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Simple visibility design in network games

Gabrielle Demange
January 5, 2023

Abstract Individuals interact through social media networks by posting contribu-
tions, comments and the like. These actions entail complementarities and generate
spillovers. A social media carefully designs its platform, often with the objective
of increasing users’ activity. Here I study visibility strategies, which promote some
individuals by making their contributions more visible than others’. Under some
specifications, optimal strategies are simple, making visible the individuals whose
total impact (total number of followers for example) is maximal. Comparisons with
other targeting strategies are discussed.
Journal of Economic Literature Classification Number: C72, D85, C69.
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1 Introduction

The tremendous growth in the social networks industry has triggered a variety of
research. Statisticians and empiricists develop tools to analyze large networks and
exploit the access to a huge amount of data, game theorists model how individuals
form links and interact on a social network, marketing and computer scientists design
targeting strategies taking advantage of detailed information on users. The growth of
social networks is mainly conducted by companies, called social media platforms,
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say, Facebook, Twitter or Instagram to name a few. Companies not only facilitate
interactions but also shape them through the platform’s design encapsulated in
recommendation algorithms. The designmatters for users, as illustrated by Instagram
project in May 2022 to change its algorithm. In the current setup, the users see
mostly pictures of friends or people they follow; the proposed algorithm would have
recommended ads and videos from creators they do not follow. Given the users’
protests,1 the proposal is not yet implemented (as of December 2022). The design
chosen by a platform, whose objective is to maximize its revenues, may create
tensions with the users and lower their incentives to participate. I propose a simple
analysis of one aspect of this design, namely visibility, by considering strategies that
promote some individuals’ actions.2

The analysis is based on a simple game in which individuals embedded in a social
network interact directly with their neighbors. For example, in a friendship network,
an individual exerts an effort level to help his/her friends and benefits from their effort
to help; on a social media network, a user posts contributions accessible to his/her
followers and reads the contributions of those he/she follows (his/her influencers).
Individuals’ payoffs positively depend on a weighted combination of their neighbors’
actions, called exposure. As a result, the game exhibits strategic complementarities,
meaning that the incentives for an individual to increase one’s action rise with
increases in the others’ actions. Nash equilibria describe the full extent of these
incentives, in particular they embody not only the influence of neighbors but also
that of neighbors of neighbors, and, by extension, the indirect influence channelled
though the network of relationships. This paper analyzes the equilibria for specific
payoffs for which the best responses are linear in exposure. Equilibria are unique and
easy to compute when they exist. Uniqueness allows for an analysis of design issues.

On an Internet platform, a variety of tools can be used for discriminating actions.
Contributions can be presented in a biased order or displayed during different periods
of time, making them more or less visible. How does a platform design visibility
when its objective is to maximize aggregate activity (the sum of the actions)? I
examine this question by modeling visibility in a simple way by weights, interpreted
for example as the relative time to display contributions. Importantly, the platform,
which knows the network structure, correctly anticipates how its strategies affect
equilibria.

Empirical studies conducted by computer scientists provide a guide for modeling
social networks, especially social media networks. Their topology is analyzed by
computing various statistics such as the distributions of in- and out-degrees, cluster-
ing, the proportion of the directed links. For example, Kwak, Lee, Park and Moon
(2010) analyze the topology of the follower graph on Twitter. They show important
differences with other social networks; in particular the graph is directed due to the
lack of reciprocity of links. An important insight of these studies is that influence
-measured by the number of retweets- is related but not aligned with the number of
followers. Furthermore, statistics such as centrality indices are rather bad predictors

1 Stop trying to be TikTok: how video-centric Instagram sparked a revolt (Guardian 31 July 2022).
2 To avoid confusion, I use the word “action" for the individuals and “strategy" for the designer.
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of behaviors and real interactions. This justifies a strategic analysis that distinguishes
the network structure from the behaviors of agents embedded in the network.

