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Introduction 

At the time of writing this introduction, the world is dealing with the aftermath of a terrifying 
pandemic crisis. This crisis has affected teaching and learning practices and scientific activities in all 
fields, including in mathematics education. CERME12, in 2022, took place a year later than scheduled 
as a virtual conference and in difficult conditions, and it was made possible only by the dedicated 
engagement of the International Programme Committee, the Local Organising Committee and the 
Thematic Working Groups’ leaders. In the plenary session of the congress, Jeppe Skott emphasised 
that the mathematics education community should remain modest in what could be expected from 
the scientific reports at the conference due the extreme conditions in which teaching and learning had 
happened in the previous two years. In the same plenary Susanne Prediger added that our community 
should nevertheless be very ambitious and strive to progress in the advancement of mathematics 
education. For the new generation of researchers in mathematics education, these encouraging words 
coming from experienced colleagues meant searching for a balance between maintaining reasonable 
expectations of the work that could be done in such circumstances and dealing with the challenges of 
the present. But what does this mean for research about digital technologies in mathematics 
education? Not only this issue is so complex, but the pandemic forced a shift to modes of teaching 
and learning that involved much reliance on digital technologies, therefore making research in this 
area very topical.  If the last decade of research was labelled by our community as “Mathematics 
Education in the Digital Age” (e.g., Clark-Wilson et al., 2021) how could the current times be 
described? Some authors criticise the speed of the change in the use of digital technologies and 
describe our era as “Education in the Automated Age” (Andrejevic, 2019) to emphasise the automated 
generation of large datasets coming from data science and machine learning, without really focusing 
on what the implications could be on teaching and learning. Could the next decade be described as 
“Mathematics Education in Times of Exponential Change”? Taking a humorous view of this ‘brand 
name’, it contains the word “exponential”, which is related to a sophisticated mathematical concept 
of exponential functions. One outcome of the pandemic crisis was to make clear that the development 
of pandemics cannot be understood without mathematics. In this sense, the inclusion of a 
mathematical word such as ‘exponential’ in the label is well deserved. The unexpected and necessary 
developments of the use of technologies for teaching and learning mathematics are the topic of the 
ERME Topic Conference MEDA3 in Nitra, Slovakia, which was held in September 2022. 

Thematic and organizational aspects of MEDA3 

MEDA3 is a natural continuation of the previous two conferences in 2018 (Denmark) and 2020 
(remotely, Austria) where the ERME community gathers to discuss applications of digital technology 
in mathematics education from cross-disciplinary and interdisciplinary perspectives. Of course, this 
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does not mean that the use of traditional technologies, resources, and artifacts is neglected, those are 
used alongside new ones. Indeed, the contributions to this conference address the applications of new 
tools and well-established tools to the learning and teaching of mathematics, offering much richness 
of educational experiences. In the call for papers to be submitted to the conference we outlined three 
themes (Table 1) around which we wished to encourage contributions. Of course, we were aware that 
many other important issues exist for digital technologies, but we envisaged these three themes to be 
probably the most relevant to the current use of digital technologies. 
 
Table 1: Overview on the number of conference contributions per theme 

Theme Total number of accepted 
contributions 

1. Mathematics teacher’ practices, teacher education and professional 
development in the digital age 

18 

2. Curriculum innovation, design of digital and hybrid environments 
and practical implementation of digital resources  

33 

3. Assessment in mathematics education in the digital age  6 
 

In what follows we outline the three themes and the nature of the contributions received to each one. 

 

Mathematics teacher’ practices, teacher education and professional development  

Adoption of digital tools into classroom practice takes time and the tools and functions of digital 
technologies change rapidly. The COVID-19 pandemic affected teachers’ practices, experiences, and 
their processes of adaptation of new tools. To better understand these new processes, new approaches 
and emerging frameworks are needed to guide teachers to integrate digital tools into mathematics 
education on the one hand, and to ensure professional development of mathematics teachers on the 
other. Teachers’ expectations regarding perspectives for teaching after the crisis vary, depending on 
several factors. Contributions to this theme focus on teachers’ self-learning in formal and informal 
settings, use of shared virtual/hybrid spaces and resources for teacher education and professional 
development, working in clouds and wiki, but they also address other concerns. Specifically, the 
theme includes several examples of teacher practices with digital tools in the pandemic, an analysis 
of virtual learning environments to support teacher practices, and practices of (block-based) 
programming in professional development of pre-service mathematics teachers. 

Curriculum innovation, design of digital and hybrid environments and practices 
with digital resources  

Applications of Learning Management Systems (LMS) in the teaching and learning of mathematics, 
but also uses of Learning Analytics (LA) and Artificial Intelligence (AI) in the research activities 
about mathematics education, have intensified since the pandemic outbreak. Although their effects 
are closely connected to the design of digital curriculum resources for mathematics or synchronous 
and hybrid activities in mathematics education, these scientific disciplines are seldom considered in 
connection to learning theories and the didactics of mathematics. Exploring these connections allows 
us to understand the effects of automated and adaptive learning environments to self-regulated 
learning and individualization of learning trajectories through collaboration (Donevska-Todorova, 
2022). Contributions to this theme focus on the design and implementation of resources with novel 
technologies, such as 3D print technologies or virtual and augmented reality, in addition to the well-
established digital geometry systems (DGS) and computer aided systems (CAS). Other papers discuss 
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issues concerning computational thinking in mathematics education at all educational levels, as well 
as different modalities of synchronous and asynchronous learning supported with various digital 
tools. 

Assessment with digital technologies in mathematics education  

The impact of assessment with digital technologies on teaching and learning mathematics has been 
wide-reaching and has touched all aspects of assessment practices in the classroom – both for 
formative and for summative assessment. Yet little is still known about the effects of introducing 
assessment with digital technologies on students’ learning and on students’ and teachers’ experiences. 
As an example, for the case of computer aided assessment (CAA) Kinnear et al., (2022) drew a rich 
research agenda highlighting the areas which are still under-research in this field – of which there are 
many. Moreover, the pandemic forced teachers to use digital tools also for marking traditional written 
output, and the impact of this new development on how feedback is written (by the teachers) and 
received (by the students) has not been well understood yet. We received six papers regarding the use 
of digital technologies for assessment. Topics within this theme go from the use of CAA for formative 
assessment and especially on the topic of example generation, to true/false questions design and 
generally the design of digital tasks, to the impact that the digital medium has on the type of feedback 
teachers give students.  

Conclusions and Prospects 

There has been a change in working with and thinking about digital technologies in mathematics 
education in the last years and decades. Up to the beginning of the millennium the research emphasis 
was firmly on the use of computer algebra systems, dynamic geometry systems and spreadsheets. 
Research focused on the affordances of such tools and possibilities for concept formation, on the 
likely changes of contents of mathematics and on the possible new ways in which mathematics could 
be taught in mathematics classrooms if these digital technologies were used. Since 2010 the emphasis 
concerning digital technologies had been more on learning environments, adaptive systems, virtual 
reality, augmented reality, videos, 3-D-printing, formative and summative assessment systems, and 
ebooks. The papers presented at MEDA3 are a representation of this development.  Of course, key 
competences like functional thinking, computational thinking, proving, representing, or modelling 
and their interaction with digital technologies are still important. However, they are now seen in the 
frame of learning and teaching systems. The pandemic gave an additional push to this development. 
 
The great variety of contributions to the MEDA3 conference, also concerning different school types 
and pre- and in-service teacher education, show the challenge to bring together the “old” ideas of 
working with digital tools (like CAS or DGS), the still important key competences and the “new” 
ways of working with software systems on laptops and smartphones. They also show the necessity to 
describe these new ways of working with new or newly interpreted concepts like digital competences, 
digital resources, digital design, diagnostic tools, dynamic communication, or computational 
thinking. MEDA3 is one step in moving ahead to understand better the interrelationship between 
mathematics and the new digital technologies. 
 
Discussion about these themes continues in relation to the Call for Papers for a Special Issue in the 
Springer International Journal for Research in Undergraduate Mathematics (IJRUME), “Digital 
Experiences in University Mathematics Education. Advances and Expectations”, that will be edited 
by Ana Donevska-Todorova, Eleonora Faggiano, Janka Medová, and Melih Turgut and a special 
ZDM-issue “Mathematics Education in the Digital Age”, edited by Hans-Georg Weigand, Michal 
Tabach and Jana Trgalova.  
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Formative assessment in Mathematics in the digital age:  
teacher's practices and roles 

Annalisa Cusi 

Sapienza University of Rome, Italy; annalisa.cusi@uniroma1.it  

My contribution concerns the ways in which teachers’ practices in supporting formative assessment 
(FA) processes through digital technologies (DT) can be interpreted and analysed. After a reflection 
on the results of research studies on this issue, I present a model recently refined to characterize, at 
a macro level, the teachers’ FA practices through DT and then the analysis of an example, developed 
at a micro level to highlight the roles that the teacher plays when interacting with students. I conclude 
with some reflections on the impact that the experience of distance teaching during the Covid-19 
emergency could have on the future evolution of teachers’ assessment practices through DT. 

Keywords: formative assessment, digital technologies, teachers’ practices, teachers’ roles. 

Investigating teachers’ formative assessment practices and roles in the digital age  
Teaching practices in the digital age have been a fundamental focus of Mathematics Education 
research for decades, leading to the development of frameworks recently discussed by Haspekian 
(2020) in her MEDA2 plenary. Some of these frameworks explicitly focus on teachers’ practices, 
characterizing teachers’ expertise in supporting a fruitful integration of DT in teaching, such as the 
structuring features of classroom practice framework (Ruthven, 2009), and identifying categories of 
teachers’ instrumental orchestration of classroom activities in technology-rich environments 
(Drijvers et al., 2010). Others explicitly refer to the roles played by teachers in the integration of DT 
in mathematics classrooms and to the levels at which teachers have to act to effectively integrate DT 
in their teaching (Trigueros et al., 2014).  

The integration of DT in teaching affects also teachers’ assessment practices. Focusing on the ways 
in which digital summative assessment is developed at university level, Iannone (2020) stresses on 
the need of re-thinking the ways in which assessment in the digital age is designed and implemented, 
observing that it is “far failing to realise its full potential and that usually it is designed in a 
conservative way” (p. 15). These reflections could be certainly referred also to the case of FA 
practices, which, according to Black and Wiliam (2009), could be conceived as practices through 
which evidence about student achievement is elicited, interpreted, and used by three main agents 
(teachers, learners and their peers) to make decisions about the next steps in instruction. The question 
of the integration of DT in Mathematics teaching for assessment purposes has been addressed in many 
research studies in the last decade (see, for instance, Stacey & Wiliam 2013, Cusi et al. 2017A, Dalby 
& Swan 2019, Olsher 2019). 

In a review chapter aimed at reflecting on the changes in the ways in which mathematics is assessed 
due to the increasing availability of powerful technology, Stacey and Wiliam (2013) distinguish 
between assessment with DT, where the mathematical capabilities of technology are used by students 
in the mathematical performance that is being assessed, from assessment through DT, where 
technology is used to deliver and administer the assessment processes. According to them, “the real 
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power of computerized assessment is likely, in the future, to be in the creation of learning 
environments in which students use a range of information resources, engage with powerful software 
for problem solving, and collaborate with other students.” (p. 748). The role played by DT within 
these kinds of environments have been the object of various research studies in the last years. Jankvist 
et al. (2021), for example, investigated the ways in which CAS augment and change assessment 
situations (both summative and formative). They stress that the new kinds of orchestration that the 
use of CAS introduces change FA “from being an individual dialogue between teacher and student, 
which due to resources will need to happen relatively seldom, to a collective – although but perhaps 
anonymous – class discussion of the different problems and understandings present in the class.” (p. 
114). The role played by the teacher seems to be crucial to avoid the risk of shifting to this kind of 
anonymous discussions. These reflections are also shared by Rezat et al. (2021), who, as a result of 
their investigation on the use of tasks with automated feedback within digital textbooks, stress on the 
need of a careful teacher’s handling of classroom discussions aimed at questioning and evaluating 
the arguments that students develop to make sense of the received feedback. 

Connected classroom technologies (CCT) certainly represent powerful DT to support FA practices. 
By providing teachers with more insight into their students’ sense-making processes, they lead to 
more thoughtful teacher interventions to promote meaningful mathematical classroom discourse, 
prompted by shared responses and screens (Clark-Wilson, 2010). Clark-Wilson (2010) highlights the 
complexity of the roles played by the teacher in the context of FA, since managing the use of CCT in 
the mathematics classroom requires teachers to develop specific competences, such as, for example, 
being able to quickly make sense to the diversity of students’ screens that are visible. The ways in 
which these roles are shaped when sophisticated interactive systems are used has been investigated 
by Dalby and Swan (2019), who observe the emergence of differing views of the role of the teacher 
when using DT in the classroom, shifting from a central role to a role of “guide on the side”. Similar 
results stressing on the complexity of teachers’ roles have been highlighted by recent studies that 
investigated the use of dashboards as digital curricular resources and, in particular, the teachers’ role 
in planning, implementing, gathering information, and making real-time decisions starting from the 
“in-the-moment” pedagogical perspective provided by the teacher dashboards (Edson & Difanis 
Phillips, 2021). Amarasinghe et al. (2021) model teachers’ orchestration actions during their 
interaction with learning analytics dashboards to deconstruct the notion of orchestration load. Their 
study enabled them to highlight that the use of guiding tools, which visualize learners’ interactions 
with the learning systems and guide teachers to take remedial actions to enhance the learning 
situation, requires teachers to distribute their attention to evaluate both epistemic (the content of 
students’ responses) and social (the actions to be taken to foster collaboration) aspects, contributing 
in creating a cognitively demanding situation for them. 

The teachers’ expertise in the use of various combinations of DT does not necessarily implies a 
corresponding expertise in the use of DT to develop FA processes, since making FA through DT an 
integral part of teachers’ practice requires changes in their beliefs about teaching and learning and in 
the classroom culture itself (Feldman & Capobianco, 2008). A three-level developmental progression 
for teachers’ full transition to the highest level of expertise in carrying out FA processes through DT 
is described by Bellman et al. (2014), who distinguish between: immediate level, when teachers 
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examine students’ feedback and take decisions about “what to do next” after class; expert level, when 
teachers are able to use students’ data to make “real time” decisions; and master level, when teachers 
are able to command the full range of advanced interactive capabilities that DT offer.  

Macro level of analysis: a model to interpret teachers’ FA practices through DT 
In a recent work developed with Gilles Aldon, Barbel Barzel and Shai Olsher (Aldon et al., submitted 
for publication), we introduced a model aimed at supporting the interpretation of teachers’ FA 
practices carried out through DT. The model, which was conceived by combining a survey of general 
literature on the issue of FA with a survey of studies on the use of DT for FA purposes, represents a 
refinement of the one introduced within the European Project FaSMEd (Aldon et al., 2017). It is 
constituted by three main elements: (a) the key areas in which FA practices can be taken forward; (b) 
the moments in which teachers’ FA practices are carried out; (c) the functionalities provided by DT 
to support FA processes. 

The key areas for FA (first element) have been identified by referring to the studies developed with 
the aim of investigating what happens inside the “black box” (Black & Wiliam, 1998), where FA 
theoretical principles become a reference for framing the design and implementation of FA in 
practice. The survey of these studies (due to space limitation, I just mention Black & Wiliam 1998, 
Black et al. 2003, Lee 2006, Bartlett 2015) enabled us to identify four main areas in which FA 
practices can be taken forward: (1) sharing goals and criteria with learners; (2) designing and 
implementing classroom discussions and other learning activities (which includes three fundamental 
processes: monitoring students’ understanding, scaffolding their learning and fostering their 
reflections); (3) fostering the quality of feedback; (4) involving students in peer- and self-assessment. 

The second element of the model - the moments in which teachers’ FA practices are carried out - has 
been identified with the aim of better characterizing the complex work that teachers have to develop, 
in time, to carry out effective processes within the four areas. This element of the model was inspired 
by Mason’s (2009) characterization of the processes developed by teachers to prepare themselves to 
teach a topic during four phases: pre-paration, paration, meta-paration and post-paration. In our 
model we combine paration and meta-paration in a unique moment, due to their strict interconnection, 
focusing on three moments that constitute a cycle of teacher’s FA practices. 

The starting point for the identification of the main functionalities that constitute the third element of 
our model is the framework introduced within FaSMEd, in which three functionalities of technology 
to support FA processes are considered: sending and displaying; processing and analyzing; and 
providing an interactive environment. The rapid evolution of digital tools, the new available formats 
of online interaction and the possibilities offered by artificial intelligence suggested as to extend these 
three functionalities to best capture the current realities. The result of this extension are the following 
three functionalities: (1) communicating between the different agents of FA, which involves all forms 
of communication with, through and of technology (Ball & Barzel, 2018); (2) analyzing, which 
involves different levels, from providing just an overview of the work progress, to providing 
information on the learning status, to realizing an advanced analysis which allows first insights in 
students’ thinking; (3) adapting, which is related to the support that DT could provide to teachers in 
making decisions about the next steps in instruction, by simply offering tasks to be chosen by the 
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teacher, or suggesting the learning paths for students, or providing teachers with learning materials 
designed on the basis of a comprehensive learner’s profile. 

Micro level of analysis: the teacher’s roles in fostering FA processes through DT 
In this section I will focus on an example from a teaching experiment, carried out within the FaSMEd 
project in Italy (firstly presented in Cusi et al., 2019), to discuss the roles that the teacher could play 
during the phase of paration/meta-paration of a FA lesson developed with the support of DT. During 
the teaching experiment, activities were carried out through the use of a CCT. The example refers to 
the ways in which the teacher exploits the communicating and analyzing functionalities of this CCT 
by administering an instant poll to her students and by carrying out a classroom discussion starting 
from the results of the poll. The use of a CCT to develop FA processes involves the monitoring of 
students’ work by sharing the students’ screens with the teacher and the collecting and displaying of 
students’ answers to design and implement fruitful discussions with students (communicating 
functionality). When instant polls are activated, the DT provides teachers with synthetic information 
on the class-wide distribution of answers to a focused question (analyzing functionality). Then, the 
teacher’s task is to use this information to react in a supportive way, e.g. by designing and initiating 
in-the-moment classroom discussions to make students reflect on the processes developed when they 
answered to the polls (Cusi et al., 2019). In this example I focus on this last aspect, by sharing some 
reflections on the teacher’s roles that proved to be effective in fostering the realization of a learning 
dialogue with students aimed at supporting their reflective processes.  

The aim of my analysis of the example is to move: (a) from a macro level of analysis of a FA 
assessment practice realized through DT, which locates the teachers’ actions within specific FA key 
areas (the where of FA), in a specific moment (the when of FA), and characterizes teachers’ practices 
by highlighting the functionalities that are used (the how of FA), (b) to a micro level of analysis, which 
deepens the investigation of the how of FA by zooming into a scene of classroom interaction focusing 
on the teacher’s interventions and on their effects in terms of the activated FA key-strategies.  

To develop this micro analysis, I will interpret and analyze the teacher’s interventions by referring to 
the MAEAB (acronym for “Model of Aware and Effective Attitudes and Behaviours”) construct (Cusi 
& Malara, 2016). The key-roles characterizing the construct are subdivided into two groups. Here I 
focus on the roles that the teacher plays when she guides students to reflect on the approaches adopted 
during classroom activities and to become aware of the relationships between the activities in which 
they are involved and the knowledge they previously developed. The three key-roles belonging to 
this group are presented in Table 1, together with indicators to support the coding process.  

I will highlight the strategies activated through teachers’ interventions by referring to Black and 
Wiliam’s (2009) five FA key-strategies: (1) clarifying and sharing learning intentions and criteria for 
success; (2) engineering effective classroom discussions and other learning tasks that elicit evidence 
of student understanding; (3) providing feedback that moves learners forward; (4) activating students 
as instructional resources for one another; (5) activating students as the owners of their own learning. 
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Roles of a M-AEAB Characterization of each role Indicators to code each role 

Guide in fostering 

a harmonized 

balance between 

the syntactical and 

the semantic level 

She/he helps her/his students 

control the meaning and the 

syntactical correctness of the 

mathematical expressions they 

construct and, at the same time, 

the reasons underlying the 

correctness of the 

transformations they perform. 

She/he poses questions/ makes interventions 

aimed at making students reflect on the 

correctness of specific transformations that are 

performed and highlight connections between 

the processes that characterize the resolution of 

a problem and the corresponding meanings. For 

example: “Is this transformation correct?”, 

“Why did you make this transformation?”, 

“How have we obtained this result?”. 

Reflective guide She/he stimulates reflections on 

the effective approaches carried 

out during class activities in 

order to make students identify 

effective practical/strategic 

models from which they can 

draw their inspiration in facing 

problems. 

She/he poses questions / makes interventions 

aimed at supporting students in making the 

meaning of effective strategies/approaches 

explicit. For example: “Could you explain your 

reasoning to your classmates?”, “Is there 

someone that could explain his/her reasoning?”, 

“She/he reasoned in this way: “since I want to 

obtain this kind of result, I could…”. 

“Activator” of 

reflective attitudes 

and metacognitive 

acts 

She/he stimulates and provokes 

meta-level attitudes, with a 

focus on the control of the 

global sense of processes. 

She/he poses questions / makes interventions 

aimed at supporting students in highlighting 

strengths/weaknesses of specific 

arguments/strategies and in fostering the sharing 

and comparison of different 

arguments/strategies. For example: “Do you 

agree with what she/he said?”, “Do you think it 

is an effective choice/strategy? Why?”, “What 

differences are there between theses answers?”. 

Table 1: The second group of roles within the M-AEAB construct (Cusi & Malara, 2016) 

The analysis of a wide set of data collected during the FaSMEd Project enabled us to classify polls 
according to their different focus and aims in relation to the aspects to be highlighted during 
classroom discussions that could be structured starting from polls’ results (Cusi et al., 2019). We 
identified four categories of polls: (a) polls on specific mathematical content; (b) polls on 
argumentation; (c) polls on metacognitive aspects; (d) polls on affective aspects. The instant poll 
discussed within this example belongs to category (c). It was administered to a grade 5 class at the 
end of a sequence of tasks on time-distance graphs and created on the spot by the teacher (T) and by 
a researcher (R), who participated to the lesson and guided the discussion with T. 

This is the wording of the poll, aimed at boosting a metacognitive reflection on effective ways to 
tackle graph interpretation tasks: “When interpreting a graph, what is the first thing you look at? (A) 
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If the graph starts from the origin; (B) If the graph goes up or down; (C) If the graph has horizontal 
traits; (D) How many traits compose the graph; (E) How steep is the graph; (F) What is written on 
the axes. This poll does not encompass only one correct answer. The subsequent discussion was aimed 
at making visible students’ strategies when approaching a graph and compare the efficiency of such 
strategies. In Cusi et al. (2019), a long excerpt from this classroom discussion was analysed to 
highlight the FA strategies activated by T and R during the discussion and the characteristics of the 
ways in which FA discussions developed thanks to the activation of polls are initiated and evolve.  

At the beginning of the classroom discussion, to which the following excerpt refers, R displays on 
the interactive whiteboard the results of the instant poll: most students (72%) chose option F, 18% 
chose A and 9% chose C. 

1. R: Here we have 72% that answered F. Someone chose A: “If the graph starts from the origin”. 
Someone chose C: “If there are horizontal traits”. The other options were not 
chosen.  Some of you said to have changed her mind. Would you like to tell 
it now? (speaking to Sabrina, who, before the beginning of the discussion, 
asked R to change her mind) 

2. Sabrina: We chose A, but later we changed our mind. We want to choose F. 
3. R: So, actually for you it is F? We could start from F. Why do you think the first thing to look 

at is what is written on the axes? (some students raise their hands. Among 
them, Elsa and Carlo, who worked in pairs) 

4. Elsa: Because, if you look at what is written on the axes, you can already understand the graph… 
and you can get some information.  

5. R: Let’s listen to somebody else. Carlo.  
6. Carlo: I wanted to say that on the axes it is written what they are, what you have to measure, 

look at, observe…  
7. R: Ok. 
8. Luca: Also on the axes… if, for instance, it had been the contrary, here (with gestures, he draws 

a vertical line) the time and here (with gestures, he draws a horizontal line) 
the distance, the graph would have changed… (he draws with gestures a 
possible new graph).  

9. R: Did you listen to what Luca said? (speaking with the other students) 
10. Voices: Yes! 
11. R: I guess that somebody did not listen. 
12. T: He said a very interesting thing.  
13. R: Would you like to repeat what Luca said? (to a student who raised her hand). 

This short excerpt shows how the teacher (in this case R) could initiate a classroom discussion aimed 
at exploiting the results of a poll on metacognitive aspects to activate the FA strategy 2. The excerpt 
starts with R highlighting one typical effect of the displaying of polls’ results, that is student’s revision 
of their answer (FA strategy 5). R, in fact, poses herself as an activator of reflective attitudes and 
metacognitive acts (line 1), making the class notice that Sabrina and her mate have changed their 
mind and asking to the two students to share their reflections and to make their thinking explicit. 

The role of activator of reflective attitudes and metacognitive acts is again played by R in line 3, 
when she focuses on the most chosen answer (F) and stimulates a discussion on the reasons subtended 
to the choice of looking at what is written on the axes. This makes Elsa and Carlo intervene (lines 4 
and 6) to justify their choice, activating themselves as resources for their classmates (FA strategy 4) 
by explaining that knowing the variables represented on the axes make it easier to interpret the graph 
and to grasp the information it brings. 
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When Luca expresses his idea (FA strategy 5) proposing an interesting observation about the effects 
of inverting the two variables represented on the axes of the graph (line 8), R, to highlight Luca’s 
intervention and to turn him into a real resource for his classmates (FA strategy 4), poses herself as 
a reflective guide, relaunching Luca’s intervention and asking to other pupils to repeat Luca’s idea 
(lines 9, 11, 13). This strategy makes Luca’s thinking visible to his classmates.  

The discussion goes on with a collective reflection on the effects, on the graph, of inverting the 
variables on the two axes. During this phase of reflection (not reported within the excerpt), R poses 
herself also as a guide in fostering a harmonized balance between the syntactical and the semantic 
level, with the effect of giving feedback that moves students’ learning forward (FA strategy 3). 

The analysis of the whole set of data collected within the FaSMed project enabled us to identify other 
ways of initiating and developing discussions on metacognitive aspects, such as focusing on the 
options that were not chosen and asking students the reasons for not having chosen them. The analysis 
of these data confirmed the results on the interrelation between the key roles played by the teacher 
and the corresponding FA strategies highlighted in the example reported in this section. 

Concluding remarks 
In this contribution I shared reflections on the ways in which teachers’ practices in developing and 
supporting FA processes through DT could be interpreted and analysed. In the path toward the 
development of these reflections, I gradually zoomed into the investigation of teachers’ practices by 
shifting the focus: (1) from the results of research studies that investigated the teachers’ practices in 
exploiting the support provided by DT to develop FA processes; (2) to a model recently refined to 
characterize the teachers’ FA practices with DT at a macro level by describing the where, the when 
and the how of these practices; (3) to the presentation of an example aimed at deepening the 
investigation of the how of teachers’ FA practices through DT by developing an analysis at a micro 
level to highlight the roles that the teacher plays when interacting with his/her students. 

The analysis shared in the last section was focused on the teachers’ roles associated to specific 
interventions during episodes of classroom interaction located within the paration/meta-paration 
moment and supported by the analyzing and communicating functionalities of DT. This analysis 
highlighted the connection between specific roles that are played and the corresponding FA strategies 
that could be activated, which locate the example within the second and fourth key areas of FA. In 
particular, it showed that a combination of the roles of activator of reflective attitudes and 
metacognitive acts and of reflective guide contributes to the implementation of classroom discussions 
aimed at fostering students’ meta-level reflections (second area) and at involving them in peer- and 
self-assessment (fourth area). 

The micro level analysis of several classroom interactions performed during teaching experiments 
developed within FaSMEd and other projects led us to reflect on other aspects that characterize the 
teachers’ FA practices through DT, such as the typical strategies employed by the teacher to provide 
feedback (Cusi et al., 2017B) or the roles that teachers can activate to guide classroom discussions 
aimed at supporting students’ argumentative processes and at scaffolding their awareness about the 
effectiveness of the written productions they share by means of digital environments (Cusi & Olsher, 
2021). The crucial role played by the teacher was also highlighted in the context of a digital 
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environment aimed at supporting students in individually revising mathematical topics through 
individualized digital paths at university level, since the tutor’s interventions proved to be 
fundamental in supporting students' interpretation of the meta-scaffolding and feedback provided by 
the digital environment (Cusi & Telloni, 2020). 

In this contribution I focused on what the teachers do to develop FA processes through the support 
of DT. As a contribution to the issue of delineating a model to characterize teachers’ FA practices in 
the digital age, it is important to intertwine the analysis of what teachers do with the analysis of how 
they interpret what they do, that is how they describe and justify their FA practices through DT. We 
started this kind of investigation within two studies carried out at the beginning of the Covid-19 
emergency and after one year from the first lockdowns (Aldon et al., 2021; Cusi et al., 2022). These 
studies have shown that the experience of distance teaching triggered teachers’ reflections on the 
future of assessment in Mathematics and enabled them to highlight the value of FA. Moreover, the 
distance teaching experience enabled some teachers to discover other ‘possibilities’, that is, other 
possible ways of developing assessment processes, potentially enlarging their repertoire of 
assessment techniques by exploiting the potentialities offered by DT. The results of these studies also 
showed that not all of the new techniques discovered by teachers continued to be part of their 
praxeologies after the distance teaching experience. This enabled us to develop reflections on the 
‘stability’ of the changes and transformations of assessment practices declared by teachers and on the 
need of promoting and supporting the stabilization of these changes by focusing on educational 
programmes aimed at deepening teachers’ professional development to foster the teachers’ 
autonomous use of DT to carry out effective FA practices. 
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Design of digital resources by and for mathematics teachers 
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This text is the written version of the plenary talk given at the third conference on Mathematics 
Education in the Digital Era, held from 7-9th September 2022 in Nitra, Slovakia. Research on 
the use of digital technology in mathematics teaching and learning shows that key affordances 
of technology emanate from the tasks that are used with it. Moreover, carefully designed tasks 
with their appropriate enactment by teachers are necessary for an efficient use of technology 
fostering students’ learning. In this talk, we therefore focus on digital resources offering 
technology-based mathematical tasks, adopting the perspective of their design. We draw on 
our experience of a course for pre-service mathematics teachers based on collaborative design 
of digital resources.  

Keywords: digital resources, design, teacher pedagogical design capacity, teacher design team 

Introduction 

Recent research studies in mathematics education focusing on teachers’ professional activity 
tend to consider teaching as a design activity (Brown, 2009; Brown & Edelson, 2003). 
Teachers’ use of resources has become a research topic assuming that it is an act of creation 
rather than a simple consumption. The interest mathematics education community pays to 
studying teachers’ interactions with resources is witnessed by the development of related 
theoretical frameworks, such as the documentational approach to didactics (Gueudet & 
Trouche, 2012) that considers teachers’ work with resources as being at the heart of their 
professional activity, or the conceptualization of the curriculum enactment process (Remillard 
& Heck, 2014) that posits a distinction between an official (prescribed) and an operational 
(intended and enacted) curriculum. This perspective is aligned with the view of teachers as 
designers of the curriculum enacted in their classroom rather that as mere ‘implementers’ of 
curricular materials (Jones & Pepin, 2016), or with the view of adaptation of resources that is 
required for their appropriation (Hoyles et al., 2013; Trgalová & Rousson, 2017). 

More specifically regarding mathematics teachers’ use of digital technology, research findings 
show that key affordances of technology emanate from the tasks that are used with it (Thomas 
& Lin, 2013). Likewise, Jones (2005) claims that carefully designed tasks with their 
appropriate enactment by teachers are necessary for an efficient use of technology fostering 
students’ learning.  

Based on these considerations, it seems important that teacher training course on digital 
technologies includes the development of teachers’ task design and enactment capacities. On 
this principle, a pre-service teacher’s course was developed at the Claude Bernard University 
in Lyon, France. The course was attended by student-teachers who were enrolled for a half-
time in their teacher education program and taught mathematics in a secondary school for their 
second half-time. In this talk, we share the experience of the implementation of this course for 
several years, discuss the design choices and investigate the extent to which the participating 
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student-teachers developed the above-mentioned capacities. We start by presenting the 
theoretical framework that we subsequently use to highlight the design choices. 

Theoretical framework 

The theoretical framework we use for the analysis of the pre-service teacher training course is 
constituted of the concepts of teacher pedagogical design capacity, teacher design teams and 
facilitator. We elaborate on these concepts in the following sub-sections. 

Pedagogical design capacity 

Brown (2009) considers that teachers select, interpret, and adjust curriculum material they use 
in their teaching. From this point of view, teaching is viewed as a form of design, which leads 
the author to investigating the dynamics between teachers and their materials. The author 
introduces the term pedagogical design capacity (PDC) to designate teacher’s  

skill in perceiving the affordances of the materials and making decisions about how to 
use them to craft instructional episodes that achieve her goals (p. 29).  

Pepin et al. (2017) draw on the concept of PDC to further conceptualize what they call teacher 
design capacity (TDC). According to the authors, TDC consists of the following three main 
components:  

 orientation, goal, points of reference for the design, which include knowledge of the 
classroom context (in particular what do students know and their misconceptions), 
knowledge of the curriculum guidelines and the learning trajectory related to a specific 
topic, and knowledge of the position of the design in the short and the long terms;  

 set of design principles, which are both robust – evidence informed and supported by 
justification of their choices, and flexible – possible to adapt to new challenges and 
contexts; 

 reflection-in-action that is an ability to adapt actions in the course of the instruction.   

Huizinga et al. (2015) suggest the following activities that favor TDC development: using 
exemplary materials, evaluating designed material, and sharing experiences of the conducted 
design process. 

Teacher design teams and the facilitator 

In recent years, teacher professional development tends to shift from a couple of days events 
to other models based on long term collaboration within communities of practice (Wenger, 
1998). Drawing on other research studies, Becuwe et al. (2016) claim that “the involvement of 
teachers in collaborative design constitutes an effective strategy for professional development” 
(p. 2). Handelzalts (2009) introduced the concept of a teacher design team (TDT) defined as  

a group of at least two teachers, from the same or related subjects, working together on a 
regular basis, with the goal to (re)design and enact (a part of) their common curriculum 
(p. 7).  

The fact that TDTs develop curricular material for their own use distinguishes them from other 
teachers’ teams who design materials for others, for example in collaboration with publishers. 
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According to the author, this distinctive feature is of the foremost importance with respect to 
the appropriation of the designed material: 

Collaboration in design of materials that the teachers themselves will use, and 
will therefore affect their practice directly, raises their stakes in the process and 
the ownership of the product (ibid., p. 8). 

According to Becuwe et al. (2016), TDTs are often supported by a facilitator. The authors 
highlight three main roles of a facilitator:  

 providing logistic support, e.g., taking notes, sending emails, coordinating and 
organizing a TDT;  

 scaffolding the design process by providing the right tools at a right moment (e.g., 
design models, theoretical considerations); 

 monitoring the design by providing pro-active support helping outline the design 
process and re-active support for ensuring readjustment of the design when necessary. 

Pre-service teacher training course on digital technology  

This section is devoted to the description and analysis of the pre-service teacher education 
module focused on digital technology for mathematics teaching and learning. This course is 
offered in the Master of the teaching of mathematics, which is a two-year program of pre-
service teacher education. Two courses focusing on digital technology are offered to future 
teachers: a course offered in year 1 is centered on mathematics specific digital technology and 
their affordances for mathematics teaching and learning; digital technology is the object of the 
study. The course in year 2 proposes to question how digital technology can enhance teaching 
and learning specific mathematical topics; technology is thus studied as a teaching tool. In this 
text, we only present the year 2 course, which lasts for 15 hours organized in seven 2 or 3hour 
sessions. 

Sessions 1-3: choice of the appropriate technology to solve given tasks. The first three sessions 
of the module are devoted to exploring mathematics topics – arithmetic, algebra, functions; 
geometry; statistics, probability, series – with digital technology – dynamic geometry, 
spreadsheet, Scratch and Python (these digital tools are recommended by the French secondary 
school mathematics curricula). The instructors prepare two kinds of tasks: series of tasks to be 
solved with two different digital tools the student-teachers choose from a proposed list, and 
another series of tasks that the student-teachers solve with a tool they choose on their own. The 
student-teachers are invited to first solve the tasks, then compare and contrast solutions with 
different technologies, and finally discuss the contributions of the digital tools to teaching and 
learning mathematics at stake in the tasks. 

Referring to Huizinga et al.’s (2015) activities favoring TDC development, these tasks can be 
considered as exemplary that student-teachers are encouraged to analyze and evaluate. From 
the instructors’ point of view, the aim of these tasks is to support student-teachers’ thought 
process towards deciding when and which technology to use to achieve a given educational 
goal. 
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Sessions 4-5: resource design by the student-teacher design teams. During the next two 
sessions, student-teachers are split up into teams of 2-4 and are involved in the design of a 
digital resource consisting of a task mobilizing a digital tool that at least some of the team 
members would enact in their classrooms, the rationale explaining the design choices and 
arguing the contribution of the digital tool to the achievement of their learning goal, and the 
classroom enactment planification. The design of the resource is monitored by the instructors-
facilitators who support the design process by various actions. First, they provide a pro-active 
support to the STDTs in the form of a resource template (Figure 1) that aims at structuring the 
resource design and a priori analysis. The resource template provides the STDTs with guidance 
towards defining mathematical topic, learning goal and school level that the resource would 
address, towards choosing a digital tool, designing the technology-enriched task, performing 
its a priori analysis, and suggesting a planned classroom enactment.  

 

Figure 1. Excerpt of the resource template 

To facilitate the resource design, the instructors introduce theoretical considerations when 
appropriate, in particular: 

 Old/new dialectics (Assude & Gélis, 2002) according to which, when integrating a 
digital tool, teachers need to pay attention to students’ mathematical or instrumental 
prerequisites so that no new mathematical knowledge is introduced with a new tool. In 
other words, a new tool should be introduced by revisiting a known mathematical 
knowledge that would help control the tool use, and a new mathematical knowledge 
should be introduced with a tool the students master well enough. 

 SAMR framework (substitution-augmentation-modification-redefinition) (Puentedura, 
2006), offering a conceptual tool to reflect on the added-value of the digital tool. 
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 Instrumental orchestration (Trouche, 2004) to think about the ways of accompanying 
students’ exploitation of the digital tool (Figure 2). 

 

Figure 2. Excerpt of the resource template asking for the description of the classroom 

enactment of the resource mobilizing the concept of instrumental orchestration 

Finally, the instructors provide the STDTs with feedback on their resource design (re-active 
support, Figure 3). 

 

Figure 3. Instructors’ feedback on the resource design of one STDT asking for refining the 

learning goal (top) and for justifying the design choices (bottom) 

Session 6: peer evaluation and redesign. During this session, the STDTs offer critical feedback 
to their peers and redesign their resource taking into account peers’ critics and suggestions. 
Referring to Huizinga et al.’s (2015) activities to favor the PDC development, the STDTs are 
engaged in evaluating designed materials. The evaluation is organized in two phases: first each 
STDT evaluates the resource of another STDT, and second, the pairs of STDTs exchange about 
their mutual evaluations, explain their appreciations and offer suggestions for the resource 
improvement. This phase is followed by a redesign of the resources by the STDTs (Figure 4). 
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The instructors-facilitators support the evaluation of the resources by providing the STDTs 
with an evaluation grid (pro-active support) comprising: 

 four evaluation criteria: description of the instrumented task, relevance of the digital 
tool mobilized in the task, students’ activity, and teacher’s role, 

 overall appreciation of the resource,  

 suggested improvements.  

The instructors also facilitate the STDTs exchanges and discussions (inter-active support).  

 

 

Figure 4. Excerpts from a resource designed by a STDT in which text in green highlights 

modifications made based on the peers’ feedback 

Session 7: resource presentations and reports from classroom enactment. The last session of 
the module is devoted to resource presentations and the report from the experiences of their 
classroom enactment by members of the STDTs. The STDTs are asked to highlight strengths 
and weaknesses of their designs, to account for the classroom enactment by emphasizing the 
students’ learning and the role of the digital tool and to suggest improvements of their resource. 
The STDTs are thus engaged in sharing experiences from the design and classroom enactment 
(Huizinga et al., 2015).  

The instructors facilitate the report by providing the STDTs with three kinds of support: 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 17



 Pro-active support by suggesting a presentation template. The template invites the 
STDTs to synthesize their presentation by focusing on the strongest aspect of their 
resource, on one aspect deserving improvement and on reflecting about the impact of 
the digital tool on students’ mathematical activity and learning. 

 Inter-active support to facilitate whole class discussions. 

 Re-active support by attempting to connect the STDTs reports with the theoretical 
considerations introduced during the module and by highlighting issues that emerge 
from the reports.  

Concluding remarks 

In this paper, we described a module on digital technology that has been offered for several 
years in the framework of the mathematics teacher education within a Master for the teaching 
of mathematics at the university in Lyon. The module aimed at the development of the teachers’ 
design capacity. Drawing on the concept of teacher design teams, reported as an efficient 
modality of teacher professional development (Handelzalts, 2009; Becuwe et al., 2016), a part 
of the module was organized around the design of digital resources by groups of students-
teachers, called student-teachers design teams (STDTs). Our analysis highlights the role of the 
instructors who acted as facilitators 

 before the resource design, by selecting exemplary technology-based tasks creating the 
opportunity for the student-teachers to reflect on when and which digital technology 
seems appropriate with respect to the given learning goal; 

 during the resource design by introducing theoretical considerations facilitating the 
design process and providing formative feedback; 

 after the resource design by facilitating reporting from the classroom enactment of the 
resources and highlighting lessons learnt. 

From the instructors’ point of view, the module presented an opportunity for many student-
teachers to gain their first experience with the students’ use of digital technology. Indeed, they 
confessed that without having been encouraged to design and enact their resource in their 
classroom, they would not have dared doing it, not being confident enough in their digital 
competencies. The module also presented an opportunity for the student-teachers to learn from 
and with their peers through collaborative resource design. 

