neither Bagging nor Ensemble Selection has remarkably increased the detec-
tion performance of state-of-the-art malware detectors. While it has enhanced the F1 score
by five percentage points on one dataset, Bagging has also decreased the F1 score by six
percentage points on one dataset. For Ensemble Selection, despite improving the F1
score in 11 experiments, this improvement is at most two percentage points. Nevertheless,
Ensemble Selection has generally maintained the highest detection performance of
state-of-the-art malware detectors independently of the dataset since it has maintained the
least performance gap with the best classifiers on all the datasets.

To validate our observations, we conduct the Friedman test on the F1 scores reported by
the state-of-the-art classifiers, Bagging and Ensemble Selection. Since the p value
of the test is 5.42−179, we conduct the Nemenyi test and report our results in the sub-figure
(d) of Fig. 1.

As shown in the sub-figure, the detection performance of both Bagging and
Ensemble Selection is different than that of the state-of-the-art classifiers. Moreover,
the p value of the test that compares Bagging and Ensemble Selection is greater
than 0.5, which means that we failed to reject the null hypothesis. Our results suggest that
there is insufficient evidence to affirm that the detection performance of these two classifiers
is different.

To sum up, both Bagging and Ensemble Selection have generally maintained
the highest detection performance of the state-of-the-art approaches independently of the
datasets.

4 Discussion

The literature of Android malware detection lavishes with a huge number of malware
classifiers. Each approach aims to capture malware samples by proposing a set of fea-
tures that is compiled to approximately represent app behaviour. In this study, we consider
state-of-the-art approaches published in top venues, and we perform an independent evalu-
ation of their performance. Our evaluation dataset includes a diverse set of apps, spanning
across a decade (2010-2020) of app development. Our aim is to challenge the classi-
fiers with diverse samples. We further executed experiments where dataset selections are
temporally-consistent (in contrast with typical random sampling), in order to
assess malware classifiers’ ability to cope with emerging malware. Overall, considering all
experimental scenarios, the results show that none of the studied approaches stands out
across all settings.



Empir Software Eng           (2023) 28:22 Page 19 of 42   22 

In this section, we discuss an important insight from our study: while combining different
approaches does not systematically improve the achievable performance, we note that it can
help maintain a high performance across all settings.

4.1 Ensuring high detection performance across datasets

Our study shows that malware detectors have significant variability in performance from one
dataset to another. Furthermore, no state-of-the-art malware detector could outperform all
others in all settings. These results raise questions about the characterisation of the added-
value of each studied approach as well as its suitability for deployment in production.

In an attempt to build a malware classifier that exploits the added-value of all studied
classifiers, we have investigated two main approaches: merge of all feature sets and com-
bination of classifiers’ predictions. Our experiments show that Bagging and Ensemble
Selection have reported promising results: the yielded classifier generally achieves,
in all scenarios, a detection score that is as good as the best score reported by individ-
ual approaches. Therefore, these combination methods ensure that the highest detection
performance is stabilised independently of the dataset.

Overall, the observed results further stress the need to consider large-scale and diverse
datasets to limit the biases when evaluating Android malware classification approaches.

4.2 Hypothetic reasons behind the failure of ensemble learning to outperform
the state of the art

Generally, Ensemble Learning methods aim to enhance the detection performance of the
base learners. In our study, however, these methods did not help to outperform the state of
the art, although they have provided a detection performance stability across datasets. In the
best case, Bagging and Ensemble Selection methods have increased the highest F1
score reported by the base learners by five and two percentage points, respectively.

From Table 4, we observe that there is still room to improve the state of the art, in
particular when the experiments are performed in a temporally-consistent manner.
Yet, our experiments show that combining feature sets or predictions from these state-of-
the-art classifiers does not lead to the hoped improvement.

Below we enumerate potential reasons why combining the state of the art has not led to
a classifier that surpasses all individual approaches:

There is a significant overlap of false-negatives in state-of-the-art classifications:
We hypothesise that combining state-of-the-art approaches could not enhance the detection
performance due to the presence of malware apps that are actually ”difficult to detect“
for all the approaches. Specifically, the malware that has escaped the detection of the best
approaches could not be detected by the other approaches either. To verify our hypothesis,
we examine the pairwise overlap of False Negatives (FNs) for the best detector and each
of the other detectors considered in RQ1 on average. We provide in Fig. 2, the distribution
of the FNs overlap for the whole datasets. We also present in Table 6 the number of FNs
overlap for the best detector and each of the other classifiers.

We observe that there is a significant overlap of FNs in all the datasets. This overlap
ranges from 32% in LITTEMPCONSIST to 100% in ANDTEMPCONSIST. These results sug-
gest that malware apps that are ”difficult to detect” for the best detector, in a given scenario,
are also challenging for the other classifiers: such apps therefore escape the detection despite
Ensemble Learning.



   22 Page 20 of 42 Empir Software Eng           (2023) 28:22 

Table 6 The average number of overlapping FNs for the best detector and each of the other detectors on the
whole datasets

LITTEMPINCONSIST LITTEMPCONSIST ANDTEMPINCONSIST ANDTEMPCONSIST

Best Approach DREBIN DREBIN MalCl MalD

DREBIN – – 148 625

Reveal 289 1127 190 659

MaMaF 356 1388 248 709

MaMaP 289 1262 192 688

MalD 201 512 237 –

MalH 200 1075 234 648

MalK 193 653 227 699

MalCl 200 548 – 679

MalA 200 1063 225 661

MalCo 199 1063 229 658

We also inspect the families of the overlapping FNs from the first data splits in order
to identify the major families that are difficult to detect. Specifically, we identify the top
five families of the overlapping FNs for the best approach and each detector in the whole
datasets. We represent the distribution of the number of malware in the top families in Fig. 3.

The results in Fig. 3 show that many overlapping FNs do not belong to a known family
(i.e., “SINGLETON”). We note that the label “SINGLETON”, generated by AVCLASS,
groups the malware that could not be attributed to any family. The overlap of these samples
exceeds 500 malware, which shows that they are indeed difficult to detect. Regarding the
known families, we observe that “fakeapp”, “jiagu”, “secapk”, and “dnotua” represent the

Fig. 2 The distribution of the average number of overlapping FNs for the best detector and each of the other
approaches in the whole datasets



Empir Software Eng           (2023) 28:22 Page 21 of 42   22 

Fig. 3 The distribution of the number of overlapping FNs’ from the top five families in the whole datasets

families with the highest number of overlapping FNs. Overall, inspecting how these samples
differ from the other TPs belonging to the same families might help design new approaches
that can detect the escaped malware.

Temporally-consistent experiments are challenging:
In Table 4, we observe that the best combination results are achieved in the

temporally-inconsistent experiments. Moreover, we have seen in Section 3.5
that Ensemble Selection has decreased the detection performance of the original
classifiers in two experiments which are both temporally-consistent.

Furthermore, the individual approaches themselves have somehow reported a poor detec-
tion performance especially for the Literature datasets (cf. Section 3.1). For the whole
LITTEMPCONSIST, we have shown that all the state-of-the-art classifiers report F1 scores
that are below 0.5. Since these classifiers make mistakes more often, their combination
could not offer any improvements, and has even resulted in a slight decrease of the perfor-
mance. We note that our results are in line with previous studies (Pendlebury et al. 2019;
Allix et al. 2015) in which the authors show that the performance of malware detectors is
significantly decreased in a temporally-consistent setting.

The limited performance reported on the temporally-consistent experiments
can be explained by the evolution of Android malware and the emergence of new malware
families. Indeed, Android malware is evolving fast, and new families can exhibit previously-
unknown behaviours. In the temporally-consistent experiments, the test dataset is
likely to contain malware belonging to families that were unseen in the training dataset.



   22 Page 22 of 42 Empir Software Eng           (2023) 28:22 

In the temporally-inconsistent experiments, this situation is possible, but less
likely due to the randomness of the split. Given that the training is supposed to characterise
maliciousness, if the training set is not representative of the different families, the model will
not generalise to samples in the test set, which would lead to poor detection performance.

The diversity of the feature sets is limited: The 10 studied detector variants each
leverage a different feature set. In the whole ANDTEMPINCONSIST dataset, we have found
that the overall number of features across all studied approaches surpasses 19 Million fea-
tures. This huge number of features could have suggested that, altogether, state-of-the-art
approaches have sufficient information to correctly predict malware apps. Unfortunately,
our experiments show that even merging all the features set to train a single machine learn-
ing algorithm does not lead to capturing all malware samples. We thus hypothesise that the
overall feature set is not more representative (i.e., does dot capture more relevant informa-
tion) than individual feature sets proposed by different approaches. It is indeed plausible
that the different feature sets are actually redundant across approaches, with respect to mali-
cious behaviour characterisation. This raises a concern in the literature on the added-value
of ever-renewed feature sets using the same types of analyses.

Recently, researchers have started to investigate novel ways to represent Android apps
(Daoudi et al. 2021c; Sun et al. 2021; Huang and Kao 2018; Ding et al. 2020). In particular,
the feature engineering process, which was largely manual, has been tasked to be resolved
via deep learning. To that end, artefacts from the app package (e.g., the DEX file, Manifest,
etc.) can be processed (e.g., via image representation) to be fed to neural networks for auto-
matic features extraction. Such alternative features may help improve malicious behaviour
characterisation.

Classification algorithms leveraged in our study may have limited capabilities:
The studied approaches rely on three common classification algorithms: Linear SVM, RF,
and KNN. We further relied on these same algorithms and three others to train classifiers
with merged feature sets (c.f., Section 3.3), resulting in limited performance improvement.
We hypothesise that these algorithms may be unsuitable for individually processing the
variety of feature types (e.g., Permissions, the representation of the apps call graphs as social
networks, as Markov Chains, ...), leading to poor detection performance improvement.

The combination methods may not be suitable: We have investigated the impact of
combining state-of-the-art malware detectors using 16 Ensemble Learning methods.

While these combination methods have, at best, maintained the highest detection per-
formance of the base learners, they could not generally help to catch the escaped malware.
We hypothesise that we may have not been able to identify a relevant combination method
for leveraging and enhancing the power of each approach when used in conjunction with
others. More sophisticated Ensemble Learning techniques may lead to different results in
future work.

AV labels used in our study may be noisy (Hurier et al. 2016; Salem et al. 2021; Xu
et al. 2021):

Android malware datasets are generally created using labels from AV engines or online
services such as VirusTotal8. Antivirus engines have been used to label most of the apps in
our datasets as malware or benign. Since the AV engines may have different classification
decisions, their use can result in a noisy dataset.