The problem of a designer (planner, firm) trying to influence individuals’ actions
in situations with complementarities has been investigated in the economics litera-
ture. Studies differ along several dimensions, in particular in the interaction model,
the designer ’s objective and the tools of intervention. A first class of interaction
models builds on Ballester, Calvo Armengol and Zenou (2006) who introduced
games on a network with a linear best responses as in this paper. They consider the
problem of removing a well-chosen agent -the key player- so as to minimize aggre-
gate activity. It has been followed by an extensive literature studying interventions
aiming at modifying aggregate activity, as referred to in Demange (2017), where
I study an extension of the game with increasing but non-linear best responses in
exposure. Galeotti, Golub and Goyal (2020) consider the maximization of welfare.
These interventions modify the marginal incentives of individuals to contribute but
do not change the importance of the links. In contrast, a visibility strategy as consid-
ered here (partially) changes the network structure; in particular, all the links toward
an agent whose visibility weight is null are withdrawn. The problem of changing the
network structure is challenging and results are limited (Ballester, Calvo Armengol
and Zenou (2006) already cited and Belhaj, Bervoets, Deroian 2016). In a second
class of interaction models, actions are discrete, most often binary. They describe,
for instance, the choice of a location, the adoption of a new technology, or the health
status, see, e.g., Schelling (1969) in a behavioral model, Morris (2003) in a strategic
framework, or Domingos and Richardson (2001) in a marketing context. Analytical
results on equilibria and optimal interventions are difficult to obtain in these mod-
els; simulations suggest that some characteristics of the behavioral process (say the
probability of adoption as a function of neighbors and history) play an important
role (Dodds and Watts (2004, Kempe, Kleinberg and Tardos 2003).

The paper relies on linear analysis (especially on positive matrices) and net-
works, domains to which David Gale made important contributions. He wrote a
famous book on linear models (1960), proved an important result on the feasibility
of flows in networks (1957). Gale and Politof (1981) extend to general networks
Shapley’s results on maximal network flow (1961) and complements or substitutes
in assignment problems (1962).

The plan is as follows. Section 2 introduces the model and describes equilibria.
Section 3 examines aggregate activity and visibility strategies.

2 The basic interaction model

There is a set of n agents, N = {1, · · · , n}, who are in a situation of interaction.
Interactions are bilateral, specified by a weighted network. Sect. 2.1 describes the
game and provides two illustrations. Sect. 2.2 defines and solves the equilibria of the
game.



4 Gabrielle Demange January 5, 2023

2.1 The game

Each agent chooses an action represented by a nonnegative real number, xi for i.
The payoff to i, denoted ui , depends not only on i’s own action but also on others’
actions. Specifically, denoting x = (xi)i∈N the vector of all actions3 ui is given by:

ui(x) = xi(xi +
∑
j

Xi j xj) −
x2
i

2
for each i (1)

where xi is positive, Xi j is nonnegative and Xii = 0. ui is made of benefit (the first
term) and cost (the second term). Cost is quadratic in the action level. i’s benefit is
linear in i’s action with a return that depends on j’s action if Xi j > 0. Xi j measures
the strength of this dependence and is called the impact of j on i. Given x, i’s
exposure is defined as the linear combination of others’ actions weighted by their
impact,

∑
j Xi j xj . The return to xi is thus equal to xi augmented of i’s exposure. xi

is the action that i would take if i’s exposure was null. Call xi i’s standalone action.
An agent i who has no interaction with others, that is Xi j and Xji are null for each j,
optimally plays the standalone action whatever other players are doing.

The game is thus characterized by the n-vector of positive standalone actions
x = (xi) and the n × n impact matrix X = (Xi j) with nonnegative elements and null
diagonal.