However, student-teachers faced several challenges. The first challenge is to consider using 
technology to enhance students’ mathematical activity. Indeed, quite often, the goal of the 
designed tasks is to introduce the students to a new digital tool. The instructors’ re-active 
support turns to be critical attempting to reorient the STDTs’ educational goals. Another 
challenge many student-teachers faced was classroom management of the technology-based 
tasks. Often, they underestimated students’ technical difficulties, and more generally, the 
students’ heterogeneity with respect to the digital tool mastery. Integrating the old/new 
dialectics in the resource design is far from being obvious for many STDTs. Finally, perceiving 
the digital tool contribution appeared also challenging. During the report from the enactment, 
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the STDTs often reported only a positive impact on students’ motivation and failed in analyzing 
its contribution to students’ mathematical activity and learning. 

From the research point of view, we feel that the analysis of the choices of the module design 
enabled us to highlight critical components of the teacher design capacity (TDC). First, 
knowing when the use of digital technology is appropriate seems an important component of 
the TDC leading to a well-reasoned use of technology. Second, knowing how to articulate 
mathematical and technical knowledge, drawing on the old/new dialectics (Assude & Gélis, 
2002) is another important component required for an integration of digital technology, beyond 
its isolated, occasional use. Finally, being able to set up appropriate instrumental 
orchestrations fostering students’ instrumental geneses (Trouche, 2004) is yet another 
important TDC component leading to digital technology enhanced learning of mathematics. 
These components are specific to the design of digital resources, unlike those reported in 
previous research studies (e.g., Brown, 2009; Pepin et al., 2017) that can apply to non-digital 
resources as well. We therefore feel that our study represents a contribution towards the 
conceptualization of mathematics teachers digital resource design capacity (DRDC).  
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This paper records the Plenary Panel discussion held at the third conference on Mathematics 
Education in the Digital Era, which was held from 7-9th September 2022 in Nitra, Slovakia. The panel 
discussion, which was chaired by Eirini Geraniou, invited the three panelists (Ivan Kalaš, Iveta 
Kohanová and Piers Saunders) to give perspectives on Computational Thinking (CT) in relation to 
mathematics education from three different country perspectives (Slovakia, Norway and England). 
The discussion addresses important differences between computational thinking and mathematical 
thinking, the challenges associated with the design and assessment of curricular, and the implications 
for teachers and their ongoing professional learning. It concludes with a reaction by Alison Clark-
Wilson, who highlights the importance of epistemologically grounded design principles for new 
curricular, the related technologies, tasks and assessments. 

Keywords: Computational thinking, computer science, computing education, algorithmics, 
informatics. 

Introduction 

Over the last 10 years or so, Computational Thinking (CT) has become increasingly evident in both 
mathematics education research and mathematics teaching practice. This is due to new curricula that 
emphasise CT as an important 21st century skill for learners. Also, the literature is characterising CT 
as an essential competency for a digital society (Inprasitha, 2021) or the “new digital age 
competency” (e.g., Grover & Pea, 2013). However, education in relation to CT is implemented 
differently across Europe. In some countries, it is a compulsory subject, for example, informatics, 
computing, or computer science. In other countries it has become part of the mathematics curriculum, 
or integrated within a combined set of curriculum subjects within a broader STEM or STEAM 
curriculum. However, although there is growing literature on CT in mathematics education or other 
disciplines, there exist many different perceptions and expectations of the potential of CT for 
mathematics education, within and beyond mathematics education researchers, teacher educators and 
teachers.  

This paper reports the panel discussion in which Ivan (Slovakia), Iveta (Norway) and Piers (UK) offer 
their views on CT within the context of mathematics education. They drawi on examples from their 
respective countries. The panel, which was chaired by Eirini, was framed by three questions, each of 
which was directed to one panelist first, followed by a short response from the remaining two 
panelists. This was then followed by Alison’s reaction.  
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Panel Question 1: Without attempting to define either computational thinking 
(CT) and/or mathematical thinking (MT), what differences, if any, do you see 
between them? If yes, can you characterise one such difference? 

Response 1 by Ivan  

Let me start by pointing out that mathematics education has always been, and continues to be a great 
inspiration for me in my work to develop educational content for informatics. This is not only through 
its long tradition of looking for appropriate content and pedagogy, but also by its complexity and 
sophisticated progression, from year to year, and from school phase to school phase. The field of 
Informatics education has a lot to learn from mathematics education. In informatics education, we are 
still busy clarifying content and only just beginning to explore the cognitive demands and 
appropriateness of particular concepts; learn to distinguish digital literacy from computer literacy; 
and so on. What has become established, is an understanding of the relationships between 
computational thinking and programming.  

If we carefully consider mathematical thinking, computational thinking and programming, we very 
soon find a common concept in the background, namely the algorithm. This is present in informatics 
itself, and equally when we examine the role that CT plays in the development of MT. Nevertheless, 
I believe that there are significant differences in the two educational perspectives on both algorithms 
and when solving problems. 

As I do not dare, nor attempt, to define either CT or MT, I will try to present my perceptions of the 
big goals for informatics and programming as we design and implement educational content in the 
school context. I do this through an example from the lower primary curriculum for pupils in Years 
3 and 4 (8-10 years old). 

In Slovakia, informatics has been a separate compulsory subject for lower secondary students since 
2004, and for primary age students since 2012, which is 10 years now. The curriculum begins in Year 
3 and continues in every subsequent year (with one exception) until the end of K12 education. 
However, although the formal curriculum begins in Year 3, many schools introduce informatics even 
earlier. In our design research group, we have developed non-mandatory informatics educational 
content for kindergarten (5-year-olds). An example of one of our pre-programming environments 
Emil (named after the featured character that provides the familiar narrative for the children) is shown 
in Figure 1. 
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Fig. 1: Introductory activities for kindergarten children, designed for a group of 4 to 6 pupils, 

to work collaboratively in front of the IWB. 

 

In this example, a group of 4 to 6 children would work collaboratively within this environment in 
front of the IWB. Presented with a sequence of situations, they work to solve a problem on a map 
with coloured paths, guiding the character “Emil” in his small truck by entering the colour of the path 
he should follow. In this example, the children work to instruct the path Emil should take to collect 
the lost animals (a little goose, puppy and calf) and return them to their families. 

At the same time, a symbolic record of the steps is created on the top line of the IWB screen. In our 
task designs, even at this age, we always follow a gradual cognitive transition from directly 
controlling an actor and creating a record of our steps, to planning the steps while using the same 
symbols to express these steps. We call this process step planning, and its representation in a 
particular language programming. Intentionally and specifically, I emphasise the notions of (1) 
creating a record of steps, (2) planning steps to solve a problem, and (3) a language in which we 
represent both the record and the plan (the programme). 

Indeed, programming plays a key role in both our educational content development and our related 
research on programming concepts, which concern the cognitive demands for pupils at different years 
and stages. We view programming very broadly, by considering it in a sense as the language of 
informatics, as a means and a tool of computational thinking, in all its components. To be more 
specific, these components are usually recognised to be abstraction, algorithmic thinking, 
decomposition, generalisation, and evaluation. Consequently programming is broadly understood  not 
as a goal but as a tool – in this way it has the potential to play an important role in supporting pupils 
to develop each of these components, whilst providing them with opportunities to explore, model, 
express, and collaborate etc. 

Blackwell says that pupils start programming when they stop directly manipulating observable things 
but specify behaviour to occur at some future time (Blackwell, 2002). And why is this so challenging? 
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Because, instead of reaping the benefits of direct manipulation, we introduce notational elements to 
represent behaviour, abstraction, and change. In doing so, we run into various constraints. These 
relate to the language used, the representation of the program, and in the behaviour of the character 
we are controlling, in the context of the actual problem, let me illustrate this with a second example, 
that introduces Emil and Ema, the virtual and floor programmable robots we use in Slovak and Czech 
primary schools. 

 

Fig. 2: An example that develops the notion of the programme as a set of instructions to be enacted in 

the future. 

In Figure 2, we see: Emil's scene (or world); a group of commands and tools (right) for controlling his 

movements and applying his tools to the scene cells; and a blue panel (top) for building the program. When 

the pupils have finished planning, they wake Emil up to run their program. 

As the content is so extensive, I am not able to give a complete picture. Instead, I highlight some of our specific 

design principles and some important milestones when moving from direct control to programming. First, in 

our pedagogy, primary pupils never work ‘one-to-one’ with computers, but always in pairs. When they work 

with robotics (i.e. with Ema), they are in even larger groups. When working with Emil, two pupils have one 

shared tablet or laptop and two workbooks in front of them. Together they discuss and solve sequences of 

problems that are ordered by increasing cognitive demands. Second, what is unique about our approach – at 

least when compared to many schools in our countries – is that there is no space for any traditional teaching 

in our classes, by which I mean ‘lecturing’. The teacher never reveals a new concept or procedure. The 

sequence of tasks is designed so that the pupils explore and discover everything for themselves, through 

collaboration and constant discussions, which are guided by the teacher with proper questions. Pairs of pupils 

share, explain, compare, and justify their strategies and solutions to each other. In that way they construct deep 

and durable understanding. Finally, the third design principle I want to mention is the fact that our 

programming environments of Emil for Years 3 and 4 do not give any feedback. It is the pupils themselves 

who have to consider and assess their progress – first in their pairs, but also many times a lesson as a whole 

group. 
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Concerning the progression in the content, let me jump straight to an activity involving Emil in the middle of 

the progression for Year 3. By this stage, pupils are already familiar with the fact that when a problem begins 

with Emil asleep, this signals that they have to program the solution first, and only then wake Emil as they are 

ready to run (or execute) their program. 

In earlier activities, pupils have already encountered a significant restriction in the form of the length of the 

blue panel, i.e. the number of steps of their solution is restricted by the number of positions on the blue panel. 

In Figure 3, for example, we see a pupils’ solution to one of the problems. It is this restriction that makes some 

tasks unsolvable (while others have multiple solutions), others are open-ended or even ‘unclear’ in the sense 

that pupils are invited to formulate their own additional rules. These constraints are all the subject of extensive 

whole class discussion.  

 

Fig. 3: Different panel designs to show the program provide opportunities to think about its structure 

and properties. 

The blue panel can have a maximum of 12 positions, but for most tasks this number is often lower. 
For example, in the case of the task relating to Figure 3 (a), up to seven steps can be planned. 
However, in subsequent problems in the progression, pupils discover new panel behaviour: If they 
enter the same command multiple times in a row, the icons in the panel automatically stack up, see 
the solution in panel (b). Even though this program consists of 13 commands, it takes only four 
positions on the panel. We increasingly transfer pupils' attention to the panel. They consider and 
discuss various properties of their program, such as its structure. Thus, they discover that two 
consecutive commands can be connected into a double command. If they create identical double 
commands in the program in a row, these also automatically stack up, see panels with programs (c) 
and (d). Three cards can be merged into one as well. So, the fifth program (e) consists of up to 24 
commands, but we have created it in panel (e) with only 11 positions, taking just nine of them. Thus, 
we promote pupils' understanding of the elements of repetition in the program. 

In Emil for year 3 we control the character in a so-called absolute frame, that is, with the arrows up, 
right, down, and left. In Emil for Year 4, we move further in the sense that we control the character 
in a so-called relative frame, that is, with the commands step forward and turn right 90° or left 90°. 
Within the activity sequences we gradually add more and more language commands, see Figure 4, so 
that pupils can always focus on discovering new possibilities and their properties. We start with a 
simple pair of commands: step forward and stamp the green star (and later add a step forward with 
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drawing a line). Gradually, pupils will discover how they can choose the colour of the pencil and 
stamp, and the thickness of the crayon or the size of the stamp. They will also begin filling the 
enclosed area with a selected colour that they have previously outlined. They will also discover how 
to use the pin command to draw diagonal lines in a regular square grid, where Emil moves only on 
horizontal and vertical grid lines. 

 

Fig. 4: In Emil 4, we pupils start with only two simple commands 

In addition to a vocabulary of nine basic commands, Emil 4 also provides three compound commands 
P1, P2 and P3. First, these are defined in the tasks by the authors. Pupils explore them and use them 
together with other basic commands as shortcuts for groups of commands that logically belong 
together (in the sense of new blocks in Scratch or user-defined functions in Python). Later on, pupils 
start to modify and correct provided definitions. Only then do they begin to create and use their own 
compound commands. We consider this as an important development in the level of pupils’ 
abstraction in their computational thinking. 

 

Fig. 5: In Robotics with Ema we focus on multiple representations of different things. In this case we 

are using a special and yet intuitively simple representation of the path 

Before I try to summarise why and how these short vignettes illustrate what I consider to be special 
about computational thinking when viewed from an informatics perspective, I want to mention 
another part of our educational content in primary informatics. These activities are implemented by 
schools within five lessons in each primary year 1 to 4. This is a specific comprehensive progression 
of activities in which pupils work on the floor in groups of three to four with special mats and Blue-
Bots, who we have named as a female robot, Ema. One of the main goals of this progression of 
activities is to introduce multiple representations. These include how we identify the different squares 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 26



 

 

on the mat, how we represent Ema’s position and direction, how we represent the program; how we 
control Ema, how we represent the corresponding path on the mat, what shape that path is, etc. In 
Figure 5, we see an activity from Year 4 where we work with a mat based on a 5 x 5 array. We label 
its squares in a familiar way, e.g., B2, C2, D4... We name Ema's position and direction, e.g., by 
saying, Ema is standing on B2 facing away from A2. When Ema executes her program from the start 
and with the initial direction, she walks a certain path on the table mat: the program corresponds to 
the path on the mat and the path’s shape. And can also be expressed by the sequence of the labels of 
the squares she walked on. In the activity in Figure 5, we see that blue Ema has to take a path with 
the ‘code’ D2 E2 E3... What will be the code of the red Ema’s path if both robots execute the same 
program? 

So in conclusion, where do I see differences between MT and CT? This is a hard question, which I 
have tried to answer in an indirect way by showing what we do within the context of primary school 
informatics. We solve contextual problems by controlling a character or several characters. We 
emphasise how they can be controlled and how we can represent that process. We explore how the 
characters behave, how they react to different events and situations, what their options are and what 
their constraints are. These interest us not only in the characters’ behaviour, but also at the level of 
data, in several different senses. In accordance with Papert, we try to get pupils to think about the 
program itself, to consider it as an expression of their idea, to explore different properties of the 
program, such as its length etc. Pupils compare different representations of a procedure for solving a 
problem, exploring the language used to represent it. They compare different solutions and explore 
whether they would be able to express the solution if certain constraints were added, if they had other 
means and structures to engage etc. We want pupils to encounter different powerful ideas of 
computing in this way. In computing. And in mathematics as well. 

Response 2 by Iveta  

I will provide some examples from a survey we conducted in the spring of 2022 of around 350 
Norwegian mathematics teachers (Turgut et al., 2022). The survey was framed by the Pedagogical 
Technology Knowledge framework (Thomas & Palmer, 2014), with a focus on the implementation 
and use of tools for computational thinking and programming (CTaP tools) in mathematics teaching. 

One of the open questions was related to the teachers’ perceptions of the effectiveness of these tools 
for the purpose of supporting their students to have an improved understanding of mathematics. The 
analysis of the responses revealed teachers’ views that imply some differences between 
computational and mathematical thinking.      

Teacher 1:     CTaP tools provide immediate feedback. You get the results quickly, no need to 
wait for the teacher and you see whether your solution is correct or not correct. So 
you are naturally motivated to look for an error which is not happening in 
mathematics. Thus, students learn from their own mistakes. 

Teacher 2:     I think the students get a feeling when using these tools that mathematics should be 
used to arrive at a solution or to create something. Therefore, they must understand 
that mathematics is a tool to get the desired result. [and] In a traditional problem in 
mathematics textbook, I don't think they get the same understanding … that we use 
mathematics in order to create something. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 27



 

 

Teacher 3:     It’s a borderland between theoretical and practical mathematics because it embraces 
both worlds in a good way and this can lead to flourishing in other students than 
those who did well in classical mathematics. 

Teacher 1’s response indicates that evaluation and debugging are one of the differences between CT 
and MT. The teacher’s example is closely related to programming. Also, the teacher refers to trial 
and error which is a common heuristic in programming but for many students seen as somewhat 
invalid in traditional mathematics. In addition, students might be motivated by having less fear of 
making errors. 

The CTaP tools, according to Teacher 2, help students see the usefulness of mathematics. This can 
be connected to problem solving or entrepreneurial activities. In mathematical thinking it is harder 
for students to see how their answers and solved problems can be useful for real life purposes. 

Teacher 3 sees opportunities for underachieving or underperforming students, as well as for students 
with a lack of motivation in mathematics. The practical nature of programming found in, for example, 
debugging and the creation of algorithms, could appeal to many of the students who previously lost 
interest in mathematics. 

In winter 2021, we asked Norwegian in-service mathematics teachers participating in a professional 
development course, to draw mind maps and compare components of mathematical and 
computational thinking. The analysis of their mind maps revealed that generalisation, abstraction, 
analysis and problem solving were the components that were typical for both MT and CT. 
Components which appeared only in the MT part were reasoning and proof and communication. On 
the other hand, components present only in the CT part were expressed by verbs related (mainly) to 
programming, like debug, structure, document, sort, declare, and decompose. But also, to google, to 
try and to cry. This indicates that Norwegian mathematics teachers perceive/interpret CT as 
programming and/or coding, which is one of the findings of Nordby and her colleagues (2022) as 
well. The verbs “trying” and “crying” might express teachers’ uncertainty and confusion, which 
signal a need for professional development courses related to CT. We have noticed a similar issue in 
the survey answers (Turgut et al., 2022), which resonate with findings from the studies by Kveseth 
(2022) and Grimsgaard (2022). 

Response 3 by Piers  

With respect to differences and similarities, my thinking is very much inspired by Cuoco’s (1996) 
“Mathematical habits of mind” which I wrote about and discussed in some depth in my recently 
completed doctoral thesis (Saunders, 2022). I really feel those habits of mind have strong similarities 
with how computational thinking has been defined within the literature. For example, if you're not 
familiar with these, Cuoco describes a series of statements such as “students should be pattern 
sniffers” or “students should be tinkerers”. I think we can see very, very strong links with aspects that 
Ivan talked about within his presentation for the types of activities that we want students to be doing 
as they engage with computational thinking, whilst also being the types of activities that we want 
students to do as they develop mathematical thinking. 
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Panel Question 2: Do the new curricula look different within the primary, 
secondary and tertiary school phases? For example, are the digital tools used in 
each phase the same or different? Are there any particular implications for 
assessing learners’ outcomes? 

Response 1 by Iveta 

In Norway we have a new national curriculum since August 2020 in which CT and programming are 
introduced in the following subjects: mathematics, science, arts and crafts, and in music. 
Computational thinking is in Norwegian translated as “algoritmisk tenkning” (algorithmic thinking) 
and thus it inevitably leads to misunderstandings and misconceptions, as the term algorithm has 
associations with standard algorithms (Gjøvik & Torkildsen, 2019; Nordby et al., 2022). 

CT is mentioned in the mathematics curriculum for Grades 1-131 only once, under core element 
Exploration and problem solving. 

“CT is important in the process of developing strategies and approaches to solve problems and 
means breaking a problem down into sub problems that can be solved systematically. This also 
includes evaluating whether the subproblems can be solved best with or without digital tools.” 

(Directorate of Education, 2019a, p.2) 

On the other hand, the curriculum uses the term programming often. The general idea is that students 
learn different terms and concepts related to programming in mathematics, which they they apply 
within mathematics, science, arts and crafts and in music (Sevik & Guttormsgaard, 2019). For 
example, one of the competency goals in the music curriculum for Grade 10 says: “Create and 
program musical sequences by experimenting with sounds from different sources” (Directorate of 
Education, 2019c, p. 8). 

Coming back to mathematics, there is one competency goal (of the 10-15) related to programming in 
the mathematics curriculum for each grade (starting from year 2). Some of them are very general, 
neither specifying the programming language and (digital) tools to use, nor the mathematical topic. 
For example, a competency goal within Grade 5 states, “create and programme algorithms with the 
use of variables, conditions and loops” (Directorate of Education, 2019a, p. 9). In Grades 3, 6, 7 and 
9 only the mathematical topics are specified: 

·    create and follow rules and step-by-step instructions in play and games related to the 
coordinate system 

·    use variables, loops, conditions and functions in programming to explore geometric figures 
and patterns, 

·    use programming to explore data in tables and datasets, 

                                                 

1 In Norway, children start Grade 1 the year they turn six years old. 
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·    simulate outcomes in random events and calculate the probability that something will occur 
by using programming. 

(Directorate of Education, 2019a) 

Similar to the curriculum, some textbooks do not specify the programming language. However, from 
the text (Figure 6), although not explicitly stated, it can be inferred that the languages used are Scratch 
or Python. From the aforementioned teachers’ survey responses (Turgut et al., 2022) we also know 
that CTaP tools like MakeCode with the Micro:bit are often used in Norwegian schools, as well as 
Scratch, Python, GeoGebra or spreadsheets in Grades 6-10. In Grades 2-5 we found that Bee-bot, 
Scratch, Robot Emil or various online environments are used regularly. 

 

 Figure 6. Programming in a year 8 mathematics textbook (Tofteberg et al., 2020, p. 136-137) 

In upper secondary school, which in Norway it means Grades 11-13, mathematics is compulsory only 
in year 11 and students can choose between practical (P) and theoretical (T) mathematics. Only 
students who choose theoretical mathematics will further develop their competence related to CT and 
programming, as the curriculum states:  

“formulate and solve problems through the use of computational thinking, different problem 
solving strategies, different digital tools and programming.” 

(Directorate of Education, 2019b, p. 5) 

Any application related to a mathematical topic is specified only in Grade 13, “develop algorithms 
to calculate integrals numerically, and use programming to execute the algorithms” (Directorate of 
Education, 2020, p. 6). 

As we can see from the above, in mathematics students learn programming as well as the application 
and use of programming. CT seems to be under-communicated in the curriculum and there is also 
some confusion regarding what it is, and its place in mathematics. 

Moving to the implications for assessing learners’ outcomes with respect to CT,  it is important to 
mention that pupils in Norway are not given grades or marks during the first seven school years. 
Instead, at the end of each term, students are assessed summatively (against competency standards), 
together with a guidance on how s/he can increase his/her competence. From Grade 8 onwards, 
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students are given grades and must also have a written half-year assessment with a grade. Assessment 
practices have traditionally been weak, with teachers focusing on effort rather than the quality of 
students’ competence and curriculum mastery (Hopfenbeck et al., 2012). Since 2007, national 
mapping tests in reading and numeracy have been implemented to help primary school teachers 
identify the weakest 20% of students (Nortvedt et al., 2016). In addition, during Grades 5, 8 and 9 the 
schools are given knowledge about their pupils' basic skills in computing/calculating from national 
testing. To date, none of the tasks in these national tests relate to CT or programming, which seems 
fair since these ideas have only been part of the national curriculum since autumn 2020, and teachers 
need some time to adjust their teaching accordingly. However, there is little recent research on 
Norwegian primary school mathematics teachers’ classroom assessment practices (Nortvedt et al., 
2016). I hypothesise the same would be true for secondary school teachers. Again, the new curriculum 
has only been effective for about two years (at the time of writing) so the research gap becomes even 
bigger in relation to the assessment practices within CT and/or programming. It will also be 
interesting to study how mathematics teachers’ understanding of CT affects their assessment practices 
in mathematics. 

My final point concerns the national exams (high-stakes tests) in mathematics. In the example set2 
for the Grade 10 exam for 2022, there was one task in which students were asked to explain an 
algorithm (displayed as a flowchart shown in Figure 7) and give examples for numerical values for 
which a certain equality holds. The context of the task was mathematical. The purpose of the 
algorithm was to determine whether the input of a triplet of triangle side lengths (a, b, c) satisfy the 
Pythagorean theorem (inferring that the sides represent a right-angled triangle).   

A second open task was also included in the example set (Figure 8). 

 

                                                 

2 An example set is a complete exam distributed to teachers but only for training and information purposes.  
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Figure 7: Flowchart from Grade 10 example set (Directorate of Education, 2022a) 

 

Figure 8: Open task from Grade 10 example set (Directorate of Education, 2022a) 
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The accompanying task guidance stated: 

In this assignment, you are expected to: 

• ask relevant mathematical questions that demonstrate your competence  

• show calculations and answer your questions  

• make critical assessments based on the questions and your calculations 

In the solutions to their own questions, students are expected to demonstrate their competence in 
modeling and applications, another of the core elements of the new curriculum in Norway. In the 
suggested solution provided by the Norwegian Directorate for Education (2022b), the expected 
solution is to use a spreadsheet. It can be argued that the creation of such a spreadsheet also can be 
considered as being within the scope of CT.  

The flowchart task was presented without the specification of any programming language. This might 
happen in later examination designs, but for now it seems that the choice of language, or even whether 
to choose unplugged, block-based or textual programming, is the responsibility of the teachers and 
the schools. The flowchart task might seem fairly easy, but this should be seen as a first step into 
programming in mathematics in Norwegian schools. The open task (Figure 8) demonstrates another 
new, very open, type of task. This task is representative of some of the new content and new core 
elements in the curriculum. These new types of tasks will push teachers into making several 
adjustments to their teaching, and potentially face several challenges. For example, how should they 
teach the new topics? They also have to consider new types of assessment practices connected to the 
new task types so that students taking the exams will get fair assessments in these new experiences.  

Response 2 by Piers 

One key point which continues to perplex me is that when we are thinking about the vehicle of 
programming  for  learning mathematics, we also need to address the assessment practices of that 
learning. For example, Iveta talked about programming  through  the  different  curricula without 
focusing on the specific  language  such  as Scratch  or  Python  itself. She also highlighted in her 
examples that when we assess programming in the high stakes (end of phase) examinations, the 
method is through pencil and paper tasks. But surely, the role of programmers is to actually program 
with a computer!  If we consider the  role of digital  tools  in mathematics in  the UK, the  current 
assessment structures  continue  to be pencil  and paper based with some access to a calculator, 
although there is a non-calculator examination paper!  And so I pose the important question, “How 
do we bring about system change in the high stakes assessment practices so that digital tools (beyond 
calculators) are at first recognised and then permitted? ”  

Response 3 by Ivan 

Again, I will use school mathematics as a parallel. A curriculum for developing computational thinking and 

programming needs to be complex and comprehensive for the whole of education, across all stages of school, 

with clear goals, vision and direction. However, it must systematically progress from year to year, respecting 

developmental appropriateness, interests of the pupils and the level of their abstract thinking. Motivating them 
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appropriately, building on what we have learned earlier. Otherwise, we would get stuck in a loop, accepting 

vague learning goals and starting all over again in each stage. 

In this process, primary school plays a special role. Primary teachers teach most of the subjects to their pupils, 

so we must not expect them to be specialists in informatics and programming. But this is not a limitation. On 

the contrary, it is an amazing advantage! Primary teachers have big experience in how to bridge learning 

between subjects and various learning areas. We need to build the curriculum in informatics and programming 

to respect and utilise this primary learning ecology.  

Panel Question 3: What are the implications of such curricula developments for 
teacher preparation and support? Are there any local, regional or national 
initiatives to address teachers’ professional learning needs? 

Response 1 by Piers 

Both Ivan and I worked on the ScratchMaths project which positioned building mathematical 
knowledge through learning to computer program. In the UK a new compulsory computing 
curriculum was introduced in 2014, for all phases of education, from children as young as 5 years old 
up to 16 years of age. Ivan has stated that we need to respect primary teachers, and so when the 
computing curriculum was introduced, we were very aware that primary school teachers would not 
be prepared for teaching such a curriculum. We therefore had an opportunity to design a new 
curriculum for both the teachers and the children, and set an overarching goal to develop problem 
solving and reasoning in mathematics through programming in Scratch. The success of our project 
was evidenced by an independent evaluation, which measured the children’s mathematics scores on 
a national test at the end of the primary phase aged 11 years old. The project was a large national 
project aimed at children who were aged 10 and 11 years old, i.e. the final two years of the primary 
phase in England. Our design needed to reflect the UK context, in particular the background of 
children, and the technology that they had available to them at school. Importantly, this was not an 
initiative for children who had previously experienced programming, and  likewise the teachers. The 
children and the teachers were learning and starting from Scratch as they engaged with our carefully 
sequenced two year ScratchMaths curriculum (Figure 9).  
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Figure 9: The ScratchMaths instructional sequence across the two years of the curriculum (Boylan et 

al, 2018). 

In year one we provided teacher professional development, through in-person training accompanied 
by detailed curriculum materials (freely available at http://www.ucl.ac.uk/scratchmaths): pupil tasks, 
teacher guides, posters and Scratch starter projects. The focus of the ScratchMaths curriculum for 
children aged 9 was on developing computational thinking or aspects of computational thinking 
where the mathematical concepts were implicit. For example, in the first module, ideas of movement, 
rotation and pattern are explored by controlling the sprite3 with programming commands and 
structures. Students engage with the coordinate system within Scratch as they notice the numbers 
changing as they move the sprite forwards and backwards. Thus, in the first year of the curriculum 
the children (and teachers) build a foundation of programming skills. In the second year of the 
curriculum, we provided additional professional development for the teachers. The children were now 
a year older, the teachers had experienced teaching Scratch and ScratchMaths for a year and they 
were now able to develop mathematical thinking and mathematical reasoning where the maths is 
very, very explicit.  

The ScratchMaths final report was published in 2018 by an independent evaluator who found that 
there was a positive and significant effect on computational thinking skills in Year 5 (Boylan et al, 

                                                 

3 the programmable object in Scratch 
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2018). For us this was really important since the teachers had received appropriate professional 
development,  taught the curriculum materials as planned, and had the same experiences as the 
children. However, in the second year of the curriculum when the children were a year older, not all 
teachers moved forward with the children. Consequently, we were not surprised that the mathematics 
outcomes at the end of the second year (as measured by the national test) were not significantly 
affected for those that had studied ScratchMaths. Teachers not following their class as the children 
progress to the final year in the UK primary system is quite common as schools often timetable 
mathematics classes with a specialist mathematics teacher to teach and support children towards the 
national examination. We therefore had a context where the teachers were teaching the second year 
of a curriculum, having not had any experience of the foundational aspects of the first year.  Ivan 
often uses the analogy of trying to learn (and teach) a foreign language when you have only been 
given the year 2 textbook. So with respect to implementing a new curriculum successfully, it is 
essential to understand the teachers’ context and how they progress from year to year. 

However, during the project we worked directly with teachers in London who acted as design 
partners. This enabled us to learn that providing only curriculum materials was not enough for a 
successful implementation. We also needed to support teachers with how to teach programming 
which needed a different pedagogy. Consequently, we developed a pedagogical framework which 
you may have heard us talk about before, called the 5E Pedagogical framework (Noss et al, 2020). 
The framework was embedded throughout the curriculum materials to support the teaching of 
computational thinking and programming ideas, and to explore teaching mathematics through 
programming. Explain, Explore, Envisage, and Exchange are fairly well articulated pedagogical 
approaches, but our final E is the notion of bridgE, ie.  bridging from programming in Scratch to 
mathematics and vice versa. We also recognised the need to support teachers with the pedagogical 
approach through teacher professional development. We experienced what can happen if the teachers 
are not supported. Professional development was essential, but we also recognised that addressing a 
year’s curriculum in two days of CPD, whilst also providing opportunities to engage with the second 
year of the 2 curriculum, was insurmountable. 

My doctoral research focused on the teachers within the ScratchMaths project, and their developing 
mathematical knowledge as they learn to program. The complexity of identifying that knowledge is 
presented in Figure 10, an adaptation of Thomas and Palmer’s (2014) Pedagogical Technological 
Knowledge for teaching mathematics (PTK). 
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Figure 10: Elaboration of Thomas & Palmer’s MPTK Framework (Saunders, 2021) 

I add a box to denote Computational Content Knowledge, which feeds into the mathematical 
computational knowledge for teaching. I have added the mathematical ideas (in circles) which were 
the focus of both ScratchMaths and the specific focus of my doctoral research. For example, a variable 
has a very specific use in mathematics and also a very specific use in computing, but there are also 
overlaps, which were difficult for the teachers to articulate. This was challenging since the teachers 
felt they had a good understanding of algebraic thinking and that the concept of variable in computing 
would be the same. To illustrate this complexity, I use the example in Figure 11. 
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Figure 11: The ScratchMaths Firework task 

On the right hand side of Figure 11 is a beautiful Scratch algorithm (Step 6). The algorithm asks how 
many sides, then stores the value in the answer block, and a regular Polygon will be drawn. The 
representation in programming exposes the mathematical structure, for example the relationship 
between 360 degrees and the number of sides. However, we respected the teachers’ starting position 
so when we designed the guidance for this task, we supported a step by step approach, rather than 
just providing the final algorithm which brings together computational and mathematical ideas. To 
illustrate the approach we started with a simple algorithm to draw a square (see step 1 of Figure 11) 
which uses the answer block to store a variable and then use that variable to set the pen size. Step 
one therefore presents an ask and answer block consecutively, a relatively simplistic use of a variable 
in computing. 

We then move to step 2, which uses the same pen size again, but now the pen size block is moving  
further from the repeat block. This incremental approach proceeds through Steps 3-5 until we arrive 
at the final algorithm, which is Step 6 on the right. This approach supported both teachers and their 
children to develop their programming skills and use those skills to explore mathematical ideas, in 
this example, the idea of a variable and the concept of external angle. 
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Moving to consider how local, regional or national initiatives are supporting teachers’ professional 
learning needs in England, the context is set within the new national computing curriculum. It is a 
separate subject that has to be taught in all state-funded primary school by teachers who have trained 
as generalists, that is they teach every subject. This provided an opportunity to draw on the 
experiences of our team, who had worked with Logo and mathematics for nearly 30 years, and 
reconnect mathematics with computer programming, i.e., to exploit the synergy between the two. We 
recognised quickly that in order to work at a work at a national level, we needed to have regional 
support. Hence, we worked with, or created regional hubs where particular local agencies had a good 
knowledge of the schools, their context, and the types of technical infrastructure in the school. 

My final point is perhaps obvious in that continued professional development is essential to sustain 
any new curricula, but it is so frequently overlooked. As I have discussed this is not just about the 
curriculum itself, but also about the specific pedagogy that is required to teach such a curriculum. 
Within our project, we had embedded professional development (PD) opportunities each year, but 
found very quickly that due to the high turnover of staff in schools, even this PD was not sufficient 
to support the teachers who had not taught the first year of the curriculum. This particular group of 
teachers required further support, which we had not envisaged at the start of the project. 

Response 2 by Iveta 

What we know from our survey responses (Turgut et al., 2022), is that the most common obstacle for 
Norwegian mathematics teachers to implementing CTaP tools in mathematics teaching is their lack 
of competency and access to training. This is not surprising since most mathematics teachers were 
not educated to teach CT and/or programming. As a solution, the municipalities in Norway are 
offering professional development courses, which in Trondheim, involves a cooperation with NTNU. 

Regarding teacher preparation, we find ourselves in an interim period whereby our student teachers 
have not experienced or learned any programming during their own primary or secondary education, 
and so are struggling. Thus, we have had to offer an “on the spot” elective course, on programming. 
In addition, as teacher educators, we also try to implement programming in our regular teaching. So 
we discuss with the student teachers how this might be accomplished in probability, in statistics, in 
geometry, etc, following the curriculum competency goals related to programming. I have asked 
colleagues from other universities about their experiences. In Oslo, for example, the situation is the 
same. We are all trying to adjust our courses accordingly, and although we may still be a little 
bewildered, we do our best! 

Response 2 by Ivan 

In the ScratchMaths project Piers has just presented we worked closely with the in-service teachers. 
Such efforts are essential for successful transition. Iveta talked about how NTNU is trying to respond 
to the new situation as they support the preparation of their future teachers. This is also essential and 
crucial in the efforts of countries and institutions to bring about change, and I want to underline one 
thing. Unlike with mathematics, I believe, both in-service teachers and our university students, future 
teachers of informatics or mathematics, have most probably not experienced any programming during 
their primary and secondary school years at all. Almost certainly not in informatics classes and 
certainly not in mathematics. So if they come to our PD sessions, or if they are studying teacher 
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programs, they have to learn both the actual subject content and the skills that a teacher needs for 
teaching it. 

Along the lines of developing their digital literacy, the use of digital technologies is similarly 
challenging. It is crucial that future teachers experience productive use of digital technologies in all 
courses – whenever appropriate, during their university studies at the latest. Not just in a special 
course focused on the use of digital technologies for teaching/learning.  

Summary reaction by Alison 

Thank you very much to the panel presenters, who have taken us on a complex journey through what 
is an immensely challenging topic. When we create the curriculum statements in national, regional 
and school documents, we assemble words on a page. We saw from Iveta’s research that a critical 
starting point is how teachers come to understand the meaning of these wolds. All teachers arrive 
with their different backgrounds and experiences. Some may have experience in computational work 
and programming, others may not. Some may be strong mathematically, others may not. So, building 
shared understandings of the teacher's perspectives on these words is critical as we plan how we can 
support teachers to implement the related curricula.  

A second important group is the designers of the educational resources being developed to teach 
computational ideas within/alongside the teaching of mathematics. Both Ivan and Piers spoke very 
strongly to this. It is critical to understand the epistemological goals for both the mathematical 
curriculum and the computing, programming or algorithmics curriculum, which are influenced by 
the choice or design of technology.  

I was impressed by Ivan’s introductory statement, which acknowledges the vast human global history 
of mathematics as an evolving discipline and a set of practices. It is a subject that is so established in 
our culture, and although we still struggle to understand many aspects of its teaching and learning, 
we have many years of human experience in terms of both mathematics and mathematics education.  

Put alongside, computer education is relatively new to us. So, we rely on the computing experts to 
help us through. If we only had the expert mathematicians explaining and telling us how to approach 
the teaching of mathematics, we know that the mathematics educators would react – we have all heard 
of the “maths wars” that erupt around the world! Consequently, if the computing experts are working 
alone, there is the danger that the teaching of computing science in many countries will remain 
successful only for the minority of students who might elect to take such courses.  

When we introduce aspects of computational thinking into a national curriculum, we have to really 
understand the curriculum goals at the highest level.  

 Why do we think it's important that all children have some experience of learning ideas from 
computing? 

 Why is it relevant for this learning to take place within mathematics?  

Following on, what explicit design principles flow from these high-level goals? How do the 
educational content designers understand their design task(s), and its underlying rationale? 
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We heard from Ivan in this respect. He was very explicit about a design feature of the Emil technology 
for the kindergarten-aged children. It did not provide any feedback, an interesting point, which he 
justified in relation to the epistemological foundations of the design in Papert’s constructionism. 
Conversely, within the Norwegian context, the technology was being selected due to its feedback 
function, interpreted by the notion of a computer programme “working” or not. These are contrasting 
approaches for the way that feedback is being considered in each context that underpin both the 
technology and task design decisions. 

Piers and Ivan presented conceptions of pedagogical frameworks within the context of CT. This leads 
us to question, what do we mean by a pedagogical framework? and how might a well-defined 
pedagogical framework support designers to create resources that are going to be robust enough to 
keep the epistemic goals that underpin learning and teaching intact across a wide range of classroom 
contexts. This has a particular importance when the exciting (possibly high stakes) assessment 
processes may be misaligned with those epistemic goals.  

Moving to assessment, which is a globally complex topic that is highly politically charged and, 
despite international rankings dominating the national and regional approaches, no one country in the 
world has developed approaches that embed formative, ipsative and summative assessment of CT. A 
starting point would be to research teachers’ in-the-classroom strategies that help them to make sense 
of learners’ progressions in their understanding of this new curriculum. Ivan’s description of the way 
that primary teachers support learners in Slovakian classrooms implied a high level of teacher 
listening and whole class discussion.  

In our ScratchMath project experience in England, it was really challenging for teachers who were 
new to the computing content and new to the 5Es pedagogical approach to try to understand how to 
best support their students. For example managing multiple screens in these environments can be 
really challenging. What screen is the teacher sharing? How is the teacher interacting with children 
as they are learning? 

We have not had an in depth look at the nature of the assessment tasks that are being designed for 
CT, but Iveta’s second example did imply one that was product focused. The students are expected 
to apply the ideas from computing to solve a problem of their own design. This is quite a different 
approach to the items posed in most current high stakes assessments around the world. 

Finally, reflecting on the teachers’ current perspectives, there does not appear to be a wide expertise 
in our teaching workforce, and even this panel, as the considered experts in the field, are challenged 
to design the teacher PD approach, the design of the curriculum and the design of the assessment. In 
England, the response during the ScratchMaths project;s design year was to work alongside a smaller 
group of teachers to codesign the solutions to some of those challenges.  

Looking to Norway, which is beginning with the implementation of a new curriculum, whilst the 
initial work is to co-design curriculum resources, we might also approach the design of assessment 
tasks in a similar way. By activating teachers in this way, with associated processes of peer-review 
to iterate and improve both task and associated assessment items, we offer a scalable approach to 
professional learning at a time when there is limited expertise to offer more traditional cascade PD  
models. 
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Overall, what we have heard from Ivan, Iveta and Piers about the development of CT in their 
respective countries is that, despite the fact that some of these curricula began to be implemented 
nearly ten years ago, we are still very, very early in the journey to establish computing education as 
a domain of knowledge and practice. We shouldn't be surprised by that, given that computational 
ideas are relatively new in the history of humanity. Our call to action is to continue to have dialogues 
such as this one, and to work together to understand and share different approaches that fit within the 
institutional and cultural settings of our different countries.  
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This paper presents a study that monitored math teachers throughout their experience of designing a 
chapter in an e-textbook in order to understand how an environment in which the interaction of digital 
resources, teachers participating in design, and locating resources might contribute to teachers’ 
professional development. The data were collected through a course for math teachers. The 
theoretical perspectives that guided the study were:  the Documentational Approach to Didactics 
(DAD) and the Interconnected Model of Professional Growth (IMPG). The findings indicate that the 
teachers gleaned resources from diverse sources with different considerations, and their professional 
development was demonstrated in the domains of change.  
Keywords: Teacher as designer, e-textbook, resources, professional development. 