8https://www.virustotal.com

https://www.virustotal.com


Empir Software Eng           (2023) 28:22 Page 23 of 42   22 

Researchers usually consider an app as benign when it is not flagged by any antivirus. In
order to label an app as malware, a threshold of antivirus agreements needs to be defined.
Specifically, the malicious label is attributed to the apps that are detected by a number
of antivirus engines that is equal to or above the specified threshold. Some researchers
choose a higher threshold value in order to increase the likelihood that the apps are truly
malware. Other researchers prefer to decrease the threshold value so that the “grey” malware
are also included in the dataset. While the second strategy can indeed help to learn from
the “difficult” malware, it can results in including False Positive labels in the ground-truth
dataset. Our experiments use datasets, from different sources, which are compiled using
different strategies. This may have introduced noise that is challenging to estimate.

4.3 Threats-to-validity

The results and findings of our study are subject to some threats to validity. In this section,
we enumerate these threats and explain how we attempted to alleviate their impact. First,
since the generalisability of our conclusions highly depends on the evaluation dataset, we
have considered two large datasets of Android apps to extend the validity of our findings.
The literature dataset has been used to evaluate Android malware detectors in the literature,
and it includes over 197K apps. We have also removed the duplicated apps in the whole
literature dataset to avoid evaluation biases and comply with the recent recommendations
about sample duplication (Zhao et al. 2021). As for the AndroZoo dataset, it contains over
265K samples that we have collected from AndroZoo (Allix et al. 2016b) repository. More-
over, apps in our datasets span from 2010 to 2020, which helps to thoroughly assess the
performance of the studied approaches. Furthermore, we have also included the Literature
and AndroZoo subsets in our evaluation to diversify our settings. Second, we study the pos-
sibility of combining state-of-the-art malware detectors. Since Android malware detection
literature is prolific, selecting the evaluated subjects is not straightforward. To eliminate any
selection bias, papers from 16 major venues in Software Engineering, Security, and Machine
Learning have been considered. Third, the implementations of the evaluated approaches
might also bias our results. To mitigate this threat, we have considered the approaches that
have been reported to be reproducible in the literature (Daoudi et al. 2021b). We relied on
reproducible malware detectors to ensure that our results are valid and reflect the detec-
tion performance of the original approaches. Finally, the validity of our findings might be
affected by the methods used to combine the evaluated approaches. We have mitigated this
threat by considering a total of 22 combination methods: six methods to combine the feature
set and 16 methods for the predictions. We have also repeated our experimental evaluations
ten times to mitigate potential overfitting. Moreover, we have conducted statistical tests
to compare the detection performance of the evaluated classifiers in order to validate our
findings.

5 Related work

Our study relates to the research direction that has put special effort on evaluating and
building on published work, which is presented in Section 5.1. We also review the use of
Ensemble Learning in Android malware detection in Section 5.2.



   22 Page 24 of 42 Empir Software Eng           (2023) 28:22 

5.1 Assessment of existing work

Researchers have started long ago to invest in reviewing existing work on malware detec-
tion. A survey (Rossow et al. 2012) has been conducted to assess the methodological rigour
and prudence of 36 malware execution papers and has stressed the need for the community
to ensure better handling of the datasets.

The use of the most recent training labels from VirusTotal has been shown to artificially
inflate the detection performance of malware detectors (Miller et al. 2016). A temporal
label consistency constraint has then been introduced to ensure that the training labels are
temporally precedent to the evaluation samples.

Ten sources of biases have been identified based on the revision of 30 papers from top-
tier security venues (Arp et al. 2020). These biases can affect the results reported in machine
learning based computer and network security research. A set of recommendations that
include data collection, labelling, model design, and learning have then been proposed to
mitigate such pitfalls.

In Android malware detection, the evaluation results reported in the literature have been
carefully scrutinised and have been shown to be affected by temporal and spatial biases
(Pendlebury et al. 2019; Allix et al. 2015). For instance, Tesseract (Pendlebury et al. 2019)
has demonstrated that the performance of DREBIN and MaMaDroid is highly affected
by these two biases. Similarly, it has been demonstrated that the 10-fold cross-validation
evaluation method can positively and artificially inflate the evaluation results (Allix et al.
2016a).

Recently, an in-depth study (Daoudi et al. 2021a) has been conducted on DREBIN to
analyse its inner working beyond its detection scores.

5.2 Ensemble learning for androidmalware detection

Due to its promising results in several domains, Ensemble Learning methods have attracted
the attention of researchers to develop techniques to curb the spread of Android malware.
Existing work has explored the use of Ensemble Learning with some selected features and
ML algorithms. To the best of our knowledge, we are the first to investigate the use of
Ensemble Learning with state-of-the-art Android malware detectors.

Random Forest is an Ensemble Learning algorithm that trains a set of Decision Tree
classifiers as base learners. The class that is predicted by most of the base learners is selected
as the decision output of the Random Forest (Breiman 2001). This algorithm has been used
both as base learner (Zhao et al. 2018; Zhao et al. 2019; Dhalaria and Gandotra 2020) and
as an Ensemble Learning method (Yerima et al. 2015; Alam and Vuong 2013; Zhang and
Jin 2016) for Android malware detection. For example, a total of 179 static features that
include API calls, (Linux/Android) commands, and Permissions are extracted and fed to
a Random Forest Ensemble Learner (Yerima et al. 2015). This same approach is re-used
by augmenting the features set with semantics-based features extracted from the sinks and
sources flows (Zhang and Jin 2016). RF has been combined with KNN as base Learners to
predict malware using sensitive API Calls from a small dataset of 1044 apps (Zhao et al.
2018). Probabilities of predictions from RF and KNN have been weighted with 0.6 and
0.4 respectively to form the final decision. One year later, the same approach was slightly
modified by adding the Permissions to the features set (Zhao et al. 2019).



Empir Software Eng           (2023) 28:22 Page 25 of 42   22 

Other methods of Ensemble Learning have also been evaluated. Stacking refers to train-
ing a meta model on the predictions of other based learners. Logistic Regression has been
used as a Stacking algorithm to combine the output of Random Forest, SVM, and KNN
algorithms that are trained using features from AndroMD dataset9 (Dhalaria and Gandotra
2020). MuViDA (Appice et al. 2020) is a multi-view malware detection approach that is
based on clustering followed by Stacking using Random Forest algorithm. SEDMDroid is a
Stacking Ensemble method that relies on Multi-Layer Perceptrons as base learners and four
types of features: Permissions, permission-rate, monitoring system events sensitive APIs,
and data flow information (Zhu et al. 2020). Stacking has also been used with neural net-
works base learners and Dalvik instructions to predict malware (Zhang et al. 2015). Support
Vector Machine algorithm has been used to assemble the prediction output of Naive Bayes
classifiers (Palumbo et al. 2017). Mlifdect (Wang et al. 2017) is an Ensemble Learning
approach that predicts an app as malware if the sum of probabilities of its base learners is
above a predefined threshold.

Assembling the prediction of the base learners has also been investigated using Average,
Maximum, Product of probabilities, and Majority Vote with features that include permis-
sions, Standard OS and Android commands, and API-related features (Yerima et al. 2014).
Majority Voting has been leveraged to assemble classifiers trained with permission features
(Christianah et al. 2020), and with the combination of permissions and source code features
(Milosevic et al. 2017). Soft voting has been used to combine the output of a Decision Tree,
a Deep Neural Network, and an LSTM classifier that are trained using API calls, API fre-
quency, and API sequence features. Another study has used Genetic algorithms to select
Deep Belief Neural Networks base learners that have their predictions assembled using the
majority voting (Wang et al. 2020).

6 Conclusion

The literature of Android malware detection is prolific. Nevertheless, the expectation gap
between the promising research results and the severe spread of malware suggests that our
community needs to revisit the evaluation of the promise of state-of-the-art approaches.
In this work, we contribute with a large-scale evaluation of four state-of-the-art malware
detectors published at major venues, using two datasets of over 197k and 265k apps. We
confirm previous results in the literature, which found that the performance of malware
detectors is highly dependent on the dataset used in the evaluation. Particularly, no approach
has reported the best detection results on all the settings, which casts doubts on the usability
and the validity of the studied approaches in real-world settings.

In an attempt to stabilise the detection performance across all datasets, we have
investigated the use of Ensemble Learning methods.

Our results show that Bagging and Ensemble Selection methods are promising
and can generally maintain the best detection scores independently of the dataset. To further
facilitate future studies, we make available to the research community the extracted features
(for 462k apps) following the approaches of ten detector variants.

9https://www.kaggle.com/meghnadhalaria/andromd

https://www.kaggle.com/meghnadhalaria/andromd


   22 Page 26 of 42 Empir Software Eng           (2023) 28:22 

A
pp

en
di
x

Ta
bl
e
7

E
va

lu
at

io
n

of
th

e
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

fe
at

ur
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

cl
as

si
fi

er
s

on
th

e
w

ho
le

L
i
t
e
r
a
t
u
r
e

an
d
A
n
d
r
o
Z
o
o

d
a
t
a
s
e
t
s

L
ite

ra
tu

re
w

ho
le

da
ta

se
t

A
nd

ro
Z

oo
w

ho
le

da
ta

se
t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

1
D

R
E

B
IN

0.
91

0.
93

0.
92

0.
96

0.
64

0.
34

0.
44

0.
64

0.
95

0.
98

0.
96

0.
98

0.
76

0.
98

0.
85

0.
92

R
ev

ea
l

0.
55

0.
87

0.
68

0.
88

0.
51

0.
3

0.
38

0.
63

0.
92

0.
99

0.
95

0.
97

0.
82

0.
98

0.
89

0.
94

M
aM

aF
0.

33
0.

9
0.

48
0.

84
0.

16
0.

23
0.

19
0.

7
0.

91
0.

99
0.

95
0.

97
0.

86
1

0.
92

0.
96

M
aM

aP
0.

56
0.

97
0.

71
0.

9
0.

28
0.

18
0.

22
0.

57
0.

96
0.

97
0.

96
0.

98
0.

89
0.

96
0.

92
0.

96

M
al

D
0.

89
0.

87
0.

88
0.

95
0.

51
0.

25
0.

33
0.

55
0.

96
0.

97
0.

96
0.

98
0.

9
0.

97
0.
93

0.
96

M
al

H
0.

89
0.

88
0.

89
0.

95
0.

42
0.

27
0.

33
0.

62
0.

96
0.

97
0.

97
0.

98
0.

9
0.