Examples

In the following two examples, the impacts are derived from an observed network
of links between agents. The network has N as the set of nodes and is described by
its adjacency matrix G: Gi j = 1 if (i, j) is a link and Gi j = 0 if (i, j) is not a link. G
is not necessarily symmetric (Example 1) and, even if symmetric, the impact matrix
X derived from G is not necessarily symmetric (Example 2).
Example 1: unweighted network Let G represent the follower graph of a platform
such as Twitter. Let Gi j = 1 if i “follows" j, meaning that i receives the tweets
posted by j. j thus influences or impacts i. But j does not have to reciprocate
and follow i: as emphasized by Kwak et al. (2010), the Twitter follower graph is
not symmetric, in contrast with social media such as Facebook where links are
reciprocated. Individuals post contributions and xi represents the number or quality
of i’s contributions. Suppose that there is no congestion between followers nor
influencers in the access to contributions, meaning that the impact of j on i is
independent of the number of j’s followers and the number of i’s influencers. In

3 In what follows, vectors and matrices are denoted in bold letters. 11 denotes the n-vector of ones
and In the n-identity matrix. Given two n-vectors v and v′, v ≥ v′ if vi ≥ v′i for each i. Similarly,
for two matrices A and A′ of the same dimension, A ≥ A′ if Ai j ≥ Bi j for each (i, j). ṽ denotes
the transpose of vector v and similarly for a matrix. Finally, given vector v, dg(v) denotes the
diagonal matrix with vj as the j-th element on the diagonal.
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that case, i’s exposure is equal to δ
∑

j Gi j xj , the sum of the contributions of i’s
influencers up to a discount factor δ that measures the effect of contributions relative
to the standalone actions and cost. Hence X = δG.
Example 2 Let G represent a network between relatives. Gi j = 1 if j cares for i. In a
friendship network, G is symmetric. Let xj represent the total effort (care or overall
time) spent by j with the relatives he/she cares of. Assuming effort to be split equally
among them, j’s effective effort on each relative is equal to x j

G+ j
where G+j =

∑
i Gi j

is j’s in-degree. Define i’s exposure as the sum of the effective attention i receives, up
to a discount factor δ: δ

∑
j Gi j

x j

G+ j
. This defines the impact matrix X by Xi j =

Gi j

G j+
.

Defining j’s impact total by X+j =
∑

i Xi j , total impacts are equal across individuals.

2.2 Equilibrium

The analysis of interactions relies on the notion of (Nash) equilibrium,which requires
that no player observing others’ actions could increase his/her payoff by changing
his/her own action. Formally:

Definition 1 Let x−i = (xj)j,i denote the actions of agents other than i.
i’s best responses to x−i are i’s actions that maximize i’s payoff taking (x−i) as

given, i.e. maximize: xi → ui(xi, x−i).
x is an equilibrium if for each i, xi is a best response to others’ actions x−i .

In our game, payoffs are concave and playing a null action is never optimal be-
cause the standalone actions are assumed to be positive. As a result, best responses
are surely positive, characterized by first order conditions. Specifically, i’s best re-
sponse to x−i is xi = xi +

∑
j Xi j xj , which is a linear and increasing function of

i’s exposure. The game therefore exhibits strategic complementarities, meaning that
players have incentives to (weakly) increase their own action when others’ actions
increase. In Example 1, strategic complementarities mean that the more numerous
the influencers’ contributions, the more a follower wants to contribute. In Example 2,
strategic complementarities mean that the larger the relatives’ effective effort toward
an individual, the more effort the individual is ready to exert.

The problems of existence and computation of equilibria are not easy to solve in
general since equilibria are fixed points of the collection of best responses. However,
in our game, the problems are very easy to solve due to the linearity of best responses,
as stated in Property 1:

Property 1 Let ρ denote the dominant eigenvalue of the nonnegative matrix X . If
ρ < 1, then an equilibrium exists and is unique given by

x = (In − X)−1x. (2)

If ρ ≥ 1 there is no equilibrium.
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Formula (2) is standard and first appears in Ballester et al. (2006), based on an explicit
computation of the fixed points of the best responses. I give the proof for complete-
ness. I also provide an alternative proof based on strategic complementarities, which
allows for a better understanding of the condition for existence; furthermore it ex-
tends to games with non-linear (but increasing) best responses without invoking a
topological fixed point theorem.4 As shown by Topkis (1979), equilibria (if they
exist) can be obtained by iterating best responses. Here, starting from standalone ac-
tions, iterated responses reinforce each other and increase. As a result, they converge
to an equilibrium, except if the spillover effects due to complementarities are strong
enough to make the sequence of best responses unbounded. The dominant eigen-
value of the impact matrix measures the strength of these spillover effects: when the
eigenvalue is equal or greater than 1, iterated best responses become infinitely large
and no equilibrium exists.