Introduction 
E-textbooks have become popular among math teachers, increasingly replacing printed textbooks 
(Usiskin, 2018). The transition from printed textbooks to e-textbooks has gradually become more 
pronounced following the Covid-19 crisis. This has impacted teaching practices (Kempe et al., 2019). 
In recent years research on e-textbooks has increased, yet less is known about teachers’ involvement 
in designing them (Pepin, 2021). Until recently, the term “designing textbooks” was reserved for 
authors and experts in the field. However, the term's boundaries were breached in the era of e-
textbooks. Currently, adapting content is increasingly possible, while opinions stressing the 
advantage of positioning teachers at the center of the design process have gained ground (Trouche et 
al., 2018). In tune with this background, this study focused on seven math teachers in order to study 
how to design a chapter in an inquiry-tasks e-textbook. In this paper, we strive to shed light on how 
teachers choose resources and the effect on their professional development. It was surmised that the 
process of designing would rely on the teachers’ thought processes and principles, potentially leading 
to their professional development (PD). The teachers’ PD in the context of their changes was tracked 
using the IMPG, which describes the PD of the teachers in four domains (Clarke & Hollingsworth, 
2002). The framework of the DAD (Gueudet & Trouche, 2009), a holistic approach to teachers’ work, 
was adopted to identify how the teachers chose and employed resources. The study aims to document 
the teachers’ growth by the IMPG and to determine the resources teachers adopted when designing a 
chapter in an e-textbook. The questions that the study posed were: 

1. What were the major resources used by math teachers for designing inquiry tasks in the e-
textbook and what were their considerations? 

2. In what domain did the teachers undergo changes following their experience in designing the 
e-textbook? 
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Professional development of teachers 
Clarke & Hollingsworth (2002) proposed a model that addressed the PD of teachers as active learners 
who form their PD through reflective participation in PD programs throughout their practice. 
According to said model, change may occur in four domains that comprise the teacher’s world: the 
personal domain, i.e., the teacher’s professional knowledge, perceptions and principles; the domain 
of practice i.e., the teacher’s professional experience; the domain of consequence i.e., the major 
results from practical experience that the teacher perceives as significant; and the external domain 
i.e., external sources through which the teacher is exposed to information. The teacher’s development 
process includes sequences of changes comprising at least two processes that mediate enactment or 
reflective processes. The teacher’s change occurs through interactions between different domains. 
Each action represents the performance of something a teacher knows or has experienced. The IMPG 
effectively identifies knowledge changes and learning paths that may occur in individual teachers 
(Huang et al., 2022). We use the four domains to identify the changes that the teachers underwent 
and the different learning paths that may have appeared. It would be reasonable to assume that 
choosing resources that are adjusted to the teachers’ requirements with an emphasis on innovation 
impacts the teaching practice. 

Documentation Approach to Didactics 
This approach considers the work of teachers to be fundamentally composed of designing teaching 
materials through the use of diverse resources (Gueudet & Trouche, 2009). In this article, the term 
“resource” denotes a variety of teaching materials teachers use. After monitoring the teachers’ work 
over a period of time, it is possible to gather information on how teachers employ resources, so that 
teachers will be able to design, choose and manage resources, and possibly also share same with 
colleagues; this process is known as the documentational genesis (Pepin, 2021). This process is 
present in many aspects of teachers’ work and may lead to professional growth (Trouche et al., 2018). 
The interaction between the teacher and the resource consists of two processes: the process of 
instrumentation, the impact of the resources on the teacher’s teaching practice; and the process of 
instrumentalization, the teacher’s organization of the resources according to their leanings and 
knowledge. 

Methodology 
Seven secondary school math teachers holding at least a bachelor's degree participated in this study. 
The teachers’ use of e-textbooks for teaching was relatively limited compared to the use of printed 
textbooks. For them, it was the first time they were involved in the process of designing tasks in an 
e-textbook. The data were collected through observation, gathering documents and tools, and 
interviews with the seven teachers. The goal was to obtain information on their considerations in 
selecting resources and the reflective processes resulting from a change in one domain in association 
with another. The study was conducted as part of a 30-hour PD course, held once a week for two 
months. The course focused on inquiry-based learning and digital tools (Geogebra and Goformative). 
After the course, the teachers embarked on their first experience as designers. This was their first 
opportunity to experience designing inquiry tasks within the framework of an e-textbook. At this 
point, the researchers observed and examined the process and stages of design undertaken by the 
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teachers, focusing on the types of integrated resources and monitoring the changes the teachers 
underwent in the Domain of Change. To observe and analyze the documentation work, we based our 
methodology on the principles of reflective investigation (Gueudet & Trouche, 2011). The first 
element was the broad collection of the material resources used and produced in the design process. 
The second element was a two-month follow-up to collect the resources the teachers used throughout 
the design process. The last element was to confront the teachers' views on their documentation work 
(for example, from the collection of material resources and from the teachers practices in their 
classrooms).’ 

Findings  
We will present selected examples of the resources the teachers used throughout the design process. 
These examples were mentioned during the seminar, were documented on various occasions in the 
course of the seminar, and were raised during interviews with the teachers: 

a. The Ministry of Education curriculum - the teachers work on the basis of this curriculum as 
it is available daily in the course of their teaching. Teachers saw it as an authoritative resource 
requiring or demanding total commitment.  

b. Textbooks - a source that is available and reliable for them. Teachers rely on textbooks for 
their teaching, including examples and questions designed for students. 

c. Materials from colleagues - ready-made materials the participants obtained from senior 
colleagues.   

d. Websites - The seminar provided access to computers and an internet connection. The teachers 
took advantage of the free access to computers 
 

Findings according to the Interconnected model of professional growth (IMPG) 
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Table A: data on the processes Reflection between the domains according (IMPG) 

From Domain To Domain Description Example from data 

External Personal Teachers consider and 
reflect on research and 
technological tools that 
influence their attitudes and 
knowledge.  

“…Math teachers should know how to 
use GeoGebra, as I think this is a tool 

which can help them in their teaching.” 
(“N”)  

Practice Personal How teachers reflected the 
influence of their 
experience at the seminar on 
their knowledge, 
perceptions, and attitudes. 

“…After seeing what the other teacher 
did…I needed to look for another 

question.” (“M”) 

 

Table B: data on the processes Enactment between the domains according (IMPG) 

From Domain To Domain Description Example from data 

External Practice The effect of the stimuli and 
support offered to the 
teachers on their experience 

“…In one of my lessons, I presented the 
students with exploration tasks on the 
same subject I had to teach to encourage 
them to think.” (“A”) 

Personal Practice The influence of knowledge, 
personal views and 
perceptions on their 
methods 

“…I chose a question from a test 
compiled by the mathematics coordinator 
at the school…The coordinator is more 
experienced than I am.” (“D”) 

Consequence Practice The consequences for the 
teacher when applying the 
method during their 
practical work. 

“I chose this question based on the level 
of the class I teach. I have students who 
have learning difficulties and I think that 
this fits their learning level.” (“M”) 

Final remarks  
In this study, we attempted to demonstrate how teachers’ use of resources - emphasizing their use of 
diverse resources while designing a chapter in an e-textbook - impacted their development and 
professional growth, as well as identifying the domain of changes that the teachers underwent. We 
present the initial findings that indicate how the math teachers’ exposure to and experience with 
diverse resources can support their PD. The results indicate that all seven teachers experienced 
seeking and choosing different resources based on various considerations. The teachers’ involvement 
in the design process contributed to enriching their knowledge. For example, they recognized the 
advantages of the e-textbook for enhancing their teaching. Using adapted and new resources can aid 
the teachers’ professional growth (Choppin et al., 2018). The teachers used resources from their 
educational environment. In fact, the resources used by teachers were based on their knowledge and 
their professional and personal set of beliefs, which are important in their choices (Gueudet & 
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Trouche, 2009). The process enabled them to choose the resources that supported their day-to-day 
practice. The course, that was based on exposing the teachers to innovative resources and granting 
them autonomy in choosing resources and designing inquiry exercises, was groundbreaking. It 
significantly differed from the PD process they were familiar with from previous years. This may 
impact their professional growth and increase the teachers’ confidence to deviate, if necessary, from 
the contents of existing textbooks and to create learning texts independently, according to their 
teaching needs. Thus, we consider it essential to involve teachers in designing, and concur with the 
researchers who state that teachers should be positioned at the center of the design process (Trouche, 
Gueudet & Pepin, 2018). We acknowledge that the number of participants was small and that it is 
necessary to conduct a study with a more significant number of participants and long-term 
participation to essentially understand the correlation between the use of resources and teachers’ 
development and professional growth.  
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This study aims to identify the interaction between students as they use augmented reality and 
understand how the students’ interaction may help them disclose mathematical ideas. In this study, 
we focus on how augmented reality may lead students to disagree and how the disagreement allows 
them to disclose mathematical objects.       

Keywords: Augmented reality, layers of meaning, interactions, disagreement. 

Introduction 
Augmented reality (AR) is an innovative technology that overlays virtual objects into the real world 
(Akçayır & Akçayır, 2017). AR allows juxtaposing real-world phenomena and virtual objects and 
provides real-time data layers that model dynamic situations. In addition, AR promotes interaction 
among students (Akçayır & Akçayır, 2017; Kamarainen et al., 2013) and facilitates mathematical 
discussions (Wang et al., 2014). These characteristics create opportunities for exploring and creating 
meanings for relations between real-world dynamic phenomena and virtual mathematical 
representations. In this contribution, we shed light on how a specific design of augmented reality 
technology affects students’ interaction and their meaning-making processes.   

Theoretical framework  
According to the phenomenological perspective (Rota, 1991), mathematical meaning-making 
happens through a gradual interpretation of the surrounding world and of the various situations in the 
world in the contexts in which they are exposed. This process resumes the Husserlian concept of 
disclosure: the same situation may evoke different contexts and produce different sense-making 
according to the people’s background, age, and culture. Such different contexts are not isolated but 
layered upon each other and generate different layers of disclosure in time flow. Disclosure happens 
when one can grasp an object’s functionality in a given context. The disclosure process is far from 
natural. Students should be educated to make sense of what they disclose when they meet with 
mathematical objects.  

The relationship between interaction and sense-making of mathematical concepts – as a case of 
knowledge construction – has been acknowledged among several mathematics educators. For 
instance, Balacheff (1999) argued that the literature on social constructivism has confirmed the 
productive and essential character of social interaction and revealed that the social interaction 
processes are conducive to the construction of mathematical concepts by their very nature. Berland 
and Reiser (2009) argued that interaction and sense-making are two interlinked, essential scientific 
practices that schooling should make available to science students. In tune with Berland and Reiser, 
our basic assumption is that interaction, which includes, among other things, questioning, 
agreement/disagreement, and the search for explanations and justifications, may foster the students’ 
understanding and prompt their subsequent disclosure of the mathematical relationships depicted in 
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the digital tool. In particular, disagreements are essential expressions of interactions in a learning 
process. Such expressions cause participants to raise new and additional ideas, change their minds 
and perceptions and increase creativity (Van Offenbeek, 2001; Sharma, 2012). Hence, this study's 
research question is: How does the augmented reality environment promote disagreement between 
students, and how do these disagreements contribute to disclosing layers of mathematical meanings? 

Method 
The present study reports on the interaction processes of three 15-year-old students from Israel. The 
task analyzed in this contribution aimed to disclose the relationship between spring elongation and 
mass through performing a real experiment and with the support of AR technology. The technological 
tool we used in this study is an AR headset that collects real-time data of a dynamic phenomenon 
during a physical experiment about a spring elongation obtained by adding some cube-weights at its 
free extremity (Figure 1). The data are collected by sensors and analyzed, and the mathematical 
representations are displayed simultaneously to the students using the designated headset.  

 

 

 

 

 

 

Figure 1: Spring elongation phenomenon- students experimenting and observing the graph 

In this qualitative study, we adopted as an analytic method a descriptive coding of the emergent forms 
of interactions (Saldana, 2015). Videos of the learning experiments were watched repeatedly to 
identify all the relevant interactions. These interactions were classified during the first coding cycle, 
describing their features. During the second coding cycle, they were grouped into categories and 
provided with an entitling tag. Eventually, we revised the coding and elaborated on three macro-
categories: i) interactions promoting the discussion; ii) interactions based on disagreements; iii) 
asking questions. Among these categories, in this contribution, we will specifically focus on a 
selected episode in which interactions based on disagreement emerge.  

Results 

In the following episode, three students, Sagi, Alex, and Noam, were asked to endow the axes of the 
Cartesian system in their task with meanings. This episode illustrates the disagreement that emerges 
because of observing different virtual representations.  

2 Alex: So, the x-axis... it seems to me… 
3 Sagi: The y-axis… we saw the length of the ... the height of the spring. It is the... 

from its initial state plus the elongation.  
4 Alex Spring length… umm... in cm. The x-axis was the weight of the cubes. 
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5 Sagi: The x-axis was… 
6 Noam: On the x-axis was only two points. Points between the lengths and points 

between the parallel lines of the box. It was like this [draws on the right in 
Figure 2]. There were two boxes between the spring; I had two points along 
the y-axis that connected the spring. These two points describe the distance 
between them.  

7 Alex: It is not; it is given on the graph itself, not on the boxes as you draw in the 
figure 

8 Noam:  Which graph? 
9 Sagi: There was a graph when you saw the ... on the spring itself, there was a graph. 
10 Noam: I only had a table next to it; I only noticed a table next to it.  
  […] 
14 Sagi: Can I check it again for a moment?  
15 Noam: The table of values had two columns, length, and weight 

 

 

 

 

 

 

 

 

In [2-5], Alex exchanges what they disclosed through the headset. Alex and Sagi conjectured that the 
x-axis is for the cube’s weight and the y-axis is for the spring length. The interaction between Sagi 
and Alex is characterized as one completing each other's ideas. This harmony is interrupted when 
Noam says that the x-axis has only two points. Her utterance “On the x-axis was only two points… 
parallel lines of the box” [6] suggests that Noam focuses on specific virtual objects while she ignores 
the Cartesian system. It seems that Noam’s disclosure led her to disagree with her classmates. In [7], 
Alex revives the discussion by disagreeing with Noam’s argument “[i]t is not” and describes what he 
has disclosed (the graph). In [9] Sagi confirms Alex’s argument and describes what he has disclosed 
“on the spring itself, there was a graph”. In [10], Noam also describes what she has disclosed “I only 
noticed a table [of value] next to it”. Sagi’s utterance in [14] suggests that he needs to look again 
through the headsets to be sure of what he noticed. Noam, in [15], adds that the table of values she 
has disclosed consists of two columns: length and weight.                    

Final remarks 
This short contribution is part of a large research project aiming at investigating how AR technology 
shapes students’ interactions. In this paper, we present and discuss one case in which the use of AR 

Figure 2: Noam’s drawing-graph points seen 
as edge points of the reference box 
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leads to disagreement between the students. Of course, this is not the only type of interaction we 
found. However, we present this type since we found that the features of AR prompt disagreement 
between the students. The ways used by students to overcome disagreement led them to look for 
justification and explanations to convince their classmates. In our case, even though the headsets 
present the same data, different students focused their attention on different aspects of the virtual 
representations.  

Situations in which students disagree may create opportunities for meaning-making. In our case, the 
disagreement between the students leads each one of them to contribute with the specific aspects (s)he 
has disclosed. As the discussion progresses, the students pay attention to the aspects that have been 
disclosed by the others. In this case, the sum is bigger than its parts.                      

As we showed in the episode above, even though the same information was presented to all students 
using the headsets, each student paid attention to something different. This issue requested them to 
reexperience. Hence, the AR not only helps in the creation of the disagreement but also plays a crucial 
role in solving disputes by examining different opinions and ideas. The students are free to explore 
and test and thus AR promotes the potential for self-building knowledge (Ibáñez & Delgado-Kloos, 
2018). As a future direction of research, we aim at collecting data from other teamwork activities 
focused on learning other scientific concepts and refining the coding of the interaction categories 
identified in this preliminary study.  
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Using technology to teach mathematics involves conceptual, pedagogical and other transfigurations. 

In particular, teachers may face mathematical issues different from what they have learned and teach 

at school. Here, we present our GeoGebra Book based geometry workshop for teachers, in which 

they faced definitions of polygon and area adjusted for computer platforms. We analyze our 

observations basing on our three-fold theoretical framework, which includes experimental 

mathematics (Borwein, 2013) in school, the semiotic framework for pedagogical functionality of 

interactive materials (Naftaliev (2018) and instrumental orchestration (Trouche et al., 2013). 

Keywords: definitions in mathematics; technology-based interactive curriculum resources; 

experimental mathematics in school; pedagogical functionality; instrumental orchestration. 

Introduction  

What is presented herein is a small excerpt from our on-going research, in which we study ways of 

promoting secondary/high-school mathematics teachers’ knowledge, skills, and orientations in order 

to enrich their teaching practices with educated and perceptive use of Technology-Based Interactive 

Curriculum Resources (TBICRs), in implementing the Experimental-Mathematics (EM) in school 

alongside with formal, deductive mathematics. Teaching with interactive curriculum resources is 

more than a technological change; indeed, it is an attempt to create new paths to the construction of 

mathematical meaning (Naftaliev, 2018), (Barabash ,2019). Groping for the ways to attain this, we 

opted studying first of all how teachers cope with new mathematical meanings. We present and 

analyze here the design principles and some outcomes of the workshop organized at the initial stage 

of the project, with emphasis on teachers’ coping with mathematics related to the TBICRs use. In 

particular, we focus on definitions of mathematical objects familiar to teachers, transformed as a 

result of their embedding in technologic environment. The design of the project and analysis of the 

observations are based on our three-fold theoretical framework concisely perused herein, which 

included experimental mathematics in mathematics teaching and learning, the semiotic framework 

for pedagogical functionality of interactive materials and instrumental orchestration. 

Theoretical frameworks and methodology 

Modern experimental approach to mathematics is inseparable from the powerful incentive of modern 

technology. Borwein (2013, pp. 33-34) has formulated a number of characteristics of what he coined 

as mathodology of this approach, of which we focus on “gaining insight and intuition; discovering 

new relationships”. Recent studies (Arzarello & Manzone, 2017; and others) indicate inevitable and 

deep transformation in school mathematics related to EM. Interweaving EM at school with formal, 

deductive mathematics involves conceptual, pedagogical, procedural, didactic, and educational-

system transfigurations.  

Naftaliev & Yerushalmy, (2017), Naftaliev (2018) introduced a semiotic framework for pedagogical 

functionality of IDs (Interactive Diagrams) as a pedagogical tool. An ID is a relatively small unit of 
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interactive text composed of a specific example, its representations (verbal, visual, other) and 

interactive tools. The semiotic framework is characterized by three types of ID functions that address 

a variety of pedagogical settings: presentational (refers to type of example in the ID), orientational 

(refers to mode of representations in the ID), and organizational (refers to the connection between all 

the components of the ID).  The presentational function refers to the three types of examples in IDs: 

specific, random, and generic. “Sketchiness” vs. “rigorousness” of diagrams is an important factor in 

user orientation. The organizational function looks at the system of relations defining wholes and 

parts and specifically at how the elements of text combine together. IDs can be designed to function 

in three different ways: Illustrating, Elaborating, Guiding. Similar TBIRs designed according to 

different pedagogical functions should be considered different learning settings (ibid.). The results of 

the studies find this framework valuable and productive as a tool for teachers’ professional 

development. 

Trouche et al. (2013), Gueudet & Trouche (2012) and others refer to instrumental orchestration as 

the teacher’s intentional and systematic organization and use of various artefacts available in a 

learning environment related to a given mathematical task. Teachers’ orchestration includes 

arrangement of learning environments, or “didactical configurations”, and intentional guidance of 

their exploitation modes.  

In this paper we reveal and analyze our participants’ process of learning mathematics in the 

environment designed to merge experimental and theoretical mathematics. Their first steps in this 

process articulate their concepts of mathematical objects, their preparedness to adjust to the GeoGebra 

environment, and to absorb, amalgamate and apprehend the diverse information each of its 

“windows” exposes, and the mathematical background behind this information. During the first 

workshop presented here, we strived to test versatility of their mathematical knowledge needed for 

this learning process, in particular, in what concerns mathematical definitions and representations of 

mathematical objects in a dynamic platform. Therefore, our research question is: To what extent are 

educated and experienced high-school teachers aware of the need and able to adjust formal 

definitions and concept images of mathematical objects and the modes of work with these objects to 

the dynamic computerized environment, and of the mathematical justification of such amendments? 

In “modes of work” we include open-minded experimentation with the mathematical objects in the 

spirit of experimental mathematics.  

Methodology 

Our research method is qualitative analysis of the documents produced in the course of the project: 

Zoom recordings and their transcripts, chats and otherwise registered discussions, etc. The categories 

were based on the three theoretical frameworks above. The participants were 14 high-school teachers. 

Their academic backgrounds varied from B.Ed. or B.Sc. degrees (9), through MA / M. Sc. degrees 

(4), to PhD in mathematics education (1). All the participants hold teaching certificate for secondary 

/ high school. 

The geometry unit: setting, resources, and observations 

The first workshop of the project lasted for three successive sessions, the first one being dedicated to 

the Geometry Unit (GU). It took place via Zoom platform and lasted for more than 4 hours. We 

sample here resources from GU and present their analysis within the framework of our study. The 
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mathematical side of GU referred to definitions. Some key mathematical definitions in computer 

environment significantly differ from those familiar to the teachers. Mathematics teachers deal with 

concept definitions and concept images (Vinner & Hershkowich, 1983) previously formed in their 

students’ or in their own minds. One of the expectations in providing a mathematical definition and 

working with it is the ability to adopt and imply it despite existing images of the concept being 

defined. Another necessary ability is to refer to different definitions of the same (or seemingly same) 

object and to assess whether they are equivalent, whether one of them is a generalization of the other, 

or maybe they contradict each other in some aspect. Definitions in mathematics may be context 

dependent. Formal mathematical rigor, technological constraints, didactic considerations are 

examples of decisive factors in the choice of definition of an object. As we observe herein, technology 

is an active participant and not a passive tool; it actively intervenes in mathematical aspects, such as 

mathematical definitions and may be not sensitive to pedagogic or curricular needs.  

The mathematical perspective: Definitions of polygon and its area 

GU presented in GeoGebra book includes dynamic implementations of constructing a quadrangle by 

its diagonals and involves the participants in guided experimentation in the spirit of EM 

(https://www.geogebra.org/m/shsqeeqf(. The presentation of activities in GeoGebra book organizes 

and structures the workshop, accounting for its hierarchical nature of evolving experiment. The 

platform suggests rich and possibly unexpected appearances of quadrangle, see e.g., Sinclair et al., 

2012; de Villiers, 2015). In addition, in GeoGebra, the quadrangle is denoted by numerical value q 

(q1 in most cases in the GU). One of the main foci of the unit is on this value, striving to cause a user 

– a high school teacher, in our case, to ponder via experimenting on the question: Why and how a 

geometric object is represented by a single number? An almost immediate and obvious guess for q is 

that it is area. Nevertheless, for self-intersecting quadrangles, q vanishes for non-void interior. Neither 

self-intersecting polygons, nor a phenomenon of zero area for non-void interior lay within school 

curriculum. And yet, the usage of such a platform as GeoGebra is increasingly popular at school. 

Therefore, a second focus is on the notion of quadrangle (or, more generally, of polygon), leading to 

various definitions of quadrangles and of area: how are these definitions chosen, and how are they 

inter-related? Keeping to a definition becomes challenged by the discrepancy between the concept 

image and the concept definition of quadrangle, in the case of self-intersecting or degenerate one. 

The teachers’ concept image for quadrangle is one related to the definition adopted in school 

mathematics (Definition 1 herein) which excludes self-intersection. Computer-generated polygon 

(Definition 2) allows for self-intersection and collinearity of adjacent and non-adjacent vertices, since 

the algorithms related to polygons creation in computer graphics follow the vertices in order of their 

appearance, whichever resulting polygon they yield, or whichever polygons result later on from 

dragging the vertices. The workshop confronted the teachers with the need to elucidate to themselves 

these appearances of quadrangle and the meaning of q1. With this purpose in mind, a guided activity 

of the workshop was designed. To sum up: The EM core of GU is guided experimenting aimed at the 

definitions of polygon (applied to quadrangle) and of area of polygon vs. their concept images, in 

computer-graphic environment. 

We counterpose here two definitions of polygon. Definition.1 Polygon is a simple closed line (curve) 

consisting of straight-line segments. Definition. 2. Polygon is as an ordered sequence of points – 

vertices, in which the first and the last points coincide. This definition is implicitly in the basis of area 
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computation in https://mathworld.wolfram.com/PolygonArea.html. A school curriculum usually 

adopts the definition of polygon as a simple closed line (see e.g., 

https://retro.education.gov.il/tochniyot_limudim/math/metzolaim.htm). 

Area of polygon  

A definition of polygon has direct implication on the definition of its area. Polygon defined as a 

simple closed line enables application of the Jordan Curve theorem, stating that a closed simple line 

divides the plane into two domains, one of which is bounded, and it is the interior of the curve. This 

theorem is not a part of the school curriculum, but it ensures an unambiguous concept of bounded 

domain and correspondingly, of its area. In the case of polygon as non-simple closed curve, the notion 

of area is nebulous and causes ambiguities as to the choice of interior, as in the case of “star-like” 

polygon (see e.g. https://mathworld.wolfram.com/Polygon.html). In the case of ordered sequence of 

vertices, the area accounts for the ordering, which leads to the concept of signed area: The signed 

area of a polygon is defined e.g., in (https://demonstrations.wolfram.com/SignedAreaOfAPolygon/). 

In order for the output for area to be non-negative, the final result of signed area computation is 

presented by its absolute value. If the polygon is simple and its vertices are numbered 

counterclockwise, Definition 2 turns to be Definition 1. Table 1 presents concisely mathematical 

contents of GU, necessary for the further analysis of teachers’ coping with definitions of quadrangle 

and area. 

Table 1. Mathematical contents analysis of the unit tasks 

Task Mathematical contents (EM / formal mathematics) 

1 In this introductory task the participants get acquainted with the problem and with the task setting, 

dragging modes and their outcomes. 

2 In this task, the participants are to conjecture how various dragging modes might affect the value q1, still 

not being sure what it is. 

3 Participants’ conjectures in this task depend on previous results. The graphs clarify the dependence of q1 

on each of three independent variables,  

4 In this task, the teachers are purposedly addressed to various degenerate cases of quadrangles not familiar 

to them from their previous experience, but unavoidable in computer-based transformations and area 

calculations. Eventually they are addressed to the concept of signed area indispensable in computer-based 

geometric calculations of area. 

Pedagogical functionality 

Table 2 characterizes pedagogic functionality of the tasks: 

 Table 2. Pedagogical functionality analysis of the unit tasks (Naftaliev, 2018). 

Task Pedagogical functionality 

1 The presentational function of this ID is a generic one; its orientational function is schematic and metric: 

it links the variability of the configuration to the variability of the numeric values of input data. The 

organizational function is an illustrating diagram.  

2 The presentational function of this ID is also generic. The orientational function is purely schematic: the 

participants are purposedly deprived of numerical data. It is an illustrating ID, as in the previous task. 

3 The presentational function ID is generic, with emphasis on q1. The orientational function is also 

schematic. The organizational function is guiding. 

4 As in the previous task, the presentational function is generic. The orientational function is both schematic 

and metric, purposedly focusing on the case of zero area for non-void interior as an indication to the need 

of reconsidering the definition of area in computer-graphic application. The organizational function of this 

task is also guiding. The diagram has as its ultimate aim the upgrading concepts of the quadrangle and of 

its area.  
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Orchestration modes  

We discern three principal orchestration modes in GU, each one with its explicit purposes and timing: 

a. The pre-designed orchestration modes reflected in the setting of the tasks of the unit, aimed at 

structuring the experiments and at their ultimate purposes, class arrangement for plenary and group 

work, at various stages of the GU. b. The on-going interference during various stages of GU. c. The 

post-factum interference following the analysis of unit outcomes, aiming at further clarification of 

mathematical ideas and pedagogical functions of tasks of the unit (this mode is not referred to in this 

paper).  

Results 

Selected observations illustrating the evolving awareness to modified definitions 

The following series of short excerpts out of 5th -18th minutes of the GU record followed by excerpts 

from the final stage (3hrs. 20th -25th min.) present the evolution of the participants’ awareness of 

existence of various definitions of quadrangle and area as a result of their work, organized along the 

theoretical frameworks of our study. RI is one of the researchers. The participants are encoded by 

first letters of their names. 

(5th Min. -18th Min.). 
M:               I have reached some conclusions…  I understood that when I drag the vertex G, 

never mind what the resulting figure is – the area does not change. 
RI:                  M., How are you so sure that this is area? I was asking you about q1. … 
M.                   Ah, OK. I based on the supposition that it is area.  
S to RI:       Eventually, we will be surprised to discover that q1 is not area… 
RI to M:         OK, write this down: I know that this is area. And now – how do you propose to   
                         make sure that this is area? 
YU1:              I began not with questions referring to q1; I asked: if I drag the point G – what 

figures do I obtain? Do they count? How can I consider them? …  
M:                    I discovered that when I drag the vertex G, so that the diagonals do not intersect, I 

obtain a non-convex quadrangle, and when I drag F, I obtain two triangles. Why? 
Ts:                  When we are dragging by F, the angle (between the diagonals) changes, and when 

we are dragging by G, it remains unchanged. How this angle impacts q1? Now, 
there is a configuration that G and E coincide. I am not sure that q1 is area, but a 
suppose that it is, and in this configuration the areas become equal… 

RI:  Equal – whose and whose? 
Ts. And M:  Of the triangle and of the quadrangle… 
RI:  Just a moment (configuration 1): do you mean that the sum of areas of these two 

triangles will become equal to the area of this triangle (dragging G to E) results in 
one triangle? 

As one may observe, during the first minutes of the group activity the interference was aimed at 

steering the discussion towards the awareness that what is seemingly obvious, is not, that questions 

should be asked the answers to which are not immediate and lucid, and that there is something that 

the teachers had not come across previously. Having attained this, the RI more or less withdrew from 

the discussion. The participants continued working in groups and in plenum (in Zoom) till the 

following excerpt, documenting their work as previously indicated. 

(3hrs. 20th -25th min.) (the discussion refers to the notions of quadrangle and its area after the 
participants were exposed to self-intersecting and degenerate quadrangles)   

M.:                  …but if it is not a quadrangle - how did the software compute its area as if it were? 
Ts.:                  It is a quadrangle. We must understand what the definition of quadrangle is… 
E.                    I am not sure that those who wrote the software, referred to these cases …. 
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Ts.                 I am sure that they did, and that there is a definition that we fail to discern. We are 
just not familiar with it profoundly enough, with all those extreme cases: what 
happens if there is a degenerate quadrangle; what happens if the vertices switch 
their positions… 

M.                    Just a moment, Ts. just a moment… I mean – the definition we know from geometry 
– what is a quadrangle, what is area – this sort of things. I just want to sum up what 
the questions are. So again: based on the definitions we are familiar with – who is 
right: we or they; the second question: suppose we are right – don’t the 
programmers know geometry? Don’t they have counselors in geometry? What are 
the reasons that, in spite of their knowing the “correct” definition – theirs is 
“incorrect” compared to the definition accepted by us; and if we are wrong and they 
are right – what is lacking in our definition so that it is a “complete” definition of 
quadrangle?  That’s it. These are the three questions of mine. 

RI:              Any more questions? If not – I think this is a good point to stop. You have some 
instructions and hints in the end of the task. My first point is that you should try and 
think over the questions that M. posed. There is some guiding in the file, and I will 
ask you another question, a very wide and somewhat vague about the definition of 
definition. What do we mean by the word “definition”? what is allowed and what 
is not? What is accepted and what is not?  

The orchestration modes appearing in the excerpts above, evolved as a response to the teachers’ 

deliberations. We characterize the orchestration objectives during the initial phase of the activity as 

tactical, aimed at steering the discussion into the desired route: to prevent too premature and / or 

seemingly obvious though unsubstantiated answers; to ensure proper documentation; to ensure proper 

experiment setting; to focus the participants’ attention on the fact that the meaning of q1 has not yet 

been clarified; to underline the questions posing aspect. Unlike the initial phase, the orchestration 

objectives of the closing discussion were of more strategic character: to enhance the clarity of 

participants’ suggestions; to underline the need of substantiating one’s claims and of providing valid 

argumentation; to clarify the definitions of polygon and of its area applied in computer graphics (the 

researcher addressed the teachers to the Wolfram site, as one can see in GU); to enhance the teachers’ 

conception of definition in mathematics, in general. 

Analysis and discussion 

In order to answer our research question, we analyzed the materials of the geometry unit through the 

lenses of our theoretical frameworks, with emphasis on EM as the subject matter, on pedagogical 

functionality as the didactic-organizational rationale of various parts of the unit, and on orchestration 

modes as mediation between the learners and the unit at various stages of learning. We designed the 

unit for teachers as learners to enhance their awareness of mathematical definition in general, and of 

definitions of quadrangle and of its area, and their ability to grasp new or modified definitions and 

representations in the context of the TBICR-and-EM-based teaching and learning. In particular, we 

focused on definitions of polygon and of its area in computerized environment that cannot be confined 

to definitions accepted in school curriculum, even if completely consistent with formal mathematics 

(see e.g., De Villiers, 2015). This need for amendment of a mathematical definition to a context and 

the possibility of such a choice is important to emphasize for the teachers as users both in learning 

and in teaching of mathematics in this new mode. The unit was designed as evolving experiment, 

aiming at: helping the participants get familiar with the environment; linking the objects familiar from 

pen-and-pencil experience with the same objects in computerized environment; highlighting the 

factors that may influence the choice of definition; providing the experience that might model their 

own future modes of teaching. The pedagogical functionality and the orchestration modes were 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 61



superimposed in the unit design, in view of these aims and of our research question. Thus, the first 

two tasks were illustrating diagrams with generic example, aimed to expose the participants to q1 as 

a single-valued numerical representation of a set of geometric figures, and to the variety of quadrangle 

configurations, controlled by the dragging modes. The rest of the tasks were designed as guiding 

diagrams, enabling open investigation. The numeric and schematic modes of the data presentation in 

all the tasks focused the users’ attention on special cases new to them. The three orchestration modes 

applied at different stages were attuned to the design of pedagogic functions and to the mathematical 

contents. The predesigned orchestration included instructions in the written tasks, guiding questions 

and suggestions to pose questions and look for theorems, and class arrangements. As one may observe 

from selected excerpts presented above, the mode of orchestration applied in the initial part of the 

meeting, aimed at keeping the participants up to the spirit of the unit as an evolving experiment, and 

at responding to their instant, seemingly obvious but irrelevant answers and reactions based on their 

previous knowledge and experience, whereas at the final stage the discussion focused on new 

meanings of definitions and eventually the researcher addressed the participants to the new meanings 

reflected in “upgraded” definitions of polygon and area, in the spirit of EM.  

As one may observe from the excerpts presented above, the participants’ attitude in the beginning of 

their learning to the mathematical phenomena they came across, was: “the geometry we know is the 

correct one; computer programmers can’t do with it as they please”; when dragging and “playing 

around” led to a configuration or a result incompatible with the definitions or concept images they 

had adopted in the framework of their school teaching, they considered it as redundant or tended to 

disregard it; they followed the experimentation mode of work suggested in the unit as long as it 

produced results they could explain and accept. Neither the pedagogical functions of different parts 

of the unit adjusted to the roles of these parts in the unit, nor the diverse modes of orchestration 

applied at different stages of design and implementation of the unit did not succeed in overcoming 

the teachers’ “stronghold” attitude to their mathematical knowledge.  

To sum up, the answer to our research question on the basis of the analysis of materials produced 

during the workshop based on the GU is that the educated and experienced teachers’ mathematical 

knowledge, its versatility and adaptability to the interactive dynamic platforms are not necessarily 

granted and should be the matter of close and systematic learning processes.    

In view of the issues that evoke in the challenge of merging the experimental mathematics with the 

teachers’ formal mathematical knowledge stemming out their previous education and experience, we 

suggest that the flexibility and versatility of the teachers’ mathematical knowledge is one of the 

pivotal factors in implementation of this approach (Naftaliev ,2018). The teachers faced mathematical 

objects seemingly familiar to them, that at some point or other failed to fit into the familiar definition, 

as the concept evolved during the activity of a workshop. The unit design based on the three 

theoretical frameworks presented and analyzed above, was intended to help the teachers to cope with 

discord between the definition and the concept image of a familiar object. For realization of 

experimentation in mathematics at the level of high-school curriculum, coping with various 

embodiments of an object (even a seemingly familiar one) related to its different definitions, becomes 

a key mathematical and didactical challenge. 
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Spatial ability is an integral part of everyone's life which is why its practice and deepening are 
very important. In this article, we reflect on one aspect of 3D printing that contributes to and 
helps just developing spatial ability. This aspect is the creation of a virtual 3D model of a 3D 
object in the Rhinoceros software. In this virtual 3D model creation, different visuospatial 
abilities are involved in other parts of the structure. Our goals are to assign the appropriate 
visuospatial abilities and categories of identified actions to individual construction steps in the 
Rhinoceros and PrusaSlicer software for the successful completion of the 3D printing process.   

Keywords: Spatial ability, visuospatial abilities, spatial orientation, mental rotation, 3D printing. 

Introduction 
Visuospatial abilities are one of the crucial abilities of every human being. Without people realizing it, 
they use visuospatial abilities in their everyday life, e.g. when they need to find their way in the city, in 
nature, when reading and orienting on maps, parking cars, arranging decorations in rooms, etc. Of course, 
professionals such as architects, builders, astronomers, doctors, mechanical engineers, and others cannot 
do their jobs without visuospatial abilities. Samsudin, et al. (2011) mentioned that these abilities were 
previously regarded as innate, but evidence from experimental studies suggests that significant 
improvement is possible through proper and specific training. Wang, et al. (2021) stated that in recent 
years, with the rapid development of 3D printing technology and the popularization of its educational 
application, researchers began to pay attention to how to use 3D printing technology to improve students' 
spatial ability. This paper describes the preparatory work for the planned actual case study that will be 
done by the team members of the project iTEM (project of the EHP Funds between TUL and NORD 
University with the following main goals: researching spatial ability, Mathematikus, 3D printing, and 
micro:bits) at chosen schools in the Czech Republic, Norway, and Germany. It is planned to find out if 
at all and in which way the usage of the spatial ability in modelling virtual 3D models as a basis for 3D 
printing differs with the age of students, next, which aspects of visuospatial activities students use while 
creating virtual 3D models, and if students are able to construct 3D virtual models according to 2D 
drawings of the models (Olkun, 2003). The creation of virtual 3D models of 3D objects is an aspect that 
leads to the creation of physical educational aids that can help weaker students in their learning process 
and encourage possibilities of using pupils' manipulative activities. 

Spatial abilities 
Many works deal with spatial ability, and its essential components are also mentioned in them. For 
example, Braukmann & Pedras (1993), Gardner (2011), and McGee (1985) point out that the visuoabilities 
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to mentally manipulate, rotate, bend or flip the depicted object are some of the critical aspects of 
intelligence. Linn & Petersen (1985) define spatial ability as an ability used for representation, generation, 
transformation, and evocation of symbolic and pictorial facts. They categorized visuospatial ability using 
three modules: mental rotation (the ability to quickly and precisely turn 2D or 3D objects, to imagine 
properties of a rotated object afterward it was revolved around an axis by a specific number of angular 
degrees), spatial perception (the ability to identify the spatial relationships of an object with regard to 
the orientation of one's own body), and spatial visualization (the ability manipulate in one’s brain with 
complex spatial data about the object, including the configuration of its individual components). While 
Maier (1994) uses the division of spatial ability into five components, see Table 1. 

Aspects of spatial ability Description 

A1 spatial perception 
solvers are demanded to designate spatial relations with regard to the orientation 
of their own bodies, in spite of distracting information 

A2 spatial visualization the ability to visualize the object and its parts in the space 

A3 mental rotation the ability to rotate the object in the mind 

A4 spatial relation the ability to imagine spatial objects, their parts and their relationships 

A5 spatial orientation the ability to orient oneself in space 

Table 1: Aspects of spatial ability according to Maier (1994) 

As can be seen from the above, spatial ability is able to be used as a trigger tool in learning and teaching 
actions in mathematics and geometry, as described by Cruz, et al. (2000). The usage of visual-spatial 
representations in solving geometric problems conclusively correlates with problem-solving exercise 
in general, as described by Battista, et al. (1982), van Garderen & Montague (2011), McGee (1985). 

With respect to all these given and many other studies, spatial ability can be interpreted as an ability to 
perform mental transformations of objects in space, imagine how an object looks like when viewed from 
different points of view, and understand relations among objects and their components to each other.  

Many studies show spatial ability is able to be made better and expanded (e.g. Baenninger & 
Newcombe, 1989, 1995). Practicing spatial ability is a big topic in the current teaching of geometry. It 
turns out that in recent years, only a few pupils or students are able to create the correct and 
corresponding visualization of a 3D object according to a planar drawing in their minds. The 
development of spatial ability seems to be problematic, especially when using online teaching. In this 
form of teaching, without the possibility of working with real 3D objects, it is necessary to look for 
other ways to enable students to imagine 3D objects. Given the importance of visuospatial abilities, it 
is certainly essential to use all available methods to develop these abilities. Today, we are surrounded 
by modern technologies more than ever before, and therefore it is certainly desirable to use them 
properly and meaningfully. For example, 3D printing is becoming increasingly popular and promoted 
today. In this article, we discuss possibilities to develop spatial ability by creating printable files. 

Creating a visual model of a cubic solid in Rhinoceros 
Spatial models, created specifically either for some topics of mathematics or geometry, or for some 
specific groups of students, can be created by teachers themselves and, of course, also by the students 
in various geometric software mentioned above (GeoGebra, Rhinoceros, Thinkercad,…) and then 
printed on a 3D printer, which is increasingly available today, as well as some of the mentioned 
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software. In addition to modelling virtual 3D objects in suitable software and the subsequent 3D 
printing of the created virtual model on a 3D printer, students' spatial ability can be practiced and 
developed through manipulative activities. 