96
0.

93
0.

96

M
al

K
0.

9
0.

88
0.

89
0.

95
0.

54
0.

27
0.

36
0.

58
0.

95
0.

97
0.

96
0.

98
0.

86
0.

96
0.

9
0.

95

M
al

C
l

0.
9

0.
88

0.
89

0.
95

0.
56

0.
31

0.
4

0.
62

0.
97

0.
97

0.
97

0.
98

0.
9

0.
96

0.
93

0.
96

M
al

A
0.

9
0.

89
0.

89
0.

95
0.

44
0.

28
0.

34
0.

63
0.

95
0.

96
0.

96
0.

97
0.

87
0.

96
0.

91
0.

95

M
al

C
o

0.
9

0.
89

0.
89

0.
95

0.
44

0.
28

0.
34

0.
63

0.
96

0.
97

0.
96

0.
98

0.
86

0.
96

0.
91

0.
95

R
Q

3
L

in
ea

rS
V

C
0.

87
0.

72
0.

78
0.

88
0.

7
0.

38
0.

48
0.

65
0.

92
0.

82
0.

87
0.

92
0.

83
0.

8
0.

81
0.

89

R
F

0.
87

0.
96

0.
91

0.
96

0.
49

0.
31

0.
38

0.
64

0.
97

0.
99

0.
98

0.
99

0.
88

0.
99

0.
93

0.
96

K
N

N
0.

84
0.

88
0.

86
0.

94
0.

43
0.

23
0.

3
0.

56
0.

94
0.

94
0.

94
0.

96
0.

81
0.

9
0.

85
0.

92

A
da

B
oo

st
0.

83
0.

89
0.

86
0.

94
0.

52
0.

39
0.

45
0.

72
0.

93
0.

98
0.

96
0.

97
0.

88
0.

99
0.

93
0.

96

B
ag

gi
ng

0.
93

0.
95

0.
94

0.
97

0.
58

0.
42

0.
49

0.
73

0.
97

0.
99

0.
98

0.
99

0.
88

1
0.
94

0.
96

G
ra

dB
oo

st
in

g
0.

86
0.

94
0.

9
0.

96
0.

57
0.

42
0.

48
0.

73
0.

94
0.

99
0.

97
0.

98
0.

87
1

0.
93

0.
96



Empir Software Eng           (2023) 28:22 Page 27 of 42   22 

Ta
bl
e
7

(c
on

tin
ue

d)

L
ite

ra
tu

re
w

ho
le

da
ta

se
t

A
nd

ro
Z

oo
w

ho
le

da
ta

se
t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

4
M

aj
or

V
ot

e
0.

89
0.

94
0.

92
0.

96
0.

39
0.

29
0.

33
0.

66
0.

96
0.

99
0.

97
0.

98
0.

87
1

0.
93

0.
96

A
vg

Pr
ob

a
0.

9
0.

92
0.

91
0.

96
0.

4
0.

27
0.

32
0.

63
0.

97
0.

98
0.

97
0.

98
0.

9
0.

99
0.

94
0.

97

A
cc

W
Pr

ob
a

0.
9

0.
92

0.
91

0.
96

0.
4

0.
27

0.
32

0.
63

0.
97

0.
98

0.
97

0.
98

0.
9

0.
99

0.
94

0.
97

F1
W

Pr
ob

a
0.

9
0.

92
0.

91
0.

96
0.

42
0.

27
0.

33
0.

61
0.

97
0.

98
0.

97
0.

98
0.

9
0.

99
0.

94
0.

97

M
in

Pr
ob

a
0.

18
0.

99
0.

3
0.

82
0.

07
0.

63
0.

12
0.

78
0.

87
1

0.
93

0.
96

0.
7

1
0.

83
0.

91

M
ax

Pr
ob

a
0.

98
0.

72
0.

83
0.

91
0.

93
0.

26
0.

4
0.

39
0.

99
0.

9
0.

94
0.

96
0.

92
0.

85
0.

89
0.

93

Pr
od

Pr
ob

a
0.

0
0.

0
0.

0
0.

78
0.

0
0.

75
0.

0
0.

78
0.

0
0.

6
0.

0
0.

71
0.

0
0.

7
0.

0
0.

71

St
aP

re
dS

V
M

0.
93

0.
92

0.
93

0.
97

0.
56

0.
24

0.
33

0.
51

0.
95

0.
98

0.
96

0.
98

0.
76

0.
98

0.
85

0.
92

St
aP

ro
bS

V
M

0.
94

0.
95

0.
94

0.
97

0.
68

0.
28

0.
39

0.
54

0.
97

0.
98

0.
97

0.
99

0.
82

0.
98

0.
89

0.
94

St
aP

re
dR

F
0.

92
0.

93
0.

92
0.

97
0.

57
0.

25
0.

34
0.

52
0.

95
0.

98
0.

97
0.

98
0.

76
0.

98
0.

85
0.

92

St
aP

ro
bR

F
0.

94
0.

93
0.

94
0.

97
0.

72
0.

26
0.

38
0.

49
0.

96
0.

98
0.

97
0.

98
0.

83
0.

99
0.

9
0.

95

St
aP

re
dK

N
N

0.
92

0.
93

0.
92

0.
97

0.
65

0.
28

0.
39

0.
55

0.
96

0.
98

0.
97

0.
98

0.
76

0.
98

0.
86

0.
92

St
aP

ro
bK

N
N

0.
92

0.
92

0.
92

0.
97

0.
71

0.
3

0.
42

0.
56

0.
96

0.
98

0.
97

0.
98

0.
83

0.
98

0.
9

0.
94

St
aP

re
dM

L
P

0.
93

0.
93

0.
93

0.
97

0.
65

0.
27

0.
38

0.
53

0.
96

0.
98

0.
97

0.
98

0.
76

0.
98

0.
86

0.
92

St
aP

ro
bM

L
P

0.
94

0.
94

0.
94

0.
97

0.
72

0.
27

0.
39

0.
5

0.
96

0.
98

0.
97

0.
98

0.
78

0.
98

0.
87

0.
93

E
ns

em
Se

le
ct

0.
92

0.
96

0.
94

0.
97

0.
48

0.
39

0.
43

0.
71

0.
97

0.
99

0.
98

0.
99

0.
89

1
0.
94

0.
97

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
da

ta
se

ta
nd

fo
r

ea
ch

R
Q

ba
se

d
on

th
e

F1
sc

or
e

be
fo

re
ro

un
di

ng



   22 Page 28 of 42 Empir Software Eng           (2023) 28:22 

Ta
bl
e
8

E
va

lu
at

io
n

of
th

e
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

fe
at

ur
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

cl
as

si
fi

er
s

on
th

e
20

19
an

d
20

20
A
n
d
r
o
Z
o
o

d
a
t
a
s
e
t
s

A
nd

ro
Z

oo
20

19
da

ta
se

t
A

nd
ro

Z
oo

20
20

da
ta

se
t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

1
D

R
E

B
IN

0.
95

0.
98

0.
96

0.
98

0.
96

0.
92

0.
94

0.
96

0.
97

0.
97

0.
97

0.
98

0.
71

0.
98

0.
82

0.
93

R
ev

ea
l

0.
92

0.
99

0.
95

0.
97

0.
95

0.
93

0.
94

0.
96

0.
92

0.
99

0.
95

0.
98

0.
74

0.
99

0.
85

0.
94

M
aM

aF
0.

9
0.

99
0.

95
0.

97
0.

97
0.

99
0.
98

0.
99

0.
94

1
0.

97
0.

99
0.

76
1

0.
86

0.
95

M
aM

aP
0.

96
0.

98
0.
97

0.
98

0.
98

0.
98

0.
98

0.
99

0.
97

0.
99

0.
98

0.
99

0.
77

1
0.
87

0.
95

M
al

D
0.

96
0.

97
0.

96
0.

98
0.

98
0.

94
0.

96
0.

97
0.

96
0.

97
0.

97
0.

99
0.

78
0.

99
0.

87
0.

95

M
al

H
0.

96
0.

96
0.

96
0.

97
0.

98
0.

95
0.

96
0.

98
0.

97
0.

97
0.

97
0.

99
0.

78
0.

98
0.

87
0.

95

M
al

K
0.

95
0.

97
0.

96
0.

98
0.

97
0.

93
0.

95
0.

97
0.

96
0.

97
0.

97
0.

99
0.

78
0.

97
0.

86
0.

94

M
al

C
l

0.
96

0.
97

0.
96

0.
98

0.
98

0.
95

0.
96

0.
97

0.
97

0.
97

0.
97

0.
99

0.
78

0.
98

0.
87

0.
95

M
al

A
0.

96
0.

95
0.

95
0.

97
0.

97
0.

94
0.

96
0.

97
0.

96
0.

97
0.

97
0.

98
0.

78
0.

98
0.

87
0.

95

M
al

C
o

0.
96

0.
96

0.
96

0.
97

0.
97

0.
95

0.
96

0.
97

0.
97

0.
97

0.
97

0.
99

0.
78

0.
98

0.
87

0.
95

R
Q

3
L

in
ea

rS
V

C
0.

92
0.

79
0.

85
0.

89
0.

94
0.

8
0.

86
0.

9
0.

91
0.

85
0.

87
0.

94
0.

68
0.

86
0.

76
0.

9

R
F

0.
96

0.
99

0.
98

0.
98

0.
98

0.
97

0.
98

0.
98

0.
97

0.
99

0.
98

0.
99

0.
77

1
0.

87
0.

95

K
N

N
0.

94
0.

94
0.

94
0.

96
0.

94
0.

83
0.

88
0.

92
0.

93
0.

92
0.

93
0.

97
0.

63
0.

88
0.

74
0.

9

A
da

B
oo

st
0.

93
0.

97
0.

95
0.

97
0.

98
0.

96
0.

97
0.

98
0.

95
0.

99
0.

97
0.

99
0.

77
0.

99
0.

86
0.

95

B
ag

gi
ng

0.
97

0.
99

0.
98

0.
99

0.
98

0.
98

0.
98

0.
99

0.
98

0.
99

0.
99

0.
99

0.
77

0.
99

0.
87

0.
95

G
ra

dB
oo

st
in

g
0.

94
0.

99
0.

97
0.

98
0.

98
0.

98
0.
98

0.
99

0.
96

0.
99

0.
98

0.
99

0.
77

1
0.

87
0.

95



Empir Software Eng           (2023) 28:22 Page 29 of 42   22 

Ta
bl
e
8

(c
on

tin
ue

d)

A
nd

ro
Z

oo
20

19
da

ta
se

t
A

nd
ro

Z
oo

20
20

da
ta

se
t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

4
M

aj
or

V
ot

e
0.