Proof To prove (2), recall that x is an equilibrium if each i plays a best response to
others’ actions: xi = xi +

∑
j Xi j xj or in matrix form (In − X)x = x. According to

Perron Frobenious theorem on positive matrices (see footnote 5) , In−X is invertible
and its inverse is positive if the dominant eigenvalue of X is less than 1: (2) follows.

Consider now the alternative proof based on Topkis process of iterated best
responses. Start by assuming that players exert their standalone actions. Denote
x(0) = x. Standalone actions are optimal against a null exposure, so, are not optimal
against x(0) for players who follow someone. Their best responses, denoted by
x(1), are larger: xi(1) = xi(0) +

∑
j Xi j xj(0) for each i, or x(1) = x(0) + Xx(0).

But now, xi(1) is not optimal for i against x(1); let players adjust x(1) to their
best responses x(2) = x(0) + Xx(1). Iterating best responses, actions x(t) at step
t follow the process x(t) = x(0) + Xx(t − 1). Successive adjustments thus satisfy
x(t) − x(t − 1) = X(x(t − 1) − x(t − 2)) for t ≥ 1, which implies x(t) − x(t − 1) =
X t−1(x(1) − x(0)). Since x(1) − x(0) = Xx(0), we obtain that the adjustment at t is
equal to X t x(0). Writing x(t) as the sum of the successive adjustments starting from
x(0) = x, we obtain:

x(t) = [In + X + X2 + ... + X t ]x. (3)

When t increases, there are two cases.
Case 1: ρ < 1. Perron Frobenious theorem5 implies that the sums

∑t
k=0 X

k

converge and their limit is the inverse of In − X :

(In − X)−1 =

∞∑
k=0

Xk (4)

Taking the limit in (3) proves (2).

4 In Demange (2017), I consider best responses that are increasing in exposure. When they are not
linear, the conditions for the existence of an equilibrium differ from those for their uniqueness.
5 According to the theorem, ρ is at least as large as the absolute value of any other eigenvalue. This
implies that for ρ < 1, the sums

∑t
k=0 X

k converge when t increases; their limit is the inverse of
In − X by taking the limit in the identity (In − X)(

∑t
k=0 X

k ) = In − X t+1.
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Case 2: ρ ≥ 1. The iterated best responses x(t) become increasingly large because
X t x does not tend to zero when t increases. To show this, consider the transpose of
X , denoted by ˜X . Matrix ˜X is a nonnegative matrix with the same eigenvalues as
X . Hence, ˜X has a nonnegative dominant eigenvector y associated to ρ: ỹX = ρ ỹ.
Iterating implies ỹX t x = ρt ỹ x. Since x is positive, ỹ x is positive. This implies
that ỹX t x either stays constant and positive (for ρ = 1) or increases indefinitely (for
ρ > 1).6Whatever case, X t x does not go to zero and iterated best responses become
increasingly large when t increases. �

Remark For general games, an equilibrium is quite demanding in terms of compu-
tational point of view (as fixed points are) and players’ rationality. As the argument
is only based on best responses, the analysis applies also to a behavioral setting,
in which agents’ behaviors are described by exogenous reaction functions that are
linear and increasing in others’ actions.

3 Aggregate activity and visibility

Aggregate activity in our model is measured by the sum of the actions
∑

i xi . En-
hancing aggregate activity7 is the objective for a social media platform, which gives
free access to users and draws its revenues from ads. These revenues are linked to
the time users spend on the platform, proxied by aggregate activity. Maximizing rev-
enues is thus achieved by maximizing aggregate activity. This section assumes that
the designer can change the visibility of users’ actions. Subsection 3.1 introduces
how visibility is modeled and presents a result that illustrates the spillover effects
it generates (Proposition 1). Subsection 3.2 considers the maximization problem of
aggregate activity by a designer who can change the visibility of agents’ actions and
who anticipates the effect of its interventions on the equilibria.