When designing a virtual model of a 3D object in geometric software, various components of the 
spatial ability are always involved to construct the required virtual model of a 3D object correctly. To 
characterize more comprehensively the creation of a virtual model of a 3D object, we supplement the 
above-mentioned Maier's (1994) categorization of spatial ability into five components with the results 
of the case study of Dilling & Vogler (2021). We chose both studies because they fit very well for the 
purposes of our planned case study in comparison with the other studies concerning the same topic. 
They describe eight identified categories of actions C1 to C8 of students (Table 2) when working with 
CAD software. These are related to aspects of visuospatial ability. It describes the processes that are 
directly related to the development of various aspects of visuospatial ability: 

C1 selecting basic solids 
Choosing the right basic solid from a number of predefined solids. To select it, 
a user has to have a good idea of the composition of the resulting object. 

C2 changing parameters 
of solids 

Basic parameters (e.g. length, width, height, etc.) of solids can be changed. 

C3 changing position of 
solids 

Repositioning solids. A solid changes its position relative to others, which is 
related to aspects of spatial perception and spatial visualization. 

C4 rotating solids 
Rotation of solids around either points or axes into asked positions. Good user's 
spatial perception and mental rotation are necessary for the correct space rotation 
of a solid. 

C5 duplicating solids 
This action is related to an aspect of spatial relations, more exactly of copying 
solids. A user must imagine he needs some solid more than once to create the 
correct virtual model of a 3D object. 

C6 connecting solids 
Joining solids using Boolean operators. It is needed especially when modelling 
objects for 3D printing. 

C7 zooming in and out 

It is related to the necessity to shrink or enlarge the resulting solid for a better 
overview of the spatial situation, and the spatial relations by zooming out and 
zooming in a whole scene. This is directly related to the spatial orientation aspect. 
This category is needed when modelling objects for 3D printing. 

C8 rotating the total 
view 

This action is related to the ability to rotate either the whole scene or the whole 
object so that the user more easily creates or verifies his solution. Overall object 
rotation can also help in solving a given task. It relates to the aspects of spatial 
orientation and mental rotation. 

Table 2: Categories of the identified actions according to Dilling & Vogler (2021) 

Further, we use Dilling & Vogler's (2021) categorization mentioned in Table 2 and the aspects  
of spatial ability according to Maier (1994) (see Table 1) for their assignation to the particular steps of 
creating virtual models of 3D objects, more precisely of cubic solids. Modelling the particular virtual 
models of cubic solids, a user had to choose a basic solid for their creation (usage of C1). The cube is 
the basic solid in the case of constructing the cubic solids. The cubes are entered using the coordinates 
of the vertices lying diagonally on one of six faces of a cube and setting the high of the cube. In doing 
this, the user  
- must determine how the particular cube is oriented with respect to the orientation of his own body. 

It means he must realize the directions of the axes of the Cartesian coordinate system used in the 
Rhinoceros with respect to the orientation of his own body and consequently, enter the correct 
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coordinates of the vertices of the modelled cube as well as the appropriate value of the high of the 
cube. (usage of A1) 

- is able to visualize the cube together with its parts following correctly the particular steps of setting 
by entering the required information (coordinates of vertices and high).  (usage of A2) 

- is able to realize if the virtual model of the cube that appeared in the scene of the software 
corresponds to the model of the cube. It means if the created model satisfies all the properties of a 
cube. He verifies if the exact part of a spatial object, e.g. the exact face of the cube is in the required 
position with respect to the reference plane or coordinate system. (usage of A4)  

- is able to verify if the virtual model of the cube is located in the Cartesian coordinate system as it 
was mentioned. (usage of A5)   

There are two possibilities for further modelling the cubic solid virtual model. Once, the user can create 
the basic solid (the cube) repeatedly. In this case, the user must consider the coordinates of diagonally 
opposite vertices for each newly created cube. This way is error-prone. Secondly, duplicating a solid 
(the cube; usage of C5) is another opportunity. The process of duplicating is the same as in every 
application. After duplicating an object, both objects are in the same position in the scene. A user can 
verify the creation of the duplicated object by marking it. Being two objects in one position, their 
edges/reference curves are lighted in pink colour instead of in a yellow one. No particular aspect of 
spatial ability is necessary for this step. The duplicated cube must be relocated in the next step. There 
is a special command for relocating objects (usage of C3) in the Rhinoceros software. The user should 
follow the particular steps that appear step by step in the command line of the software. Being 
relocating the duplicated cubes (see Figure 1), a user has to find out the coordinates of one of the 
vertices of the newly placed cubes. 

Figure 1: Process of the relocation of the cube in modelling the cubic solid 

In relocating a duplicated solid, the user 
- realizes the correct relation between the created solids. In the case of the cubic solids, i.e. the 

placement of the neighbouring cubes. It means, they must touch each other only by their touching 
faces. It is impossible to one cube is partly situated into a second one. (usage of A1)    

- is able to visualize the cubic solid together with its unit cubes so that all the unit cubes are situated 
on their correct positions to create together the required cubic solid. (usage of A2)   

- is able to imagine the relation of the particular unit cubes in the cubic solid, e.g. to find out parts of 
their contact (faces, only edges or nothing between the unit cubes of the cubic solid). (usage of A4)   

- is able to verify how the particular unit cubes of the cubic solid are located in the Cartesian 
coordinate system. (usage of A5)   

The Rhinoceros software allows the execution of Boolean operations such as union, intersection, and 
difference. It means that connecting solids (usage of C6) is possible to do in the Rhinoceros. Using the 
command of Boolean union, the particular unit cubes are united into the compact cubic solid. The user 
can verify the correctness of the used command by marking the cubic solid. If the edges of only one 
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cube are in yellow colour (see Figure 2 on the left), the command of the Boolean union didn’t work 
well. All the edges of the compact cubic solid must light in yellow colour. (see Figure 2 on the right) 

 

 

 

Figure 2: Process of the Boolean union of the unit cubes of the cubic solid 

When connecting solids, the user 
- realizes and distinguishes if the edges of only some unit cube or of all the unit cubes of the cubic 

solid are yellow lighted. (usage of A1)   
- is able to visualize either the particular unit cubes of the cubic solid or the compact cubic solid in 

the scene of the Rhinoceros software. (usage of A2)   
- must imagine if the command Boolean union is able to use for uniting the particular unit cubes for 

formatting the compact cubic solid. E.g. when two unit cubes don’t touch themselves anywhere 
and no other solid is between them, the command Boolean union doesn’t work. (usage of A4)   

When creating the virtual model of the cubic solid, a user can use zooming in or zooming out (usage 
of C7) or rotating the whole scene (usage of C8) in the perspective window of the Rhinoceros 
software. Both mentioned categories are used to overview the parts or the complete constructed virtual 
model or for taking control of the correctness of the created particular steps of modelling. 

Zooming in/out or rotating the total scene, the user    
- is able to perceive the constructed virtual model of the cubic solid either in the total overview, in 

detail, or from various points of view. (usage of A1)   
- visualizes e.g. a detail of the virtual model for creating small parts belonging to the 3D object, an 

overview of the virtual model to add some other parts to the scene, or another part of the object 
that wasn’t seen from the starting point of view and is necessary to use it for the further steps of 
construction. (usage of A2)   

- can rotate the virtual model of the cubic solid in the perspective scene of the Rhinoceros software 
and in his mind at the same time. (usage of A3)   

- can analyze much better the spatial relations of all the parts and the whole created virtual model of 
the cubic solid with respect to the other created models, to the reference plane, etc. (usage of A4)  

- is able to orient the virtual model of the cubic solid or its parts in the Cartesian coordinate system 
set in the Rhinoceros software. (usage of A5)   

The categories C2 and C4 according to Dilling & Vogler (2021) weren’t used in the process  
of creating the virtual model of the cubic solid in the Rhinoceros software. On the contrary, they will 
be used in setting the virtual model for 3D printing in the PrusaSlicer software. 

Setting the visual model for 3D printing in PrusaSlicer 
Before inserting the virtual model of the cubic solid onto the virtual printing bed of the PrusaSlicer 
software, it must be saved in the *.stl file in Rhinoceros. Having inserted the virtual model onto the 
virtual printing bed, it can be set for 3D printing using various tools of the PrusaSlicer software. The 
parameters of the model can be easily changed (usage of C2) via setting other percentages of its 
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original sizes if we realize the printed model will be too small, or vice versa too large (see Figure 3  
on the left). Spatial perception (a user perceives the location of the virtual model on the virtual printing 
bed, the size of the virtual model in comparison to the size of the grid drawn on the virtual printing 
bed) and spatial visualization (a user visualizes the virtual model on the virtual printing bed; having 
based on it, he decides if the model is printable without any extra supports) are used in this activity.  

   

 

 

 
 

Figure 3: Changing parameters of the model and relocating the model on the virtual printing bed 

The suitable location of the virtual model on the virtual printing bed is very important for 3D printing 
itself. 3D printing of a 3D object takes place in layers when the nozzle of the 3D printer places one 
layer of molten plastic on the other. Therefore, a user must modify the location of the virtual model  
on the virtual printing bed especially if the printed 3D object contains "overhangs". Sometimes it is 
possible to relocate or rotate the virtual model onto the virtual printing bed using the special tool  
of PrusaSlicer and marking the face of the virtual model onto which the virtual solid should be layn so 
that “overhangs” disappear in such a position (see Figure 3 in the middle and on the right). Rotation  
of the cubic solid (usage of C4) was done to the model is unproblematically printed on the 3D printer. 
If we take Maier’s (1994) aspects of spatial ability into account, the user is able to 
- perceive the inserted virtual model on the virtual printing bed, he realizes its position with the 

respect to the Cartesian coordinate system and to the grid of the virtual printing bed. (usage of A1)   
- visualize the inserted virtual model in the position which is the most suitable for the process of 3D 

printing and set the most appropriate parameters for the virtual model. (usage of A2)   
- rotate the virtual model of the cubic solid onto the virtual printing bed so that the supports are not 

necessary to use in 3D printing. (usage of A3)   
- analyze if the particular cubic solids are located separately without any contact with each other 

when inserting more than one cubic solid onto the virtual printing bed. (usage of A4)   
- orient the virtual model on the virtual printing bed in such a way to it is parallel to the 3D printer 

arm so that 3D printing is of the highest quality. (usage of A5)   
On the contrary, the rotation of the virtual model is not adequate in some cases. It means there is no 

chance to rotate the created virtual model of a 3D object into a position in which no overhangs appear. 
So-called “supports” must be used in such cases. Otherwise, the overhung parts of the 3D object hadn’t 
need to be printed well; a nozzle of a 3D printer could fall in the area of these parts. Consequently, 
there are two possibilities. A user can let set the supports by PrusaSlicer itself, or he can show the 
problematic details by drawing where the supports should be added (see Figure 4 on the left). Using 
the command “Slicing,” the software creates the individual layers of a virtual model and adds the 
supports if they seem to be necessary for safe printing (see Figure 4 in the middle). Having done slicing, 
a user can take control of the particular layers by using the unique slicer tool of the software (see  
Figure 4 on the right).   
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Figure 4: Process of setting supports into overhung parts of the cubic solid 

The setting supports is a very responsible activity. If it is poorly done, 3D printing could crash in a 
better case, or a 3D printer could break down in a worse case. Thanks to that, a user has to use his 
spatial ability very carefully. Spatial perception and spatial visualization in the meaning of placing  
a virtual model onto the virtual printing bed in the adequate position are essential for visuospatial 
abilities as well as spatial relation when realizing whether there will be overhangs and mental rotation 
due to finding if it is not possible to prevent overhangs by another location of the object. If everything 
is set well, a user is able to save the created “project” as a so-called *.gcode file by pressing the 
appeared button. The *.gcode files communicate with 3D printers. So 3D printers reading those files 
are able to print 3D objects from corresponding virtual models. 

Conclusion 
Let’s summarize, the attitudes of some researchers toward spatial were briefly described ability. The 
aspects of spatial ability according to Maier (1994) were mentioned. Categories of the identified 
actions of students when working with CAD software according to Dilling & Vogler (2021) were 
clearly written in a table and commented on. We described the creation of the relatively simple virtual 
3D model of the cubic solid. By demonstrating its gradual modelling in the software Rhinoceros, we 
showed that in different steps of modelling, a user must involve various aspects of spatial ability. We 
have listed these aspects at each step and described them relating to the specific actions taken in each 
step. At the same time, we took over the relevant actions according to the categorization performed by 
Dilling & Vogler (2021). We found that in modelling the virtual 3D model of the cubic solid in the 
software Rhinoceros, six of eight activities mentioned by Dilling & Vogler (2021) were used. The 
remaining two activities can be used during the virtual setup of the 3D printed model in the PrusaSlicer 
software. The creation of a virtual 3D model of a 3D object in the software Rhinoceros and the setup 
of this virtual 3D model for 3D printing in the PrusaSlicer software themselves, e.g. according to a 2D 
drawing of the 3D model, affords users to develop their spatial ability. Students must transfer the 2D 
mapping of the 3D objects into the 3D scene of the software which helps to develop their spatial ability. 
We tested the modelling of cubic solids as parts of the so-called soma cube with students in the third 
year of the bachelor's cycle of the study program Mathematics for Education within the teaching of the 
course Geometric Software at TUL. Most of the students did make use of their spatial ability without 
any significant difficulty, even in the case when each of the students modelled their own cubic solids 
as part of the soma cube. One of the reasons could be the fact that they created the individual parts of 
the soma cube and their automatic com- and decomposition into soma cube in a dynamic applet in the 
freeware GeoGebra some weeks ago. More concrete details on findings of the suggested model in 
engaging students with spatial ability will be described after finishing the sharp testing of the model.  

Our goal for the future is to use a case study to find out whether and how the use of the spatial ability 
in modelling virtual 3D models as a basis for 3D printing differs with the age of students, next, which 
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aspects of visuospatial activities students use while creating virtual 3D models, and if students are able 
to construct 3D virtual models according to 2D drawings of the models. 
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student’s actual use of digital textbooks and other (digital) resources 
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The Covid-19 pandemic led to school closures and often to asynchronous learning. The study 
presented here focuses on students in upper secondary school. In particular, it is of interest which 
analogue and digital curriculum resources the students used to learn mathematics in distance 
learning and to what extent their resource system differed from the teachers’ recommendations. We 
compare students who had access to a specific digital mathematics textbook to those who did not. 
Because we consider this digital textbook to be particularly suitable for asynchronous and distance 
learning and because it addresses challenges faced by teachers, this comparison is of special interest. 
However, the results of the study show that students are more likely to use printed materials and that 
learning videos and worksheets also are of crucial relevance. 

Keywords: Digital curriculum resources, distance education, digital textbooks. 

Introduction 
The Covid-19 pandemic caused school closures and thereby distance learning in many countries. 
Teachers and students had to adjust to such a classroom situation, relying in particular on technology 
to support learning and teaching. What influence this had on mathematics education is indicated by 
first studies (e.g., Aldon et al., 2021; Brnic & Greefrath, 2022; Drijvers et al., 2021). Investigating 
such experiences and practices is relevant not only because of the specifics of mathematics education, 
for example, the use of specific representations and its focus on interaction and reinvention (Drijvers 
et al., 2021), but also for future (technology-enhanced) teaching and learning formats. In the previous 
studies, especially teachers and their actions in distance mathematics education were focused on. In 
contrast, this study investigates to what extent students implemented the teachers’ recommendations 
for distance learning. Since asynchronous teaching formats were often implemented during distance 
learning in Germany (Drijvers et al., 2021), it can be assumed that students were often encouraged to 
work self-directed. Based on a questionnaire, it is explored which analogue and digital curriculum 
resources the students actually used to learn mathematics. Since we consider a digital textbook with 
integrated digital tools to be particularly suitable for distance learning (Brnic & Greefrath, 2022), it 
is of special interest to what extent such a digital resource was integrated into distance learning. 

Students’ use of (digital) curriculum resources and distance education 
Curriculum resources can be defined as “all the material resources that are developed and used by 
teachers and students in their interaction with mathematics in/for teaching and learning, inside and 
outside the classroom” (Pepin & Gueudet, 2018, pp. 1–2). These can be digital as well as analogue 
printed materials that partially or fully represent the content and learning objectives from the 
curriculum, e.g. (digital) textbooks or worksheets (Pepin & Gueudet, 2018; Rezat et al., 2021). Thus, 
digital curriculum resources are also distinguishable from digital instructional tools, e.g., dynamic 
geometry software such as GeoGebra, whereby such digital tools can be part of the digital curriculum 
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resources (Pepin et al., 2017). Teachers and students do not use just one resource, but a system of 
analogue and digital resources. When using resources for learning, students are teacher-oriented, but 
eventually act independently (Rezat et al., 2021) and therefore their use may differ from the teacher’s 
recommendations. The ways of using and interacting with the curriculum resources are influenced, 
among other factors, by the students’ beliefs and prior knowledge (Cai & Howson, 2013; Rezat et al., 
2021). In times of school closures during the pandemic and with regard to asynchronous learning 
formats, which seem to be more common in Germany compared to some other countries (Drijvers et 
al., 2021), the curriculum resources used at home for self-directed learning of mathematics can be 
assigned a considerable importance. However, which resources and tools were actually used for 
mathematics teaching and learning has been investigated mainly from the perspective of teachers in 
previous studies (e.g., Aldon et al., 2021; Drijvers et al., 2021). For example, in the interaction 
between teacher, student and resource, the challenges teachers face (Aldon et al., 2021) or the tools 
teachers used to deliver mathematics lessons before and during the lockdown were investigated 
(Drijvers et al., 2021). Findings from this research indicate that teachers found it challenging to 
choose appropriate analogue and digital resources and tools to support students during distance 
learning, while they were keen to maintain continuity with their previous teaching practices (Aldon 
et al., 2021). Furthermore, Drijvers et al. (2021) point out that they used fewer mathematics-specific 
tools, such as mathematics-specific learning environments or exercise platforms, than before. The 
explicit role of the (digital) textbook, which is the key resource in a set of resources (Pepin & Gueudet, 
2018; Rezat et al., 2021), has been neglected in the research on distance education so far. We assume 
that a digital textbook with interactive features can help while distance learning, as it addresses the 
challenges of distance education, e.g. communication problems or giving feedback (Aldon et al., 
2021), and can contribute to the learning success of the students (Brnic & Greefrath, 2022). Based on 
the literature review and the challenges of asynchronous and distance learning, the following research 
question is of particular interest: Which analogue and digital curriculum resources were 
recommended to the students by their teachers during distance learning for learning mathematics 
and which ones did they actually use? Students who had access to a digital textbook with integrated 
digital tools and those who did not have access to this resource will be compared. 

Method 
In the KomNetMath project, the digital mathematics textbook Net-Mathebuch (m2.net-schulbuch.de) 
is made accessible as a digital resource to German upper-level mathematics courses for one school 
year. This digital textbook contains digital tools, e.g. GeoGebra is integrated, and covers many of the 
theoretical potentials of a digital mathematics textbook (Brnic & Greefrath, 2022). In addition to this 
digital textbook, however, teachers and pupils are still allowed to use their previous resources, i.e., 
their printed textbook. In order to gain an insight into the actual use of the digital textbook and its 
affective effects, the students participating in the project fill in questionnaires regularly during the 
school year. The questionnaire for the end of the school year 2019/20 was enriched with items related 
to school closures and distance learning. The data analysed in this paper is gained from the two 
(translated) items: “During the school closures due to the COVID-19 pandemic, what media did your 
teacher recommend for you to study for your mathematics lessons?” and „During the school closures 
caused by the COVID-19 pandemic, what media did you use to study for your mathematics lessons?” 
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The term "media" was used in the questionnaire because we assumed that the students would 
understand it better than the term "resource". The students could select several answer options in a 
multiple-response format (see the options in Figure 1). In May/June 2020, 88 (46 female, 40 male, 2 
non-binary) students from different schools participating in the project completed the digital 
questionnaire. The students are in upper secondary school and have an average age of M = 16.39 (SD 
= .68). Most of these students use the digital textbook at home on tablets (35 %), followed by 
notebooks (23 %) or smartphones (23 %). In addition, 44 (31 female, 12 male, 1 non-binary) students 
with an average age of M = 16.23 (SD = .77) completed the questionnaire representing a comparison 
group who did not have access to the digital textbook as a resource. 

Results 
Figure 1 shows the item results for the group that had access to the digital textbook (DTG) and for 
the comparison group (CG) that did not have access to the digital textbook Net-Mathebuch during 
the school year.  

 
Figure 1: Comparison of actual student use and teacher recommendations in both research groups 

The largest difference between the actual use and the recommendation is found in the use of the 
printed textbook with 18% in the DTG and in the CG with the explanatory videos and other media 
with 7% each. Further analyses regarding textbook use show that 30% of the students in the DTG and 
20% in the CG have not used a textbook at all. 

Discussion 
The results indicate that students often follow the teachers’ recommended resources for learning 
mathematics. This is particularly evident concerning the results in CG, where there are only small 
percentage differences between teachers’ recommendations and the actual use. In contrast, noticeable 
differences can be found in the DTG, especially since the printed textbook was used more often than 
expected based on the recommendations. Reasons could be that similar to teachers (cf. Aldon et al., 
2021), students also want to maintain continuity in their learning and thus tend to use the more 
familiar printed textbooks rather than the digital textbook introduced for these students in that school 
year. It is also possible that the use of curriculum resources is also influenced by the students’ beliefs 
and prior knowledge (Rezat et al., 2021). However, no statements can be made in this study about the 
purposes and frequencies of the use of the individual resources. Also, these are only students’ self-
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reports from a small sample and students may adjust their reported use to conform to the teacher’s or 
researcher’s expectations. Although the textbook is considered a key resource of a resource system 
(Pepin & Gueudet, 2018; Rezat et al., 2021), a considerable part of the students did not use it at all. 
It is possible, for example, that for learning the required subject matter the teacher’s notes are rated 
more relevant than the textbook. We would also have expected a greater use of the digital textbook 
with its integrated tools, as we consider it beneficial for distance learning formats (Brnic & Greefrath, 
2022). Possibly, however, it was not apparent to the students and teachers at that time to what extent 
the digital textbook can be supportive in the teaching and learning process. It is also noticeable that 
in addition to the textbook, instructional videos and worksheets were recommended and relied on to 
a substantial extent. In summary, the results show that students develop and use a system of digital 
and printed curriculum resources (Rezat et al., 2021), which can deviate from the recommendations 
of the teachers. The students must therefore be understood as independent actors with regard to the 
analogue and digital curriculum resource use. This shows that in studies on distance learning and 
asynchronous learning formats, students’ and teachers’ perspectives should be taken into account, as 
well as that more research is needed in this area. 
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This study was developed within an ongoing research project aiming at identifying innovative 
methodologies and technologies to design and use digital resources supporting mathematics 
education through the engagement of teachers, researchers and software developers in the 
collaborative design of a mathematical digital serious game. In this paper, we present and 
qualitatively discuss, using the Technological Pedagogical Content Knowledge as a theoretical lens, 
the early results of an initial survey, involving eight teachers. It aims to investigate their beliefs on 
the use of digital resources in mathematics education and the professional needs for teaching 
mathematics in the XXI century. With respect to their involvement in the following collaborative 
design of a mathematical digital serious game, we also investigated their beliefs regarding their 
potential contribution to such an activity.  

Keywords: Collaborative design of digital resources, Technological Pedagogical Content 
Knowledge, Teachers’ beliefs on the use of technology, Mathematical digital serious games 

Introduction 
The teacher profile required in the Digital Age is an integrated and harmonious combination of several 
kinds of knowledge and competencies: cultural and disciplinary, psycho-pedagogical, didactic-
methodological, and technological. Moreover, one of the key elements of effective teachers’ 
professional development in the XXI century is to bring them out of the isolation they find themselves 
in by integrating them into a context of continuous training in which they are protagonists (Borko & 
Potari, 2020). The study that we present in this paper was developed within an international research 
project MaTIn4MER –Methodological and Technological Innovations For Math Education 
Resources– based on the collaboration between the scientific world, the productive world, and the 
school world, to design and experiment with a mathematical digital serious game. We refer to 
mathematical digital serious games as digital educational games that can foster competition and 
achievements thanks to the mechanism of games, such as leader boards, point systems, badges, 
challenges, and up-levelling. They have been chosen as specific objects of research due to their 
potential to encourage better emotional dispositions toward mathematics and improve its teaching 
and learning (Capone & Faggiano, in press). Thanks to the software developers’ and teachers’ 
collaboration in the project, researchers aim to elicit guidelines to train teachers in integrating this 
kind of new technology in the mathematics classroom. The main hypothesis of the project is that to 
create a framework for developing innovative products and the related guidelines for teachers’ 
training, it is important to directly involve teachers themselves. Moreover, being beliefs contextually 
significant to the implementation of any innovations, to understand how teachers might deal with 
digital serious games, it is important to first understand their beliefs. In this study, we refer to 
teachers’ beliefs broadly as those tacit, often unconsciously held assumptions about students, tools 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 76



 

 

and content to be taught, their professional needs and their potential contribution to designing and 
experimenting with a mathematical digital serious game. A small group of teachers, called “pilot 
teachers”, were invited to complete an anonymous online questionnaire with the aim to investigate 
their beliefs on the use of digital resources in mathematics education, and their professional needs for 
teaching mathematics using a digital serious game. Through the lens of the Technological 
Pedagogical Content Knowledge (TPACK), in this paper, we present and qualitatively discuss the 
early results of this initial survey administered and analyzed with the aim to answer the following 
questions: a) What are the pilot teachers’ beliefs of their professional needs with respect to the use of 
digital resources in mathematics education? b) What are the pilot teachers’ beliefs of their potential 
role in the collaborative design of a digital mathematical serious game to experiment with in their 
classes?  
Theoretical Framework 
As far as it concerns the complexity of the integration of technologies into teaching practices, we 
refer to the framework of the Technological Pedagogical Content Knowledge (Mishra & Koehler, 
2006) to build the survey and analyze the resulting data. With his Pedagogical Content Knowledge 
model, the educational psychologist Lee Shulman (1986) emphasized with his seminal work the need 
for teachers to combine disciplinary knowledge with appropriate pedagogical strategies to achieve 
quality teaching. About twenty years later, Mishra and Koehler (2006) proposed integrating a third 
element: technological competency. The Technological Pedagogical Content Knowledge (TPACK) 
model suggests that, as with content and pedagogy before, technology should not be introduced into 
the educational context as a stand-alone element but as a component of a broader scenario: it is the 
integration of these different domains that supports the teacher in teaching a subject with the support 
of technology (Niess, 2005). In our case, according to Mishra and Koehler, Pedagogical Content 
Knowledge (PCK) is concerned with the structure, organization, management, and teaching strategies 
for how mathematics is taught. Technological Content Knowledge (TCK) is related to how 
mathematics is represented in technology-rich environments. Teaching with technology requires 
knowing the mathematics and how mathematics can be changed with the application of technology, 
and this knowledge is called TCK. Technological Pedagogical Knowledge (TPK) is concerned with 
how teaching and learning change with the integration of technology and how a teacher should be 
able to choose a particular tool for a specific task considering its affordances and limitations. This 
framework helps us to investigate how teachers are faced with the challenge to integrate the three 
knowledge domains. Looking at the survey results through the lens of the TPACK, hence, can help 
identify teachers’ beliefs on the use of digital resources in mathematics education and their 
professional needs for teaching mathematics in the XXI century also using a digital serious game.  

Methods 
The study uses the survey technique and the questionnaire as an explorative tool, consistent with the 
aims of the investigation. The questionnaire, anonymous and semi-structured, was composed of three 
sections: Section A contains questions concerning teachers’ data (to gain characterization of their 
profiles); Section B contains open questions concerning teachers’ technological, pedagogical and 
content knowledge; Section C contains open questions concerning teachers’ beliefs about digital 
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serious games and teachers’ potential contribution to the collaborative project involving schools, 
universities, and companies. A small group of mathematics secondary teachers, with a known bent 
on didactical innovations and a willingness to experiment with new educational solutions, were 
invited to join the project. Eight of them, to whom we refer as “pilot teachers”, voluntarily decided 
to answer the questionnaire. The questionnaire was administered in Italian and, together with the 
answers given by teachers, was translated by the authors. Results analysis is performed based on the 
teachers’ answers to the questionnaire, taking into account the TPACK model. In what follows we 
will mainly focus on the descriptive analysis of some of the answers given to Sections B and C.  

Results 
One of the first questions asked to teachers in Section B, was the following: “What difficulties do 
you think one might encounter when designing and developing a mathematics lesson using ICT 
somehow?” The answers reveal the need for designing and implementing effective teaching 
experiences integrating technology and, therefore, the need for pre-service and continuous training. 
For instance, T2 and T3 respectively answered: “It requires time and attention beyond the classroom. 
It requires constant training because technologies are always evolving. It is not easy to stay one step 
ahead of your students who are digital natives”; “it would be necessary to have adequate tools (both 
theoretical and practical) to use them correctly”. Some open questions were more specific about the 
knowledge required to be a teacher in the XXI century school. Here we focus on the following: 1) 
“What technological knowledge do you think the teacher should have?”; 2) “What pedagogical 
knowledge do you think the teacher should have?”. Some teachers referred exclusively to 
technological knowledge without focusing on technologies for teaching mathematics. T6, for 
example, answered: “They should know how to use the PC, the Interactive Whiteboard (IWB), and 
the tablet. They should be familiar with teaching and assessment applications in a more evolved way.” 
Others highlighted the relationship between different kinds of knowledge: “I think that technological 
competencies can act as a framework for other knowledge that the teacher must have, such as 
knowledge of subject content and the methodologies for teaching this content. Technological 
competencies alone are of little use”. From the questions in Section C, that dealt with digital serious 
games, emerges the teachers’ interest to learn how to integrate them into their teaching. They thought 
that a serious game can be a supporting tool for more traditional teaching and a stimulus for students 
and teachers, but it must be instrumental to the teaching goals. To the question “what contribution do 
you think you can bring to the design of a serious game?” T2, for example, answered: “Teaching 
experience, knowledge of the discipline for correct implementation of the game”. Finally, according 
to their answers, teachers believed that they could benefit greatly from both the research and the 
productive world that can help them reflect and rethink how they teach. 

Discussion 
According to the answers to the questionnaire, all teachers agreed that technologies support the 
teaching and learning of mathematics, but also that it would be necessary to have adequate 
knowledge. They referred to the need to have what, in agreement with the TPACK model we have 
called Technological Pedagogical Knowledge (TPK). Although they did not mention the specific 
technological and pedagogical knowledge that might be needed to teach mathematics using 
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technology, they also highlighted the need for more comprehensive knowledge, integrating 
technological, content, and pedagogical aspects, to improve the effectiveness of mathematics teaching 
and learning when using digital resources. Moreover, if, on the one hand, teachers felt the need to 
acquire new technological and pedagogical knowledge, on the other, they thought they can actively 
contribute to the design of a mathematical digital serious game by bringing their experience in terms 
of pedagogical content knowledge and assisting the researcher and the software developers in 
focusing on some unthought scenarios. Finally, teachers’ beliefs about their potential role in the 
collaborative design of a digital mathematical serious game to experiment with in their classes 
confirm our hypothesis concerning the importance of the direct involvement of teachers in the project. 

Conclusions and further developments 
This paper describes the preliminary study of a wider international project, that stems from the 
intersection of expertise from the technological, productive world, the academic world, and the world 
of education to identify innovative methodologies and technologies to design and use digital 
resources, such as serious games, supporting mathematics education. The project’s initial phase 
aimed to involve a small group of pilot teachers in sharing a common base to collaboratively design 
and implement a digital mathematical serious game. This required conducting a survey to investigate 
teachers’ beliefs concerning the use of technological resources in mathematics education, their 
professional needs with respect to this use, and their awareness of the importance and effectiveness 
of their contribution in the design and experimentation of a digital mathematical serious game. It 
emerged that the intersection of technological, methodological, and pedagogical competencies 
consistently responds to their professional needs with the TPACK theoretical framework. In the next 
phase of the project, we will further study how the intersection of knowledge and experience derived 
from multiple actors could give rise to the identification of shared innovative methodologies and 
technologies to design and use mathematical digital serious games. 
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In this paper we describe a teaching sequence concerning the characterisation of paraboloids and 
involving the use of GeoGebra Augmented Reality. The teaching sequence, framed by Marton’s 
Variation Theory and taking into account Duval’s theory of semiotic representations, was 
experimented with involving thirty undergraduate and master’s students in mathematics. It was 
designed with the aim of exploiting Augmented Reality to facilitate the transition between different 
semiotic representations. The results showed how students characterised paraboloids through 
treatments and conversions made on the registers of semiotic representations and how they related 
the observations that emerged during the experimental stages by going through the sequence of 
patterns of variation following Marton’s Variation Theory.  

Keywords: Augmented Reality, Paraboloids, Variation Theory, Semiotic representation. 

Introduction 
One of the difficulties in learning mathematics is the conceptualisation based on meanings referring 
to a concrete reality (Duval, 1993). The conceptual learning of any object has to go through the 
learning of one or more semiotic representations (Godino and Batanero, 1994). On the one hand, 
every mathematical concept uses representations because there are no “objects” to exhibit. Thus, 
conceptualisation needs to go through representative registers. On the other hand, the management of 
representations is complex because of the lack of concrete objects to relate the representations in their 
production and transformations. These difficulties are found not only in primary students, as research 
in Mathematics Education shows (Duval, 1993), but some of them are also encountered by secondary 
school students and university students. Many studies show how meaningful use of technologies, 
including Augmented Reality (AR), can help overcome some of these difficulties (Cahyono et al., 
2020; Capone and Lepore, 2020). Since the relationship between experience and conceptualisation is 
at the basis of learning processes in the educational field, it becomes central to understand how the 
presence of digital artefacts impacts the process of educational mediation, modifying both the 
artefacts and the awareness that users have of them. In the area of Mathematics Education, recent 
studies (Aldon et al., 2019) have highlighted how visual-kinaesthetic activities can help students to 
experience multiple levels of sophistication and develop the multiple meanings of covariational 
reasoning (Swidan et al., 2019). In this research, we investigated whether the use of GeoGebra AR 
(Tomaschko and Hohenwarter, 2019) can facilitate students in conceptualising a mathematical object 
by easing the transition between different forms of semiotic representations. For this purpose, we 
carried out a teaching sequence with thirty undergraduate and master’s students in mathematics using 
GeoGebra AR, which was framed by Marton’s Variation Theory (Marton et al., 2004). The choice of 
designing a teaching sequence that exploits the potential of GeoGebra AR comes from considering 
the fact that this digital tool, also accompanied by the dynamic geometry software GeoGebra 3D, 
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allows students to visualise 3D graphs and objects in real environments. Moreover, thanks to 
GeoGebra AR, students can connect the real world with the abstract world of mathematics, making 
explicit the connections between these two worlds, which with 3D software alone appear to be 
disconnected. In particular, GeoGebra AR allows students to model 3D objects, manipulating any 
surface with appropriate tools. Therefore, we focused on the use of GeoGebra AR to help students to 
conceptualise the idea of paraboloids through the transition between different registers of 
representation, from the graphical to the analytical and vice versa.  

Theoretical Framework 
As we are interested in fostering students in conceptualising the mathematical objects involved by 
exploiting the transition between different semiotic registers, Duval’s theoretical framework of 
semiotic representations in our research leads us in reading and interpreting our findings. The lens 
offered by Marton’s Variation Theory allows us to design a teaching sequence thanks to which 
students were guided to study paraboloids through appropriate variations of the characteristics of 
these mathematical objects exploiting the potential offered by the GeoGebra AR environment.  

Students’ difficulties with mathematics comprehension depend on mathematical processes and 
cognitive functioning underlying them and from the various registers of semiotic representations 
(Duval 2006). In his paper, Duval (2006) indeed states that understanding a mathematical concept 
presupposes the coordination of at least two semiotic representation registers. Therefore, passing from 
one representation to another is crucial for understanding mathematical concepts. The main activities 
of semiotic representations are treatments and conversions. According to Duval (2006), treatments 
are representations transformations within the same register: “the treatments, which can be carried 
out, depend mainly on the possibilities of semiotic transformation, and the semiotic register of 
representation used” (p. 111). Moreover, conversions are representation transformations that consist 
of changing a register without changing the objects denoted: “conversions […] are more complex 
than treatment, as any change of register requires the recognition of the object […]. However, 
conversion stimulates understanding of mathematical concepts from a cognitive point of view” (p. 
112). Thus, the coordination of semiotic registers, the ability to handle multiple representations of the 
same concept, and the ability to pass from one to the other are necessary for achieving the ability to 
identify a concept with one of its representations.  

The main idea at the basis of Marton’s Variation Theory concerns the means by which students can 
be helped to handle in powerful ways novel situations which emerge during teaching-learning 
processes in mathematics (Marton and Pang, 2006). Indeed, the Variation Theory describes the 
dynamic process of student learning as a controlled experiment in science, in which the scientist can 
vary one variable and observe how another variable changes accordingly (Marton et al., 2004). Thus, 
the learning process cannot occur until students have experienced variation. Consequently, assuming 
that teaching with variations in a controlled and systematic way helps students to construct 
mathematical concepts, the Variation Theory is based on the assumption that in varying teaching 
situations, students should be stimulated during their learning processes by taking into account the 
sequence of four patterns of variation (Marton et al., 2004):  
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to experience something, we must experience something else to compare with it (contrast); to fully 
understand what "three" is, we must also experience the varying appearance of three 
(generalization); to experience a certain aspect of something, and to separate this aspect from other 
aspects, it must vary while other aspects remain invariant (separation); if there are several aspects 
that the learner has to take into consideration at the same time, they must all be experienced 
simultaneously (fusion) (p. 16).  

Research question 
In this paper, we intend to investigate how AR fosters students’ transition between the different 
registers of semiotic representation to conceptualise the mathematical objects involved. Starting from 
the theoretical background of the chosen frameworks, with our research, we aim at answering the 
following research question: how can the transition between different semiotic registers of 
representation through the use of the GeoGebra AR foster students’ conceptualisation of paraboloids? 

Methods 
This research methodology is characterised by direct observation of the participants and a further 
interpretation of videos, which allowed us to go into detail about verbal (discursive exchanges, oral 
reflections), non-verbal, proxemic, and interactional codes. Thirty undergraduate and master’s 
students in mathematics were involved in a teaching activity, concerning paraboloids and their 
characterisation, based on the use of the dynamic geometry software GeoGebra 3D and GeoGebra 
AR. The combined use of these two software guides students in the transition between different 
registers of semiotic representation (2D and 3D graphs, algebraic expressions, equations) to 
conceptualise the mathematical objects at stake by exploring their mathematical characteristics. The 
teaching activity started with a preliminary task, and then it was developed through a sequence of 
tasks characterised by cycles of work in small groups and successive collective discussions. The 
authors have designed and experimented with the preliminary task and the following sequence of 
tasks. During the group work, students were asked to observe and discover some characteristics of 
paraboloids through the transition within the same semiotic register or from one semiotic register to 
another. Their written answers are part of the collected data. All the activities were video-recorded 
and transcribed. Data were analysed through Duval’s Theory of semiotic representations and 
Marton’s Variation Theory to highlight both treatments and conversions performed by the students 
and the patterns of variation that students create while using GeoGebra AR to conceptualise and 
characterise paraboloids. 

Description of the tasks  

In the preliminary task, students were asked to associate a corresponding surface with some level 
curves and to argue their answers; they were also asked to associate a list of equations with the 
corresponding surface without using any technological tools and to argue their answers. Three tasks, 
carried out using GeoGebra 3D and GeoGebra AR, then characterise the teaching sequence:  

1. Moving from the graphical representation of level curves to the graphical representation of 
the surface (treatment). Students were asked to move a slider k and observe the shape of the level 
curves. Furthermore, they were asked to find the connection between the level curves and the surface.  
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2. Moving from the different representations of level curves to the analytical representation of 
the surface (conversion). Students were asked to move slider k and compare different level curves. 
Furthermore, they were asked to find the analytical representation of the paraboloid.  
3. Moving from variations on parameters a and b of the surface equation to the characterization 
of paraboloids. Students were asked to consider the equation ݖ ൌ ଶݔܽ   ଶ and to vary, both onݕܾ
GeoGebra 3D and GeoGebra AR files, the parameter ܽ while leaving ܾ	fixed through a slider. They 
were asked to observe and describe how the characteristics of the surface vary as the parameter 
changes. Next, the students were asked to use another slider to vary parameter ܾ, leaving a fixed, and 
observe how the surface’s characteristics vary as ܾ varies. 

The first task aims to highlight the contrast pattern as a possible variation pattern of Marton’s theory. 
The second task aims to reveal the contrast and a first generalisation patterns. Indeed, in order to find 
the equation of the surface in 3D, the variable ݖ	must be no longer constant. Moreover, since the 
surface characteristics in 3D (i.e., both its graphical representation and its level curves) change as 
both a and b vary (changes that are also clearly visible with the graphical representation obtained by 
GeoGebra AR), with the third task, students can experiment with the pattern of separation by 
comparing the two different situations. Finally, the fusion pattern can emerge in the last phase of the 
teaching sequence when students are asked to simultaneously vary parameters a and b and describe 
what happens concerning these variations. 

Figure 1: Activities scheme of treatments and conversions  

Figure 1 shows the phases of the teaching sequence, highlighting, in tune with Duval’s approach on 
the registers of semiotic representations, the transitions between different representations in terms of 
treatment and conversion. In particular, the first activity can be regarded as a treatment since, with 
respect to its description, it allows us to connect the “graphical representation of level curves” to the 
“graphical representation of surfaces”. The second task represents a conversion from the “graphical 
representation of level curves” to the “analytical representation of surfaces”. But, from Figure 1, it is 
possible to realise that the second task can also be regarded as a treatment from the “analytical 
representation of level curves” to the “analytical representation of surfaces”, passing from the 
conversion bringing the “graphical representation of level curves” into the “analytical representation 
of level curves”. This is because the second task was designed to foster students to consider different 
representations of level curves that more easily allowed them to deduce the analytical representation 
of the surface. Finally, the third task can be described through a “reverse” conversion from the 
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“analytical representation of surfaces” to the “graphical representation of surfaces”. In fact, through 
observing the changes in the parameters ܽ and ܾ of the surface equation, it is possible to foster 
students in characterising the different surfaces that are obtained through observations on the 
corresponding changes in the different graphical representations that are displayed in 3D space on the 
GeoGebra AR environment. 