95
0.

99
0.

97
0.

98
0.

97
0.

97
0.

97
0.

98
0.

97
0.

98
0.

98
0.

99
0.

78
0.

99
0.

87
0.

95

A
vg

Pr
ob

a
0.

96
0.

97
0.

97
0.

98
0.

98
0.

96
0.

97
0.

98
0.

97
0.

98
0.

97
0.

99
0.

78
0.

99
0.

87
0.

95

A
cc

W
Pr

ob
a

0.
96

0.
97

0.
97

0.
98

0.
98

0.
96

0.
97

0.
98

0.
97

0.
98

0.
97

0.
99

0.
78

0.
99

0.
87

0.
95

F1
W

Pr
ob

a
0.

96
0.

97
0.

97
0.

98
0.

98
0.

96
0.

97
0.

98
0.

97
0.

98
0.

97
0.

99
0.

78
0.

99
0.

87
0.

95

M
in

Pr
ob

a
0.

88
1

0.
93

0.
96

0.
92

1
0.

96
0.

97
0.

88
1

0.
93

0.
97

0.
65

1
0.

79
0.

92

M
ax

Pr
ob

a
0.

99
0.

9
0.

94
0.

96
1

0.
81

0.
89

0.
92

0.
99

0.
92

0.
95

0.
98

0.
8

0.
93

0.
86

0.
94

Pr
od

Pr
ob

a
0.

0
0.

6
0.

0
0.

67
0.

0
0.

0
0.

0
0.

67
0.

0
0.

1
0.

0
0.

77
0.

0
0.

0
0.

0
0.

78

St
aP

re
dS

V
M

0.
95

0.
98

0.
96

0.
98

0.
96

0.
91

0.
94

0.
96

0.
97

0.
97

0.
97

0.
99

0.
71

0.
98

0.
83

0.
93

St
aP

ro
bS

V
M

0.
96

0.
98

0.
97

0.
98

0.
97

0.
92

0.
95

0.
96

0.
98

0.
99

0.
98

0.
99

0.
74

0.
99

0.
85

0.
94

St
aP

re
dR

F
0.

95
0.

98
0.

97
0.

98
0.

96
0.

91
0.

94
0.

96
0.

97
0.

97
0.

97
0.

99
0.

72
0.

98
0.

83
0.

93

St
aP

ro
bR

F
0.

96
0.

98
0.

97
0.

98
0.

97
0.

93
0.

95
0.

97
0.

98
0.

98
0.

98
0.

99
0.

75
0.

99
0.

85
0.

94

St
aP

re
dK

N
N

0.
95

0.
98

0.
97

0.
98

0.
96

0.
92

0.
94

0.
96

0.
97

0.
97

0.
97

0.
99

0.
71

0.
98

0.
82

0.
93

St
aP

ro
bK

N
N

0.
96

0.
98

0.
97

0.
98

0.
97

0.
92

0.
94

0.
96

0.
97

0.
98

0.
98

0.
99

0.
78

0.
98

0.
87

0.
95

St
aP

re
dM

L
P

0.
95

0.
98

0.
97

0.
98

0.
96

0.
91

0.
94

0.
96

0.
97

0.
97

0.
97

0.
99

0.
71

0.
98

0.
83

0.
93

St
aP

ro
bM

L
P

0.
96

0.
98

0.
97

0.
98

0.
97

0.
92

0.
95

0.
96

0.
97

0.
98

0.
98

0.
99

0.
75

0.
99

0.
85

0.
94

E
ns

em
Se

le
ct

0.
97

0.
99

0.
98

0.
99

0.
99

0.
97

0.
98

0.
99

0.
97

0.
99

0.
98

0.
99

0.
78

1
0.
88

0.
95

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
da

ta
se

ta
nd

fo
r

ea
ch

R
Q

ba
se

d
on

th
e

F1
sc

or
e

be
fo

re
ro

un
di

ng



   22 Page 30 of 42 Empir Software Eng           (2023) 28:22 

Ta
bl
e
9

E
va

lu
at

io
n

of
th

e
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

fe
at

ur
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

cl
as

si
fi

er
s

on
th

e
D

R
E

B
IN

an
d

R
E

V
E

A
L

D
R

O
ID

L
i
t
e
r
a
t
u
r
e

d
a
t
a
s
e
t
s L
ite

ra
tu

re
D

R
E

B
IN

da
ta

se
t

L
ite

ra
tu

re
R

ev
ea

lD
ro

id
da

ta
se

t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

1
D

R
E

B
IN

0.
93

0.
96

0.
94

0.
99

0.
92

0.
82

0.
87

0.
99

0.
98

0.
97

0.
97

0.
98

0.
9

0.
99

0.
94

0.
95

R
ev

ea
l

0.
29

0.
87

0.
44

0.
97

0.
27

0.
79

0.
41

0.
96

0.
94

0.
86

0.
9

0.
9

0.
69

0.
97

0.
81

0.
85

M
aM

aF
0.

18
1

0.
31

0.
96

0.
19

1
0.

32
0.

96
0.

95
0.

85
0.

9
0.

9
0.

83
0.

93
0.

88
0.

89

M
aM

aP
0.

31
1

0.
48

0.
97

0.
08

0.
9

0.
14

0.
96

0.
99

0.
89

0.
94

0.
94

0.
91

0.
97

0.
94

0.
95

M
al

D
0.

89
0.

85
0.

87
0.

99
0.

87
0.

58
0.

7
0.

97
0.

95
0.

93
0.

94
0.

94
0.

76
0.

98
0.

86
0.

89

M
al

H
0.

89
0.

88
0.

89
0.

99
0.

95
0.

56
0.

7
0.

96
0.

96
0.

94
0.

95
0.

95
0.

82
0.

98
0.

89
0.

91

M
al

K
0.

91
0.

89
0.

9
0.

99
0.

88
0.

57
0.

69
0.

96
0.

96
0.

94
0.

95
0.

95
0.

81
0.

98
0.

89
0.

91

M
al

C
l

0.
9

0.
86

0.
88

0.
99

0.
87

0.
69

0.
77

0.
98

0.
96

0.
94

0.
95

0.
95

0.
81

0.
99

0.
89

0.
91

M
al

A
0.

89
0.

88
0.

89
0.

99
0.

95
0.

56
0.

71
0.

96
0.

96
0.

94
0.

95
0.

95
0.

82
0.

98
0.

89
0.

91

M
al

C
o

0.
89

0.
88

0.
89

0.
99

0.
95

0.
56

0.
7

0.
96

0.
96

0.
94

0.
95

0.
95

0.
82

0.
98

0.
89

0.
91

R
Q

3
L

in
ea

rS
V

C
0.

87
0.

8
0.

83
0.

98
0.

97
0.

6
0.

73
0.

97
0.

95
0.

93
0.

94
0.

94
0.

8
0.

96
0.

87
0.

89

R
F

0.
85

1
0.

92
0.

99
0.

75
1

0.
85

0.
99

0.
96

0.
97

0.
97

0.
97

0.
66

1
0.

79
0.

84

K
N

N
0.

8
0.

88
0.

83
0.

99
0.

79
0.

73
0.

76
0.

98
0.

94
0.

91
0.

92
0.

93
0.

57
0.

97
0.

72
0.

8

A
da

B
oo

st
0.

81
0.

92
0.

86
0.

99
0.

88
0.

94
0.
91

0.
99

0.
97

0.
98

0.
97

0.
98

0.
92

0.
99

0.
95

0.
96

B
ag

gi
ng

0.
94

0.
97

0.
96

1
0.

77
0.

95
0.

85
0.

99
0.

98
0.

98
0.
98

0.
98

0.
89

1
0.

94
0.

95

G
ra

dB
oo

st
in

g
0.

86
0.

98
0.

92
0.

99
0.

71
0.

98
0.

82
0.

99
0.

98
0.

98
0.

98
0.

98
0.

93
1

0.
96

0.
96



Empir Software Eng           (2023) 28:22 Page 31 of 42   22 

Ta
bl
e
9

(c
on

tin
ue

d)

L
ite

ra
tu

re
D

R
E

B
IN

da
ta

se
t

L
ite

ra
tu

re
R

ev
ea

lD
ro

id
da

ta
se

t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

4
M

aj
or

V
ot

e
0.

88
0.

97
0.

92
0.

99
0.

86
0.

84
0.

85
0.

99
0.

97
0.

96
0.

96
0.

97
0.

84
0.

99
0.

91
0.

93

A
vg

Pr
ob

a
0.

89
0.

95
0.

92
0.

99
0.

87
0.

8
0.

83
0.

98
0.

96
0.

95
0.

96
0.

96
0.

84
0.

99
0.

91
0.

92

A
cc

W
Pr

ob
a

0.
89

0.
95

0.
92

0.
99

0.
87

0.
81

0.
84

0.
98

0.
96

0.
95

0.
96

0.
96

0.
84

0.
99

0.
91

0.
92

F1
W

Pr
ob

a
0.

89
0.

94
0.

91
0.

99
0.

87
0.

76
0.

81
0.

98
0.

96
0.

95
0.

96
0.

96
0.

84
0.

99
0.

91
0.

92

M
in

Pr
ob

a
0.

08
1

0.
14

0.
96

0.
0

0.
1

0.
0

0.
95

0.
85

1
0.

92
0.

93
0.

46
1

0.
63

0.
75

M
ax

Pr
ob

a
0.

97
0.

69
0.

81
0.

98
0.

99
0.

38
0.

54
0.

92
1

0.
76

0.
86

0.
86

0.
98

0.
91

0.
95

0.
95

Pr
od

Pr
ob

a
0.

0
0.

0
0.

0
0.

95
0.

0
0.

0
0.

0
0.

95
0.

0
0.

3
0.

0
0.

54
0.

0
0.

0
0.

0
0.

54

St
aP

re
dS

V
M

0.
94

0.
93

0.
93

0.
99

0.
95

0.
72

0.
82

0.
98

0.
99

0.
96

0.
97

0.
98

0.
92

0.
99

0.
95

0.
96

St
aP

ro
bS

V
M

0.
94

0.
97

0.
95

1
0.

9
0.

79
0.

84
0.

98
0.

98
0.

97
0.

97
0.

97
0.

86
0.

99
0.

92
0.

94

St
aP

re
dR

F
0.

94
0.

91
0.

93
0.

99
0.

95
0.

67
0.

79
0.