3.1 Visibility strategy and supermodularity of aggregate activity

A visibility strategy is described by individuals’ multipliers that multiply their im-
pact. Proposition 1 shows that the increase in aggregate action from increasing the
multiplier on a particular individual is larger the larger the others’ multipliers are, a
property called supermodularlity.

Formally, a visibility strategy is described by a nonnegative vector v = (vi); vj is
called j’s multiplier as it has the same effect as multiplying j’s impact on each other
player by vj , i.e. each xi j is modified into xi jvj . Equivalently, for each i, i’s payoffs

6 The result holds even if the sequence X t/ρt does not converge, which may happen when X is
not regular.
7 Enhancing aggregate activity is an objective for a designer in other contexts. For example, a health
agency aims to maximize individuals’ precautionary efforts, possibly building on peer networks.
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are:

ui(x, v) = xi(xi +
∑
j

Xi jvj xj) −
x2
i

2
.

Setting a null multiplier on j eliminates j’s impact on anyone but j is still impacted
by influencers’ actions. In an unweighted network (Example 1), a null multiplier on
j is akin to delete all links to j but not from j.

Consider equilibria associated to the payoffs transformed by v. Since v has the
same effect as changing the matrix X into Xdg(v), Property 1 applies and yields the
following results.Denote by ρ(v) the dominant eigenvalue of Xdg(v). An equilibrium
exists if (and only if) ρ(v) < 1, in which case the equilibrium is x(v) = (In −
Xdg(v))−1x. Let V measure aggregate activity given v: V(v) =

∑
i xi(v). Observe

that lowering the multipliers, the matrix Xdg(v) is (elementwise) decreased hence
its dominant eigenvalue is decreased as well. Thus ρ(v) < 1 implies that, for any
v′ ≤ v, an equilibrium exists and V is well defined. The next proposition states the
supermodularity of V .

Proposition 1 Let the dominant eigenvalue ρ(v) of Xdg(v) be strictly less than 1.
v ≥ v′ implies for each i

V(v−i, vi) − V(v−i, v ′i ) ≥ V(v′−i, vi) − V(v′−i, v
′
i ). (5)

Proof Let us first prove the following expression for the incremental value.

V(v−i, vi) − V(v−i, v ′i ) =

1̃1(In − Xdg(v−i, vi))
−1Xdg(0−i, vi − v ′i )(In − Xdg(v−i, v

′
i ))
−1x. (6)

where 0−i is the null ob N − i. Writing V(v) = 1̃1(In − Xdg(v))−1x, we have

V(v−i, vi) − V(v−i, v ′i ) =

1̃1
[
(In − Xdg(v−i, vi))

−1 − (In − Xdg(v−i, v
′
i ))
−1] x. (7)

Rewrite the matrix inside the square brackets by using the following computation.
Letting A = Xdg(v−i, vi) and A′ = Xdg(v−i, v

′
i ):

(In − A)−1 − (In − A′)−1 = (In − A)−1[(In − A′) − (In − A)](In − A′)−1

= (In − A)−1(A − A′)(In − A′)−1.

We obtain:

(In − Xdg(v−i, vi))
−1 − (In − Xdg(v−i, v

′
i ))
−1

= (In − Xdg(v−i, vi))
−1X(dg(v−i, vi) − dg(v−i, v

′
i ))(In − Xdg(v−i, v

′
i ))
−1
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Now dg(v−i, vi) − dg(v−i, v
′
i ) is the diagonal matrix whose elements are all null

except the i-th diagonal term which is positive equal to vi − v ′i . Using (7), this proves
(6).