Results and Discussion  
To answer our research question, we will analyse the video recordings and transcripts obtained from 
the implementation of the teaching activity with the lens offered by Duval’s Theory of semiotic 
representations to highlight how the use of GeoGebra AR facilitated students’ transition through the 
different semiotic representations of paraboloids. Furthermore, analysing our results also with the 
lens offered by Marton’s Variation Theory, we will briefly show some of the patterns of variations 
emerging when students conceptualise and characterise paraboloids. Due to the restricted number of 
pages, in this paper, we present results related to the collective discussions conducted by considering 
the answers given by the students in the group work. 

During the discussion on the preliminary task, students highlighted that, without the use of GeoGebra 
AR, they could not efficiently accomplish the task, as shown in the following excerpt: 

S1:  On the graphical representation of the first exercise, we have been very approximate, and even 
now, we are still not very sure about the answers we gave... 

S2:  Actually, it was not easy to recognize. 

S1:  Whereas with GeoGebra, you can rotate the image. And that’s what helps you. 

S3:  Seen from above, the paraboloid cut from the plane already gives you an idea of the curves 
that must come in the plane 

Thus, students’ comments show that it was easier for them to identify the characteristics of the 
paraboloid using Augmented Reality. Even during the discussion of the subsequent tasks, students 
highlighted that, to be able to identify the correspondence between the surface in GeoGebra 3D and 
that of the level curves in 2D, it was essential to have the possibility to manipulate the surface directly 
on GeoGebra AR using the available tools (slider, pointer, rotation, intersection): 

S4:  We manipulated the surface and looked at it like this [paraboloid seen from above] ... then we 
used the “Intersect two surfaces” tool. We selected the paraboloid in red and the plane in blue and 
came up with this section, and then we drew the axes and circumference. So, by comparing this 
section with the given level curve, we saw that it was the same--always varying ݇. In fact, for 
example, if we go to change ݇ by putting it on the value three, the two circumferences as we see 
are the same. [S4 first manipulates the shift of the plane on the surface with the slider, getting in 
the plane the circumference in blue, and then she manipulates the slider to change the given 
circumference on all GeoGebra files]. To see that they were just the same, we also took the 
intersection points and observed that they had the same values for abscissa and ordinate. 

After the students observed that varying slider ݇ varied both the level curve and the position of the 
plane that cut the surface in 3D space, the teacher asked them whether, by comparing two different 
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level curves corresponding to two different values of slider ݇, it was possible to deduce the equation 
of the surface: 

S5:  We have observed that for ݇ ൌ 1, the equation of the circumference, that is obtained by 
intersecting the red surface with the blue plane ݖ ൌ 1, is ݔଶ  ଶݕ ൌ 1; on the other hand, for ݇ ൌ
2, we get ݔଶ  ଶݕ ൌ 2, and so on... So, we can generalise and say that we get ݔଶ  ଶݕ ൌ ݇, 
depending on the ݇  we chose ... If this is the equation of the intersecting curve, then we can deduce 
that the surface in red has equation ݔଶ  ଶݕ ൌ  .which represents an elliptical paraboloid ,ݖ

It is worth noting that the transition between the same or different registers of semiotic representation 
depended on whether students had the possibility of exploiting the potential of GeoGebra AR. 
Students observed changes in level curves and their graphical representation by manipulating the 
slider k and the graphical representation representing the intersection between the surface and the 
plane ݖ ൌ k. Thus, in this case, the students performed a treatment. From the excerpts above, we can 
also see how, from this treatment and the observations made, students first performed a conversion 
between the graphical representation of the level curves and their analytical representation [“for ݇ ൌ
1, the equation of the circumference is ݔଶ  ଶݕ ൌ 1” and so on]. Next, the students performed a 
treatment between the analytical representation of level curves and the analytical representation of 
the surface. Finally, they generalised the analytical representation of the level curve that depends on 
the value of the slider k to determine the analytical representation of the paraboloid [“So, we can 
generalise and say that we get ݔଶ  ଶݕ ൌ ݇, depending on the k we chose ... If this is the equation of 
the intersecting curve, then we can deduce that the surface in red has equation ݔଶ  ଶݕ ൌ  and so it ,ݖ
represents an elliptical paraboloid”].  

Moreover, in S5’s arguments, it was possible to identify some of the patterns of variation in Marton’s 
theory. Specifically, the contrast pattern emerged by comparing the cases of individual level curves. 
At the same time, the generalisation pattern emerged when students identified the equation of the 
level curve as the parameter ݇ varied and the equation of the surface, realising that it was necessary 
to make the variable ݖ non-constant.  

Finally, students also gained experience with the critical and relevant aspects that characterised the 
paraboloid analytical representation by observing the effect of variations on its characteristics. 
Subsequently, when we asked them to vary the parameters ܽ  and	ܾ separately and then simultaneously 
in the equation of the paraboloid, both the fusion and generalisation patterns emerged from the 
discussion. In fact, through their observations of what these variations caused, the students made 
explicit the classification of paraboloids, considering the limit cases, too, as shown in the excerpt 
below: 

S7:  In the first case where ܽ ൌ ܾ ൌ 0, we have the plane ݖ ൌ 0. Instead, we get an elliptic 
paraboloid if we take a greater than zero and b greater than zero. 

T:  If ܽ is equal to ܾ instead? 

S7:  Paraboloid, and that’s it. We get the same thing with ܽ and ܾ, both less than zero and not 
equal. 

S5:  But with concavity downward. 
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S7:  Instead, a different case is when we take ܽ and ܾ discordant. We always get a hyperbolic 
paraboloid; however, if ܽ is greater than 0 and ܾ	is less than 0 and vice versa, we get the ݕ-axis or 
the ݔ-axis.  

S5:  However, we observed that it is only a 90° rotation of the figure depending on the choice of 
ܽ and ܾ 

Analysing this excerpt, it is worth noting that from the observations made to accomplish the previous 
tasks, students were facilitated by the transition between the same and different semiotic 
representation registers to classify the paraboloids. Starting from the variations on coefficients ܽ and 
ܾ and exploiting the potential of GeoGebra AR, students directly observed what was happening to 
the different representations for level curves and surfaces by performing the treatments and 
conversions previously described (Figure 1).  

Finally, in the last part of the discussion, students were asked whether they found it easier to transition 
from the graphical representation of the surface to the analytical representation or vice versa.  

T:  So, does the transition for level curves make it easier to go from graphical to analytical 
representation? 

S7:  Yes, but it depends on the equation. It was easier to work from the level curves and generalise 
toward everything else. And then, it was helpful to make all the observations when we were asked 
to vary ݇ and see what happened when we moved the ݖ ൌ ݇ plane. In this case, it was helpful to 
observe what happened to the radius of the circumferences-otherwise, without that information, it 
would have been impossible to find the surface equation. 

S5: We connected the figures to the equations by observing that the level curves equation was a 
circumference and then observing the changes... 

In the last part of the dialogue, it becomes clear how the transition from level curves’ graphical and 
analytical representations to the surface’s graphical and analytical representations was smoother than 
the direct transition between the surface’s graphical and analytical representations. This agrees with 
what Duval states in his work, in which he accords conversion a central place concerning other 
functions, especially the treatment function, considered by most to be mathematically decisive. 
Moreover, “conceptualisation” begins only when the coordination of two distinct registers of 
representation is set in motion, even if only by sketching it. 

Conclusions 
In this paper, we wanted to highlight how the use of Augmented Reality can help students 
conceptualise the concept of paraboloids, facilitating the transition between different semiotic 
representations. The achievement of the aim of the teaching activity depended on the opportunity to 
use multiple registers of semiotic representations and to transform them between each other in a way 
that fostered students’ conceptualisation of the mathematical objects involved.  Therefore, students 
characterised paraboloids through treatments and conversions, made on the same and/or different 
registers of semiotic representations. Indeed, some of the excerpts presented in the results section 
highlighted how students conceptualised and characterised the paraboloids by taking advantage of 
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the potential of the available digital tools and the transition between different registers of semiotic 
representation. In particular, the analysis of the results also showed that, based on the task design of 
the teaching sequence, students represented level curves and surfaces in a given register, treated them 
within the same register, and converted them from one given register to another in order to 
conceptualise the mathematical object at stake. Moreover, the analysis of the last excerpt showed that 
students not only conceptualised paraboloids but also classified various cases, including borderline 
cases. Furthermore, they related the observations that emerged during the experimental stages by 
going through the sequence of patterns of variation following Marton’s Variation Theory. 
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When using a dynamic geometry environment, students’ mathematical communication may become 

more dynamic, shown by adverbs and verbs indicating activity or change. In this paper, three 

examples of students’ answers when using a DGE template are analysed through Duval’s (2017) 

semiotic register approach as well as the concept of dynamic mathematical communication. Results 

exemplify how students’ mathematical communication when using DGE may have a dynamic 

character (using words such as ‘drag’). Results also indicate that coordinating representations 

across four different registers is challenging, and students may focus on only performing treatments 

in one register. Furthermore, the students’ insightful readiness to communicate mathematically may 

be challenged in DGE settings.  

Keywords: Mathematical communication, digital tools, dynamic geometry.  

Introduction  

Mathematical representations are dynamically linked in digital tools, such as a dynamic geometry 

environment (DGE). Duval (2017) observes that non-discursive semiotic representations [i.e., figures 

or points and graphs in the cartesian system] become manipulable as real objects. We can move them, 

make them rotate or extend them from one point. This “dynamic” aspect is just a consequence of the 

computer capacity of treatment, which is considerable in comparison with the other 

phenomenological modes of production. That allows to meet a new epistemological function that the 

others modes of production cannot do: exploration by simulation. (p. 100, italics in original)  

Duval (2017) also argues that the transformations between different representations are important for 

learning rather than the individual representations. When using DGE, students may perform 

transformations between representations by physical actions in such an environment.  

Students’ mathematical communication reflects the tool in play (Jungwirth, 2006), and when using 

DGE, they often use verbs and adjectives indicating movement or actions (Ng, 2016, 2019). Such 

communication may be labelled as ‘dynamic mathematical communication’ (Bach & Bergqvist, in 

review; Jones, 2000). Conventions for mathematical communication have been established over a 

long time (Morgan, 1999), but DGE is relatively new, and so is this type of communication. Hence, 

the DGE seem to change how the students communicate mathematically. Still, how this relates to the 

students’ mathematical communication competency (see Niss & Højgaard, 2019) is not yet examined.  

The purpose of the present paper is thus to enhance the understanding of students’ dynamic 

mathematical communication when using DGE. In particular, we want to begin exploring how such 
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communication relates to transformations of mathematical representations and to mathematical 

communication competency. We, therefore, present three examples of students’ dynamic 

communication when using DGE. We analyse these examples of students’ written answers using 

Duval’s (2017) concepts of transformations of representations, and finally, we discuss the results in 

relation to the Danish competency framework’s (KOM) definition of mathematical communication 

competency (Niss & Højgaard, 2019).  

Dynamic mathematical communication  

Previous research has found different characteristics of students’ communication when working with 

mathematics using digital tools. In a literature review, Bach and Bergqvist (in review) found 13 

studies describing student communication as being dynamic in different ways when using DGE.   

Students’ written mathematical communication when using DGE is characterised by temporality and 

movement (Antonini et al., 2020; Jones, 2000). Students use verbs (Schacht, 2018), such as ‘drag’ or 

‘pull’ (Jones, 2000; Schacht, 2017). Similar results appear for students’ oral mathematical expressions 

when DGE is involved, also focusing on verbs indicating actions and movement (Hölzl, 1996; Kaur, 

2015). Also, “if … then” sentences may be used to indicate change as students try to capture what 

happens to the representations when dragging (Kaur, 2015).    

The adjective ‘dynamic’ is defined in the Merriam-Webster dictionary as “marked by usually 

continuous and productive activity or change” (Merriam-Webster, n.d.). In the present paper, we thus 

define dynamic mathematical communication as communication of mathematical nature that involves 

movement, change, action or temporality in verbs and adverbs (we return to ‘mathematical nature’ in 

the section on the mathematical communication competency).  

Mathematical representations and semiotic registers   

Mathematical objects are handled through their representations. According to Duval (2017), 

individual representations are not important for learning, but rather the transformations between 

different representations. For example, if drawing a graph based on a function written with 

mathematical symbols. Hence, the crucial mathematical activity is making and interpreting 

transformations between representations.   

Duval (2017) distinguishes between four kinds of registers that have different rules and 

characteristics. The four kinds of registers may be arranged in a 2✕2 matrix, where the first column 

includes discursive registers and the second includes non-discursive. The first row comprises 

multifunctional registers, and the second includes monofunctional registers. ‘Discursive registers’ 

involve words or symbols, whereas ‘non-discursive registers’ do not. ‘Monofunctional registers’ are 

registers specifically existing in mathematics. They are governed by specific rules and algorithms, 

for example, equations. Representations within the ‘multifunctional registers’ cannot be handled by 

algorithms. The multifunctional registers are not specific to mathematics, but they are important for 

communication in the classroom (Duval, 2017).   
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Each representation belongs to a register and can be placed in one cell in the matrix. For example, the 

register of ‘natural language’ is discursive and multifunctional. The register of ‘symbolic writings’, 

such as equations, is discursive and monofunctional as it includes symbols and is controlled by 

algorithms. The register of ‘images and geometrical figures’ is multifunctional and non-discursive, 

for example, rectangles and squares. The register of ‘Cartesian graphs and diagrams’ is considered 

monofunctional and non-discursive (even if single words or phrases are part of a graph). In addition, 

two different kinds of transformations between representations exist, according to Duval (2017). A 

transformation between two registers, for instance, a transformation from an equation to a graph, is 

called a ‘conversion’. A transformation within the same register, for example, when reducing a 

sentence or an equation, is referred to as a ‘treatment’.   

When using a digital tool, a new semiotic register is not added, but the power of the tool makes it 

possible to perform constant treatments and conversions of representations present in the tool. It is 

the production of and transformations between representations that are different. Additionally, the 

register for natural language is often neglected when using a digital tool (Duval, 2017).  

Duval’s concepts will be applied in the analysis of examples of dynamic mathematical 

communication (see the section ‘Method of analysis’ for more details).  

Mathematical communication competency   

KOM is an abbreviation for ‘Competencies and mathematical learning’ (Niss & Højgaard, 2011). The 

KOM framework is a competency framework aiming to describe what it means to master mathematics 

across school levels. KOM consists of eight mathematical competencies, including the mathematical 

communication competency. A mathematical competency is defined as “someone’s insightful 

readiness to act appropriately in response to a specific sort of mathematical challenge in given 

situations” (Niss & Højgaard, 2019, p. 14, italics in original). ‘Insightful readiness’ addresses that to 

exercise a competency, one must have a knowledge base to ‘act’ upon, which is manifested through 

mathematical activities. Such a knowledge base entails familiarity with the mathematical concepts 

involved in a given mathematical situation. Niss and Højgaard state that “readiness to act without 

insight”, although this certainly exists, is not an instance of (exercising a) competency, while 

(possession of) competency “does not follow alone from being immensely insightful, in case the 

insights at issue cannot be activated in the broad interpretation of the term ‘action’” (2019, p. 12). In 

the KOM framework, ‘action’ covers both physical and behavioural actions (including oral 

communication) as well as mental actions, including decision making.  

Mathematical communication competency concerns the ability to communicate mathematically, 

including expressing oneself mathematically and interpreting others’ mathematical expressions. 

Mathematical communication may occur using different genres, registers, or styles (Niss & Højgaard, 

2019). Students’ dynamic mathematical communication is then a new register (these registers are 

language registers and different from Duval’s) of mathematical communication, which is different 

from the conventional way of communicating mathematics.   
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For mathematical communication competency, communication must be of mathematical nature, 

including “notions and concepts, terms, results and theories, or other features of mathematics” (Niss 

& Højgaard, 2019, p. 18). Mathematical representations are necessary when communicating 

mathematically, which stresses the relationship to Duval’s (2017) perspectives of semiotic registers.   

We will relate the analysis of the examples to the concept of mathematical communication 

competency in the concluding discussion.  

Methodological aspects  

This paper presents three examples of 9th-grade students’ (14-16 years old) written answers to a task 

involving GeoGebra, which is a DGE according to Sutherland and Rojano (2014). The examples are 

chosen to show a variation of students’ dynamical communication related to Duval’s semiotic 

registers as well as cases of dynamic mathematical communication.  

The students’ answers are translated from Danish into English, and their forms of writing are kept as 

far as possible. For instance, if they write a letter for a point using small letters, it is not adjusted when 

presented in this paper. Students’ spelling mistakes have been corrected.  

Task design  

A task originally described by Johnson and McClintock (2018) was presented to the three students. 

The three students, Taylor, Kim, and Nico (fictitious names), were all familiar with GeoGebra. The 

task focuses on function as covariation, and the students were provided with a template. A snapshot 

from the template is presented in Figure 1.   

 

Figure 1: Snapshot of the DGE template with the area of DABC, length of AB and BC and coordinates 

for point P. Inspired by Johnson and McClintock (2018).   
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The template involves two non-discursive registers: A rectangle, which can be dragged in point A and 

in a point P, which is linked to the rectangle. The x-coordinate of P is defined as the length of AB, 

and the y-coordinate of P is the area of DABC. The students are asked to investigate the relationship 

between the rectangle DABC and the point P and to define the equation of the function for the 

relationship (i.e., y=3x). Thereby, the students are asked to make conversions from the non-discursive 

register into the discursive register. To do so, they need to interpret the constant treatments within the 

two non-discursive registers when dragging and making conversions between two registers when 

describing the relationship between the rectangle DABC and point P as a function.  

Method of analysis  

The three examples of students’ written answers all show dynamic mathematical communication. 

Relying on the definition and characteristics of ‘dynamic mathematical communication’ in the 

background section as well as existing literature, we mark the following words: verbs (Schacht, 2018), 

“is+noun” or “is+adjective” (Ng, 2016) and adverbs, for instance, if writing “then” (Kaur, 2015). 

Thus, students’ verbs indicating movement, temporality, action, or change are written below in italics, 

while students’ adverbs are in bold. Other elements indicating dynamicity are underlined. In this way, 

dynamic communication is identified and made explicit.   

The analysis consists of identifying the students’ treatments and conversions between and within the 

involved representations. For example, transformations from the rectangle to a graph or from a graph 

to a written expression are identified as conversions. Descriptions of changes only for the rectangle 

DABC caused when dragging in point A are identified as treatments.  

Examples of students’ answers and subsequent analyses   

In this section, we present the three examples with subsequent analyses.   

Taylor  If you drag point A, the rectangle’s (the dark blue one) area gets bigger.   

Taylor’s answer in the natural language indicates that he interpreted the constant treatments of the 

rectangle when dragging point A. The answer does not indicate that he did or interpreted any 

conversions across the two non-discursive registers (i.e., from the multifunctional to the 

monofunctional register), since the point P is not mentioned.   

Kim   When you drag point A, point P moves its coordinates. It creates a kind of line the 
more you drag point A. Maybe it is some kind of graph or function, which is created 
when P goes up and down.   

In opposition to Taylor’s answer, Kim's answer is more focused on the treatments in the nondiscursive 

monofunctional register concentrating on point P. The answer is in natural language, concerns “a kind 

of line”. “A kind of line” indicates that Kim activated tracing for point P when dragging. Thus, in this 

example, the actions of dragging point A are related to the treatments of point P. However, 

conversions of the properties of rectangle DABC to point P is not part of Kim’s description.  

Nico  When you drag point A, p moves up and down. If you drag A towards the right, 
point P moves down. If you drag A to the left, P moves up. fx=3x. P relates to the 
rectangle’s area. If p stands on 4 on the x-axis, P is at 12 on the y-axis  
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Nico’s answer includes, or at least refer to, representations in all four kinds of registers. Hence, Nico’s 

answer indicates that he made treatments in the Cartesian system focusing on point P, and he 

coordinated it with the actions of dragging point A. However, Nico also made conversions from the 

rectangle and its area to point P as well as to the symbolic registers, shown by “fx=3x”.   

The analyses of the students’ answers illustrate that coordination of all four kinds of registers at once 

is a complex endeavour, and students may choose only to focus on treatments within one register and 

not on conversions between them (i.e., Taylor and Kim). The results also show that the template 

serves as easy access to the different representations and that all three students manipulate and 

interpret representations by dragging (see Duval, 2017).    

Concluding discussion   

The students show dynamic communication, as they use both verbs and adverbs indicating movement, 

change, action, or temporality. More specifically, verbs such as ‘drag’, ‘create’, and ‘moves’, and 

adverbs such as ‘if’ and ‘when’. Taylor also utilises the adjective ‘bigger’ to indicate the change in 

the size of the rectangle. Duval (2017) argues that the use of digital tools may reduce natural language 

in mathematics, but these examples do not show a reduced language. Rather, the examples show a 

language that is dynamic, due to how representations are produced and linked in the DGE, including 

the representations’ dynamic properties.   

To exercise mathematical communication competency, students’ mathematical communication has 

to be of a mathematical nature. Thus, the communication must concern mathematical concepts and 

notions, including mathematical objects and representations (Niss & Højgaard, 2019). All three 

students communicate using mathematical representations; they work within a digital geometry 

environment; solve a mathematical task, and mention concepts and notions, such as “area”, and 

“coordinate”. Still, the communication is dynamic, that is, they utilise dynamic mathematical 

communication.  

The epistemological considerations regarding mathematics and the use of computers are described by 

Duval (2017), who argues that when the students use a computer, the nature of the mathematical 

representations involved is different than without the computer. Within the DGE, the non-discursive 

representations (i.e., figures and graphs) become manipulable, as if they were indeed “real objects” 

(see Duval, 2017). When presented in a textbook or on a blackboard, the representations are not 

dynamically linked. For example, ‘dragging’ is not a paper-and-pencil action. Thus, the students 

describe the representations as dynamic entities with changing characteristics. When this happens, 

they ascribe dynamic properties to the representations, risking that the distinction between the object 

and its representations blurs.  

The possibility to interact directly with the representations and to use dynamic communication about 

these might make it more difficult for the students to determine what properties that are inherent to 

the mathematical objects. Simultaneously, some dynamic properties of mathematical objects may 

become more accessible in DGE representations and through dynamic communication. For example, 

the movement of a point along with the graph of a function (e.g., Kim). When this happens, it is 

possible that the distinction between representation and object blurs.  
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In summary, DGE offers additional ways of producing and engaging with representations of 

mathematical concepts, including the representations’ properties and the relations between the 

representations, as the properties of concepts and representations change with the dynamic features 

in the DGE. In a sense, the use of a DGE makes mathematics and mathematical communication more 

complex for the students. Of course, the access to new representations might be helpful when 

communicating mathematically, but it could also be demanding for the students. Regarding the 

students’ mathematical communication competency, this complexity might even reduce their 

insightful readiness to communicate mathematically. The readiness to act is challenged as students’ 

prerequisites for exercising mathematical communication competency change when the DGE 

potential brings representations of a new nature.  

Dynamic mathematical communication is a new phenomenon stemming from DGE use, but its 

relation to mathematical communication competency and mathematical nature is still to be further 

investigated.  
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Exploring the potential for long-term changes in mathematics 
teachers’ use of digital resources resulting from the covid pandemic 
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Attempts to mitigate Covid-19 through remote instruction provided unique opportunities for 
researchers to examine the resources teachers utilize to drive their practices. We examine the impact 
of the pandemic on grades 6-12 mathematics teachers and math interventionists, with particular 
attention to teachers’ integration of digital resources. Using purposive sampling, we surveyed 50 
participants throughout the United States. Results indicate that although teachers’ utilization of 
digital resources increased over the course of the pandemic, the significance and potential longevity 
of such increases were dependent on the participant and the type of teacher practice.  

Keywords: Technology integration, digital resources, mathematics teachers’ practices. 

Introduction 
The coronavirus pandemic impacted all aspects of society, causing countries and local communities 
to close workplaces, move schools to remote instruction, limit in-person contact, cancel public 
gatherings, and restrict travel. The pandemic forced schools to adapt to fulfill their many functions, 
challenging teachers to rethink ways to support their teaching and their students’ learning. Countries 
attempted to fill the void left by school closures by offering a variety of distance learning solutions, 
including “hi-tech alternatives like real-time video classes conducted remotely to lower-tech options 
such as educational programming on radio and television” (UNESCO, 2020, para. 3). According to 
the OECD (2020), an almost universal response to the pandemic was the use of digital technologies 
to support teachers, students, and their families. Digital technology allows for new solutions to “what 
people learn, how people learn, where people learn and when they learn . . . [and can] enable teachers 
and students to access specialized materials well beyond textbooks, in multiple formats and in ways 
that can bridge time and space” (OECD, 2020, para. 2). Unfortunately, not all students have the same 
access to digital devices and online resources, and access varies greatly across and within countries 
(OECD, 2020). As a result, the pandemic highlighted and exacerbated existing inequities in 
education, with the most vulnerable children being the most adversely affected. In the United States, 
remote learning continued well into (if not all) the 2020-2021 academic year for many students. In 
this report, we address the following research question: How has the necessity for remote and hybrid 
teaching and learning environments, due to the ongoing coronavirus pandemic, impacted grades 6-
12 mathematics teachers’ and interventionists’ utilization of digital resources? 

Methods 
In this report, we use the term digital resource to refer to any digital technology that is ‘developed 
and used by teachers and pupils in their interaction with mathematics in/for teaching and learning, 
inside and outside the classroom’ (Pepin & Gueudet, 2020, pp. 172-173), including electronic tools, 
systems, devices, apps, software, programs, websites, digital textbooks. The study was conducted 
using purposive sampling, based on identification of those populations the research team judged 
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would provide information productive to addressing the study’s research questions. As such, we 
searched online for the email addresses of grades 6-12 mathematics teachers and math interventionists 
from across the United States. Potential participants were sent an email inviting them to participate 
in the survey, followed by a reminder email five days later. Email invites were sent to approximately 
200 math teachers and interventionists—across urban, suburban, and rural districts—in each of the 
50 U.S. states. The descriptive survey included 13 questions focusing on the six aspects of teachers’ 
(and their students’) work with/on digital resources. In this report, we focus mainly on one of these 
aspects: comparisons of the percent of time teachers typically spent prior to covid, and currently 
spend, using digital resources when engaged in various practices; specifically, preparing lessons, 
preparing assessments, grading or marking student work (e.g., exam, homework), sharing ideas with 
colleagues, and engaging in professional development (e.g., workshop, webinar, podcast). Finally, 
the survey identified “pre-covid” as occurring prior to March 2020—prior to the near-total lockdown 
of schools in the U.S.—and “post-covid” as occurring at the time the survey was distributed (i.e., 
March 2022), which was up to a full year after schools in the United States returned fully to in-class 
instruction. 

A total of 50 teachers completed the survey. Forty-six of these participants identified as math content 
teachers, one participant identified as a math interventionist, and three respondents identified as both 
a math content teacher and an interventionist. Participants' years of experience ranged from “First 
Year Teacher” to “More than 25 Years,” with a median of “16-20 Years” of experience. Finally, the 
grade level(s) of the students taught by participating teachers is provided in Table 1.   

Table 1: Grade levels taught by participating teachers 
Grade Level Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 

Number of Teachers 11 11 17 18 17 20 17 

Data analysis predominantly involved performing a series of chi-square tests to examine relationships 
between the number of teachers utilized digital resources for various practices (e.g., preparing 
lessons, grading or marking student work) and the percent of time these digital resources were utilized 
for these same practices pre- and post-covid; that is, prior to March 2020 and March 2022, 
respectively. 

Results 
The findings reported here address whether the need for lockdowns and remote teaching and learning 
environments during the pandemic impacted teachers’ use of digital resources in the long-term. 
Therefore, we examined potential differences in teachers’ use of digital resources prior to the 
pandemic and teachers’ current uses of these same or similar resources now that school districts in 
the U.S. have returned to face-to-face instruction for at least an entire academic year. Participants 
were asked to estimate the typical amount of time they spent, pre- and post-covid, using digital 
resources when engaged in the five practices identified above. Responses, as a broad percentage of 
time, ranged from “0-10% (Very Infrequently),” “11-20% (Infrequently),” “21-30% (Occasionally),” 
“31-40% (Fairly Often),” “41-50% (Frequently),” “More than 50% (Very Frequently).” 

The distributions of teachers’ use of digital resources to prepare lessons, currently and prior to the 
pandemic, are illustrated in Figure 1. A chi-square test of independence was performed to determine 
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the relationship between teachers’ use of digital resources to prepare lessons, currently and prior to 
the covid pandemic. A significant association was found, 2(5) = 22.73, p < 0.05; that is, teachers 
were currently more likely to use digital resources to prepare lessons than they were prior to the covid 
pandemic.  

 
Figure 1. Percentage of time teachers use digital resources to plan lessons 

The distributions of teachers’ use of digital resources to grade or mark student work, currently and 
prior to the pandemic, are illustrated in Figure 2. A chi-square test of independence was also 
performed to determine the relationship between teachers’ use of digital resources to grade or mark 
student work, currently and prior to the covid pandemic. A significant association was found, 2(5) 
= 23.84, p < 0.05; that is, teachers were currently more likely to use digital resources to grade or mark 
student work than they were prior to the covid pandemic.  

 
Figure 2. Percentage of time teachers use digital resources to mark or grade student work 

Finally, the distributions of teachers’ use of digital resources to engage in professional development, 
currently and prior to the pandemic, are illustrated in Figure 3. A chi-square test of independence was 
performed to determine the relationship between teachers’ use of digital resources to engage in 
professional development, currently and prior to the covid pandemic. A significant association was 
found, 2(5) = 18.63, p < 0.05; that is, teachers were currently more likely to use digital resources to 
engage in professional development than they were prior to the covid pandemic.  
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Figure 3. Percentage of time teachers use digital resources to engage in professional development 

Although there were differences in the distributions of the percentages of time teachers typically 
spent, prior to covid (i.e., pre-March 2020) and currently (i.e., March 2022), using digital resources 
when preparing assessments and sharing ideas with colleagues, there was not a significant 
relationship between teachers’ current and prior use for either of these practices. Over the five 
practices addressed here, the practices that increased the most throughout the pandemic were 
engaging in professional development (e.g., workshop, webinar, podcast), with a mean increase of 
1.54 “levels” and grading or marking student work (e.g., exams, homework), with a mean increase of 
1.28 “levels.” Here, an increase from “11-20% (Infrequently)” to “21-30% (Occasionally)” or from 
“41-50% (Frequently)” to “More than 50% (Very Frequently)” are two examples of an increase of 
one level. 

There were no participants that indicated they used digital resources “41-50% (Frequently)” or “More 
than 50% (Very Frequently)” for all five practices prior to covid. In fact, there were only four 
participants that indicated they used digital resources “41-50% (Frequently)” or “More than 50% 
(Very Frequently)” for four practices prior to covid. Conversely, there were 10 participants that 
indicated they used digital resources “41-50% (Frequently)” or “More than 50% (Very Frequently)” 
for all five practices post-covid, and an additional three participants indicated such for four practices. 
Finally, if we examine participants’ changes in their use of digital resources across all five practices, 
pre- and post-covid, results indicate:  

 Eight of 50 participants (16%) indicated a mean decrease in their use of digital resources. 
o Six of these eight participants (75%) indicated an average decrease of less than one 

level. 
 Four of 50 participants (8%) indicated no change in their use of digital resources. 

o Three of these four participants (75%) indicated no change for all five practices. 
 Thirty-eight of 50 participants (76%) indicated a mean increase in their use of digital 

resources. 
o Twenty-two of these 38 participants (57.9%) indicated an average increase of more 

than one level. 
o Twelve of these 38 participants (31.6%) indicated an average increase of more than 

two levels. 
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o Five of these 38 participants (13.2%) indicated an average increase of more than three 
levels. 

o Two of these 38 participants (5.3%) indicated an average increase of more than four 
levels. 

Although participants, in general, indicated an increase in their use of digital resources over the course 
of the pandemic for each practice, how certain can we be that such changes were a result of the 
pandemic? Could it be the case that some (or all) participating teachers were already in the process 
of increasing their use of digital resources prior to covid? Furthermore, although the survey identified 
“post-covid” as occurring at the time the survey was distributed (i.e., March 2022)—a full year after 
schools in the U.S. returned fully to in-class instruction—how can we be certain any identified 
increase will be long-term? To address these questions required examination of participants’ 
anecdotal responses to the following survey question: Please describe your own and your math 
students' growth in the use of digital resources over the course of the covid pandemic. 

One of the four participants that indicated they used digital resources “41-50% (Frequently)” or 
“More than 50% (Very Frequently)” for four practices prior to covid (see above), either continued or 
increased their pre-covid level of use on all five practices, indicating a stable (i.e., long-term) 
utilization. According to this teacher (identified as Teacher 2), “Covid opened up so many new 
resources that I’m able to use . . . I’m still teaching with many of these resources.” Conversely, 
Teacher 33, another participant that indicated they used digital resources “41-50% (Frequently)” or 
“More than 50% (Very Frequently)” for four practices prior to covid, decreased their pre-covid level 
of use on all four practices. Teacher 33 was one of four participants that indicated they had decreased 
their use of digital resources once classes returned to in-person instruction. Such changes were 
primarily due to participants’ own and their students’ overexposure to such resources. It is unclear 
whether such decreases are long-term. The following responses exhibit characteristics of these four 
participants: 

Teacher 13: For a lot of my students and for some [resources] myself, we didn’t get any training 
on how to use these things . . . so I 100% feel I haven’t used any of my digital resources 
to their full potential . . . and basically stopped once we came back. 

Teacher 47: I did notice that while I used a bunch of [resources] . . . while I was remote, now that 
I’ve returned to that the classroom, I don’t want to use them anymore. 

Five of the 50 participants (10%) indicated they were in the process of increasing their use of digital 
resources prior to covid, and the pandemic only accelerated this change. For these teachers, such 
changes have the potential to be long-term. The following responses exhibit characteristics of these 
five participants: 

Teacher 3: Before covid hit my coworker and I were moving more towards a digital technology in 
our classroom . . . recording ourselves teaching . . . for students that were absent . . . 
covid really made us move up this transition. 
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Teacher 8: I always wanted to have a paperless classroom for environmental reasons, and it just . 
. . never worked out . . . [and] I had been slowly incorporating technology that allows 
for this, but covid just forced me to go all in. 

Twenty-eight of the 50 participants (56%) indicated, to varying degrees, the pandemic was the 
impetus for the increase in their own and their students use of digital resources. The potential for 
long-term change in these teachers’ practices is participant dependent. The following responses 
exhibit characteristics of these 28 participants: 

Teacher 2: Covid opened up so many new resources that I’m able to use . . . I’m still teaching with 
many of them. 

Teacher 3: I didn’t really use to use any digital resources . . . [but] I’ve definitely become a lot 
more comfortable with how to use the resources and how the students respond to electronic 
resources and tools, because I didn't have a choice with covid. 

Teacher 10: Personally, I’ve learned a great deal about Google Classroom and now I am able to 
turn anything into an online assignment for kids who [are absent]. 

Teacher 11: I made a bunch of videos for some of my classes . . . and it’s nice to have those videos, 
especially when kids miss for any time . . . so, the flexibility to continue using [those] if we need 
to is nice. 

Teacher 15: I did grow in my use of Google Forms . . . [and] finally settled on using Google Forms 
to give tests and still do this . . . you can put it into lockdown mode so that students can’t look at 
other sites while they’re using their Chromebook. 

Finally, 12 of the 50 participants (24%) provided responses that made it unclear as to why they might 
have changed, or not, their use of digital resources in their practices over the course of the pandemic. 
Such responses further obscured attempts to determine these teachers’ long-term practices. The 
following responses exhibit characteristics of these 12 participants: 

Teacher 4: Now we’ve gotten the laptops to all the kids and still have situations where, you know, 
a parent just took the digital device and left the kid without it, because they needed the digital 
device, and the parent doesn’t even live with the kid. 

Teacher 22: With respect to the pandemic, my students and I used a lot more Microsoft Teams and 
programs such as Desmos and IXL . . . . specifically . . . having a class meeting . . . and teaching 
long distance was a huge learning curve for all of us. 

As described above, 38 of 50 participants (76%) indicated a mean increase in their use of digital 
resources pre- and post-covid. Furthermore, 28 of 50 participants (56%) indicated the pandemic was 
the reason for their increased use. Finally, the potential longevity of changes to teachers’ use of digital 
resources was less clear and dependent on the participant and the type of teacher practice. 

Conclusions 
Findings reported here indicate that mathematics teachers’ and interventionists’ use of digital 
resources changed significantly post- (i.e., March 2022) as compared to pre-pandemic (i.e., pre-
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March 2020) with regards to preparing lessons, grading or marking student work (e.g., exam, 
homework), and engaging in professional development (e.g., workshop, webinar, podcast). 
Furthermore, the types of digital resources participating teachers used to plan lessons favored 
technology that utilizes sharing between colleagues and out-of-district teachers. Regarding 
assessment, the trade-off between features and simplicity did not tilt teachers away from traditional 
paper and pencil options. Such traditional methods, for now, are seen as more reliable at evaluating 
mathematics achievement as opposed to measuring technological proficiency. Although it could be 
argued that asking teachers to report on their pre-covid practices—experiences that occurred more 
than two years from the time of the survey—allowed for inaccuracies and potential biases in teachers’ 
memories, we presuppose participants genuinely reflected on their pre-covid practices using whatever 
information and resources (e.g., old lesson plans, old assignments, old assessments, textbooks) they 
had available that supported authentic refection. 

Finally, teachers reported that overexposure to technology has created an ongoing challenge. The 
sheer number of digital options teachers reported they “looked into” or used was characteristic of the 
overwhelming nature of the switch to digital. There were several limitations to this study, including 
the small sample size. In addition, the anonymity of the survey did not allow for follow-up questions 
from respondents. Such follow-up questions would have been helpful to gain more insight into 
teachers’ integration of digital resources. Lastly, no students were surveyed. Therefore, the opinions 
and responses provided were solely those of teachers; that is, the facilitators of the learning, not the 
learners themselves. The results presented here addressed only nine of the survey’s 25 questions. 
Therefore, future research—utilizing responses to all survey questions—should examine which 
aspects of teachers’ lesson planning, marking or grading of student work, and professional learning 
have remained at an increased level long-term (post-covid). Finally, future research should examine 
how the pandemic impacted more nuanced aspects of teachers’ assessment practices (e.g., feedback, 
informal assessment) and their interactions with colleagues.  
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This paper concerns a pre-service teachers’ professional development (PD) program focusing on the 
use of technology in which participants: experienced collaborative task design of a teaching 
sequence; reflected on the implementation of the designed sequence; and performed detailed video 
analysis of a lesson in which the sequence they have designed was enacted by an expert teacher. We 
illustrate the case of a video analysis developed by one of the participants using the Semiotic Bundle 
lens and the Timeline tool. Results are presented and discussed with the aim of showing how the 
approach of this PD program can foster pre-service teachers’ ability to interpret technology-rich 
teaching and learning episodes. 

Keywords: Collaborative task design, Video analysis, Technology-rich teaching and learning 
episodes, Semiotic Bundle, Pre-service teachers’ professional development. 

Introduction 
Many research studies are devoted to designing and evaluating teachers’ education in mathematics 
and professional development (PD) programs focusing on the use of digital resources. In particular, 
teachers’ design of teaching activities has been acknowledged to improve teaching practices (i.e. 
Zaslavksy, 2008). Moreover, videos have been recognised as effective tools for teachers’ professional 
development: Sherin and Han (2004), for instance, underlined that video allows teachers to slow 
down instructional interactions and closely examine what happened. Gaudin and Chaliès (2015) 
identified two common objectives for the use of video as a tool for teacher learning: (1) building 
knowledge of how to interpret and reflect on episodes of teaching and learning; and (2) building 
knowledge of what to do. However, to the best of our knowledge, the joint experience of task design 
and video analysis in pre-service teachers’ PD programs, particularly those aiming to integrate digital 
resources in mathematics education, has not yet been investigated enough. With this paper we attempt 
to contribute to this field. Offering and discussing the results of an ongoing study, we focus on pre-
service teachers’ interpretation of class activities involving digital resources. In particular, we are 
interested in how pre-service teachers interpret a teaching and learning episode and how the ability 
to perform this interpretation is affected by their involvement in task design and video analysis. To 
do this we illustrate and discuss the case of a pre-service teacher who participated in a PD program 
based on the joint experience of collaborative task design and individual video analysis. Her video 
analysis shows the effect of the PD program on her interpretation and reflection on a technology-rich 
teaching and learning episode.  

Theoretical framework 
In this section, we briefly present the theoretical point of view which framed this study. According to 
Clarke and Hollingsworth (2002) we believe that facilitating the professional development of teachers 
requires the recognition of the complexity of the process. The Clarke and Hollingsworth’s 
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Interconnected Model suggests that teachers’ professional learning occurs through the mediating 
processes of “reflection” and “enactment”, in four distinct domains which encompass the teacher’s 
world: the Personal Domain (teacher knowledge, beliefs and attitudes), the Domain of Practice 
(classroom experimentation), the Domain of Consequence (salient outcomes), and the External 
Domain (sources of information, stimulus or support). Hence, in accordance with this model, in our 
PD program we intended to offer pre-service teachers opportunities to facilitate their “reflection” (in 
Dewey’s (1910) sense of “active, persistent and careful consideration”) and inform their future 
professional “enactment” (to be seen as “the translation of a belief or a pedagogical model into 
action”). The main hypothesis of our work is that the joint experience of collaborative task design 
and video analysis can contribute to the pre-service teachers’ professional growth. More precisely, 
we assume that the former represents the mean used to foster changes in their knowledge and beliefs 
informing future enactment. Whereas, the latter –in which they observe and interpret an expert 
teacher’s behaviour while putting into action the outcomes of the former– constitutes the basis for 
their reflection. 