98
0.

99
0.

96
0.

97
0.

97
0.

89
0.

99
0.

94
0.

95

St
aP

ro
bR

F
0.

95
0.

95
0.

95
1

0.
85

0.
76

0.
8

0.
98

0.
99

0.
96

0.
97

0.
98

0.
91

0.
99

0.
94

0.
95

St
aP

re
dK

N
N

0.
94

0.
91

0.
92

0.
99

0.
93

0.
68

0.
79

0.
98

0.
97

0.
97

0.
97

0.
97

0.
85

0.
99

0.
92

0.
93

St
aP

ro
bK

N
N

0.
95

0.
93

0.
94

0.
99

0.
88

0.
73

0.
8

0.
98

0.
97

0.
95

0.
96

0.
96

0.
86

0.
99

0.
92

0.
93

St
aP

re
dM

L
P

0.
95

0.
91

0.
93

0.
99

0.
97

0.
68

0.
8

0.
98

0.
98

0.
97

0.
97

0.
98

0.
89

0.
99

0.
94

0.
95

St
aP

ro
bM

L
P

0.
95

0.
95

0.
95

1
0.

91
0.

72
0.

81
0.

98
0.

99
0.

95
0.

97
0.

97
0.

91
0.

99
0.

95
0.

96

E
ns

em
Se

le
ct

0.
93

0.
97

0.
95

1
0.

96
0.

84
0.
89

0.
99

0.
99

0.
98

0.
98

0.
98

0.
94

0.
99

0.
96

0.
97

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
da

ta
se

ta
nd

fo
r

ea
ch

R
Q

ba
se

d
on

th
e

F1
sc

or
e

be
fo

re
ro

un
di

ng



   22 Page 32 of 42 Empir Software Eng           (2023) 28:22 

Ta
bl
e
10

E
va

lu
at

io
n

of
th

e
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

fe
at

ur
es

ve
rs

us
th

e
co

m
bi

na
tio

n
of

cl
as

si
fi

er
s

on
th

e
M

A
M

A
D

R
O

ID
an

d
M

A
L

S
C

A
N

L
i
t
e
r
a
t
u
r
e

d
a
t
a
s
e
t
s L
ite

ra
tu

re
M

aM
aD

ro
id

da
ta

se
t

L
ite

ra
tu

re
M

al
Sc

an
da

ta
se

t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

1
D

R
E

B
IN

0.
98

0.
98

0.
98

0.
96

0.
89

0.
95

0.
92

0.
87

0.
96

0.
96

0.
96

0.
96

0.
78

0.
95

0.
86

0.
87

R
ev

ea
l

0.
97

0.
92

0.
94

0.
91

0.
73

0.
94

0.
83

0.
75

0.
87

0.
91

0.
89

0.
9

0.
48

0.
88

0.
62

0.
72

M
aM

aF
0.

98
0.

9
0.

94
0.

89
0.

86
0.

92
0.

89
0.

82
0.

81
0.

84
0.

82
0.

83
0.

53
0.

82
0.

64
0.

72

M
aM

aP
0.

98
0.

92
0.

95
0.

92
0.

78
0.

93
0.

85
0.

78
0.

94
0.

96
0.

95
0.

95
0.

61
0.

98
0.

74
0.

81

M
al

D
0.

96
0.

95
0.

95
0.

93
0.

68
0.

94
0.

79
0.

71
0.

97
0.

93
0.

95
0.

95
0.

81
0.

95
0.

87
0.

89

M
al

H
0.

96
0.

96
0.

96
0.

93
0.

75
0.

95
0.

83
0.

76
0.

97
0.

95
0.

96
0.

96
0.

82
0.

96
0.
88

0.
9

M
al

K
0.

96
0.

95
0.

96
0.

93
0.

71
0.

95
0.

81
0.

73
0.

97
0.

94
0.

95
0.

96
0.

8
0.

95
0.

87
0.

88

M
al

C
l

0.
96

0.
95

0.
96

0.
93

0.
75

0.
94

0.
84

0.
77

0.
97

0.
94

0.
96

0.
96

0.
82

0.
96

0.
88

0.
89

M
al

A
0.

96
0.

96
0.

96
0.

94
0.

75
0.

95
0.

83
0.

76
0.

97
0.

95
0.

96
0.

96
0.

8
0.

96
0.

87
0.

89

M
al

C
o

0.
96

0.
96

0.
96

0.
94

0.
74

0.
95

0.
83

0.
76

0.
97

0.
95

0.
96

0.
96

0.
8

0.
96

0.
87

0.
89

R
Q

3
L

in
ea

rS
V

C
0.

92
0.

94
0.

93
0.

89
0.

72
0.

92
0.

81
0.

72
0.

88
0.

9
0.

89
0.

89
0.

65
0.

82
0.

71
0.

76

R
F

0.
97

0.
96

0.
97

0.
95

0.
64

0.
95

0.
77

0.
69

0.
96

0.
98

0.
97

0.
97

0.
76

0.
99

0.
86

0.
88

K
N

N
0.

96
0.

93
0.

95
0.

92
0.

62
0.

93
0.

74
0.

65
0.

93
0.

89
0.

91
0.

91
0.

75
0.

9
0.

82
0.

84

A
da

B
oo

st
0.

96
0.

96
0.

96
0.

94
0.

85
0.

95
0.

9
0.

84
0.

95
0.

95
0.

95
0.

95
0.

74
0.

91
0.

81
0.

84

B
ag

gi
ng

0.
97

0.
97

0.
97

0.
96

0.
78

0.
95

0.
86

0.
79

0.
98

0.
97

0.
97

0.
98

0.
78

0.
94

0.
85

0.
87

G
ra

dB
oo

st
in

g
0.

97
0.

96
0.

97
0.

95
0.

85
0.

95
0.
9

0.
85

0.
97

0.
97

0.
97

0.
97

0.
81

0.
95

0.
88

0.
89



Empir Software Eng           (2023) 28:22 Page 33 of 42   22 

Ta
bl
e
10

(c
on

tin
ue

d)

L
ite

ra
tu

re
M

aM
aD

ro
id

da
ta

se
t

L
ite

ra
tu

re
M

al
Sc

an
da

ta
se

t

Te
m

po
ra

lly
-i

nc
on

si
st

en
t

Te
m

po
ra

lly
-c

on
si

st
en

t
Te

m
po

ra
lly

-i
nc

on
si

st
en

t
Te

m
po

ra
lly

-c
on

si
st

en
t

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
P

F1
A

R
Q

4
M

aj
or

V
ot

e
0.

97
0.

96
0.

97
0.

95
0.

76
0.

95
0.

85
0.

78
0.

97
0.

97
0.

97
0.

97
0.

78
0.

99
0.

87
0.

89

A
vg

Pr
ob

a
0.

97
0.

96
0.

96
0.

94
0.

76
0.

95
0.

85
0.

78
0.

97
0.

96
0.

97
0.

97
0.

81
0.

98
0.

89
0.

9

A
cc

W
Pr

ob
a

0.
97

0.
96

0.
96

0.
94

0.
76

0.
95

0.
85

0.
78

0.
97

0.
96

0.
97

0.
97

0.
81

0.
98

0.
89

0.
9

F1
W

Pr
ob

a
0.

97
0.

96
0.

96
0.

94
0.

76
0.

95
0.

85
0.

78
0.

97
0.

96
0.

97
0.

97
0.

81
0.

98
0.

89
0.

9

M
in

Pr
ob

a
0.

9
0.

99
0.

94
0.

91
0.

45
0.

97
0.

62
0.

55
0.

69
1

0.
82

0.
85

0.
25

1
0.

38
0.

64

M
ax

Pr
ob

a
1

0.
87

0.
93

0.
88

0.
96

0.
91

0.
93

0.
89

1
0.

76
0.

86
0.

85
0.

94
0.

78
0.

85
0.

84

Pr
od

Pr
ob

a
0.

0
0.

5
0.

0
0.

2
0.

0
0.

0
0.

0
0.

2
0.

0
0.

0
0.

0
0.

52
0.

0
0.

0
0.

0
0.

52

St
aP

re
dS

V
M

0.
98

0.
97

0.
97

0.
96

0.
81

0.
95

0.
87

0.
81

0.
96

0.
96

0.
96

0.
96

0.
78

0.
93

0.
85

0.
87

St
aP

ro
bS

V
M

0.
98

0.
97

0.
97

0.
96

0.
75

0.
95

0.
84

0.
77

0.
98

0.
98

0.
98

0.
98

0.
84

0.
98

0.
9

0.
91

St
aP

re
dR

F
0.

98
0.

96
0.

97
0.

95
0.

82
0.

95
0.

88
0.

82
0.

96
0.

98
0.

97
0.

97
0.

76
0.

96
0.

85
0.

87

St
aP

ro
bR

F
0.

98
0.

97
0.

97
0.

96
0.

84
0.

95
0.

89
0.

84
0.

98
0.

97
0.

97
0.

98
0.

81
0.

98
0.

89
0.

9

St
aP

re
dK

N
N

0.
98

0.
97

0.
97

0.
95

0.
8

0.
95

0.
87

0.
81

0.
95

0.
98

0.
97

0.
97

0.
76

0.
99

0.
86

0.
88

St
aP

ro
bK

N
N

0.
97

0.
97

0.
97

0.
95

0.
74

0.
95

0.
83

0.
76

0.
97

0.
97

0.
97

0.
97

0.
83

0.
97

0.
9

0.
91

St
aP

re
dM

L
P

0.
98

0.
97

0.
97

0.
95

0.
83

0.
95

0.
88

0.
83

0.
96

0.
98

0.
97

0.
97

0.
76

0.
97

0.
85

0.
87

St
aP

ro
bM

L
P

0.
98

0.
97

0.
97

0.
95

0.
77

0.
96

0.
85

0.
79

0.
98

0.
97

0.
97

0.
97

0.
82

0.
97

0.
89

0.
9

E
ns

em
Se

le
ct

0.
98

0.
97

0.
98

0.
96

0.
89

0.
94

0.
91

0.
86

0.
98

0.
98

0.
98

0.
98

0.
82

0.
98

0.
89

0.
9

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
da

ta
se

ta
nd

fo
r

ea
ch

R
Q

ba
se

d
on

th
e

F1
sc

or
e

be
fo

re
ro

un
di

ng



   22 Page 34 of 42 Empir Software Eng           (2023) 28:22 

Ta
bl
e
11

Pr
op

or
tio

n
of

m
al

w
ar

e
sa

m
pl

es
de

te
ct

ed
by

st
at

e-
of

-t
he

-a
rt

ap
pr

oa
ch

es
an

d
be

lo
ng

in
g

to
th

e
20

to
p

fa
m

ili
es

in
th

e
L
i
t
e
r
a
t
u
r
e

d
a
t
a
s
e
t

Fa
m

ili
es

#
D

R
E

B
IN

R
ev

ea
l

M
aM

aF
M

aM
aP

M
al

D
M

al
H

M
al

K
M

al
C

l
M

al
A

M
al

C
o

Te
m

po
ra

lly
in

co
ns

is
te

nt
do

w
gi

n
35

2
98
.6

68
.8

63
.1

86
.9

93
.2

94
.0

94
.3

94
.0

94
.0

94
.0

fa
ke

in
st

34
5

99
.4

31
.9

28
.7

38
.0

98
.6

98
.6

98
.6

98
.6

98
.6

98
.6

ku
gu

o
24

6
96
.7

62
.2

62
.6

83
.3

94
.7

94
.7

93
.9

95
.1

94
.7

94
.7

sm
sr

eg
22

2
96
.4

79
.3

43
.7

67
.6

91
.4

93
.2

92
.8

93
.2

93
.2

92
.8

ai
rp

us
h

21
4

86
.4

57
.0

6.
1

72
.4

87
.4

91
.6

90
.2

91
.1

91
.6

90
.7

ga
pp

us
in

19
9

86
.4

66
.8

28
.6

45
.2

88
.9

89
.4

89
.9

88
.9

89
.4

89
.4

bo
xe

r
19

5
99

.5
1.