To end the proof, observe that the incremental value V(v−i, vi) − V(v−i, v ′i ) is
obtained by multiplying the product of the three matrices in (6) by the positive
vectors 11 (on the left) and x (on the right). For vi ≥ v ′i the matrix Xdg(0, vi − v ′i )
has all its elements nonnegative. The two matrices on the left and the right in (6) are
nonnegative. To prove the inequality (5), it thus suffices to show that the two positive
matrices on the left and the right in (6) are (weakly) decreased elementwise when
v−i is decreased to v′

−i . This holds true since
(In − Xdg(v−i, vi))

−1 ≥ (In − Xdg(v′
−i, vi))

−1: Matrix Xdg(v−i, vi) is obtained
by multiplying the elements in j’s column of X by vj . Hence v−i ≥ v′

−i implies
Xdg(v−i, vi) ≥ Xdg(v′

−i, vi). Formula (4) implies the desired inequality.
(In − Xdg(v−i, v

′
i ))
−1 ≥ (In − Xdg(v′

−i, v
′
i )
−1: same proof. �

3.2 Manager’s visibility strategies

This section investigates strategies that modify the visibility of individuals’ actions
with the objective of maximizing aggregate activity. Of course, without constraints,
activity can be made infinitely large. I assume here a constraint on the overall time
to display actions, as I describe now. For that purpose, it is more convenient to
normalize the multipliers and introduce a display factor.

A visibility strategy is of the form (w, τ) where w = (wi) are nonnegative and
sum to n and τ is a positive scalar. Call w the weights and τ the display factor. w
determines the relative visibility of individuals’ actions: i’s actions are presented
wi/wj times more than j’s ones. Given the display factor τ, j’s actions have the
same impact on others as if there were multiplied by τwj . Setting vi = τwi for each
i, strategy (w, τ) is equivalent to the multipliers v as defined in the previous section.
The chosen representation makes the interpretation easier.

The overall time to display actions must be unchanged by the strategies. Specif-
ically, let one unit of action be displayed per unit of time (a normalization). The
overall time to display actions x is

∑
i xi . Since strategy (w, τ) transforms this overall

time into τ
∑

i wi xi , the time constraint writes

τ
∑
i

wi xi ≤
∑
i

xi . (8)

Basically, given the weights, the overall time to display x is reallocated across
individuals.

As explained in the previous section, strategy (w, τ) transforms the impact matrix
X into τXdg(w), which has dominant eigenvalue τρ(w). An equilibrium exists
if (and only if) τρ(w) < 1, in which case the equilibrium is unique given by
x(w, τ) = (In − τXdg(w))−1x.



10 Gabrielle Demange January 5, 2023

The designer objective is to find a visibility strategy that maximizes aggregate
activity over all strategies that satisfy the time constraint. The designer has full
information on the game (i.e. on X and x) and anticipates how interventions affect the
equilibria. This leads to the following definitions of feasible and optimal strategies.

Definition 2 A visibility strategy (w, τ) is said to be feasible if an equilibrium exists,
i.e. if τρ(w) < 1, and the equilibrium x(w, τ) satisfies the following constraint

τ
∑
i

wi xi(w, τ) ≤
∑
i

xi(w, τ). (9)

The feasible strategy (w, τ) is optimal if it maximizes aggregate activity
∑

i xi(w, τ)
over all the feasible strategies.

Strategy (11, 1) does not modify the impacts. It is therefore feasible if ρ(X) < 1 but
typically not optimal, as the next proposition shows. j’s impact total is defined as
the sum of j’s impact values: X+j =

∑
i Xi j (it is equal to in-degree in a graph)

Proposition 2 Let σ denote the maximal impact total over N: σ = maxj X+j .
If σ < 1, then optimal visibility strategies exist. An optimal strategy (w, τ) sets

positive weights on the individuals whose impact total is maximal, i.e. wj > 0 only if
X+j = σ, and sets the factor τ to the maximal level so that constraint (9) is binding.
The aggregate activity is equal to

∑
i xi

1−σ .
If σ ≥ 1, then aggregate activity can be made arbitrarily large by feasible

visibility strategies.