Research questions 
Analysing the case presented in this paper, we intend to study how the approach of the PD program 
–described in detail below– can foster pre-service teachers’ ability to interpret technology-rich 
teaching and learning episodes. With respect to our hypothesis, the interpretation of an episode 
represents the way the reflection is exhibited. Thus, the research questions we aim to answer are: a) 
how does the pre-service teacher interpret the technology-rich teaching and learning episode? b) what 
are the effects of the joint experience of collaborative task design and individual video analysis on 
her ability to perform this interpretation? 

Methods 
Twelve pre-service mathematics teachers participated in a PD program articulated in the following 
phases: a) they were asked to accomplish, in small groups, a sequence of tasks involving the use of 
digital and non-digital resources and they discussed their experience (Mennuni & Faggiano, 2020); 
b) they were introduced to the theoretical perspective which framed the sequence that they were 
exposed to and they were asked to use it to collaboratively task design a similar sequence for middle 
school students (Mennuni et al., 2021); c) they experimented the designed sequence in an online 7th-
grade class and collectively analysed its results using the theoretical framework they have used in the 
task design; d) they observed an expert teacher conducting the final revised version of the same 
sequence, in presence, in her 7th-grade class and they performed individual detailed video analysis 
of some teaching and learning episodes of this class activity. 

The teacher who gave her availability to experiment with the sequence of tasks in her class has more 
than 15 years of teaching experience. She has a master’s degree in mathematics and participated in 
many in-service professional development initiatives. She acted as a mentor teacher to pre-service 
and in-service teachers and coordinated many projects to foster STEM education in her school. For 
these reasons, she can be considered an expert teacher (Li & Kaiser, 2011). She was provided with a 
description of the tasks, as well as their aims, that compose the sequence as it was designed by the 
pre-service teachers during the collaborative phase of the program.  
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Each participant was invited to analyse some episodes, chosen according to the important aspects that 
emerged during the previous phases of the program, and to write a final report presenting and 
commenting on their video analysis. All the activities of the PD program have been video-recorded 
and the pre-service teachers’ individual written reports have been collected.  Due to the limits of 
space, in this paper, we refer only to the video analysis of one of the pre-service teachers (ST1), 
presenting the video analysis of the episode she considered most important. The results are discussed 
with the aim to identify elements revealing her reflections. In particular, we are interested in bringing 
to the fore how, with her video analysis, ST1 interpreted the teaching and learning episode and how 
her ability in the interpretation was affected by the previous activities experienced during the PD 
program. 

The example of individual video analysis 
In this section, we introduce the example of video analysis performed by ST1. The description of the 
example, that will be given in the results section, requires two preliminary brief insights. The first 
one concerns the description of the task at stake in the selected analysed part of the video. The second 
regards the theoretical point of view which framed the ST1’s analysis, namely the Semiotic Bundle 
lens (Arzarello, 2008), based on the model of the space of Action, Production, and Communication 
(APC-space). 

The description of the analysed task 

The sequence of tasks, on which the PD program was focused, concerns the notion of rotation and is 
based on the synergic use of digital and non-digital resources (Faggiano & Mennuni, 2020). The part 
of the video that is analysed in the example refers to a collective discussion, orchestrated by the expert 
teacher, after the task in which students were asked to identify the centre of the rotation between two 
figures. Students have worked individually interacting with a GeoGebra file that displays two flags, 
one of which is the rotated version of the other: they were asked to identify the centre of the rotation 
that allows one flag to be transformed into the other. This is the most significant part of the entire 
teaching sequence on rotation, as it requires students to use the considerations and properties that 
have emerged in the previous parts. Indeed, to identify the centre, students need to use the already 
discovered property of rotated figures: each pair of corresponding points has the same distance from 
the centre of rotation. This means that the centre belongs to the perpendicular bisector of every 
segment joining each pair of corresponding points. Thus, to find the centre of the rotation it is 
necessary (and sufficient) to intersect any two of these perpendicular bisectors.  The aim of the final 
discussion, hence, is to let students explain how they have found the centre, so that the discovered 
properties can give meaning to the rotation.  

The Semiotic Bundle lens 

The APC space has been introduced by Arzarello and colleagues (2009) as a model that intends to 
frame the processes that develop in the classroom among students and the teacher while working 
together. When students interact with each other and with the teacher during a specific classroom 
activity, the results are not a linear development, but a complex interplay of interactions composed 
of multimodal actions, productions, and communications. Consequently, as the variables present 
within the classroom are multiple and intertwined, teaching-learning processes become a complex 
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system whose analysis requires a multimodal perspective. However, the main components of the APC 
space –the body, the physical world, and the cultural environment– need to include students’ 
perceptual-motor experiences, their languages, the produced signs, and all the resources they use to 
interact with each other, the tools and the teacher. In these complex processes, the role of the teacher 
also turns out to be crucial. Her responsibility is to design and implement teaching activities 
appropriately and to foster the evolution of the students’ personal signs towards shared mathematical 
signs through her interventions. Arzarello chooses the semiotic lens to investigate the APC space, 
which he frames in the notion of Semiotic Bundle (SB). The latter is defined as a complex system, 
evolving over time, of signs that are produced by a student or a group of students to tackle an 
appropriate teaching sequence, while interacting with each other, with the teacher and with the 
resources. For a more in-depth analysis of all the interactions, video recordings play a crucial role 
because they can be examined in detail in order to analyse the observed processes carefully. Based 
on these videos, a transcript, including information about gestures, is produced and used to build the 
Timeline (TL). The TL is a table that offers an overview of the a posteriori micro-analysis of the 
elements that characterise the different registers of the SB: spoken (complete transcripts of the 
interactions between students and with the teacher); embodied (i.e., the gestures that represent the 
conversation and that are classified in McNeill’s (1992) four dimensions); written (the representations 
produced by the teacher and students).  

Results 

Figure 1: A part of the ST1’s TL  

To analyse the way in which ST1 interprets the episode, we illustrate here, with ST1’s words, a part 
of the timeline she built (Figure 1) and the related comments that she wrote in her final report. Results 
refer to the episode in which students realise how to determine the centre of rotation. According to 
ST1’s added comments, the TL represents “the semiotic analysis of the crucial passage in the video”. 
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Moreover, to discuss ST1’s interpretation it is worth noting that, with respect to the description of 
this task, in the introduction of her final report ST1 highlights that: 

In this activity, the teacher’s role is crucial in emphasising that the point is not to be positioned 
randomly but must be found by exploiting the properties that have emerged so far. If the teacher 
realises that none of her students can initiate a correct procedure, she could suggest considering 
the segments connecting the corresponding points and working on them.  

The analysed episode lasts about 5 minutes and was described and commented by ST1 using the 
Timeline, partially shown in Figure 1. Below we present the comments she wrote to describe the TL. 

0:08:00 - 0:08:03 - Ilaria had shared her screen with the class, and while looking for the centre of 
rotation she inserted an element, the perpendicular bisector of the segment, which was immediately 
observed by the teacher. Knowing that this was the correct procedure, she invited Ilaria to explain 
what she was doing and asked her what she had drawn. Ilaria soon answered: “the perpendicular 
bisector of the segment”. At the same time, Maria iconically drew in the air, using the pen, first a 
vertical line from top to bottom and then a second line perpendicular to the first, marking the right 
angle that was formed. She also identified the perpendicular bisector. 

It is worth noting that, although the teacher didn’t react to Maria’s gesture, ST1 decides to report it 
in the TL.  

0:08:05 - 0:08:06 - The teacher asked Ilaria to clarify why she drew the perpendicular bisector of 
the segment. And once again she immediately answered: “Because that is the point that joins A 
with A' [n.a. the corresponding, rotated, point of A], being the midpoint, perhaps the other 
midpoints of the other segments will be found there”. Ilaria realised that the midpoint of segment 
AA' alone cannot be the centre of rotation, because it is only equidistant from A and A'. Hence, 
she realised that it is necessary to also consider other segments, whose extremes are corresponding 
points. In fact, Ilaria’s answer is accompanied by a metaphorical gesture, with which, moving her 
index finger from left to right repeatedly, she pointed to the segments connecting their respective 
extremes. 

In what follows, the video shows Ilaria interacting with GeoGebra but her actions were not considered 
important by the teacher, and also by ST1. Indeed, ST1’s TL and comments continue as follows: 

0:08:20 - 0:08:48 - The teacher perceived that Ilaria possesses the notion of the perpendicular 
bisector. However, she asked Ilaria to remind her classmates what are the properties of this 
geometric concept. In this way, the teacher involved the entire class in the construction of the 
centre, making each pupil aware of the intermediate steps they are taking. Ilaria answered: “any 
point on the perpendicular bisector is equidistant from the segment”. She further specified the 
mentioned property with a metaphorical gesture: Ilaria joined her hands as if they were on a point 
on the perpendicular bisector, and then moved them contemporaneously from the point of joining, 
emphasising the equidistance of each point on the perpendicular bisector from the extremes of the 
segment under consideration. 
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The TL part concerning the following seconds of the episode shows the teacher’s reaction to Ilaria’s 
reasoning. ST1’s comments reveal the teacher’s choice to let students follow Ilaria’s reasoning and 
develop their own strategies to find the centre. 

0:09:00 - 0:09:15 - The teacher obviously approved what Ilaria had said and repeated to the whole 
class the property interacting with GeoGebra. She initially pointed with the two index fingers to a 
random point on the perpendicular bisector of segment AA' and then simultaneously moved the 
index finger to A' and the left index finger to A. At this point, she asked Ilaria to continue with her 
reasoning. And Ilaria replied: “…if we find the other midpoints of BB', CC', DD' on that 
perpendicular bisector…” So, she has realised that the midpoint of a single segment is not enough. 
One more step, one more concept, is needed than that of the perpendicular bisector. Ilaria knows 
that all points on the perpendicular bisector of the segment have the same distance from the 
extremes, and she also knows that she is looking for a distance that is also valid for the extremes 
of the other segments. So, she wants to reproduce the construction of the perpendicular bisector 
made for segment AA' for the other segments. Ilaria’s reasoning found favour with her classmates, 
who began to reason with her about the construction to be done to find the centre of rotation. 

ST1’s conclusion of the episode’s analysis refers to the moment in which the teacher reacted to 
Ilaria’s action on GeoGebra, displayed on the shared screen. 

0:12:27 - 0:12:50 - While many in the class suggest how to proceed, Ilaria continued to work with 
GeoGebra. The teacher saw, via the shared screen, a new element in the construction and asked 
Ilaria what she has done. Ilaria replied: “I also put the perpendicular bisector of the CC' segment.” 
The teacher continued: “Maybe we can also try the other segments and see if the midpoint is that 
one”. Being aware of the properties of the perpendicular bisector and having realised that the centre 
of rotation must keep the distance from all the corresponding points, and not just to a pair of them, 
Ilaria drew two perpendicular bisectors. She observed that the point of intersection between the 
two perpendicular bisectors is precisely the sought centre of rotation. 

Finally, ST1 highlights that the students’ awareness comes through the focused interventions of the 
expert teacher. Indeed, she argues that “through the awareness of instructional goals, the teacher tries, 
with each of her interventions, to push students toward the goal, bringing to their attention the 
properties of the mathematical objects at stake”.  

Discussion  
The episode that ST1 choose to perform her video analysis shows students’ interactions with each 
other, with the teacher, and with the digital resource and highlights students’ awareness of the 
properties of the rotation constructed in the previous phases of the teaching sequence. Moreover, the 
creation of the Timeline allowed ST1 to observe the importance of the teacher’s role in conducting 
the collective discussion in accordance with the design and the aims of the teaching sequence. In 
particular, the detailed video analysis also allowed ST1 to realise how the verbal and non-verbal 
interactions between the teacher and the students resulted fundamental in the development of 
mathematical concepts. In her choice of the episode and in her TL we can recognise the effects of the 
collaborative task design. Thanks to the knowledge and the reflections developed during the PD 
program, indeed, ST1 became aware of the teacher’s role that she sees to be “crucial in emphasising 
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that the point is not to be positioned randomly but must be found by exploiting the properties”. This 
can also be seen in ST1’s description of the first part (0:08:00 - 0:08:03) of the episode in which she 
pointed out the teacher’s awareness of the importance of Ilaria’s action with respect to the aim of the 
task: she highlighted that “knowing that this was the correct procedure, she invited Ilaria to explain 
what she was doing”. Moreover, ST1’s awareness of the role of the gesture in mathematics reasoning, 
allowed her to consider important also the iconic answers that Maria gave at the same time and in 
tune with Ilaria’s words. This choice was a consequence of the pre-service teachers’ discussions and 
insights developed during their collaborative work, so we can say that ST1’s interpretation of the 
episode was affected by the collaborative task design activities. The importance given by ST1 to the 
gestures as expressions of the students’ reasoning is evident also in the next parts of the episode 
(0:08:05 - 0:08:06) in which she felt the need to report on Ilaria’s metaphorical gestures. ST1’s 
comments here were still mostly related to the interpretation of what Ilaria was doing. However, they 
are the basis on which ST1 interpreted the teacher’s behaviour in the following part (0:08:20 - 
0:08:48) of the episode. She highlighted, indeed, how the teacher’s behaviour was influenced by her 
perception of Ilaria’s reasoning on which she counts to make each pupil aware of the importance of 
the property recovered by Ilaria: “any point on the perpendicular bisector is equidistant from the 
segment”. ST1 again pointed out the role of Ilaria’s metaphorical gesture in emphasising the property 
verbally expressed. It is worth noting that the teacher’s approval of Ilaria’s reasoning was considered 
obvious by ST1 (0:09:00 - 0:09:15). This is because ST1 is aware of the importance of the property 
with respect to the aim of identifying the centre. At this point ST1 reported how the teacher interacted 
with GeoGebra, repeating to the whole class the property just recovered, and gave again Ilaria the 
floor. Here again ST1 interpreted Ilaria’s reasoning underlining that “she has realised that the 
midpoint of a single segment is not enough”. Her experience of collaborative task design influenced 
the following comment: “One more step, one more concept, is needed than that of the perpendicular 
bisector”. Indeed, she highlighted the most important aspects that Ilaria knows and interpreted her 
thinking: “she wants to reproduce the construction of the perpendicular bisector made for segment 
AA' for the other segments”. Then, ST1 interpreted the teacher’s behaviour as driven by the willing 
to bring the other students “to reason with her about the construction to be done to find the centre of 
rotation”. The intervention of the teacher –“Maybe we can also try the other segments and see if the 
midpoint is that one”– finally, is considered to be crucial in order to reach the aim. It was interpreted 
by ST1 as guided by Ilaria’s awareness of the properties of the perpendicular bisector and of the 
centre of rotation that “must keep the distance from all the corresponding points”.  

Conclusion 
In this paper, we presented, briefly analysed and discussed the results of a pre-service teachers’ 
professional development (PD) program focused on the use of technology. The aim was to show that 
pre-service teachers experiencing detailed video analysis of a teaching sequence that they have 
contributed to design, can build knowledge of how to interpret and reflect on teaching and learning 
episodes. The video analysis of the teaching-learning processes carried out by ST1 allowed her to 
closely examine what happened. Her interpretation of the episode was affected by the external stimuli 
obtained (e.g. the focus on gestures) and the personal knowledge built (e.g. the notion of Semiotic 
Bundle) during the program, by the experience of task design collaboratively conducted with the 
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other participants and by the outcomes that she could observe in the video concerning the evolution 
of students’ thinking and the produced signs. At the same time, the reflection on the episode based 
on the detailed video analysis acted as a mediator in the four domains described by the Interconnected 
Model. Hence, it contributed to the professional growth of ST1, building knowledge of how to 
interpret teaching and learning episodes and creating the basis to learn what to do. Results are 
intended to be enlarged by considering the cases of other participants and developing a further edition 
of the PD program in which the final stage would also see pre-service teachers personally put into 
action a teaching activity. 
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Motivation 
The teaching of mathematics at school is largely characterized by illustration and a reference to 
reality. Mathematical knowledge is not only used to describe empirical phenomena, but is essentially 
developed on the basis of these phenomena. For this purpose, learning environments in which 
empirical objects play a significant role are often used in the classroom – so-called empirical settings. 
The term empirical setting is very broad and ranges from geometric figures on a drawing sheet to 
scientific and life-world phenomena. The form of representation is not decisive, but the relation of an 
empirical setting to empirical objects or entities that can be described as empirical objects. An 
example of an empirical setting can be seen in figure 1. It is a screenshot of an GeoGebra Applet on 
teaching the integral in the context of lower, upper and trapezoid sums. By operating a slider, different 
divisions of the interval for the integral can be performed and the corresponding lower, upper and 
trapezoid sums are calculated and visualized. The empirical objects in this empirical setting are the 
function graphs, surfaces, etc., which students can actively operate and experiment with. 

The aim of this paper is the presentation of a framework for describing knowledge development 
processes of students in such contexts – the CSC model (Dilling, 2022). The guiding hypothesis of 
the approach described in this paper is that students in a classroom with a focus on the visualization 
and the extra-mathematical application of the mathematical knowledge develop an empirical belief 
system about mathematics. A person's belief system as a mental structure has a significant influence 
on the way he or she deals with mathematics and behaves in mathematical situations. For an empirical 
belief system about mathematics, the mathematical concepts are ontologically bound in a way similar 
to concepts in the natural sciences. 

The mathematical knowledge of students with an empirical belief system can be adequately described 
by the concept of empirical theories (Burscheid & Struve, 2020). In empirical theories, so called 
theoretical and non-theoretical terms are distinguished. For non-theoretical terms either empirical 
objects of reference exist (e.g. a function graph or a geometrical figure) or they have already been 
defined in a pre-theory. In contrast, theoretical terms acquire their meaning only in the respective 
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theory and their measurement presupposes the validity of that theory (Sneed, 1971). Examples for 
potentially theoretical terms are in the field of calculus limit, derivative and integral, in the field of 
stochastics probability or in the field of geometry the straight line. Whether a term is non-theoretical 
or theoretical depends on the underlying theory. Thus, in the case of describing student theories, it 
depends on the individual learner. 

A further underlying assumption of this paper is the so-called domain specificity of knowledge, which 
is to be described with the concept of subjective domains of experience according to Bauersfeld 
(1983). The basis of this concept is that every human experience is made in a certain context and is 
bound in this way to the experiential situation. Experiences are stored in separate so-called subjective 
domains of experience (in short: SDE). Such an SDE includes the cognitive dimension of the 
experience as well as aspects like motor skills, emotions, valuations or self identity. The mathematical 
knowledge that learners activate can be understood as the cognitive part of subjective domains of 
experience and can be reconstructed as empirical theories. The totality of SDEs of an individual forms 
the so-called "society of mind". In this system, SDEs are non-hierarchically ordered and compete for 
activation. If a similar situation is repeated several times, this leads to a consolidation of an SDE and 
thus to a more effective activation in further situations. Frequent activation can change and reshape 
SDEs. SDEs that are no longer activated increasingly fade, but are not removed. 

In knowledge development processes in mathematics education, the application of knowledge 
acquired in one context to further contexts is of particular importance. According to Bauersfeld 
(1983), this is done by attempting to link perspectives of different SDEs under the formation of a 
mediating SDE. This comparison can only occur from the perspective of the new mediating SDE, 
whose formation requires an active construction of meaning by the learner. 

 

 

Figure 1: An example for an empirical setting – the applet Integrator by Elschenbroich (2017) in 
GeoGebra (translated into English by the authors) 
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Learning based on empirical settings 
A basic assumption of the CSC model is, that empirical settings are not self-evident. According to 
constructivist learning theory, an empirical setting can be interpreted as part of an individual's 
experiential world in very different ways. There is no mathematical knowledge embodied in an 
empirical setting that students only have to extract. Instead, learners actively construct meanings of 
the empirical objects, which in some cases may be quite different from the intended interpretation 
based on the teacher's theory. The interpretation of an empirical setting in the intended way can be 
understood as an outcome of classroom negotiation processes which can lead to the development of 
patterns of interpretation (Voigt, 1994). 

The reason for the different attributions of meaning can be seen in the underlying theories of the 
students and the teacher. To make knowledge development possible with an empirical setting, the 
person involved needs to integrate it into his or her individual theory. This is done by relating the 
concepts of one's own theory to the empirical objects. In the sense of the concept of subjective 
domains of experience, either an already existing SDE is activated or a new SDE is formed in the 
process of interpreting the empirical setting. 

Through the interpretation of an empirical setting by a student, it can be described as an intended 
application of an empirical mathematical theory. The identification of properties of the empirical 
setting and their description with the help of a theory is done by the person working with the setting 
and interpreting it. Which properties are perceived in the setting and with which properties of the 
theory they are related depends on the individual. Moreover, in the development of theoretical terms, 
there are certain limits to the knowledge development processes - in this case, an empirical setting 
can be a heuristic tool in certain contexts and with regard to certain aspects, but a theoretical term 
cannot be derived from a setting. 

A person's belief system about mathematics essentially determines the intentions for which the 
empirical setting is used. In the sense of a formal belief system about mathematics, empirical settings 
can be described as visualizations to which certain aspects of mathematical knowledge are applied. 
The empirical setting is used in particular to illustrate connections, i.e. it has a purely heuristic 
character. It can be assumed that many mathematics teachers have a formal belief system about 
mathematics. However, in the case of an empirical belief system about mathematics, the objects of 
the empirical setting form the reference objects of the empirical theory – accordingly, it can be used 
for further development and justification. Which properties interpreted in the empirical setting are 
transferred to one's own mathematical theory and which are not considered is determined by the 
individual using the setting. 

The previous explanations can be summarized in a concept for the description of knowledge 
development processes with empirical settings in mathematics education. This is named CSC model 
(Dilling, 2020, 2022; Schneider, submitted) and refers to the terms concept, setting, and conception. 
According to the CSC model, empirical settings for mathematics education are specifically selected 
or developed in order to teach a certain mathematical theory. The process of developing or selecting 
an empirical setting that is considered adequate is carried out at various instances by researchers in 
mathematics education, textbook authors, and teachers and is based on the mathematical knowledge 
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accepted by the persons involved – in this context, we refer to the term concept. The mathematical 
knowledge of the individual persons can be described as the cognitive part of the subjective domains 
of experience and is based on the mathematical knowledge acquired in university studies and in other 
contexts. 

According to the approach adopted in this paper, students develop an empirical belief system about 
mathematics in the classroom. A student dealing with an empirical setting in mathematics class 
interprets it by describing the objects and relations in the context of an empirical mathematical theory. 
The individual empirical theory can be described as a cognitive part of subjective domains of 
experience and does not have to correspond to the mathematical knowledge accepted by the 
developers or selectors of the setting. The activation of a subjective domain of experience essentially 
determines the empirical theory used by the learner for description and thus also the interpretation of 
the empirical objects with the concepts of the theory. Therefore, the context in which an empirical 
setting is used has a significant influence on the knowledge development processes of the students. 
The term conception should be used to describe the mathematical knowledge or theory of the 
individual students. A schematic representation of the CSC model is shown in Figure 2. 

 

 

Figure 2: Schematic representation of the CSC model 

 

Application and Outlook 
Empirical settings can be described in the field of analog and digital media in a variety of ways and 
are used in the classroom for developing hypotheses, explaining knowledge, or validating knowledge. 
This includes for example illustrations in textbooks or learning environments with dynamic geometry 
software. Thus, empirical settings can be described as elements of (digital) media, but with a broadly 
formulated concept of media, they also themselves represent media, since they are used for the 
transfer between the mathematical knowledge that is considered shared (concept) and the empirical 
mathematical student theory (conception) in the classroom. 

The demonstrated approach has already been used in several empirical studies to describe knowledge 
development processes with digital and analog media and was able to generate extensive research 
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results (Dilling, 2020, 2022; Schneider, submitted). The CSC model enables the precise description 
of interactions between teachers and students in the context of knowledge development processes in 
mathematics education. For this purpose, first the mathematical knowledge intended by a teacher for 
the empirical setting under consideration is reconstructed as a formalistic or empirical theory. This is 
followed by the description of the use of the setting by students and the reconstruction of the 
knowledge activated or developed in this context as empirical theories. The insights gained in this 
way provide multiple indications of opportunities and obstacles of empirical learning environments 
from an epistemological perspective. In the future research of the authors of this paper, the approach 
should be applied, among other things, to the field of differentiation and heterogeneity in mathematics 
classes as well as to professional digital competencies of mathematics teachers. 
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The implementation of digital technologies in mathematics classes is gaining an expanding role in 
the last years. An increasing availability of digital tools and materials in combination with political 
requirements faces mathematics teachers with new challenges, as the use of digital technologies for 
initializing mathematical learning processes is now becoming a fundamental part of mathematics 
teaching. In this article, the MPC model will be presented, which is a framework for describing 
professional digital competencies of mathematics teachers. 

Keywords: Digital competencies, digital transformation, subjective domains of experience, TPCK. 

Motivation 
The digital transformation in education faces mathematics teachers with great challenges. A variety 
of new digital technologies and approaches are available, which have to be selected and integrated in 
a meaningful way for teaching the mathematical content. To accomplish this task, teachers need to 
develop subject-related professional (digital) media competence (Geraniou & Jankvist, 2020). This 
paper presents a model for describing the professional media competence of mathematics teachers 
and its development – the MPC model (media, pedagogy, content). 

Professional media competence is understood in this context as the competence that enables a teacher 
to select and use an appropriate educational medium for teaching a particular mathematical content 
or activity. As a basis for the MPC model, the well-known TPACK model (Koehler & Mishra, 2009) 
(technological pedagogical content knowledge) has been used, which distinguishes knowledge 
dimensions related to digital technologies in subject teaching. However, modifications were made to 
the model for several reasons, which will be explained below. 

MPC Model – Describing professional media competence of mathematics 
teachers 
Digital media in a broader context 

While the use of digital media is important for modern mathematics education, it is not a basic 
requirement for substantial mathematical learning processes. Despite the great new possibilities, 
mathematics can also be taught without digital media. Alternatively to the TPACK model, we suggest 
to consider professional digital competencies in a broader context of professional media 
competencies, which also include knowledge about the appropriate use of analog media. 

In the approach described here, digital media are understood as an extension or a further possibility 
in addition to analog media for teaching mathematical content at school. This further possibility is 
neither better nor worse per se – it is different. An essential task of teachers is to select suitable media 
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for certain learning situations. Teaching media in general, in contrast to digital media in particular, 
represent a precondition for learning at school. A learning environment is always tied to and shaped 
by a teaching medium. The medium serves the mediation between the development of mathematical 
competencies and the understanding of mathematical concepts and relationships (Barzel & Greefrath, 
2015). 

The MPC model is based on the described ideas and considers professional digital competence D as 
a subset of professional media competence M: 

 ܦ: professional digital competence (referred to digital media) 
 ܯ: professional media competence (referred to media in general) 
 ܦ ⊂  ܯ

In analogy to the TPACK model (Koehler & Mishra, 2009), the content competence C and the 
pedagogical competence P represent further considered competence dimensions: 

 C: professional content competence (referred to the mathematical content) 
 P: professional pedagogical competence (referred to methods and approaches) 

These three competence dimensions of professional teacher action build intersections with each other. 
For example, content competence C also includes knowledge about methodological approaches to 
certain content. However, at the same time these are also part of the pedagogical competence P. The 
intersection of both competencies shall be referred to as pedagogical-content competence PC (see 
figure 1). 

Analogously, the professional media competence of teachers includes but is not limited to: 

 MC: content-related media competence 
 MP: pedagogical media competence 
 MPC: content-related pedagogical media competence 
 ܥܯ ܲܯ∪ ܥܲܯ∪ ⊂  ܯ

The focus of our descriptions is on the content-related knowledge dimensions that are specific to 
mathematics education. 

 

Figure 1: Professional digital competencies as part of professional media competencies 
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Situatedness as a challenge for media competencies – Focus on a reflective level 

The previously presented approach will now be further specified. This is because the general concept 
of (digital or analog) media cannot address the specifics of the various media under consideration, 
which are important for teaching and learning. In systematic observations of teachers working with 
digital media in the mathematics classroom, we found out that the suitable use of one digital medium 
in a certain context does not indicate the ability of the same mathematics teacher to also reach a 
subject-specific, suitable selection in another context. Many elements of teachers' competencies relate 
to specific media and not to media in general. Context also plays a role in the TPACK model as “the 
impact of teachers and their knowledge on students depend upon how successfully each teacher 
adapts to the unique context“ (Rosenberg & Koehler, 2015, p. 4). 

From an epistemological perspective, this phenomenon can be described with the concept of 
subjective domains of experience by Bauersfeld (1983). This concept assumes that every human 
experience is made in a specific context and is attached to the situation in which the experience was 
made. These experiences are saved in subjective domains of experience (short: SDEs) that are initially 
isolated from each other. The complete set of experiences stored in this way is called the "society of 
mind". Within this society of mind, SDEs compete for activation to determine the thoughts and 
actions of an individual in a specific situation – the individual has no direct influence on the activation 
of an SDE and it is an unconscious process. An SDE refers either directly to an individual's 
experiential world (e.g., a specific digital medium), or to other SDEs (a mediating SDE). A mediating 
SDE enables the individual to select between the perspectives of different SDEs and opens up a level 
of reflection. 

The MPC model describes media competence composed of an individual’s SDEs related to media as 
a subset of the "society of mind". The concept of SDEs can do justice to the breadth of the definition 
of competencies, which not only relate to knowledge, but also include motivational, volitional, and 
social components and thus enable the operation in a situation when activated. The (concrete and 
mediating) SDEs of a person with reference to media shall be denoted by ܯଵ,…  ,. Analogouslyܯ,
the SDEs that (also) refer to digital media shall be named ܦଵ,… ,  . The following applies withܦ
respect to these elements: 

 ܵ: „society of mind“ (set of all individual’s SDEs) 
 ܯ: professional media competence (set of all individual’s SDEs referred to media) 
 ܯ ⊂ ܵ 
 ܯ∈ଵ,…,: SDE referred to media 
 ܯ ൌ ሼܯଵ,…  ሽܯ,
 ܦ: professional digital competence (set of all individual’s SDEs referred to digital media) 
 ܦ∈ଵ,…,: SDE referred to digital media 
 ܦ ൌ ሼܦଵ,… ,  ሽܦ
 ሼܦଵ, … , ሽܦ ⊂ ሼܯଵ,… ݉ ,ሽܯ, ൏ ݊ 

This model of professional media competence and professional digital competence is broad. It is 
therefore recommended to give special attention to the content-related (digital) media competence. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 118



Furthermore, in the opinion of the authors, the further development of professional media competence 
should focus on the formation of mediating SDEs, because only those enable a reflective level on 
which a professional selection of a suitable (digital) medium from a subject-specific and subject-
didactic point of view is possible. In this reflection, possibilities and limitations of several (digital) 
tools and materials can be compared regarding the initiation of mathematical learning processes. 

Outlook 
The MPC model briefly presented in this paper aims at describing professional media competence of 
mathematics teachers. The three most important perspectives of the MPC model are the examination 
of professional digital competence in the larger context of professional media competence, the 
situatedness of subjective experiences regarding specific media, and the importance of a reflective 
level for assessing the possibilities and limitations of different media in comparison (see figure 2). 

 

Figure 2: Important perspectives of the MPC model 

The approach results from the authors' experience of working intensively with practicing mathematics 
teachers. It forms the basis for research in the DigiMath4Edu project at the University of Siegen 
(Dilling et al., 2022). The project investigates how professional digital competence can be (further) 
developed and what conditions for the success of digital transformation processes in the field of 
education are important. In this context, the authors are developing questionnaire and interview 
formats, in order to be able to assess professional media competence on the basis of the MPC model. 

In order to clarify the terminology of the MPC model, a short excerpt from an interview with a 
mathematics teacher from the DigiMath4Edu project will be described here: 

Interviewer: Do you somehow see certain contents and methods that are particularly 
suitable in connection with the different media? Or is it rather the case that 
many of these media can be used for everything in a meaningful way? 

Teacher:  Well, the latter definitely applies to GeoGebra. I've really become a fan of it. 
When you switch from the handheld calculator to GeoGebra, the simple 
functions, first, seem more complicated. But that passes with the routine and 
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there is no topic in mathematics from middle school onwards where you can't 
use GeoGebra in a meaningful way, and there is also no phase of the lesson or 
the series of lessons where you can't always use it to the full. Um, regarding 
3D printing, I'm very enthusiastic about the solids of revolution. I am also 
looking forward to being convinced of other things. 

The teacher reports about his experiences with GeoGebra as well as 3D printing. Based on his 
reflections, two SDEs can be reconstructed: M1 about the use of GeoGebra and M2 about the use of 
3D printing. Both SDEs seem to involve content-related media competence MC. However, this is 
apparently shaped very differently. In GeoGebra, the teacher perceives many connections to 
mathematical content. However, he does not make any concrete statements, so it cannot be verified 
which application areas he actually considers. In the area of 3D printing, the content-related 
connection is rarely present. He only knows one application from mathematics (solids of revolution). 
Whether there is a connection between the two SDEs M1 and M2 cannot be seen from this short 
excerpt. 
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While multiple choice and short answer questions are often related to procedural rather than 

conceptual understanding in mathematics education, innovative hybrid or asynchronous teaching 

approaches benefit from their didactical potential in supporting differentiation and individualization 

of learning trajectories. This paper discusses design, usage, and sustainability aspects of individual 

and collaborative digital quiz activities in learning management systems. In a first design research 

cycle, results of an empirical pilot trial of generated and implemented automated quiz activities with 

immediate feedback reveal promising results of university students’ performance in financial 

mathematics. 

Keywords: active learning, adaptive learning pathways, personalized learning, learning 

management systems, mathematics education. 

Introduction 

Sustainable quality guidance of masses of students with heterogeneous content-related competencies 

and skills in remote settings evolved since and during the COVID-19 pandemic. Curricular macro 

digital resources and micro e-content and e-activities that allow learners’ individual learning 

experiences are in high demand in the disciplines related to applied mathematics. The need and search 

for student-centered individual and collaborative digital activities that can make learning goals more 

appealing and achievable are growing (Donevska-Todorova, 2022).  

Multiple choice questions and closed short answer quiz tasks are usually perceived as having limited 

potential in promoting conceptual understanding, problem-solving or modeling competencies in 

mathematics education. Yet, digital quiz tasks can engage learners in meaningful mathematical and 

self-regulated activities that are of relevance in asynchronous or hybrid teaching settings. Within a 

long-term project digital quiz queries are generated to be thought-provoking and sufficiently 

complex, consisting of several sub-tasks that require not only computational skills, but also logical 

reasoning and algebraic thinking. They should secure achieving standardized learning outcomes, yet 

through individualized delivery of content and rapid and frequent feedback.  

Literature review and theoretical grounding 

Research on the use of quizzes in mathematics education shows their potential to boost students’ 

performance (Griffin & Gudlaugsdottir, 2006) or measure mathematics achievement through 

formative assessment (Blanco & Ginovart, 2012) or both formative and summative assessment. 

Through measuring the number of attempts, the time of their occurrence and the achieved results 

quizzes support assessment in distance learning settings (Lowe, 2015). Later studies (e.g., Nguyen-

Huy et al., 2022) explore the intensive use of quizzes for predicting students’ scores and grades by 

applying probabilistic models and learning analytics methods. A legitimate question today is how 
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micro e-activities such as digital quiz tasks can contribute to actively engaging students in meaningful 

learning processes in which they can perceive themselves as thinkers and doers of mathematics. 

While some investigations have been focusing on questions about the fairness and effectiveness of 

online quizzes in mathematics engineering courses (Martins, 2018), this research work is dedicated 

to exploring the potentials, design, implementation, efficiency, and scale of digital Quiz and 

StudentQuiz activities for personalizing learning pathways through adaptive strategies as adaptive 

feedback and task design in mathematics educations. Moreover, I look not only at the likely benefits 

of this teaching approach for university instructors, but its effects on the formation of unique learning 

trajectories through engagement in the collaborative activity StudentQuiz consisting of individually 

produced tasks (Donevska-Todorova, 2022).   

Active learning, adaptive learning, and personalized learning 

Application of single or disjoint ‘old’ theories for grounding research in mathematics education seems 

insufficient to explore and thoroughly explain challenges related to the major rise of numerous novel 

digital technologies and tools and their intensified implementation in the last two years. Therefore, 

three theoretical concepts: active learning, adaptive learning, and personalized learning serve for 

grounding this research. Active learning is related to student-centered intensive participation and 

engagement with mathematical activities. Emerging pedagogical approaches are related to adaptive 

and personalized learning. In comparison to computer and informatics sciences, this research does 

not attempt to develop new software using neural networks or complex intelligent agents; rather 

investigates the effects of existing ones on learning. In personalized learning, instructional design is 

customized to individual learning needs and pace. Although there is currently no consensus on a 

unique definition about adaptive learning, it is mainly related to processes that can be shaped, scaled, 

and monitored by technology with algorithms that provide real-time data.  

Research questions and methodology 

RQ: How can students' learning pathways be tracked in Moodle online quizzes? 

The participants that are enrolled in the module are also participating in the Moodle course about 

corporate finance. There were 19 participants who voluntary undertook the quiz activity about 

financial mathematics. The data are collected via the Moodle course considering ethical aspects, 

anonymised and then further quantitatively and qualitatively analysed. Additional data about the 

achievements of another group of students on the same quiz activity will be collected in another 

Moodle course within the design experiments of the first design research cycle. Contextual examples 

are provided by Donevska-Todorova et al., (2022). 

Results and discussion 

Self-regulation in learning and academic achievement in quiz activities is related to timely and 

continuous automated feedback (Donevska-Todorova, Dziergwa, & Simbeck, 2022). This section 

reports on the practical implementation and the initial empirical results of one segment of an adaptive 

learning trajectory based on a designed Quiz activity in the first design-research cycle.  

The question bank for the quiz activity is structured in four categories: (i) basic rules for 

exponentiation, (ii) percentage, (iii) operations and relations with fractions, and (iv) financial 
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mathematics. The tasks in the fourth category refer to applications of basic mathematical operations 

for calculating rates of interest and their interpretation in realistic scenarios. The generation and the 

design of the tasks in these categories go beyond simple multiple-choice questions and are of various 

types such as multiple true/false, numerical, drag-and-drop, and short answer queries. Moreover, the 

quiz activities include Moodle Cloze tasks combining and integrating several of the above types of 

tasks into one. Creation of this type of tasks requires more complex syntax than the other previously 

mentioned. The task generation, regardless of the type of the tasks, involved the application of LaTex 

in different parts of their structure: task formulation, automated feedback, hints, and solutions.  

The quiz activity is structured analog to the question bank. Two tasks in the quiz activity appear with 

double randomization within each of the four categories (i) to (iv). That makes 8 tasks in total in the 

quiz. 

 

Figure 1: Overall number of students’ achieving grade ranges 

Figure 1 shows the overall number of students’ achieving grade ranges on the first quiz activity. The 

average grade is 6.69 (19) out of 10. The learning analytics of the Moodle course provide quantitative 

data for the distribution of the scores average per task and it is shown in Table 1.  

Table 1: Overall score average per task 

 T1 

1.25 

T2 

1.25 

T3 

1.25 

T4 

1.25 

T5 

1.25 

T6 

1.25 

T7 

1.25 

T8 

1.25 

Overall score 

average per task 0.92 0.87 0.99 0.92 0.96 0.91 0.53 0.59 

Further qualitative analysis of the data points out that the average scores on the tasks in the first three 

categories are higher that the scores in the category (iv). This confirms the assumption that the applied 

problems are the most challenging. This information is taken as input for the creation of new tasks 

for the follow-up Quiz and other activities in the learning management system.  

Conclusions 

Learning management systems allow the personalization of learning trajectories through adaptive 

activities and automated feedback. This paper shows students’ achievements and frequencies (Figure 

1 and Table 1) on created quiz activities tracked in Moodle, which is related to the research question. 
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Immediate feedback messages of diverse types during the quiz activity aimed at strengthening the 

personalization of the learning pathways. The heterogeneous students’ achievements per task serve 

as input for the further phases of the design research cycle.  
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Frameworks for mathematical learning have been updated to make sense of digital tools, leading to 

the notion of mathematical digital competencies. In particular and in parallel, the computational 

thinking (CT) construct has gained relevance, and the mathematics curriculum takes part in this wave 

of interest. We offer a theoretical discussion on the meanings and implications of enabling techno-

mathematical discourse at the intersection of CT and mathematical digital competencies. We do so 

by networking theories anchored in episodes from an implemented geometry task. A computer-

mathematical fluency is not a particular case of techno-mathematical discourse, and it must entail 

combining and disambiguating computer and mathematical knowledge. It relates to the artefact-

instrument duality to communicate through and with the computer environment through instrumented 

actions to construct computer models in mathematical situations. 

Keywords: Computational thinking, digital competence, mathematical competencies, networking 

theories, programming. 

Introduction 

Since Wing’s (2006) seminal paper, computational thinking (CT) has gained relevance in educational 

contexts. She portrayed CT as a set of teachable skills for everyone, disjoining its exclusivity to 

computer scientists. From this point, CT has become part of mainstream curricula in many countries 

(Bocconi et al., 2022), often connected to school mathematics due to historical, epistemological and 

pedagogical reasons. Consequently, plenty of research has been dedicated to addressing the potential 

role of CT in mathematics classrooms. Overall, CT can be a tool for mathematical problem solving 

through computational ways of thinking (e.g., abstraction and modelling), and building solution 

strategies that can be transferred to other humans or computers (Kallia et al., 2021). 

However, a vast body of knowledge in the relation between mathematics learners and digital 

technologies has been developed before and in relative isolation from the CT trend. As a way of 

connecting digital to mathematical competence, Geraniou and Jankvist (2019) networked frameworks 

to introduce the notion of mathematical digital competencies (MDC). These are summarised into 

three aspects (p. 43): the ability “to engage in techno-mathematical discourse” (MDC1), an awareness 

of “which digital tools to apply within different mathematical situations and contexts, and “their 

“capabilities and limitations” (MDC2), and the ability to “use digital technology reflectively in 

problem solving” (MDC3). In this paper, we narrow down our discussion to MDC1. 