5
76

.9
82

.1
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

ad
w

o
19

5
82

.6
72

.8
11

.8
62

.6
85

.6
86

.2
86
.7

85
.6

86
.2

86
.2

op
fa

ke
15

6
10
0.
0

69
.2

2.
6

8.
3

98
.7

82
.7

98
.7

98
.1

98
.1

98
.7

pl
an

kt
on

11
9

98
.3

28
.6

3.
4

58
.8

90
.8

90
.8

94
.1

92
.4

90
.8

90
.8

yo
um

i
11

1
82
.9

66
.7

38
.7

51
.4

82
.0

82
.9

85
.6

82
.9

82
.9

82
.9

um
pa

y
89

98
.9

92
.1

49
.4

94
.4

97
.8

97
.8

98
.9

98
.9

97
.8

97
.8

dr
oi

dk
un

gf
u

80
92

.5
73

.8
52

.5
66

.2
92

.5
92

.5
93
.8

93
.8

93
.8

93
.8

se
ca

pk
66

95
.5

93
.9

6.
1

13
.6

75
.8

75
.8

74
.2

75
.8

75
.8

74
.2

do
m

ob
54

85
.2

77
.8

22
.2

25
.9

85
.2

85
.2

87
.0

87
.0

85
.2

85
.2

sm
sa

ge
nt

54
98
.1

5.
6

0.
0

1.
9

96
.3

94
.4

96
.3

94
.4

94
.4

94
.4

ad
m

og
o

50
10
0.
0

96
.0

24
.0

90
.0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

re
vm

ob
48

81
.2

45
.8

50
.0

83
.3

81
.2

85
.4

85
.4

85
.4

81
.2

83
.3

gi
nm

as
te

r
48

83
.3

14
.6

14
.6

25
.0

77
.1

81
.2

79
.2

81
.2

81
.2

81
.2

jia
gu

45
97

.8
93

.3
13

.3
0.

0
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0



Empir Software Eng           (2023) 28:22 Page 35 of 42   22 

Ta
bl
e
11

(c
on

tin
ue

d)

Fa
m

ili
es

#
D

R
E

B
IN

R
ev

ea
l

M
aM

aF
M

aM
aP

M
al

D
M

al
H

M
al

K
M

al
C

l
M

al
A

M
al

C
o

Te
m

po
ra

lly
co

ns
is

te
nt

jia
gu

40
8

77
.2

64
.0

0.
0

0.
2

0.
7

10
.3

0.
7

0.
7

19
.9

19
.9

dn
ot

ua
30

3
5.

0
5.

0
0.

3
11

.2
94
.4

2.
6

94
.1

94
.1

2.
6

2.
6

ai
rp

us
h

29
6

60
.5

38
.5

3.
0

60
.8

69
.9

75
.7

87
.2

68
.2

75
.7

75
.7

fa
ke

ap
p

22
2

8.
1

6.
3

1.
8

1.
4

59
.9

24
.8

32
.4

59
.0

24
.8

24
.8

sm
sr

eg
13

6
94
.1

77
.9

36
.0

52
.2

57
.4

66
.9

63
.2

63
.2

69
.1

69
.1

se
ca

pk
12

2
40

.2
92
.6

4.
9

4.
9

41
.8

43
.4

43
.4

43
.4

43
.4

43
.4

sm
sp

ay
10

7
96
.3

88
.8

38
.3

56
.1

78
.5

80
.4

79
.4

78
.5

81
.3

81
.3

hi
dd

en
ad

s
80

98
.8

63
.8

7.
5

7.
5

15
.0

23
.8

16
.2

17
.5

30
.0

30
.0

do
w

gi
n

74
86
.5

86
.5

45
.9

51
.4

54
.1

63
.5

64
.9

67
.6

64
.9

64
.9

ky
vi

ew
70

98
.6

71
.4

31
.4

41
.4

52
.9

58
.6

51
.4

54
.3

62
.9

62
.9

te
nc

en
tp

ro
te

ct
69

68
.1

88
.4

0
0

97
.1

98
.6

98
.6

98
.6

98
.6

98
.6

yo
um

i
63

98
.4

66
.7

50
.8

55
.6

47
.6

61
.9

49
.2

55
.6

65
.1

65
.1

ra
m

ni
t

59
28

.8
13

.6
8.

5
25

.4
71

.2
16

.9
35

.6
76
.3

16
.9

16
.9

ku
gu

o
50

88
.0

78
.0

72
.0

66
.0

58
.0

48
.0

52
.0

58
.0

48
.0

48
.0

ew
in

d
47

59
.6

59
.6

6.
4

10
.6

46
.8

51
.1

34
.0

36
.2

55
.3

55
.3

le
ad

bo
lt

45
88
.9

84
.4

4.
4

71
.1

80
.0

73
.3

77
.8

75
.6

73
.3

73
.3

re
vm

ob
45

95
.6

17
.8

0.
0

35
.6

10
0.
0

88
.9

82
.2

95
.6

88
.9

88
.9

ta
ch

i
41

0
0

0
0

0
0

0
0

0
0

fe
iw

o
35

54
.3

51
.4

48
.6

65
.7

60
.0

51
.4

57
.1

60
.0

51
.4

51
.4

um
pa

y
32

93
.8

93
.8

56
.2

75
.0

68
.8

78
.1

96
.9

78
.1

78
.1

78
.1

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
m

al
w

ar
e

fa
m

ily



   22 Page 36 of 42 Empir Software Eng           (2023) 28:22 

Ta
bl
e
12

Pr
op

or
tio

n
of

m
al

w
ar

e
sa

m
pl

es
de

te
ct

ed
by

st
at

e-
of

-t
he

-a
rt

ap
pr

oa
ch

es
an

d
be

lo
ng

in
g

to
th

e
20

to
p

fa
m

ili
es

in
th

e
A
n
d
r
o
Z
o
o

d
a
t
a
s
e
t

Fa
m

ili
es

#
D

R
E

B
IN

R
ev

ea
l

M
aM

aF
M

aM
aP

M
al

D
M

al
H

M
al

K
M

al
C

l
M

al
A

M
al

C
o

Te
m

po
ra

lly
in

co
ns

is
te

nt
jia

gu
47

81
99

.6
99

.9
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

dn
ot

ua
14

0
43

.6
0.

7
92

.1
97
.9

97
.1

96
.4

48
.6

96
.4

52
.1

52
.9

se
cn

eo
69

84
.1

98
.6

0
98
.6

79
.7

58
.0

79
.7

79
.7

78
.3

78
.3

te
nc

en
tp

ro
te

ct
57

10
0.
0

96
.5

10
0.
0

10
0.
0

98
.2

98
.2

98
.2

98
.2

98
.2

98
.2

sm
sr

eg
46

95
.7

78
.3

19
.6

82
.6

95
.7

95
.7

95
.7

95
.7

95
.7

95
.7

hi
dd

ad
16

81
.2

37
.5

6.
2

56
.2

75
.0

75
.0

75
.0

68
.8

75
.0

75
.0

sm
sp

ay
11

10
0.
0

10
0.
0

90
.9

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

hy
pa

y
9

10
0.
0

77
.8

0
88

.9
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

ut
ilc

od
e

9
10
0.
0

10
0.
0

0.
0

88
.9

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

ew
in

d
8

10
0.
0

62
.5

75
.0

10
0.
0

75
.0

75
.0

87
.5

75
.0

75
.0

75
.0

w
ap

ro
n

8
10
0.
0

10
0.
0

87
.5

87
.5

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

da
ta

co
lle

ct
or

7
10
0.
0

85
.7

0.
0

85
.7

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

ku
gu

o
6

83
.3

83
.3

0.
0

66
.7

66
.7

66
.7

66
.7

66
.7

66
.7

66
.7

st
yr

ic
ka

6
10
0.
0

83
.3

0
0.

0
83

.3
83

.3
83

.3
83

.3
83

.3
83

.3

fa
ke

ap
p

5
80

.0
0.

0
0.

0
80

.0
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

tr
ia

da
5

10
0.
0

80
.0

60
.0

80
.0

80
.0

80
.0

80
.0

80
.0

80
.0

80
.0

re
vm

ob
5

80
.0

80
.0

0
80
.0

80
.0

80
.0

80
.0

80
.0

80
.0

80
.0

ai
rp

us
h

5
60
.0

20
.0

0
40

.0
60
.0

60
.0

60
.0

60
.0

60
.0

60
.0

ba
id

up
ro

te
ct

4
75

.0
75

.0
0.