Proof Let us first prove three claims.
Claim 1 Let w be a weight vector. Assume ρ(w) > 0. Then

lim
τ
<
−→ 1

ρ(w)

∑
j

wj xj(w, τ) = ∞. (10)

Proof To prove (10), let y be a nonnegative left eigenvector of Xdg(w): ỹX dg(w) =
ρ(w) ỹ. Applying (4) and multiplying by ỹ yields ỹ(In − τXdg(w))−1 = 1

1−τρ(w) ỹ.
Multiplying by x yields: ỹ x(w, τ) = 1

1−τρ(w) ỹ x. As ỹ x > 0, this implies
lim

τ
<
−→ 1

ρ(w)

∑
j yj xj(w, τ) = ∞. Since ỹX dg(w) = ρ(w) ỹ, y has all its components

null outside the support of w. Thus y ≤ kw for some positive constant k. (10)
follows. �

(10) is not necessarily true if ρ(w) = 0. For example, set all the weights null except
for one agent, say agent 1, the dominant eigenvalue is null and 1’s action is equal to
the standalone value whatever τ so that (10) fails. Claim 1 extends as follows.
Claim 2: Let w be a weight vector. By convention set 1/ρ(w) = ∞ if ρ(w) = 0. Then

lim
τ
<
−→ 1

ρ(w)

τ
∑
j

wj xj(w, τ) = ∞. (11)
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Proof If ρ(w) > 0, (11) follows directly from Claim 1. If ρ(w) = 0, it suffices to
observe that xj(w, τ) ≥ x j for each j and standalone actions are positive. �

Claim 3 Let w be a weight vector. The following inequality holds at equilibrium:∑
i

xi(w, τ) ≤
∑
i

xi + τσ
∑
j

wj xj(w, τ)

with an equality for w with support included in Imax.

(12)

Proof At equilibrium, x(w, τ) − τXdg(w)x(w, τ) = x implies:∑
i

xi(w, τ) =
∑

i xi + τ
∑

i(
∑

j Xi jwj xj)

=
∑

i xi + τ
∑

j[
∑

i Xi j]wj xj

By definition
∑

i Xi j ≤ σ for any j with an equality for j in Imax: this proves (12).�

To proceed we distinguish two cases according to the value of σ.
Case 1:σ ≥ 1. Let us show that aggregate activity is unbounded at feasible strategies.
Consider w with support in Imax and values of τ in [0, 1/ρ(w)[. (12) is satisfied as
an equality. Thus

∑
i xi(w, τ) ≥ τσ(

∑
j wj xj(w, τ)). Since σ ≥ 1, this implies that

strategy (w, τ) is feasible for any τ in [0, 1/ρ(w)[. As lim
τ−→∞

τ
∑

j wj xj(w, τ) = ∞ from
Claim 2, it follows that aggregate activity is unbounded at feasible strategies.
Case 2: σ < 1. Let us first show that given w there is a maximal value of τ for which
the strategy (w, τ) is feasible. The feasibility constraint writes as φ(τ) ≥ 0 where the
function φ is defined for τ on [0, 1/ρ(w)[ by: φ(τ) =

∑
i xi(w, τ) − τ

∑
wi xi(w, τ).

When τ is null, the equilibrium is equal to x and φ(0) =
∑

i xi is positive. Let us
show φ(τ) < 0 for large enough τ. By (12), φ(τ) ≤

∑
i xi + (σ − 1)τ

∑
j wj xj(w, τ).

By Claim 2, lim
τ
<
−→ 1

ρ(w)

τ
∑

j wj xj(w, τ) = ∞. Hence σ < 1 implies φ(τ) < 0 for τ large

enough in [0, 1/ρ(w)[. Since φ(0) > 0 and φ is continuous, this proves that the set
of τ in [0, 1/ρ(w)[ for which φ(τ) ≥ 0 has a maximum τ∗ and that φ(τ∗) = 0, i.e.,
the feasibility constraint (9) is binding at τ∗.