Geraniou and Jankvist (2019) built on Jacinto and Carreira’s (2017) concept of techno-mathematical 

fluency, illustrated by the collective student-with-GeoGebra, and defined as “the ability to combine 

two types of background knowledge and skills—mathematical and technological—constantly being 

intertwined to develop techno-mathematical thinking” (p. 1122). These definitions are anchored in 
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empirical research involving digital artefacts designed for mathematical activity, namely MathCad 

and GeoGebra. However, as Wing (2006) puts it, computational thinking is “a way that humans, not 

computers, think” (p. 35). Therefore, CT is a broader construct and performable in many different 

artefacts and computer environments or none at all.  

Therefore, as much as CT is easily associated with computer artefacts, defining a techno-

mathematical fluency when the techno side is not attributable to a mathematical instrument needs 

further examination. We thus aim to address the following research question: What are the meaning 

and implications of techno-mathematical discourse in the intersection between CT and mathematical 

digital competencies?  

The research question implies a dialogue between theoretical perspectives. Similar to Geraniou and 

Jankvist (2019), we engage in a networking of theories strategy (Prediger et al., 2008), with an 

empirical basis on a geometry classroom intervention that took place as part of the overarching project 

this paper is embedded in. The paper is structured as follows. We first give a face-value description 

of selected episodes from this intervention. We then unfold the theoretical constructs and our strategy 

to network them. Next, we analyse elements of these theories anchored in three illustrative episodes. 

Finally, we discuss how CT and MDC1 are related but not merely a particular case of one another. 

A geometry task on Scratch 

The task at hand was designed in close collaboration with a Danish mathematics teacher and 

implemented with her 6th-grade class. The core idea is that students should draw simultaneously on 

their mathematical and programming learning to solve the task. See Elicer et al. (2022) for a more 

elaborate description and discussion of the design process and decisions. 

In this paper, we focus on the second of three sessions. Here, students were initially asked to try 

drawing a polygon of their choice in the Scratch environment. The teacher starts displaying an 

exemplary code (Figure 1) where a sprite endlessly draws a square and asks them to fix it. A group 

of students proposes replacing the “forever” loop with a “repeat 10”: 

Teacher: Then there is such a “loop” here, as we call it, which says “repeat 10 times”. And 
where is there something that is off about it? Who can see it? Danny? 

Danny: Just wait, I just have to… 
Teacher:  Nick? 
Nick:  That it keeps doing it all the time. 
Teacher:  Do you mean it has to repeat 10 times? 
Nick: I mean, 10 times will do. 
Teacher: Ah! There is something here. Danny, have you noticed it? 
Danny: Uh, it does not have to repeat it so many times or it probably does not have to walk 

100 steps. 
Teacher: Yes, but it says so there, what is off, then? 
Elvis: It only has to repeat it 4 times. 
Teacher: Why? 
Elvis: Because with that, it gets a whole square. 

This group of students did not mind the “forever” loop operator in Scratch. The code programs infinite 

squares on top of each other, without affecting the solution (Figure 1). The teacher had to prompt 

Danny to find an error in it to suggest a “repeat” loop instead. Nick says that “10 times will do”, and 

Elvis finally notices that “it only has to repeat it 4 times”. 
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Figure 1: Teacher’s displayed code where sprite 

does not stop 

Figure 2: An approximated circle arc on Scratch 

Afterwards, the teacher encourages them to explore different polygons. Most students kept the 

number of repetitions and tried with smaller angles. This may be because an excess of repetitions 

does not appear to hurt the drawn outcome. However, this fails with, for example, 15° (Figure 2): 

Andy: You (Sam) made such an arc-like one. 
Teacher: Yes, a smiling mouth (Figure 2), one could say, right? Then it just turned out to be 

nothing. If I want to fix it into a finished figure, then I should not just do it 10 times. 
Andy: Then it should have been 20, or what? Or 40? 
Teacher: Could you somehow calculate if it turns 15°? Could you somehow figure it out? 
Andy: 30 times. 
Teacher: Oops! Someone is starting to think. (…) You are welcome to talk a little with each 

other about it (student small talk). Now that we have decided that it should go 15°, 
how many times does it then have to repeat? How can I figure it out? 

Andy: It has to be repeated 25 times. 
Teacher: Why, Sam? 
Sam: If we say 10 once more, then it is almost made, then a small part is missing and then 

5 they take those. 
Teacher: You think that smiling mouth could become a circle maybe, or what? 
Sam: Yes. 
Bob: I think so. 
Teacher: Hector, what do you think? 
Hector: Is it 24 times? 
Teacher: Why? 
Hector: Because then it divides up into 360. 

This group turned the polygon problem into a circle problem. Andy, Sam and Bob are probing with 

repetitions. Andy gets close, and Hector figures out that the total number of turning angles should 

add up to 360°, a full circle. A 15-degrees turn should be repeated 24 times. 

Next, the students were to share their experiences in a collective wrap-up session guided by the 

teacher. She started by asking another student, Izzie, who tried out with a turning angle of 45° to see 

what happened. As a disclaimer, the teacher refers to the angle “in” the octagon not as an internal 

angle but in the Scratch code that draws it: 

Teacher: I want to know what kind of polygon it is. Which kind have you made? 
Izzie: Octagon. 
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Teacher: Octagon, then I go down here to octagon. Octagon. What is the angle in your 
octagon? 

Izzie: What? 
Teacher: What is the angle in your octagon? What was the angle in the octagon you made? 

How big was it? 
Izzie: 45. 
Teacher: 45°, then I write 45 here (cell B8, Figure 3). There was one more thing up on the 

board I was interested in. What was it? 
Izzie: Angle sums… 
Teacher: What was the sum of the angles? How can I find the sum of the angles? … How 

can I find the angle sum in that octagon when I know that an angle is 45°? What do 
you say (Elvis)? 

Elvis: Is it not by multiplying how many sides there are? What is it called—the angle. Or 
to multiply the angle by the sides (mumbles)? 

Teacher: Yes, and what does it give, then? 
Elvis: 360. 

This dialogue leads the teacher to give the general instruction to fill an Excel sheet, particularly 

columns B and C in Figure 3, to verify Elvis’ conjecture. Figure 3 is one core output from 

implementing the task. In column B, they registered the angles at which their sprites had to turn to 

draw each regular polygon on Scratch. In column F, they did so after using GeoGebra’s “Regular 

Polygon” feature. Respectively, they registered the sums of angles on columns C and G. 

 

Figure 3: Excel screen capture of students’ collection of angles and sum of angles by means of Scratch 

and GeoGebra (‘kant’ is ‘side’; ‘vinkel’ is ‘angle’; ‘vinkelsum’ is ‘sum of angles’) 

When this latter activity was carried out in the classroom, many students expressed confusion and 

difficulties related to the angles and sums of angles given by GeoGebra. This problem was only 

addressed at the beginning of the next session. 

The data described above can be analysed from a broad digital technological perspective. However, 

there are specific aspects of the programming environment that may come into place. Therefore, it 

functions as an outset to argue for the need for a networking of theories approach. 

Analytical strategy: Networking of theories 

As a response to the proliferation of theories in mathematics education, Prediger et al. (2008) defined 

and proposed possibilities for networking theories. They compiled a continuum of strategies that 

depend on their purpose, ranging from understanding others to synthesising theories. The authors 
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acknowledge that the term theory has several meanings and functions in research. Rather than a 

problem, this feature gives dynamism to theoretical frameworks but demands transparency when they 

are networked. For example, MDC results from combining competence frameworks (mathematical 

and digital) and two greater Theories, namely Instrumental Genesis (TIG) (Trouche, 2005) and 

Conceptual Fields. The theories give a finer-grained content to MDC1: 

In particular, this involves aspects of the artefact-instrument duality in the sense that 

instrumentation has taken place and thereby initiated the process of becoming techno-

mathematically fluent. (Geraniou & Jankvist, 2019, p. 43) 

The artefact-instrument duality refers to the basis of TIG, namely that “an instrument is a mixed 

entity, part artefact, part cognitive schemes that make it an instrument” (Artigue, 2002, p. 250). This 

process goes both ways. The subject transforms the artefact into an instrument via 

instrumentalisation. In turn, the instrumentation of the subject Geraniou and Jankvist (2019) refer to 

is the process by which the instrument gives opportunities to develop schemes for new instrumented 

action. 

Furthermore, they alleged to have taken the first step toward achieving theoretical synthesis. We aim 

to build on this by locally integrating techno-mathematical fluency from MDC into CT. 

Prediger and colleagues (2008) advised researchers to unfold theories’ core elements in order to make 

them comparable. As stated above, MDC was discussed as a cross-over between two competence 

frameworks, and thus not any framework for CT is deemed appropriate. Prominent frameworks put 

into mathematics education focus, for example, on CT as a set of practices (Weintrop et al., 2016) or, 

more broadly, as a generic and transferable problem-solving approach (Kallia et al., 2021). Ejsing-

Duun et al. (2021) mapped these and more characterisations from the literature into the Danish 

competence-based curriculum, independent from mathematics. Hereby, we use their competence 

characterisation of CT as the basis for theoretical integration: 

Computational thinking is a problem-solving strategy that implements appropriate modelling 

using abstraction and algorithmic thinking. A good solution presupposes a good 

understanding of the problem field, and that the right elements are selected (abstraction) and 

integrated into rules (algorithmic thinking) so that the model handles the problem without 

creating new problems (Ejsing-Duun et al., 2021, p. 426). 

They provide a simple graphical representation of this characterisation, where problem solving 

encompasses the other three core competencies: modelling, abstraction and algorithmic thinking. 

Aside from dealing with competence descriptions, networking strategies rely on different methods. 

Prediger et al. (2008) notice that most approaches draw on analysing empirical data from the theories 

involved. Accordingly, we analyse the selected excerpts using an integration of both perspectives. 

Analytical discussion: Computer-mathematical discourse 

The task and its outputs can prompt a myriad of reflections regarding MDC. In this paper, we treat 

only MDC1 in coordination with CT, focusing on three selected episodes. 
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First, it is unambiguous that angles and their measures are relevant aspects in characterising specific 

and general polygons. What Izzie and other students do as soon as the teacher asks them to create 

polygons is to change the angle parameter in the “turn” block, realising that, for example, 45° implies 

an octagon. This episode connects to the abstraction competence of CT since they display an 

understanding of the domain field (geometry), and they communicate it with the programming 

environment. A conflict occurs when students measure angles of regular polygons drawn in 

GeoGebra (Figure 3). From the description of MDC1, computer knowledge and mathematical 

knowledge are combined—the notion of angle—but not really intertwined. In Scratch, angle refers 

to the parameter of a turning sprite, whereas in GeoGebra, as on a piece of paper, it is the internal 

angle of a static shape. Evidently, this ambivalence presents an opportunity to distinguish between 

external and internal angles, which we did not foresee as a learning outcome. 

Second, a regular polygon can be modelled as an approximate circle or vice versa. When 

experimenting with a turning angle of 15°, Sam and Bob found themselves drawing the arc of a circle. 

This is due to the low resolution on Scratch’s right screen. The dialogue with the teacher leads to the 

problem of how many times the code should be executed so “that happy mouth could become a 

circle”. All polygons result in a complete 360-degree turn divided into steps. This approximation 

became clearer in column C of Figure 1. Instrumentation has taken place here so that students use 

Scratch—an instrument to draw circles and arcs—to draw lower-resolution versions, i.e., polygons. 

This episode is particularly relevant considering that, in the original task design offered to the teacher 

by the researchers, approximating a circle was seen as a future advanced extension. Our original 

intention was the inverse: instrumentation should have taken place to, eventually, extend the 

instrumented action of modelling regular polygons into an approximate circle. 

Third, the difference in modelling has implications for describing the problem solution as a set of 

rules. On Scratch, a polygon is a described trajectory by a pen that is “down”, as opposed to a static 

shape produced, for example, with GeoGebra’s feature. Nick’s and Elvis’ suggestions to repeat 10 

and 4 times to form a square had to be prompted by the teacher, not by dissatisfaction with the 

solution. Their algorithmic thinking prompts them to change the rules. They had no problem 

communicating a square by means of Scratch. After the teacher’s questioning, the problem turned 

into communicating instructions with Scratch to avoid an “off” behaviour. Scratch is here an artefact 

to communicate through and to communicate with. 

Discussion: What is there to gain? 

We have analysed three selected episodes of a programming and geometry task from two 

competence-based constructs: techno-mathematical fluency and computational thinking. 

Competencies associated with CT can highlight the same episodes as aspects of MDC1. Recognising 

and communicating the relevance of angles in defining polygons illustrates both abstraction and the 

combination of digital and mathematical knowledge. Modelling regular polygons as approximations 

of a circle can illustrate a computer model that can be adapted into polygons by students developing 

new Scratch-instrumented actions. Furthermore, turning a model into a code that draws polygons is 

both a reflection of students’ algorithmic thinking and the artefact-instrument duality, by which a 

programming environment turns into an instrument for representing geometrical figures. However, 
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these matches turned also into sources of ambivalence. Therefore, engaging in computer-

mathematical discourse is not a particular case of techno-mathematical discourse. 

Mathematical and computing languages overlap, but their combination could be a source of 

confusion. This issue is even more present in text-based programming languages. Bråting and 

Kilhamn (2021), for example, delineate three non-injective cases of syntax and semantics between 

computing and mathematics: symbols that have different meanings (e.g., the equal sign), meanings 

that use different symbols (e.g., modular arithmetic), and symbols that do not make sense in the other 

field (e.g., ++). Still, CT environments can bring opportunities to learn about and distinguish between, 

for example, internal and external angles, operational and relational meanings of the equal sign, and 

theoretical and statistical (simulated) meanings of probability. 

Following the first issue, mathematical and computer models are related but not equal. In the 

computer model, a circle and a polygon with small enough angles do not differ; in mathematics, they 

do. However, a computational approach to modelling can be helpful in a mathematical situation. For 

example, differential equations can be solved by numerical methods, and complex random variable 

distributions can be obtained by simulations. Moreover, students’ instrumented actions lead to lower 

the resolution of a coded circle and ease the search for a pattern in polygons’ angles. That is, CT can 

have both pragmatic and epistemic values in mathematical situations (Artigue, 2002). 

Algorithmic thinking means that the artefact-instrument duality is not only present to communicate 

by means of the computer but also with it. Papert (1980) had warned that the Logo-based Turtle 

geometry is a more radical approach than using CT to learn traditional school mathematics. “Euclid’s 

is a logical style. Descartes’s is an algebraic style. Turtle geometry is a computational style of 

geometry” (p. 55). Within this type, Nick and Elvis solved two challenges: one was to express a 

square through Scratch; the second was refining their communication with Scratch to avoid 

redundancy. Overall, the coded rules to describe a mathematical notion differ depending on the 

artefact—digital or otherwise.  

In sum, we propose that computer-mathematical fluency must entail combining and disambiguating 

computer and mathematical knowledge. It relates to the artefact-instrument duality to communicate 

through and with the computer environment through instrumented actions to construct computer 

models in mathematical situations. 
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This article introduces the Innovation Pyramid Framework (IPF) which is the seed of filling in the 
theories gap in digitalization of mathematics education. This framework adds innovation to the 2D 
representation of pedagogical triangle by Jean Houssaye (1984) to make it a 3D representation in 
an attempt to reflect the complete digitalized learning ecosystem. The current theories and 
frameworks are not reflective of this ecosystem moreover the emergence of new theories is not as fast 
as the technologies. Our aim is to provide a framework that is general enough to sustain the flux in 
technology and innovations but specific enough to reflect on many of the aspects of the digitalized 
ecosystem. In this article, we explain the initial phases of the IPF and elaborate on some of its facets.  

Keywords: Theories, innovation, digitalization, networking theories. 

Background and rational 
Rational  

The idea of the innovation pyramid framework started in an attempt to answer the call for action the 
mathematics education society and particularly the part interested in technology and digitization 
requested for theory gap filling. For instance, the Mathematics Education in the Digital Age (MEDA) 
second conference and the 12th Congress of the European society of Research in Mathematics 
Education (CERME) both stressed on the need for new theories.  

In her plenary talk in MEDA 2 (2020) Mariam Haspekian listed many theories that are used in 
mathematics education research. As a concluding remark Haspekian (2020) mentioned  

Regarding this journey, to advance research on TPDA [Teaching practices in the Digital Age] 
seems urgent as for the “constant technological flux [which] makes it difficult to develop proper 
teacher training programs.” (Sacristan 2019, p. 173). Gaining robust theoretical frames and tool 
that resist this flux is needed. Networking may undoubtedly help and the TPDA research field is 
fairly mature for this! (Ana Donevska-Todorova et.al, 2020, p 10) 

Also the thematic working group (TWG) 16 ‘Learning mathematics with technology and other 
resources’ at the last CERME 12 (February 2-5 2022, in print) recommended for the future: 
“Networking theories/theories on communication; students’ communication while working with 
digital technologies; developing theories together with developing good practices.” 

Therefore, it is clear that there is a need for networking existing theories as well as for developing 
new theories that capture the technology flux. The questions that follow from this are: for theory (ies) 
to capture the change in the ecosystem of mathematics education, should we integrate old ones, 
upgrade old ones, or invent new ones?   
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In what follows, we explain our ongoing work to fill that theory gap on innovation and we suggest 
the Innovation Pyramid Framework as a solution. Before explaining the IPF we will define two 
crucial words for the clarity of this article. 

Definition of main words 

Innovation. Rogers (1995, p. 11) defined an innovation as “an idea, practice or object that is 
perceived as new by an individual or other unit of adoption”. Innovation can refer either to something 
concrete like a piece of technology or to something abstract, like an idea or a concept. Innovation 
does not necessarily mean better. The idea, practice, or object do not need to be new; rather, it is the 
perception of novelty in using them is what matters.  

Ecosystem. The ecosystem (educational ecosystem) is the community where the biotic and abiotic 
elements interact with each other. The biotic part includes students, teachers, educators, parents, 
policy makers, administrators, curriculum developers… and any other living stakeholders. While the 
abiotic part includes books used, available resources, hardware, software, applications… and any 
other non-living things. It differs from an environment since the environment refers to the 
surroundings only, whereas, ecosystem is the interaction between the environment and the living 
organisms. (Vedantu.com, n.d.) 

So what have we learned so far? We have learned that the learning and teaching ecosystem is not 
only some vertices of the pyramid and segments that connect them. The ecosystem is viable system 
and incorporates a lot of interaction between the stakeholders. Therefore, the need is for a framework 
that represents that viability and that is the Innovation Pyramid Framework (IPF). In what follows, 
we explain our thoughts about this new framework. 

Introducing the innovation pyramid framework (IPF) 

The innovation pyramid framework in mathematics education is an attempt to ameliorate rigid 
theories and frameworks that cannot encapsulate the viability of the ecosystem around innovation 
and learning. The current situation resembles a lot if you use a regular camera to catch the trajectory 
of a speeding bullet. The base of the IPF (Figure 1) is the pedagogical triangle (Friesen & Osguthorpe, 
2018) which was extensively used by theorist such as: Theory of Didactic Situations TDS (Brousseau 
2006) and Anthropological Theory of Didactics ATD (Artigue, 1994) among others.  

 
Figure 1: The pedagogical triangle 
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But since there is a complete ecosystem in the teaching learning and not only pedagogical situations, 
therefore, what is needed is an upgrade of this triangle that includes innovation that is considered now 
a substantial part of the pedagogical situation. Moreover, innovation does not belong to this plane 
and hence the situation extends from a 2D situation into a 3D situation.  

The situation becomes three-dimensional (Figure 2) and more dynamic then the two dimensional 
pedagogical triangle.  

 

 

 

 

 

 

 

 

 

Figure 2: The innovation pyramid framework (IPF) 

The theoretical framework is much more complex then it seems and we will try to explain part of it 
using some examples in the attempt to develop the innovation pyramid framework. The first example 
is the innovation-teacher-content face.  

Innovation-teacher-content pyramid face (ITC) 

When innovation is in the pedagogical situation (Figure 3) then teachers face new challenges. There 
is not one theory that can capture all those challenges. For example, Technological Pedagogical 
Content Knowledge (TPACK) by Mishra and Koehler (2006) only captures teacher’s knowledge 
needs to have about the innovation in order to use it in a pedagogically effective way. Nevertheless, 
is not a sufficient condition for adopting that innovation in his/her practices. For that, there is the 
Diffusion of Innovation Theory (DIT) by Rogers (1995) that explains the stages a teacher goes 
through in adopting innovation in the practices.   

 
Figure 3: Innovation-Teacher-Content (ITC) 
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Those two theories do not list nor explains what factors teacher face when adopting that innovation. 
However, the Zone theory groups and explains those assisting and limiting factors (Goos, 2013). 
There are more theories that belong to this face of the pyramid such as instrumental genesis (Trouche, 
2005); Technology Acceptance Model (TAM); United Theory of Acceptance and Use of Technology 
(UTAUT); Structuring Features of Classroom Practice framework (Ruthven, 2009) etc… 

Therefore, the complexity of adding innovation to the pedagogical triangle cannot be captured by one 
theory. May be the networking of theories or may be inventing new theory that coordinate and 
upgrade the existing ones could be the answer. This is the aim of developing the IPF. The second 
example will be the Innovation Student Content pyramid face. 

Innovation-student-content pyramid face (ISC) 

Adding innovation to the pedagogical triangle adds complexity of the situation in general. In this 
section, let us look at how students will interact with the content when innovation is added, keeping 
teachers away from the perspective (Figure 4).  

 
Figure 4: Innovation-Student-Content (ISC) 

The known theories that belong to this face are Activity theory (Nardi, 1995), Theory of Semiotic 
Mediation (TSM) (Bussi & Mariotti, 2008), Communities of Inquiry (Jaworski & Goodchild, 2006), 
Actions, Processes, Objects, and Schemas (APOS) theory (Dubinsky & Mcdonald, 2002) etc…  

Each of these theories highlights one aspect of the situation; can we integrate them in one general 
theory? What is the effect of the ecosystem on this triad? For example, what role parents have on the 
adoption of an innovation by their children on their content knowledge? 

Many questions need to be answered and theories should help in answering them. The last example 
will be the Innovation Teacher Student pyramid face. 

Innovation-Student-Teacher Pyramid Face (IST) 

There is a big difference between diffusion of innovation by teachers in their classes and the diffusion 
of innovation by students in their everyday life. The question that pose itself here is, how can we 
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capture the same innovation adoption by teacher and by the student at the same time? What theory or 
theories should we use?  

 
Figure 5: Innovation-Student-Teacher (IST) 

Some of the existing theories are: Constructivist, emergent, and sociocultural perspectives (Cobb & 
Yackel, 1996); the Van Hiele Theory (Pegg, 2014); establishing social and socio-mathematical 
norms (Dixon et al., 2009); some roles of tools and activities in the construction of socio-
mathematical norms (Hershkowitz & Schwarz, 1999); Teaching Practices in Digital Environments 
(Sinclair & Robutti, 2014); coaching activities (Gibbons & Cobb, 2017). 

Similar to ITC and ISC faces, those theories takes part of the story and does not tell us the whole 
story from the perspective of all the stakeholders. To give an example, let us take the same theory 
namely the DIT and clarify the difference between teachers and students innovation adoption stages. 
Teachers go through the following stages in somehow linear manner: knowledge, persuasion, 
decision, implementation, and then confirmation (Figure 6).  

 
Figure 6: Diffusion of Innovation stages 
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They know about the innovation (or technology) from any source (peers, social media…) then they 
are persuaded to use that innovation, they try it, then confirm if it is effective or not, and decide to 
integrate that innovation in their practices or not. 

On the other hand, we see students adopt innovations immediately without going through the stages 
of persuasion, decision… they simply adopt (Figure 7). The problem is, in most cases, students adopt 
the innovation but they do not know how it can help them in learning certain content. Teachers, on 
the other hand, know about the benefit of the innovation in students’ learning but they are not at ease 
in quick adoption. 

 
Figure 7: Diffusion of Innovation stages (edited) 

How can reconcile between those two directions? What theories we need to use, integrate, or invent? 

These are some questions, among others, that need answers. In this article, we tried to highlight the 
need for a framework that evolve at the same pace of the innovation and more to come… 

Discussion 
The aim to innovate theories for innovations in mathematics education has been a necessity for many 
years now and it is still a major one as mentioned by experts in the field. This article is the first stage 
of a long research towards finding a framework that not only network previous theories on the use of 
technology in mathematics education but also upgrade them to form new ones that endure the flux of 
technology and innovations. “Technology Adoption is a complex, inherently social, developmental 
Process” (Straub, 2009, p 625). Since it is complex process, we need many lenses and different 
perspectives to understand that complexity. It is inherently social; many biotic factors interact in that 
process. Developmental process, we need a methodology that captures the development process and 
not only an immediate laboratory experimental controlled results. What is happening in every face of 
the pyramid with its ecosystem is worth studying. 

In short, in this article we introduced why such a framework is needed and what is the innovation 
pyramid framework by providing some examples. This is just the beginning of a long journey of 
studying in that area of research.  
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Example-generating tasks in a computer-aided assessment system: 
Redesign based on student responses  

Maria Fahlgren and Mats Brunström 
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Based on the patterns of response to an example-generating task, this paper provides suggestions on 
how the task could be redesigned to enrich students’ example spaces in relation to the key ideas 
addressed by the task. The participants are 236 first-year engineering students. 

Keywords: Mathematics education, example-generating tasks, computer-aided assessment. 

The past decades have seen rapid development of technologies for automated assessment of students’ 
work in digital environments. In this paper, we use the notion of computer-aided assessment (CAA) 
systems for this type of technology. Today, CAA systems are in widespread use, particularly in 
university mathematics courses (Kinnear et al., 2020). However, researchers point out the importance 
of designing CAA tasks that address higher-order skills in mathematics to prevent assessment solely 
focusing on lower-order skills (Rønning, 2017). One way to tackle this is to design tasks using the 
pedagogical approach of prompting students to generate examples that fulfil certain conditions 
(Kinnear et al., 2020; Yerushalmy et al., 2017). The idea of asking students to generate their own 
examples has been suggested as a way to foster students’ conceptual understanding (Watson & 
Mason, 2005). Since the responses generated by a group of students most often provide a rich space 
of examples, it is time-consuming for the teacher to assess student responses. However, by 
implementing example-generating tasks into a CAA system this correction work could be outsourced 
(Sangwin, 2003).  

The focus of this paper is on a specific type of example-generating task consisting of a sequence of 
prompts in which a list of constraints are added successively. The aim of the paper is to examine 
patterns of student response to this type of example-generating task. The findings will inform the task 
redesign to strengthen the mathematical key ideas addressed by the task, in this case, the Factor 
theorem and vertical scaling of function graphs. 

Example spaces 

Central in the teaching and learning of mathematics are examples, most often used to introduce a 
concept or a method (Bills et al., 2006). Watson and Mason (2005) suggest asking students to 
construct examples that fulfil certain conditions as a powerful approach in the teaching of 
mathematics. They use the construct of example spaces when referring to the collection of examples 
provided by students at a given occasion. According to Watson and Mason, the richness of an example 
space indicates students’ mathematical understanding. They point out the importance of encouraging 
students to extend their existing and accessible example spaces by asking for another, and then 
another example (Watson & Mason, 2005). Moreover, by asking for several examples that differ as 
much as possible, students are prompted to generate examples beyond familiar and prototypical ones 
(Watson & Mason, 2005). 
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Another way to encourage students to enrich their example spaces, Watson and Mason (2005) argue, 
is by adding constraints to the initial conditions. In many cases, this “…opens up new possibilities 
for the learners and promotes creativity.” (p. 11). Sangwin (2003) propose this type of example-
generating task as particularly appropriate in creating high-level CAA tasks.  

Method  

The study took place at a Swedish university in autumn 2021 and it involves 236 first-year 
engineering students taking a course in Calculus. As part of the course assignment, the students 
conducted small group activities designed for a combined use of a CAA system (Möbius) and a 
dynamic mathematics software (GeoGebra). In this paper, we focus on one of the tasks consisting of 
a sequence of prompts providing constraints one at a time, adopted from Sangwin (2003). 

The task  

This example-generating task (see Figure 1) was individualized, i.e. students received different 
numerical values of the parameters (a and b).  

Figure 1. Example-generating task adopted from Sangwin (2003). 

The main key idea addressed in this task is the Factor theorem, i.e. understanding the relationship 
between zeros and factors of polynomials. By adding constraints in terms of specific zeros for a 
polynomial function (Prompt b and Prompt c), the intention is to encourage students to use the Factor 
theorem. Some students might generate an example to Prompt b without reconsidering the Factor 
theorem. The addition of a further zero (Prompt c) might foster them to realize the usefulness of using 
the Factor theorem. Moreover, the intention is to draw students’ attention to the possibility of vertical 
scaling by adding a further constraint in terms of a given y-intercept (Prompt d).  

Data collection and analysis 

The data consists of student responses collected through the CAA system. In the first stage of the data 
analysis process, each student response was coded. This analysis generated several codes for each 
prompt; from 6 (Prompt a) to 18 (Prompt d) different codes. Next, the initial codes were organized 
into categories guided by the key ideas addressed by the task.  

Results 

To the first prompt (Prompt a), 36 % of the students (85 out of 236) responded in the most simple 
way, i.e.	ሺݔሻ ൌ  ଷ. Predominantly (141/236), the students provided a polynomial in standard formݔ
including more than one term. Only 8 students responded in factored form.  

Below are some possible properties (i) - (iv) of a polynomial  .ሻݔሺ

(i) ሺݔሻ is a polynomial of degree three, i.e. p(x) is a cubic function. 
(ii) ሺܽሻ ൌ 0                  (iii) 	ሺܾሻ ൌ 0                  (iv) ሺ0ሻ ൌ ܾܽ 

a) Give an example of a polynomial ሺݔሻ satisfying (i). 
b) Give an example of a polynomial ሺݔሻ satisfying (i) and (ii). 
c) Give an example of a polynomial ሺݔሻ	satisfying (i), (ii) and (iii). 
d) Give an example of a polynomial ሺݔሻ satisfying all the properties (i) - (iv). 
e) Give an example of a polynomial ሺݔሻ satisfying (ii), (iii) and (iv), but not (i). 
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The answer categories to Prompt b and Prompt c are the same, except for one. The categories are: 

Factor theorem explicitly (FTE). The responses in this category are written in factored form, e.g. 
ሻݔሺ ൌ ݔଶሺݔ െ ܽሻ or ሺݔሻ ൌ ሺݔ െ ܽሻଷ to Prompt b, and ሺݔሻ ൌ ݔሺݔ െ ܽሻሺݔ െ ܾሻ to Prompt c. 

Factor theorem implicitly (FTI). Although the responses in this category are written in standard form, 
the strategy to generate the answers most probably begins by using the Factor theorem. For example, 
several students responded ሺݔሻ ൌ ଷݔ െ ሻݔሺ ଶ to Prompt b, most probably by extendingݔܽ ൌ
ݔଶሺݔ െ ܽሻ. Analogically, to Prompt c, many students responded ሺݔሻ ൌ ଷݔ െ ሺܽ  ܾሻݔଶ   ,ݔܾܽ
which is an extended form of ሺݔሻ ൌ ݔሺݔ െ ܽሻሺݔ െ ܾሻ. 

Without using the Factor theorem (WFT). To Prompt b, the most common response was ሺݔሻ ൌ ଷݔ െ
ܽଷ, which is straightforward to find without using the Factor theorem. In this category of responses 
there were also some students that responded with ሺݔሻ ൌ ଷݔ  ଶݔ  ݔ െ ሺܽଷ  ܽଶ  ܽሻ. 

Undefined (U). There were several responses, written in standard form, in which we were unable to 
discern the strategies used by the students, i.e. whether they have used the Factor theorem or not.  

Table 1 shows an overview of the responses provided to Prompt b and Prompt c. The result indicates 
that several students provided an example to Prompt b without using the Factor theorem, i.e. the key 
idea addressed by the task. In total, 37% of the students (87 out of 236) provided a response (to 
Prompt b) indicating that the Factor theorem has been used. When a further condition (zero) was 
added (Prompt c), the corresponding proportion of students increased to 78% (183 out of 236).  

Table 1. Student responses to Prompt b and Prompt c (numbers within brackets indicate correct answers) 

Prompt FTE FTI WFT Undefined No answer Total 

Prompt b 50 (50) 37 (35) 74 (71) 73 (62) 2 236 (218) 

Prompt c 78 (76) 105 (100) - 49 (36) 4 236 (212) 

By adding a further constraint in terms of a given y-intercept, another key idea is addressed by Prompt 
d, i.e. the possibility of vertical scaling of a graph by multiplying with a constant factor. Only 14% 
of the students (33 out of 236) provided responses indicating that they have used this strategy. Most 
of the students, 58% (136 out of 236), responded with the polynomial ሺݔሻ ൌ ሺݔ  1ሻሺݔ െ ܽሻሺݔ െ
ܾሻ, either in factored form or standard form. In this way, they received the correct y-intercept without 
having to use vertical scaling. Notably, as many as 44 students gave this answer already to Prompt c. 
In total, 27% (64 students) did not provide a correct answer.  

When asked to provide an example of a polynomial function that fulfil all the conditions except for 
being of degree three (Prompt e), most of the students, 80% (189 out of 236), responded with the 
(correct) second degree polynomial ሺݔሻ ൌ ሺݔ െ ܽሻሺݔ െ ܾሻ, predominantly written in standard form.  

To summarize, the findings indicate that the added zero in Prompt c resulted in a significant increase 
of students utilizing the Factor theorem, i.e. the main key idea addressed by the task. In this respect, 
the task worked properly. However, in relation to vertical scaling (the other key idea), the findings 
indicate a need for a redesign of the task. We will elaborate on this in the next section. 
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Discussion 

One reason why most of the students did not need to use vertical scaling to generate an example to 
Prompt d, we argue, is the feature of the added constraint in this Prompt (	ሺ0ሻ ൌ ܾܽ). A 
straightforward way to tackle this would be to revise the constraint to ሺ0ሻ ൌ ܾ݇ܽ, for some suitable 
value of the constant k. In this way, the predominant student response, including the factor ሺݔ  1ሻ, 
will require a multiplication with the constant k, i.e. vertical scaling. Another possibility would be to 
ask students to provide more than one example. This requirement will prompt students who respond 
with ሺݔሻ ൌ ሺݔ  1ሻሺݔ െ ܽሻሺݔ െ ܾሻ, as most of the students in this study did, to extend their example 
space.  

The latter suggestion of redesign is a more general design principle to extend students’ example space 
(Watson & Mason, 2005), which has been adopted to CAA systems (Sangwin, 2003; Yerushalmy et 
al., 2017). Reconsidering how this design principle could affect other prompts, we argue that this 
request might encourage many of the students who did not utilize the Factor theorem when responding 
to Prompt b to do so. For example, students who provided the simple polynomial ሺݔሻ ൌ ଷݔ െ ܽଷ 
will need to extend their example space by using another strategy, hopefully utilizing the Factor 
theorem. We strongly suggest that the design principle to ask for more than one example is useful in 
relation to the last prompt (Prompt e) since it was straightforward for students to provide the second-
degree polynomial ሺݔሻ ൌ ሺݔ െ ܽሻሺݔ െ ܾሻ. As there is only one second-degree polynomial that 
fulfils the given conditions, the request for another example will encourage students to consider 
polynomials of (at least) degree four. 
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The development of middle-grade students’ fraction schemes is challenging while also necessary for 

students in the later development of their ability to reason with reciprocals. In this theoretical paper, 

we display a method for designing and sequencing tasks in an online assignment portal to develop 

schemes that provide the necessary prior knowledge for reciprocal reasoning. We place special 

emphasis on the importance of students’ representation competency in the sequencing. Building on 

Vergnaud’s notion of scheme, we analyze possible solutions strategies and anticipate students’ 

actions. The design principles for the sequencing of tasks include assessment of the solution, and how 

the assessment is used to generate a new task aimed at challenging students to develop new schemes. 

We exemplify our design principles and discuss the task design principles in relation to task 

sequencing. 

Keywords: Task design, schemes, representations, fraction knowledge, conceptual fields.  

Introduction 

It is challenging for students to develop the fractional knowledge required to reason with reciprocals, 

which is essential to relate numbers and measures, reason proportionally, express functional 

relationships, and solve equations. Not only do students need knowledge of the polysemic nature of 

fractions, i.e., that the same fraction can have several different meanings;1 they also need to be able 

to acquire that meaning from different situations described with different representations. “Although 

there are different ways to transform one fraction to another multiplicatively, using reciprocals is 

particularly efficient because it allows a person to scale a fraction to 1 and then scale again” 

(Hackenberg & Sevinc, 2022, p. 2). 

In this paper, we address the development of the conceptual field (see explanation below) of middle 

school students (age 10–13 years) fraction knowledge. In particular, we focus on the development of 

students’ partitive, unit composition, and iterative fraction schemes (Steffe & Olive, 2010). Students’ 

iterative schemes are precursors for developing multiplicative reciprocal reasoning (Hackenberg & 

Sevinc, 2022), and the partitive and unit composition schemes are precursors to the iterative scheme. 

The partitive fraction scheme is defined as the knowledge needed to realize that fractions can be 

divided into smaller equal parts. For example, realizing that 
8

10
 can be divided into eight parts, where 

each unit is 
1

10
, i.e., identifying a unit fraction (Steffe & Olive, 2010). Another possibility is to divide 

1 Parts of whole, measure, quotient, ratio, or operator.  
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8

10
 into composed units of equal parts. Instead of identifying 

8

10
 as 8 of 

1

10
 the student can identify 4 

pieces of 
2

10
, the unit composition scheme. Once the unit is identified, new fractions can be constructed 

by iteration, the iterative scheme (for more information, see Steffe & Olive, 2010). Our goal in 

targeting these schemes is to build a foundation for the adaption of schemes using fractions as 

multiplicative operators. The adaption of schemes takes place in harmony with the representations 

signifying the situations used to develop the schemes.  

Our aim with this paper is to display a scheme-based task design addressing students’ progression 

in the representation of fractions for an online assignment portal.  

We first give the background and setting for the online assignment portal. We then present 

Vergnaud’s notion of scheme. Then follows, a section that exemplifies our task design. We close with 

a discussion on the task design principles in relation to the task sequencing. 

Background and setting 

Mathematical competencies (Niss & Højgaard, 2019) have been developed and implemented in the 

Danish curriculum over the last two decades. The purpose of mathematics in the Danish primary and 

lower secondary school is that “students must develop mathematical competencies and acquire skills 

and knowledge so that they can perform appropriately in mathematics-related situations” (EMU, 

2021, our translation). Here we focus on the representation competency. “This competency consists 

of the ability to interpret as well as translate and move between a wide range of representations (e.g., 

verbal, material, symbolic, tabular, graphic, diagrammatic or visual) of mathematical objects, 

phenomena, relationships and processes, as well as of the ability to reflectively choose and make use 

of one or several such representations in dealing with mathematical situations and tasks.” (Niss & 

Højgaard, 2019, p. 17) 

In Denmark, online assignment portals have gained considerable ground in elementary school. 

Denmark's largest portal alone, matematikfessor.dk, has 75% of the Danish primary and lower 

secondary schools (grades 0 through 10) as regular subscribers, and an average of 1.5 million tasks 

are answered daily (EduLab, 2021). This means that approximately 500,000 students have access to 

matematikfessor.dk and 45,000–50,000 unique Danish students log on to the portal on a daily basis. 

Tasks in such portals, however, are mainly used for training students’ basic skills (Hawera, Wright 

& Sharma, 2017). 

Theoretical constructs 

Schemes 

We use Vergnaud’s notion of scheme (e.g., Vergnaud, 1997; 1998; 2009) to identify students’ fraction 

schemes. Schemes mediate between empirical objects in the world and cognition. The concept of 

scheme was first introduced by Kant, and later picked up and elaborated by Piaget. Piaget (1952) 

described three characteristics of schemes: behavioral, symbolic, and operational schemes. Later, 

when Vergnaud formulated his notion of scheme, he disposed of the division of schemes into three 

different kinds of schemes. All actions are governed by schemes, and all actions include both mental 

and physical operations, which is why Vergnaud saw no point in distinguishing between mental and 
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physical operations. Vergnaud defined a scheme as the invariant organization of behavior, or activity, 

for a certain class of situations. If we accept that schemes organize action, we can create hypotheses 

about individuals’ existing schemes by analyzing their observable behaviors. A scheme consists of 

four components: 

o goals and expectations; 

o rules to generate actions according to the evolution of the different variables of the situation 

and therefore rules to pick up information and check;  

o operational invariants: to grasp and select the relevant information (concepts-in-action) and 

treat this information (theorems-in-action); 

o inference possibilities (there are always hic et nunc inferences when the subject is facing a 

task; a scheme is not a stereotype but a universal organization; it is relevant for a class of 

situations and not for one situation only). (Vergnaud, 1997, p. 12–13) 

Vergnaud defines growth in conceptual knowledge as the adaption of existing schemes to new 

schemes to handle new situations. Our task design aims at guiding students into cognitive conflicts, 

where existing schemes require accommodation to solve new situations, and to offer the students 

opportunities to develop new schemes while increasing their conceptual fields. Vergnaud (2009) 

developed the theory of conceptual field to describe and analyze students’ conceptual development, 

on a long- and medium-term basis. 

Conceptual fields 

A conceptual field consists of a set of different concepts tied together and a set of different situations 

where the concepts apply. Recall that concepts are one of the ingredients in schemes. According to 

Vergnaud (2009), a variety of situations are necessary to give a concept meaning. Each situation is 

associated with one or more schemes to handle the situation. Several related concepts are required to 

understand any situation. Conceptual fields consist of clusters of situations and concepts. Within these 

conceptual fields, each concept in turn consists of the situations that make the concept useful and 

meaningful; the operational invariants that can be used to deal with these situations; the 

representations that can be used to represent invariants, situations, and procedures. 