0
10
0.
0

0.
0

25
.0

25
.0

25
.0

25
.0

25
.0

au
to

in
s

4
10
0.
0

10
0.
0

25
.0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0



Empir Software Eng           (2023) 28:22 Page 37 of 42   22 

Ta
bl
e
12

(c
on

tin
ue

d)

Fa
m

ili
es

#
D

R
E

B
IN

R
ev

ea
l

M
aM

aF
M

aM
aP

M
al

D
M

al
H

M
al

K
M

al
C

l
M

al
A

M
al

C
o

Te
m

po
ra

lly
co

ns
is

te
nt

jia
gu

53
51

87
.1

98
.9

99
.9

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

dn
ot

ua
45

7
28

.9
0

71
.8

89
.7

88
.8

89
.1

29
.8

87
.7

35
.9

34
.6

hi
dd

en
ad

35
65

.7
57

.1
54

.3
57

.1
65

.7
65

.7
65

.7
68
.6

65
.7

65
.7

hi
dd

ad
32

0.
0

3.
1

0
3.

1
15

.6
21
.9

15
.6

21
.9

21
.9

21
.9

jo
ke

r
11

27
.3

0
0

0
63

.6
63

.6
63

.6
72
.7

63
.6

63
.6

jo
ck

er
9

0.
0

0.
0

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0

em
ag

so
ft

w
ar

e
9

66
.7

33
.3

0
0

11
.1

11
.1

11
.1

11
.1

11
.1

11
.1

au
to

in
s

7
10
0.
0

10
0.
0

0
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

sm
sp

ay
7

85
.7

85
.7

71
.4

85
.7

71
.4

71
.4

71
.4

71
.4

71
.4

71
.4

pl
an

kt
on

7
0

0
0

0
0

0
0

0
0

0

hi
dd

en
ad

s
6

0.
0

0.
0

0
0.

0
16
.7

0.
0

0.
0

0.
0

0.
0

0.
0

ut
ilc

od
e

6
10
0.
0

33
.3

0
16

.7
66

.7
50

.0
66

.7
50

.0
50

.0
50

.0

fu
np

ay
5

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

se
cn

eo
5

0.
0

0
0

0
0

20
.0

0
0

0
0

fa
ke

ap
p

5
0

0
0

0
0

0.
0

0
0

0.
0

0.
0

sm
sr

eg
5

40
.0

40
.0

40
.0

20
.0

40
.0

40
.0

60
.0

60
.0

40
.0

40
.0

da
ta

co
lle

ct
or

5
10
0.
0

40
.0

0
80

.0
10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

hi
dd

en
ap

p
5

0
0

0
0

0
0

0
0

0
0

ap
kp

ro
te

ct
or

4
25

.0
0.

0
25

.0
25

.0
50

.0
50

.0
25

.0
25

.0
50
.0

50
.0

ai
rp

us
h

4
50
.0

25
.0

0
0

25
.0

25
.0

25
.0

25
.0

25
.0

25
.0

T
he

en
tr

ie
s

in
bo

ld
sh

ow
th

e
be

st
de

te
ct

or
fo

r
ea

ch
m

al
w

ar
e

fa
m

ily



   22 Page 38 of 42 Empir Software Eng           (2023) 28:22 

Acknowledgements This work was partially supported (a) by the Fonds National de la Recherche (FNR),
Luxembourg, under project CHARACTERIZE C17/IS/11693861, (b) by the University of Luxembourg
under the HitDroid grant, (c) by the SPARTA project, which has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No 830892, and (d) by the Luxem-
bourg Ministry of Foreign and European Affairs through their Digital4Development (D4D) portfolio under
project LuxWAyS.

Data Availability The datasets used in the present study are available in our repository: https://github.com/
Trustworthy-Software/Combination-malware-detectors

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL (2015) Identifying android malware
using dynamically obtained features. J Comput Virology Hacking Tech 11(1):9–17

Alam MS, Vuong ST (2013) Random forest classification for detecting android malware. In: 2013 IEEE
International conference on green computing and communications and IEEE internet of things and
IEEE cyber, physical and social computing, pp 663–669. https://doi.org/10.1109/GreenCom-iThings-
CPSCom.2013.122

Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y (2016a) Empirical assessment of machine
learning-based malware detectors for android. Empirical Softw Eng 21(1):183–211. https://doi.org/10.
1007/s10664-014-9352-6

Allix K, Bissyandé TF, Klein J, Le Traon Y (2016b) Androzoo: collecting millions of android apps for
the research community. In: Proceedings of the 13th international conference on mining software
repositories, ACM, New York, MSR ’16, pp 468–471. https://doi.org/10.1145/2901739.2903508

Allix K, Bissyandé TF, Klein J, LeTraon Y (2015) Are your training datasets yet relevant? In: Piessens F,
Caballero J, Bielova N (eds) Engineering secure software and systems, springer international publishing,
Cham, pp 51–67. https://doi.org/10.1007/978-3-319-15618-7 5

Appice A, Andresini G, Malerba D (2020) Clustering-aided multi-view classification: a case study on android
malware detection. J Intell Inf Syst 55(1):1–26

Arp D, Quiring E, Pendlebury F, Warnecke A, Pierazzi F, Wressnegger C, Cavallaro L, Rieck K (2020) Dos
and don’ts of machine learning in computer security. arXiv:201009470

Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: efficient and explainable detection
of android malware in your pocket. In: Proceedings of the ISOC network and distributed system security
symposium (NDSS), San Diego, CA

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Brown G (2010) Ensemble learning. Encyclopedia Mach Learn 312:15–19
Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of models. In:

Proceedings of the twenty-first international conference on machine learning, association for computing
machinery, New York, ICML ’04, p 18. https://doi.org/10.1145/1015330.1015432

Christianah A, Gyunka B, Oluwatobi A (2020) Optimizing android malware detection via ensemble learning.
https://www.learntechlib.org/p/217826

DATA G (2020) G DATA mobile malware report. https://www.gdatasoftware.com/news/1970/01/-36401-g-
data-mobile-malware-report-harmful-android-apps-every-eight-seconds . Accessed 10 June 2021

https://github.com/Trustworthy-Software/Combination-malware-detectors
https://github.com/Trustworthy-Software/Combination-malware-detectors
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.122
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.122
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1007/978-3-319-15618-7_5
http://arxiv.org/abs/201009470
https://doi.org/10.1145/1015330.1015432
https://www.learntechlib.org/p/217826
https://www.gdatasoftware.com/news/1970/01/-36401-g-data-mobile-malware-report-harmful-android-apps-every-eight-seconds
https://www.gdatasoftware.com/news/1970/01/-36401-g-data-mobile-malware-report-harmful-android-apps-every-eight-seconds


Empir Software Eng           (2023) 28:22 Page 39 of 42   22 

Daoudi N, Allix K, Bissyandé TF, Klein J (2021a) A deep dive inside drebin: an explorative analysis beyond
android malware detection scores. ACM Trans Privacy Secur (TOPS) Appear

Daoudi N, Allix K, Bissyandé TF, Klein J (2021b) Lessons learnt on reproducibility in machine learning
based android malware detection. Empirical Softw Eng 26(4):1–53. https://doi.org/10.1007/s10664-021-
09955-7

Daoudi N, Samhi J, Kabore AK, Allix K, Bissyandé TF, Klein J (2021c) Dexray: a simple, yet effective
deep learning approach to android malware detection based on image representation of bytecode. In:
Wang G, Ciptadi A, Ahmadzadeh A (eds) Deployable machine learning for security defense, springer
international publishing, Cham, pp 81–106. https://doi.org/10.1007/978-3-030-87839-9 4

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Dhalaria M, Gandotra E (2020) Android malware detection using chi-square feature selection and ensemble

learning method. In: 2020 Sixth international conference on parallel, distributed and grid computing
(PDGC), pp 36–41. https://doi.org/10.1109/PDGC50313.2020.9315818

Ding Y, Zhang X, Hu J, Xu W (2020) Android malware detection method based on bytecode image. J
Ambient Intell Humanized Comput:1–10

Dong X, Yu Z, Cao W, Shi Y, Ma Q (2020) A survey on ensemble learning. Frontiers Comput Sci 14(2):241–
258

Fereidooni H, Conti M, Yao D, Sperduti A (2016) Anastasia: android malware detection using static analysis
of applications. In: 2016 8th IFIP international conference on new technologies, mobility and security
(NTMS), pp 1–5. https://doi.org/10.1109/NTMS.2016.7792435

Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application
to boosting. J Comput Syst Sci 55(1):119–139. https://doi.org/10.1006/jcss.1997.1504, https://www.
sciencedirect.com/science/article/pii/S002200009791504X

Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
J Amer Stat Assoc 32(200):675–701. https://doi.org/10.1080/01621459.1937.10503522

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals Stat:1189–1232
Garcia J, Hammad M, Malek S (2018) Lightweight, obfuscation-resilient detection and family identification

of android malware. ACM Trans Softw Eng Methodol, vol 26(3). https://doi.org/10.1145/3162625
Huang TH, Kao H (2018) R2-d2: color-inspired convolutional neural network (cnn)-based android mal-

ware detections. In: 2018 IEEE international conference on big data (big data), pp 2633–2642.
https://doi.org/10.1109/BigData.2018.8622324

Hurier M, Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) On the lack of consensus in anti-virus
decisions: metrics and insights on building ground truths of android malware. In: Proceedings of the
13th international conference on detection of intrusions and malware, and vulnerability assessment -
vol 9721, Springer-Verlag, Berlin, Heidelberg, DIMVA 2016, pp 142–162. https://doi.org/10.1007/978-
3-319-40667-1 8

Idrees F, Rajarajan M, Conti M, Chen TM, Rahulamathavan Y (2017) Pindroid: a novel android mal-
ware detection system using ensemble learning methods, vol 68, pp 36–46. https://doi.org/10.1016/j.
cose.2017.03.011 , https://www.sciencedirect.com/science/article/pii/S0167404817300640

Kaspersky (2021) Kaspersky security network. https://securelist.com/it-threat-evolution-q1-2021-mobile-
statistics/102547/. Accessed 10 June 2021

Mariconti E, Onwuzurike L, Andriotis P, De Cristofaro E, Ross G, Stringhini G (2017) Mamadroid: detecting
android malware by building markov chains of behavioral models. In: ISOC network and distributed
systems security symposiym (NDSS), San Diego, CA

Miller B, Kantchelian A, Tschantz MC, Afroz S, Bachwani R, Faizullabhoy R, Huang L, Shankar V, Wu T,
Yiu G, Joseph AD, Tygar JD (2016) Reviewer integration and performance measurement for malware
detection. In: Caballero J, Zurutuza U, Rodrı́guez RJ (eds) Detection of intrusions and malware, and
vulnerability assessment. Springer international publishing, Cham, pp 122–141

Milosevic N, Dehghantanha A, Choo KKR (2017) Machine learning aided android malware classifica-
tion. Comput Electr Eng 61:266–274. https://doi.org/10.1016/j.compeleceng.2017.02.013, https://www.
sciencedirect.com/science/article/pii/S0045790617303087