To conclude the proof, let us show that aggregate activity is maximized at a
feasible strategy with support on Imax. At a feasible strategy, the display constraint
(9) together with (12) imply∑

i

xi(w, τ) ≤
∑
i

xi + σ(
∑
j

xj(w, τ)). (13)

with an equality only if both (9) and (12) are satisfied as equality. It follows that
aggregate activity is at most equal to

∑
i xi

1−σ and strictly less than this upper bound for
w with support not included in Imax. For w with support on Imax, choosing the value
τ∗ for which (9) is satisfied as an equality, (13) is satisfied as an equality: at (w, τ∗),
aggregate activity is equal to its upper bound

∑
i xi

1−σ . �
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Interestingly, optimal visibility strategies are simple and easy to compute. In-
formation on the standalone actions are not necessary. In an unweighted network
(Example 1), it suffices to observe the in-degrees. An optimal strategy makes visible
only the actions of individuals with maximal impact total. In Example 2 where each
individual shares effort among those impacted, impact totals are all equal, hence
interventions have all the same effect on aggregate activity and are useless.8

In general σ is at least as large as the dominant eigenvalue ρ. But the optimality of
a strategy is not based on raising the dominant eigenvalue of the transformed matrix
to σ. In fact, the dominant eigenvalue is even null for a strategy making a single
agent in Imax visible, as is surely the case if Imax is a singleton. Let this agent be 1.
Then w1 = n and all other weights are null. All the eigenvalues of matrix Xdg(w)
are null since (Xdg(w))2 is null (recall that X11 is null). The equilibrium is easy
to compute given τ: player 1 is not impacted by anyone and plays 1’s standalone
action x1 = x1. The other players are impacted by 1 only: xi = xi + nτXi1x1. The
maximal value of τ satisfies τnx1 =

∑
i xi+nσx1. The increase in aggregate activity

is due to the display time, not to the spillovers between actions since all the cycles
are cut. If there are several agents in Imax , other strategies are optimal, making
several agents visible and generating spillover between them (if their mutual impacts
are positive). The equilibrium follows a simple ’hierarchical’ structure: compute the
equilibrium between agents in Imax and derive others’ actions by their exposure
to these equilibrium actions. The additional activity generated by making several
agents interacting between each other and impacting other because of their visibility
is factored out by lowering the weights of each and the display unit time.

3.3 Discussion

Different visibility strategies could be considered. For example, let the designer
change the relative individual impacts without display time consideration. A strat-
egy is simply described by weights w, as τ is fixed equal to 1. Optimal strategies
are difficult to characterize in that setting. The difficulty comes from the fact that
aggregate activity is neither concave nor convex in the weights. The supermodularity
of V (Proposition 1) implies its convexity in each individual weight but the overall
convexity may not hold due to cross-derivatives.We cannot use a first order approach
nor conclude that a single agent is made visible (as is the case for a convex V).

Interventions that change standalone actions are much easier to analyze than
visibility strategies. The reason is that aggregate activity is linear in x, given by
1̃1(In − X)−1x. In Demange (2017), I consider a designer who is endowed with an
amount that can be allocated to agents to increase their standalone actions, i.e. their
marginal return to actions. An optimal strategy is characterized by centrality indices
computed in the direction of influence, i.e. on ˜X , the transpose of X . Specifically,

8With equal total sums,σ = ρ and 1̃1X = σ11. It follows that aggregate activity without intervention
is already equal to

∑
i x i

1−σ .



Simple visibility design in network games 13

consider the power/prestige indices introduced in sociology by Katz (1953) and
Bonacich (1987) defined by (In − ˜X)−111.9 The amount is optimally allocated to the
agents whose index is maximal. Optimal strategies are thus very easy to describe
and depend only of the positions of the agents in the network. When best responses
are not linear in exposure, however, optimal strategies are not so easy to describe
as aggregate activity is no longer linear in standalone actions. In that case, optimal
strategies depend on the concavity/convexity of the best response functions and the
amount to be allocated.
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