Nemenyi PB (1963) Distribution-free multiple comparisons. Princeton University
Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G (2019) Mamadroid: detecting

android malware by building markov chains of behavioral models (extended version). ACM Trans Priv
Secur 22(2):14:1–14:34. https://doi.org/10.1145/3313391

Palumbo P, Sayfullina L, Komashinskiy D, Eirola E, Karhunen J (2017) A pragmatic android malware detec-
tion procedure. Comput Secur 70:689–701. https://doi.org/10.1016/j.cose.2017.07.013, https://www.
sciencedirect.com/science/article/pii/S0167404817301542

Parab S, Bhalerao S (2010) Choosing statistical test. Int J Ayurveda Res 1(3):187

https://doi.org/10.1007/s10664-021-09955-7
https://doi.org/10.1007/s10664-021-09955-7
https://doi.org/10.1007/978-3-030-87839-9_4
https://doi.org/10.1109/PDGC50313.2020.9315818
https://doi.org/10.1109/NTMS.2016.7792435
https://doi.org/10.1006/jcss.1997.1504
https://www.sciencedirect.com/science/article/pii/S0022000097 91504X
https://www.sciencedirect.com/science/article/pii/S0022000097 91504X
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1145/3162625
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1007/978-3-319-40667-1_8
https://doi.org/10.1007/978-3-319-40667-1_8
https://doi.org/10.1016/j.cose.2017.03.011
https://doi.org/10.1016/j.cose.2017.03.011
https://www.sciencedirect.com/science/article/pii/S0167404817 300640
https://securelist.com/it-threat-evolution-q1-2021-mobile-statistics/102547/
https://securelist.com/it-threat-evolution-q1-2021-mobile-statistics/102547/
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://www.sciencedirect.com/science/article/pii/S0045790617 303087
https://www.sciencedirect.com/science/article/pii/S0045790617 303087
https://doi.org/10.1145/3313391
https://doi.org/10.1016/j.cose.2017.07.013
https://www.sciencedirect.com/science/article/pii/S0167404817 301542
https://www.sciencedirect.com/science/article/pii/S0167404817 301542


   22 Page 40 of 42 Empir Software Eng           (2023) 28:22 

Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L (2019) TESSERACT: eliminating experimental
bias in malware classification across space and time. In: 28th USENIX security symposium (USENIX
security 19), USENIX association, Santa Clara, CA, pp 729–746. https://www.usenix.org/conference/
usenixsecurity19/presentation/pendlebury

Perinetti G (2016) Statips part i: choosing statistical test when dealing with differences. South European J
Orthodontics Dentofacial Res 3(1):3–4

Rossow C, Dietrich CJ, Grier C, Kreibich C, Paxson V, Pohlmann N, Bos H, Steen VM (2012) Prudent
practices for designing malware experiments: status quo and outlook. In: 2012 IEEE symposium on
security and privacy, pp 65–79. https://doi.org/10.1109/SP.2012.14

Sagi O, Rokach L (2018) Ensemble learning: a survey. Wiley Interdisciplinary Rev Data Mining Knowl
Discover 8(4):e1249

Salem A, Banescu S, Pretschner A (2021) Maat: automatically analyzing virustotal for accurate labeling and
effective malware detection. ACM Trans Priv Secur, vol 24(4). https://doi.org/10.1145/3465361

Sebastián M, Rivera R, Kotzias P, Caballero J (2016) Avclass: a tool for massive malware labeling. In:
International symposium on research in attacks, intrusions, and defenses, Springer, pp 230-253

Sheldon MR, Fillyaw MJ, Thompson WD (1996) The use and interpretation of the friedman test in the
analysis of ordinal-scale data in repeated measures designs. Physiother Res Int 1(4):221–228

Sun T, Daoudi N, Allix K, Bissyandé TF (2021) Android malware detection: looking beyond dalvik bytecode.
In: Proceedings of the 36th IEEE/ACM international conference on automated software engineering
workshops, ASE ’21

Wang J, Jing Q, Gao J, Qiu X (2020) Sedroid: a robust android malware detector using selective ensem-
ble learning. In: 2020 IEEE wireless communications and networking conference (WCNC), pp 1–5.
https://doi.org/10.1109/WCNC45663.2020.9120537

Wang X, Zhang D, Su X, Li W (2017) Mlifdect: android malware detection based on parallel machine
learning and information fusion. Secur Commun Netw, vol 2017

Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259
Wu Y, Li X, Zou D, Yang W, Zhang X, Jin H (2019) Malscan: fast market-wide mobile malware scanning

by social-network centrality analysis. In: 2019 34th IEEE/ACM international conference on automated
software engineering (ASE), pp 139–150

Wu D, Mao C, Wei T, Lee H, Wu K (2012) Droidmat: android malware detection through manifest
and api calls tracing. In: 2012 Seventh asia joint conference on information security, pp 62–69.
https://doi.org/10.1109/AsiaJCIS.2012.18

Xu J, Li Y, Deng RH (2021) Differential training: a generic framework to reduce label noises for android
malware detection. In: Proceeding of network and distributed system security symposium (NDSS)

Yerima SY, Sezer S, Muttik I (2014) Android malware detection using parallel machine learning classifiers.
In: 2014 Eighth international conference on next generation mobile apps, services and technologies,
pp 37–42. https://doi.org/10.1109/NGMAST.2014.23

Yerima SY, Sezer S, Muttik I (2015) High accuracy android malware detection using ensemble learning. IET
Inf Secur 9(6):313–320

Zhang X, Jin Z (2016) A new semantics-based android malware detection. In: 2016 2nd IEEE international
conference on computer and communications (ICCC), pp 1412–1416. https://doi.org/10.1109/Comp
Comm.2016.7924936

Zhang W, Ren H, Jiang Q, Zhang K (2015) Exploring feature extraction and elm in malware detection for
android devices. In: Hu X, Xia Y, Zhang Y, Zhao D (eds) Advances in neural networks – ISNN 2015,
Springer international publishing, Cham, pp 489-498

Zhao Y, Li L, Wang H, Cai H, Bissyandé TF, Klein J, Grundy J (2021) On the impact of sample duplication
in machine-learning-based android malware detection. ACM Trans Softw Eng Methodol, vol 30(3).
https://doi.org/10.1145/3446905

Zhao C, Wang C, Zheng W (2019) Android malware detection based on sensitive permissions and apis. In:
International conference on security and privacy in new computing environments, Springer, pp 105–113

Zhao C, Zheng W, Gong L, Zhang M, Wang C (2018) Quick and accurate android malware detection based
on sensitive apis. In: 2018 IEEE international conference on smart internet of things (SmartIoT), pp 143–
148. https://doi.org/10.1109/SmartIoT.2018.00034

Zhu H, Li Y, Li R, Li J, You Z, Song H (2020) Sedmdroid: an enhanced stacking ensemble of deep
learning framework for android malware detection. IEEE Trans Netw Sci Eng:1–1. https://doi.org/10.
1109/TNSE.2020.29963792020.2996379

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://www.usenix.org/conference/usenixsecurity19/presentati on/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentati on/pendlebury
https://doi.org/10.1109/SP.2012.14
https://doi.org/10.1145/3465361
https://doi.org/10.1109/WCNC45663.2020.9120537
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/NGMAST.2014.23
https://doi.org/10.1109/CompComm.2016.7924936
https://doi.org/10.1109/CompComm.2016.7924936
https://doi.org/10.1145/3446905
https://doi.org/10.1109/SmartIoT.2018.00034
https://doi.org/10.1109/TNSE.2020.2996379
https://doi.org/10.1109/TNSE.2020.2996379


Empir Software Eng           (2023) 28:22 Page 41 of 42   22 

Nadia Daoudi received her Master degree in Computer Science
from the École des Mines de Saint-Étienne (France), in 2018. She
is currently a doctoral researcher at the Interdisciplinary Centre for
Security, Reliability and Trust (SnT) of the University of Luxem-
bourg. Her research interests are in the area of Android security
with a special focus on Machine Learning-based Android malware
detection.

Kevin Allix is an Assistant Professor at CentraleSupélec in Rennes,
France, where he carries research on Android Malware detection,
Machine-Learning for Security, Software Engineering, and Natural
Language Processing. Before he moved to research, Kevin held oper-
ational positions in network, system, and security engineering. Kevin
received his PhD degree in 2015 from the University of Luxembourg.

Tegawendé F. Bissyandé is a chief scientist at the Interdisciplinary
Centre for Security, Reliability and Trust (SnT) of the University of
Luxembourg. He received his PhD degree in Computer Sciences from
the University of Bordeaux (France) in 2013. His research interests lie
in trustworthy software engineering, notably in automated debugging,
automated program repair and software security. He has co-authored
over 80 research papers, in top-tiers venues such as TSE, TOSEM,
ICSE, ESEC/FSE, ASE.



   22 Page 42 of 42 Empir Software Eng           (2023) 28:22 

Jacques Klein is a chief scientist at the Interdisciplinary Centre for
Security, Reliability and Trust (SnT) of the University of Luxem-
bourg. He received a Ph.D. degree in Computer Science from the
University of Rennes, France in 2006. His main areas of expertise are:
Software Security, Software reliability, and explainable software. He
has published over 150 research papers, often at prestigious venues
such as TSE, ICSE, ESEC/FSE, Usenix Security, etc.


	Assessing the opportunity of combining state-of-the-art Android malware detectors
	Abstract
	Introduction
	This paper

	Study design
	Research questions
	Dataset
	Literature dataset
	AndroZoo dataset


	Experimental setup
	Study subjects: literature detectors
	DREBIN drebin
	MaMaDroid mamadroid:ndss
	RevealDroid revealdroid
	MalScan malscan


	Study results
	RQ1: Is there a state-of-the-art malware detector that outperforms all others across all datasets?
	RQ2: To what extent do state-of-the-art approaches detect similar/different malware?
	RQ3: Does merging the feature sets from state-of-the-art approaches lead to a high-performing malware detector in all the settings?
	RQ4: Does combining predictions from state-of-the-art approaches lead to a high-performing malware detector in all the settings?
	RQ5: Does combining feature sets or predictions from state-of-the-art approaches lead to classifiers that significantly outperform the original detectors?

	Discussion
	Ensuring high detection performance across datasets
	Hypothetic reasons behind the failure of ensemble learning to outperform the state of the art
	Threats-to-validity

	Related work
	Assessment of existing work
	Ensemble learning for android malware detection

	Conclusion
	Declarations
	References