Representations are pictures, words, and mathematical symbols that signify meaning in situations 

(Vergnaud, 1998). Representations of the same mathematical concept do not necessarily contain the 

same information about the concept in focus, and a conceptual field holds the whole spectrum of 

representations and translations between them (see Niss & Højgaard, 2019). Situations are an intuitive 

concept that passes more or less undefined in the research literature, but which in our case refers to 

the tasks that students are required to solve. Operational invariants are the concepts-in-action and 

theorems-in-action that can be used to deal with the situation (Vergnaud, 2009). The suffix ‘in-action’ 

indicates that individuals do not need definitions or terminology for the theorems and concepts they 

put into action. Due to space limitations, we refer readers to Vergnaud (2009) for further information. 
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Task design 

Design principles 

The design of our tasks is operationalized according to the following principles: 

1. The task is part of a cluster of tasks that together will give the student opportunities to develop 

concepts and adapt schemes towards a certain goal.  

2. There must be at least two efficient solution strategies, each of which triggers different 

schemes. The ‘dual scheme idea’ can, according to Elkjær and Hodgen (2022), help task 

designers focus on the intentions of the task. 

3. The choice of representations is conscious and based on the idea that progress in concept 

knowledge and growth in conceptual fields eventually must involve an epistemological shift, 

where the meaning of concepts goes from residing in iconic representations to residing in 

relationships in symbol systems (Ahl & Helenius, 2021). 

4. Assessment of the nature of the solution, based on our ideas in the analysis, is done in the 

online assignment portal. The assessment determines which task is delivered next. 

In line with design principle 2, our example tasks can be solved with different strategies (rules-of-

action), activating different schemes. Students’ actions reveal which schemes have been activated in 

the solution process. By changing the situation so that certain schemes lead to a more efficient 

solution, the student can be guided to adapt their existing schemes to the new situation. 

Task analysis and sequencing 

Our goal, in our example tasks, is that students should be given opportunities to develop and 

consolidate fraction schemes within the iconic representation of the number line. The students will 

be provided with opportunities to develop new schemes, via new situations provided as a result of the 

online assessment of their solution strategy. The new situation aims to encourage existing schemes 

to adapt to the situation. Students’ actions may be a result of an existing scheme, but they may also 

not yet have been consolidated into an invariant organization of behavior, or activity, for a certain 

class of situations. Longer sequences are necessary to corroborate the existence of a scheme. 

 

 

Figure 1: Fraction task. Represented by the number line 

 

Students’ actions show what concepts- and theorems-in-action are activated in their solution process. 

In our example task, we anticipate two different efficient solution strategies: 
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Solution A. Students divide the fraction into smaller equal parts and iterate the unit fraction to find 

the number 1. Based on the markings on the number line (figure 2), both the partition into a unit 

fraction and the iteration can be recognized in the online assignment portal. 

 

 

Figure 2: Iterate the unit fraction 

 

Since the student may master both the unit partitive and the iterative fraction scheme, the next task 

will display a situation, where a composite unit together with iteration will be more efficient for 

solving the situation. The situation may be: Place 1 on a number line marked with 0 and 
20

60
. While 

iterating the unit fraction 
1

60
  60 times will still solve the situation; a composite unit, where the student 

iterates 
20

60
 three times, first to 

40

60
  and then to 

60

60
, which equals one, will be more efficient. 

Solution 2: Students use a composite unit together with iteration to find the number 1. The individual 

perceives 
3

9
 as the composite unit 

1

3
 of 1. They also demonstrate competency to move between the 

(equal) representations 
3

9
 and 

1

3
. Based on the markings on the number line (figure 3), both the partition 

into a composite unit and the iteration can be recognized in the online assignment portal. 

 

 

Figure 3: Iterate a unit composite fraction 

 

Because the student may master the unit composite and the iterative fraction scheme, the next task 

will display a situation, where the unit fraction together with the iteration will be more efficient to 

solve the situation. The aim is to discover if the iterative fraction scheme is already nested or can be 

adapted into the student’s conceptual field. To be able to conclude that the scheme is accommodated 

in the student’s conceptual field, it needs to be tested on several tasks. The iterative scheme requires 

students to conceptualize fractions as iterable units: 
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To judge whether a unit fraction is an iterable unit requires the observation that the child uses it to 

produce an improper fraction. In the case of the partitive fraction scheme, a unit fraction inherits 

its iterability from the iterable unit of one. (Steffe & Olive, 2010, p. 180) 

By making it rather difficult to use a composite unit, we elicit more information for the assessment 

of students’ schemes. The situation may be: Place 1 on a number line marked with 0 and 
8

5
. 

 Figure 4: Improper fraction task. Represented by the number line 

 

Because the fraction is improper and the denominator is a prime, it may block the use of iteration of 

a composite unit. The task aims to encourage a solution where students may use a unit fraction to find 
1

5
 by dividing the distance into 8 parts, and then use subtraction (reverse iteration) down to 

5

5
. 

 

 Figure 5: Revere iteration of a unit fraction 

 

When the partitive, composite and iterative fraction scheme is accommodated in the student’s 

conceptual field, necessary prior knowledge for reciprocal reasoning exists. Yet, while the number 

line has served us well as representation thus far, the following task design requires a shift in 

representation to reasoning in mathematical symbol systems. Simply put, the number line has played 

out its role as an explanatory representation. An example of a task for promoting reciprocal reasoning 

and reasoning in symbol systems may be:  

Object A is 24 cm in height. This is 
2

7
 of the height of object B. How high is object B?  

A solution in two steps based on students’ experiences from the number line representation is 

efficient. First, since 24 cm ~ 
2

7
, identify that the unit fraction 

1

7
 ~12. Then multiply 12·7 to find the 

height of object B. The most efficient solution, using reciprocal reasoning, would be 
7

2
 ·24. However, 

there may still be some adaption of schemes before the student may combine the two operations into 
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one operator, and eventually generalize the operations 

𝑎

𝑏

𝑎
and

1

𝑏
· 𝑏 into the theorem  

𝑎

𝑏
·

𝑏

𝑎
= 1. Still, if 

we do not know where we are heading, we are unlikely to get there, which is why careful task design 

is worthwhile. 

We end our brief presentation of our theoretical ideas about task design with a few words on the 

importance of the choice of representations. In the examples in Figures 1–3, the number line is a 

helpful representation, since the individual can switch between iconic and symbolic representations 

(Ahl & Helenius, 2021). Nevertheless, progress in concept knowledge and growth in conceptual fields 

must eventually involve an epistemological shift, where the meaning of concepts goes from residing 

in situations and iconic representations to residing in relationships in symbol systems. When a student 

has developed competency in reasoning with reciprocals, the iconic number line representation is no 

longer necessary for meaning-making. While the student’s conceptual field develops, the student’s 

degree of coverage of the representation competency is expanded. 

Discussion 

Above we have displayed a method for designing and sequencing tasks in online assignment portals 

with emphasis on fractional tasks and the representation competency using Vergnaud’s notion of 

schemes. The intention of the task sequencing is to establish a learning trajectory through the 

anticipated solution strategies by which the students can develop their fraction schemes. We end the 

paper by discussing how the principles regarding task design have been implemented throughout the 

sequencing. 

The task is designed to become part of a cluster of tasks that can be delivered to students using 

dynamic sequencing, to give the students opportunities to adapt fractional schemes on their way to 

reciprocal reasoning. A preferred sequencing of tasks supports epistemological shifts in dealing with 

different representations of composite fractions. The two exemplified efficient solution strategies 

each triggering different fraction schemes. By using the ‘dual scheme idea’, if an initial solution 

strategy builds on, for example, iterating a unit fraction, subsequent tasks will encourage a switch in 

strategies, for example to using a composite unit fraction, by providing a task where the initially 

chosen strategy becomes increasingly impractical. Similarly, if the initial solution builds on using a 

composite unit, subsequent tasks may stimulate a switch to iterate a unit fraction. 

The described way of using the online portals dynamic sequencing requires knowledge of which 

rules-of-action the student will make visible in the solution process. To implement this theoretical 

idea in the online assignment portal, we still need to set up criteria for assessing student responses 

online. In this theoretical paper, we have assumed that students will either mark a unit fraction or a 

composite fraction in the online portal. The next step is gathering data to get to know more about 

what students will do when faced with this type of task in the portal, as similar tasks do not exist at 

the moment. 
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A case study of an expert in computational thinking in the context of 
mathematics education research 
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We conducted semi-structured interviews with three experienced mathematics education researchers 
with great expertise in the design and use of digital technologies, including programming skills, to 
investigate their views and perceptions on computation thinking (CT) and its impact on mathematical 
learning. In this paper we report on our findings from one of them, Mark, and we suggest ways for 
adapting the very recent Mathematical Digital Competency (MDC) framework to encompass CT 
practices and dispositions.  Our aim is to offer insights into how CT is perceived and understood by 
him, by prompting him to reflect on his own CT practices and competencies. We offer suggestions for 
an MDC framework for mathematics teacher educators that encompasses CT. 

Keywords: Computational thinking, mathematics education researchers, mathematical digital 
competency, digital technologies. 

Introduction 
Computational Thinking (CT) has made its appearance in the mathematics education of the digital 
era over a decade ago and ever since then, the upsurge of interest in its influence/impact on 
mathematical teaching and learning is evident. Looking back at PME44, when Inprasitha (2021) 
announced the theme of the conference being on “Mathematics Education in the 4th Industrial 
Revolution”, CT was characterised as an essential competency for a digital society. The relationship 
between CT and mathematics has been of particular interest. Indeed, some see CT as offering the 
potential to transform school mathematics (e.g., Perez, 2018).  

Teacher education will be critical in enabling mathematics teachers to realise the potential of CT to 
transform mathematics. Yet, to date, educational literature on CT, or computational competency or 
the “new digital age competency” as sometimes is referred to (e.g., Grover & Pea, 2013), has mainly 
focused on students’ CT. Undoubtedly, to promote effective CT teaching (Weintrop et al., 2016), one 
should focus on teacher education and professional development as argued by Lee et al. (2020). To 
our knowledge, there is not any research that investigates mathematics teacher educators’ (MTEs) 
expertise in CT. 

We address this gap by investigating MTEs’ CT and their computational practices in order to better 
articulate the knowledge and beliefs required by mathematics teacher educators. To do this, we 
consider the “telling case” (Mitchell, 1984) of Mark, an experienced ‘mathematics education with 
technology’ researcher and teacher educator, Mark, who has extensive knowledge of Programming, 
Artificial Intelligence (AI) and Machine Learning (ML) from an over 15-years active design-based 
research background on educational technologies in mathematics education. We present initial 
findings from an exploratory study in order to consider ways for adapting the Mathematical Digital 
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Competency (MDC) framework (Geraniou & Jankvist, 2019) to encompass mathematics teacher 
educators’ CT practices and dispositions. 

Computational thinking and mathematics education 
Cuny, Snyder and Wing (2010) defined CT as “the thought processes involved in formulating 
problems and their solutions so that the solutions are represented in a form that can be effectively 
carried out by an information-processing agent”. The consensus of research (e.g., Shute et al., 2017) 
is that, whilst there are practices in common, CT is a distinct and separate discipline to mathematics, 
and that CT is less about the use of technology and computers and more about the concepts, practices 
and processes involved. However, CT involves practices that are also required in mathematics, such 
as “decomposition, abstraction, algorithm design, debugging, iteration, and generalization” (Li et al., 
2020, p.156). There has been some research regarding the teaching of CT both in general (see Grover 
& Pea’s, 2013) and specifically in mathematics and other STEM subjects (see, e.g., Lee et al., 2020). 
Our recent work (Geraniou & Hodgen, 2022) indicated that unlike the teachers in Sands et al.’s 
(2018), neither of the two MTEs we interviewed viewed CT narrowly as synonymous with doing 
mathematics nor simply using digital tools to do mathematics. However, both appeared to have had 
limited opportunities to articulate the relationship between CT and mathematics and, as a result, 
viewed CT as closely tied to computers and other digital tools. This outcome, together with anecdotal 
data from our own past experiences and work, suggest that there is variation in the way CT is 
perceived and potentially used by teachers and teacher educators. This argument goes against Perez’s 
(2018) claim that the practices identified in his review represent a consensus in mathematics 
education. All these findings suggest the need to investigate further mathematics education 
researchers’ (as well as mathematics teachers’) perspectives on what CT is and assess their CT 
practices, offering support towards enriching their mathematics teaching practices. 

Teacher knowledge, competencies, and computational thinking 
Recent research into teacher knowledge and instructional quality has shown that a key aspect of 
teacher knowledge is not just the knowledge itself, but also the enaction of this knowledge (Tabach, 
2021), or the extent to which pedagogic strategies and tasks are cognitively challenging for students. 
König et al. (2021) refer to this enaction of knowledge as cognitive activation and conceive of it as a 
central aspect of teacher competencies (König et al., 2021). Tabach (2021) discusses this shift from 
knowledge to competencies, as inspired by Niss and Højgaard’s (2019) view on what it means to be 
mathematically competent as articulated in the Danish KOM mathematical competencies framework. 
“By focusing on mathematical competence rather than on mathematical subject matter as the 
integrating factor of mathematics across all its manifestations, we have chosen to focus on the 
exercise of mathematics, i.e., the enactment of mathematical activities and processes” (Niss & 
Højgaard, 2019, p. 12). Perez’s (2018) review of CT in mathematics education indicates a similar 
shift towards competencies by highlighting the practices and dispositions involved in CT. He 
highlights a range of practices, including elements, such as “developing algorithms and automations” 
as well as composite practices, such as “efficient and effective combinations of resources, testing and 
debugging” (p. 428).  
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The Danish KOM mathematical competencies framework was presented in 2011 by Niss and 
Højgaard, to represent the mathematical competencies possessed by students, but teachers too. In a 
more recent publication, Niss and Højgaard (2019) defined mathematical competence as comprising 
“knowledge of, understanding, doing, using and having an opinion about mathematics and 
mathematical activity in a variety of contexts where mathematics plays or can play a role” (Niss & 
Højgaard, 2011, p. 49). Building upon this framework, Geraniou and Jankvist (2019) proposed that 
students’ having Mathematical Digital Competency (MDC) involves the following three elements: 

● “[MDC1]: Being able to engage in a techno-mathematical discourse. In particular, this involves 
aspects of the artefact-instrument duality in the sense that instrumentation has taken place and 
thereby initiated the process of becoming techno-mathematically fluent. 

● [MDC2]: Being aware of which digital tools to apply within different mathematical situations 
and context, and being aware of the different tools’ capabilities and limitations. In particular, 
this involves aspects of the instrumentation–instrumentalisation duality. 

● [MDC3]: Being able to use digital technology reflectively in problem solving and when learning 
mathematics. This involves being aware and taking advantage of digital tools serving both 
pragmatic and epistemic purposes, and in particular, aspects of the scheme-technique duality, 
both in relation to one’s predicative and operative form of knowledge” (p. 43).  

We also agree with Krumsvik and Jones‘s (2013) characterisation regarding teacher’s digital 
competence that involves two dimensions, that of the competence to use technology for personal use 
and additionally that of the competence to use technology in pedagogical settings. This idea that has 
been conceptualised by Chick and Beswick (2018) as meta pedagogical content knowledge (meta-
PCK) of MTEs. Extending these theoretical ideas, we suggest that mathematics educators’ expertise 
may involve a further conceptualisation or in other words a meta-MDC, where for example, they 
engage in a meta-discourse about their own practice and the capabilities and limitations of the 
particular tools supporting their practice and how these relate to more general aspects of CT.  

All the above made us consider that there is a clear link between CT practices and MDC. We should 
also look into the composite CT practices as it is particularly challenging for educators to become 
competent at a meta-level in combining these various elements. So, our research question is: In what 
ways can mathematics educators conceptualise CT in relation to MDC? 

Design and methods 
We carried out an exploratory study with three MTEs, who have extensive experience with research 
in the use of digital technologies for mathematical teaching and learning. We believed that identifying 
MTEs’ beliefs would shed light onto what CT is, what CT practices are, what the relationship between 
CT and mathematical thinking is, how CT practices can be promoted among mathematics teachers, 
why CT practices are useful (or not) and what they offer to mathematics education. We interviewed 
those three MTEs independently. Our initial findings based on our discussions with two of the three 
MTEs, were discussed in a recent publication (Geraniou & Hodgen, 2022). In this paper, we will 
focus on our discussions with the remaining MTE, Mark. 
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We carried out a 60-minute interview with Mark and we present a vignette of our discussions. The 
interview consisted of two parts. In the first part, Mark had to present and reflect on a mathematical 
activity involving CT, using the Think-Aloud protocol (Güss, 2018). We asked him to reflect on (a) 
the programming aspects, (b) mathematical definitions, (c) the structure of the mathematical and the 
tool’s language, and (d) the algorithms. Given that CT is a relatively new area of interest, we wanted 
a task that would enable Mark to articulate various aspects of CT practices. Hence, we asked Mark 
to bring along a problem he was familiar with. This has an advantage of generating a range of ideas 
in a relatively short space of time, but has some limitations in terms of comparing the MTEs’ beliefs. 
In the second part, we asked Mark for his own definition of CT using Cuny, Snyder and Wing’s 
(2010) definition and discussed the CT practices presented in Perez’s (2018) paper. 

Mark’s vignette 
A mathematical activity  

Mark presented an activity that he had recently created at the request of a teacher. The activity was 
designed to enable students to investigate the modelling of an infectious disease such as COVID. It 
was designed in Scratch using a simple model of the effect of different factors (movement, 
handwashing, the transmission rate, and healthcare capacity) on infection and death rates. The 
environment allowed students to change these factors to explore their effects. The activity, as seen by 
students, is illustrated in Figure 1. The movement of people, represented as coloured sprites, was 
modelled as a random process and students could use a slider to alter the level of movement, thus 
reflecting the effect of social distancing restrictions. When the sprites ‘meet’, the likelihood of 
infection was again modelled randomly and students could use a slider to alter the level of 
handwashing, thus reflecting the effect of hygiene measures. The likelihood of recovery is affected 
by the healthcare capacity, which can be altered either by students or the teacher. Sprites are in one 
of four states: susceptible to the disease (yellow), infected (red), recovered and assumed immune 
(blue) or dead (black). The graph in the bottom left-hand corner shows the level of infection over 
time against the health care capacity. 

 

Figure 1: The Scratch activity as explored by students 
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Mark’s definition of computational thinking 

Mark saw a strong overlap between mathematics and CT with the notion of variable being key to 
modelling in both disciplines. Nevertheless, despite this common interest, he considered the two 
disciplines as distinct. He defined CT as follows: 

Mark:  [It is] many things … the simple answer is ... being able to think … with a specific 
programming language or specific tools … in a way that allows you to address a 
particular problem … [And] being able to develop something in a way that is... 
general or abstract, which could be configurable. So going back to the example 
here, I want to give the people the possibility to ... change the parameters so [they 
can] understand the model in principle.   

So, for Mark, CT involves not only practices, such as understanding coding and algorithms, and 
dispositions, such as thinking like a programme, but also purposes, such as developing general 
solutions to problems.  

Mark’s computational thinking in light of MDC and pedagogy 

Unsurprisingly, given his expertise and background, Mark demonstrated considerable facility with 
CT and we found evidence for many of Perez’s (2018) CT practices and dispositions. More 
significantly in terms of our interest in MTE’s knowledge of CT, he also demonstrated a consideration 
of the cognitive activation directed at teachers and pedagogy that appear to align well with MDC 
(Geraniou & Jankvist, 2019).  

MDC1. Being able to engage in a techno-mathematical discourse: Mark engaged in a techno-
mathematical discourse about CT. He reflected not only on the cognitive activation of tasks, but also 
on how and why to cognitively activate tasks (König et al., 2021). Mark was careful to distinguish the 
“relatively unexplored’ and ‘half-baked” activity microworld environment (using a term from the 
literature on microworlds - e.g., Kynigos, 2007) from the actual task that a teacher would set students 
which might be how to reduce the transmission or to “fix” some “broken” aspect of the activity. This 
could enable teachers to “expose students to this idea that there's a variable that is [between] 0 and 
1 and it has an impact”. He noted that he would “flag the potential … to ask this kind of ‘what if’ 
questions”.  Indeed, for Mark, it is the point at which CT and mathematics “meet” where the problem 
becomes pedagogically productive:  

Mark:  A lot of the code is just setting up things and ... not so important. ... Where maths 
meets computation somehow is here, because, this is a code for the person that 
moves around. So from Scratch, you have these ... sprites ... that move around and 
[we] define the movement ... [as] random … The other thing ... [is] when they touch 
the edge ... [they] bounce back which … simulates a small school or a city or 
whatever you want. 

Hence, Mark was able to engage in a techno-mathematical and computational discourse at a meta-
pedagogic level, as indicated by how he distinguishes the key moment in coding with Scratch. 

MDC2. Being aware of […] digital tools […] and their capabilities and limitations: It was striking 
that Mark reflected on how his practice was embedded in the programming environment and thus his 
knowledge was distributed across the programming language (Helliwell & Chorney, 2021; Hodgen, 
2011): 
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Mark:  Scratch ... is a different way of thinking. ... [The] programming language becomes 
an object to think with. ... had someone asked me to do this part with the 
transmission rate, ... I'm not sure I would have done it this way. … But it's an 
interesting notion that you pick a number, and then you compare it to the 
transmission rate. 

Here, Mark demonstrates meta-level thinking in his consideration of how Scratch structures one’s 
thinking in particular ways.  

He went on to reflect on the constraints of Scratch in terms of “cutting corners” and distinguished 
this from the simplification involved in constructing models in general:  

Mark:  I’m using [cutting corners] also in a computational way, ... because of Scratch. … 
It's me thinking of the limitations of Scratch. ... Obviously in any modelling you 
have to simplify … [I] was being critical of Scratch … that's why I said I would cut 
corners. 

This demonstrates an awareness not only of the tools of CT but also of how teachers think, and act, 
pedagogically with these tools and the benefits and limitations of these.  

MDC3. Being able to use digital technology reflectively in problem solving and when learning 
mathematics: He reflected on modelling computationally and mathematically. In particular, he noted 
that “the actual models [of transmission] have differential equations in them” and are hence beyond 
much of school mathematics. However, he considered that pedagogic models in CT classrooms do 
not need to be “authentic”, but should rather be “meaningful”: 

Mark:  Obviously, if you wanted to have a proper model, it would be mathematically very 
complex and so this [model] is targeted to early secondary. ... So, it's very simple, 
the code, to be able to achieve this and it doesn't reflect obviously a proper COVID 
mathematical model. But I think that's actually what makes it kind of useful. 

So, in Mark’s view, the pedagogic task is to model modelling in order that the CT model is “close 
enough” to key aspects of the “real, more complex” model “because ... it doesn't happen always that 
when you are close to that person you get the virus, which is close to reality. ... [I]t happens based 
on a transmission rate.” This shows not only an awareness of computational modelling as a 
pedagogical exercise but also at a meta-level what is key in supporting students’ interpretation of the 
mathematical model. 

Conclusion 
Our study indicated that Mark was very skilled in CT and mathematics and offered insightful 
comments about CT in relation to mathematical modelling in the Scratch environment, subsequently 
revealing his own MDC. Reflecting upon our past work (Geraniou & Hodgen, 2022), we remind our 
readers that we had highlighted the need to articulate the nature of Computational Thinking 
Pedagogical Content Knowledge (CTPCK). In this paper, however, the data from Mark led us to a 
different avenue to knowledge, that of competencies. We argue that possessing CT is a competency 
and in fact a mathematical digital competency, based on the definitions shared by Geraniou and 
Jankvist (2019). In more detail, we suggested some adaptations to the three elements of MDC 
regarding students to encompass an MDC framework for mathematics educators that considers CT 
practices: 
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 [MDC1:] Being able to engage in a techno-mathematical and computational discourse at a 
meta-pedagogic level.  

 [MDC2:] Being aware of which digital tools to apply within different mathematical 
situations and context, and being aware of the different tools’ capabilities and limitations, 
so as to think, and act, pedagogically with these tools, while considering the benefits and 
limitations of these. 

 [MDC3:] Being able to use digital technology reflectively in problem solving and when 
learning mathematics, considering and applying computational modelling as a pedagogic 
enterprise.  

What distinguishes Mark’s vignette is his ability to reflect about the nature of CT framed in a 
pedagogical manner, indicating how he enacted his own mathematical knowledge and computational 
thinking as several integrated competencies, in our case MDCs.  

Our future work entails the wider empirical investigation of this framework for MTEs’ competencies 
with regards to CT practices. We want to identify the CT elements mathematics teacher educators 
and mathematics teachers possess and those CT elements they should acquire to enrich their 
mathematics teaching practice. We conclude by posing a challenge to our readers: Is CT better 
conceived as CTPCK or MDC?  
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In this paper, we present a mathematics teacher’s reflections on the design and experimentation of 

an activity sequence involving transitions from ‘pen-and-paper’ mathematical explorations to 

mathematical explorations within three different digital environments: GeoGebra, the Scratch 

programming environment and Excel. We look at her arguments for supporting students’ 

development of Mathematical Digital Competency (MDC) and reflect on her instrumental 

orchestration approaches. We then argue and discuss the idea of MDC for teaching (MDCT) using 

this expert teacher’s case as an exemplar for such practice. 

Keywords: Digital competencies, instrumental orchestration, mathematical competencies, 

mathematical digital competency, mathematics teachers. 

Introduction 

In a recent paper, Geraniou and Jankvist (2019) argue that for mathematics students of today, their 

understanding of mathematical concepts involved in several mathematical situations might be 

“almost inseparable from the digital tools and the students’ instrumented techniques” usually 

associated with those situations (p. 43). Hence, “for such students, it is no longer only about either 

mathematical competency or digital competency. It becomes about mathematical digital competency” 

(p. 43). On this basis, they provide a first attempt at a definition of such MDC (see the following 

section). Accepting that mathematical digital competency (MDC) thus is an important component for 

students in 21st-century mathematics education, it is obvious to ask about MDC for teachers. Geraniou 

and Jankvist (2020) name this mathematical digital competency for teaching (MDCT) and provide a 

discussion of which potential theoretical frameworks might function—or network—well with the 

notion of MDC. These include (the theory of) instrumental orchestration (TIO), the Danish KOM 

framework’s six didactico-pedagogical competencies of mathematics teachers, mathematical 

knowledge for teaching (MKT), and the associated so-called TPACK (technological pedagogical 

content knowledge) framework. With reference to Geraniou and Jankvist (2019), Tabach (2021) 

picked up from a TPACK, and thus MKT, point of view to conclude:  

Returning to the issue of teachers’ digital mathematical competencies with which I opened the 

talk, I believe that the MDC defined by Geraniou and Jankvist (2019) also applies to teachers. 

Beyond this is a complementary set of competencies, specifically didactical digital mathematical 

competencies, that are relevant to the work of mathematics teachers. In this talk I hinted at some 

of these, which I believe constitute a fruitful field for future research (Tabach, 2021, p. 44). 
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Tabach’s “didactical digital mathematical competencies” correspond to our notion of MDCT. In this 

paper, we address this “complementary set of competencies” by taking a more empirical look at what 

MDCT might look like when practiced in a classroom by providing an illustrative case of an expert 

mathematics teacher in programming, Grace. The case stems from a larger project related to students’ 

computational thinking (CT) and MDC and data was collected by the third author. Based on the 

theoretical basis of MDC and the empirical case, we attempt answers to the following exploratory 

research question: Which components should MDCT at least encompass? Before sharing more 

information about Grace, and engaging into the empirical case and the educational setting 

surrounding it, we provide a thorough description of the theoretical constructs on which we will rely: 

MDC and TIO. 

Mathematical Digital Competency and Teacher Competencies 

In our past work, we argued that when students interact with a piece of software in their efforts to 

solve a mathematical task, their digital competencies and their mathematical competencies are 

enacted and intertwined (Geraniou & Jankvist, 2019). Building upon the Danish mathematics 

competencies framework, KOM (Niss & Højgaard, 2019), and combining the Theory of Instrumental 

Genesis (Trouche, 2005) and Vergnaud’s (2009) Theory of Conceptual Fields, Geraniou and Jankvist 

(2019) advanced the theoretical construct of students’ MDC, proposing that students possessing such 

display the following characteristics: 

● “[MDC1]: Being able to engage in a techno-mathematical discourse. In particular, this involves 

aspects of the artefact-instrument duality in the sense that instrumentation has taken place and 

thereby initiated the process of becoming techno-mathematically fluent. 

● [MDC2]: Being aware of which digital tools to apply within different mathematical situations 

and context, and being aware of the different tools’ capabilities and limitations. In particular, 

this involves aspects of the instrumentation–instrumentalisation duality. 

● [MDC3]: Being able to use digital technology reflectively in problem solving and when learning 

mathematics. This involves being aware and taking advantage of digital tools serving both 

pragmatic and epistemic purposes, and in particular, aspects of the scheme-technique duality, 

both in relation to one’s predicative and operative form of knowledge” (p. 43).  

For teachers to assist students in developing their MDC, besides possessing MDC to some extent 

themselves, they need MDC for teaching (MDCT). Niss and Højgaard’s (2019) definition of 

mathematical competence as “someone’s insightful readiness to act appropriately in response to all 

kinds of mathematical challenges pertaining to given situations” (p. 12)  should be taken into account 

when considering MDC for teaching. Teacher competencies are not to be mistaken for solely a set of 

traits or skills; rather, they are defined in the way in which specific actions are implemented and the 

intentionality and importance that both precede and follow those actions (Winch, 2017). Teacher 

competencies are defined as the personal qualities—specifically, knowledge, beliefs, and motivation, 

as distinguished from behaviours and interactions—required for teachers to meet the demands in their 

profession (Fauth et al., 2019). Krumsvik and Jones’s (2013) characterisation of teacher’s digital 

competencies involves two dimensions, that of the competency to use technology for personal use 

and that of the competency to use technology in pedagogical settings. This has also been 
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conceptualised as the double instrumental genesis (Haspekian, 2011), a process involving a 

pedagogical instrumental genesis on top of a teacher’s personal instrumental genesis. 

Theory of Instrumental Orchestration (TIO) 

To analyse how the enactment of the double instrumental genesis takes place, and in fact how a 

teacher manages and orchestrates the use of digital technology in mathematical learning situations, 

we use TIO. TIO was derived by Trouche (2004) and later elaborated by Drijvers et al. (2014) as “the 

teacher’s intentional and systematic organisation and use of the various artefacts available in a 

learning environment—in this case a computerised environment—in a given mathematical task 

situation, in order to guide students’ instrumental genesis” (p. 191). TIO involves the following three 

elements: (a) a didactic configuration, that is the arrangement of artefacts in the teaching 

environment; (b) an exploitation mode, or in other words the approach a teacher chooses to exploit a 

didactical configuration to assist their didactical intentions; (c) a didactical performance, that entails 

the decisions a teacher needs to make instantly, while teaching to accommodate the chosen didactic 

configuration and exploitation mode. Seven orchestrations have been identified for whole class 

teaching in up-to-date research studies and one for students working alone or in pairs with technology 

(Drijvers et al., 2014): (1) technical-demo orchestration concerns demonstration of tool techniques 

by the teacher; (2) link-screen-board orchestration, where the teacher stresses the relationship 

between what happens in the technological environment, and its representation in the conventional 

mathematics of paper, book and board; (3) discuss-the-screen orchestration concerns a whole-class 

discussion about what happens on the computer screen; (4) explain-the-screen orchestration concerns 

whole-class explanation by the teacher, guided by what happens on the computer screen; (5) spot-

and-show orchestration, where students’ reasoning is brought to the fore through the identification of 

their work during the preparation of the lesson and its use in a classroom discussion; (6) Sherpa-at-

work orchestration, a so-called Sherpa student (Trouche, 2004, 2005) uses the technology to present 

his or her work, or carry out actions on the teacher’s request; and (7) work-and-walk-by orchestration, 

which is where the didactical configuration and the corresponding resources basically consist of the 

students sitting at their technological devices, and the teacher walking around in the classroom. All 

these seven orchestrations involve whole-class teaching (Drijvers et al., 2014), and have been derived 

to describe the teacher’s role in supporting and guiding students while they interact with a digital 

resource, as well as helping them learn the mathematics involved and how to use the resource. 

The case of expert teacher Grace 

The empirical basis of this paper relies on the collaborative work between the third author and Grace. 

Grace is a mathematics teacher with 37 years of experience, a mathematics advisor in her 

municipality, and current member of the mathematics expert group for the Danish Ministry of 

Education. Moreover, she has a particular expertise and interest in programming, leading a non-profit 

organisation that involves children into coding for seven years. The collaborative work began by 

offering Grace a didactical sequence, where students should combine their mathematical and 

programming learning to solve a task. In particular, the goal of the offered task was to code a program 

in Scratch that draws a regular polygon of any given number of sides (see Figure 1). The original 

design is inspired by Papert’s (1980) Turtle geometry, and the decisions on the order of coding 
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different polygons were informed by the ScratchMaths project (Benton et al., 2017). Data were 

collected in one pre- and one post-intervention interviews with Grace, and video and audio recordings 

from the classroom experience and were transcribed, anonymised and translated. The researchers’ 

reflections presented below are based on all these data. The implemented version of the task consisted 

of three 90-minute sessions with one of Grace’s 6th-grade classes, who were introduced to Scratch in 

the first session. These sessions are summarised below. 

 

Figure 1: A sample solution of the original proposed task 

Session 1: Introduction to Scratch’s pen environment. Grace invited students to open Scratch and 

explore its capabilities. Every so often, students would share with the class what they have found. 

Grace steered the conversation toward key features: create and remix blocks, the green flag and the 

pen environment. The session ended with some pre-made code that students should fix. 

Researchers’ reflections on Session 1. Grace had already reflected on the best tools to use to teach 

the mathematical topic of ‘Angles in a polygon’ (MDC2) and aimed for the students to become 

familiarised with the Scratch environment and its coding language. Grace used a combination of 

orchestrations, such as: work-and-walk-by to support students when and if needed while they 

interacted with Scratch in their allocated computers; technical-demo, discuss-the-screen and explain-

the screen in an effort to draw students’ attention to key features mentioned above (e.g., create and 

remix blocks), and allow students to learn and appreciate what all these key features in Scratch do. 

Such an approach prepared students to interact with Scratch and initiated students’ engagement in a 

techno-mathematical discourse (MDC1), as well as their awareness of Scratch’s capabilities and 

limitations (MDC2). At the end of the session, Grace presented students with a pre-made Scratch 

code and asked students to correct it. In this activity, students began to consider Scratch as an 

instrument to support them in their mathematical explorations and therefore continued to develop 

their techno-mathematical discourse. This could not have taken place without Grace’s support and 

guidance. She used several orchestrations and showcased her ability in didactically configuring the 

activity sequence so that students began to engage with MDC1 and in particular MDC2.  

Session 2: Coding polygons. After a briefing on regular polygons, Grace asked the students to code 

regular polygons in Scratch. The students had the freedom to choose colours, size and order. Upon 

sharing their findings, Grace displayed an Excel spreadsheet, where the students in collaboration 

should fill in the turning angle and the sum of exterior angles for each polygon. Grace’s past 

experiences with this class of 6th graders involved training to use Excel to record and discuss tabular 

data (e.g., daily numbers of Covid-19 infections), which led to the use of Excel as an alternative to 
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the blackboard. Later, she showed the students how to use another digital resource, GeoGebra, and 

use the “Regular Polygons” feature and record the interior angles of each polygon (starting from a 

triangle) and the sum of interior angles in the same Excel spreadsheet (see Figure 2).  

 

Figure 2: Excel screen capture of students’ collection of angles and sum of angles by means of Scratch 

and GeoGebra (‘Kant’ is ‘side’; ‘Vinkel’ is ‘angle’; ‘Vinkelsum’ is ‘sum of angles’).  

Researchers’ reflections on Session 2. Grace wanted to compare different approaches to creating 

regular polygons and investigating their interior and exterior angles and the sum of those angles. She 

demonstrated awareness of which digital tools to apply within different mathematical situations and 

context (in this case the focus being on either exterior angles of polygons, leading to the use of 

Scratch, or interior angles of polygons, leading to the use of GeoGebra) (MDC2). She drew students’ 

attention to how the sprite in Scratch ‘forced’ students to visualise the direction the sprite was going 

to move; hence, recognise that the focus was indeed on identifying how many degrees the sprite had 

to ‘turn’ to draw the next side of the polygon, and that ‘turn’ was in fact the exterior angle of the 

polygon. She also drew students’ attention to the angle indicated in their GeoGebra constructed 

polygons, which indeed was the interior angle of those polygons. She used the explain-the-screen 

orchestration to discuss the two different computations taking place in Scratch and GeoGebra, but 

also to showcase the data on angles of polygons presented in a different digital resource, Excel. This 

latter action encouraged students to reflect on and compare exterior and interior angles of polygons 

of different number of sides, and spot any patterns, e.g., the sum of exterior angles of any polygon 

always being 360 degrees. We can argue that she took the link-screen-board orchestration a step 

further and instead of using the physical board to link what was happening in Scratch and in 

GeoGebra, she decided to use a third digital resource, Excel, that allowed her instantly to present the 

sum of angles in a polygon in a tabular representation. In a way, she used a link-different-digital-

resources orchestration. She also took advantage of the three digital resources serving both epistemic 

and pragmatic purposes for her own teaching and her students’ mathematical learning (MDC3). All 

her decisions reveal her possession of all three elements of MDC and her awareness and application 

of didactical pedagogical strategies for teaching mathematics with the chosen three digital resources, 

which can be characterised as MDCT. 

Session 3: Drawing skylines. The session began with summarizing findings from the previous 

session, discussing the patterns between angles and sum of angles in both Scratch and GeoGebra, 

displayed in the Excel spreadsheet. Students were then encouraged to find skylines of buildings of 

their interest, draw them on paper, and make notes on how to code them in Scratch. Afterwards, they 

used Scratch to create their chosen skylines, applying their knowledge of polygons. 
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Researchers’ reflections on Session 3. This session was dedicated to recapping and reflecting on 

what took place in the previous two sessions: students’ development of a techno-mathematical 

discourse regarding the three digital resources used (MDC1); the expected gained mathematical 

knowledge and knowledge of how to interact with Scratch, GeoGebra and Excel, their capabilities 

and limitations (MDC2); the use of Scratch, GeoGebra and Excel reflectively to learn about the 

interior and exterior angles of polygons (MDC3). This was achieved by Grace using orchestrations 

such as discuss-the-screen and explain-the-screen, to draw students’ attention to their past work on 

Scratch, GeoGebra and Excel, as well as the orchestration we proposed earlier on, link-different-

digital-resources, which allowed Grace to move between the three different digital resources and the 

three different interfaces showing their mathematical work. The students’ and teachers’ MDC were 

enacted once again with the last task, which was to model a skyline of a building of their choice using 

Scratch and thus allowed for consolidating their gained mathematical knowledge on polygons and 

techno-mathematical discourse (MDC1). This last teaching session actually engaged students the 

most, as they used a real-life context of their own choice and applied their MDC to produce their own 

codes in Scratch, leading to the creation of amazing buildings’ skyline models (see Figure 3). 

 

Figure 3: A student’s model of the Brandenburg Gate in Berlin, Germany, as modelled in Scratch 

Grace’s reflections. At the end of the activity sequence, Grace was interviewed by the third author 

and discussed her recollections of her decisions on how best to deliver the suggested activity sequence 

and accommodate the transitions from pen and paper to the three digital resources used. First, Grace 

wanted her students to be the ones posing the problem, and exploring their own solution strategies as 

sub-problems appear. The context of the last task was agreed to be the drawing of skylines of 

buildings of their choice, by learning first to draw polygons on paper, in Scratch and in GeoGebra. 

Second, the solution to the problem should involve both computational and mathematical knowledge 

and skills. This criterion validates the task’s original purpose. Third, Grace suggested involving more 

digital resources in their work. Based on her own trials with other classrooms, she decided to include 

Excel to systematize the collection of data and aid pattern recognition. She was aware of the benefits 

of using Excel, as it allowed seeing what the turning angle needed to create each regular polygon 

(triangle, square, pentagon…) is in Scratch and the interior angles in GeoGebra, in relation to the sum 

of angles. During the interview, Grace remembered that during Session 2, students asked “why can 

we not simply use GeoGebra, which draws regular polygons automatically?”. She argued that she 

used Excel as an additional tool to support students’ recollection of the different angles in polygons 

and enable them to compare, reflect and derive mathematical statements regarding interior and 

exterior angles of polygons. Scratch, GeoGebra and Excel surely played different roles in the activity 

sequence, and students explored their affordances and limitations, an important mathematical 

learning process with digital technologies and an important element of acquisition of MDC. 
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Conclusion 

The above discussions of Grace’s teaching show that she possessed MDC herself, while making 

didactical decisions on how the activity sequence should be exploited with students, and in particular 

which digital resources are the best to achieve the learning goals and why, and which instrumental 

orchestrations should be implemented in her teaching practice to support these goals. Her pedagogical 

considerations were evident when: (a) ‘making’ the technology accessible to students by allowing 

students to explore Scratch and ‘debug’ a code, for example, and supporting them in developing a 

techno-mathematical discourse (MDC1); (b) identifying the best tools to focus on exterior angles 

(Scratch), on interior angles (GeoGebra) and on deriving mathematical statements about interior and 

exterior angles as well as the sum of those angles (Excel), based on considerations of those three 

tools’ capabilities and limitations (MDC2); (c) encouraging students to use Scratch to solve the 

problem of modelling the skylines of their chosen buildings and in the process apply their gained 

knowledge on interior and exterior angles of polygons (MDC3). Considering our exploratory research 

question: “Which components should MDCT at least encompass?”, we draw on Niss and Højgaard’s 

(2019) definition of mathematical competencies and based on the empirical data from Grace’s 

example, we understand MDCT as the competencies teachers need (or have) to select and implement 

technology in their practice in pedagogically productive ways. Inspired and informed by the previous 

literature and research on students’ MDC (Geraniou & Jankvist, 2019) and Niss and Højgaard’s 

(2019) description of both students and teachers’ competencies, we use the definition for students’ 

MDC to conceptualise teachers’ competencies in using technology, re-defined to suit teachers by 

including pedagogic elements. Therefore, we propose the following MDCT: 

● [MDCT1]: Being able to engage in a techno-mathematical discourse at a meta-pedagogic level.   

● [MDCT2]: Being aware of which digital tools to apply within different mathematical situations 

and context, and being aware of the different tools’ capabilities and limitations, so as to think, 

and act, pedagogically with these tools, while considering the benefits and limitations of these.  

● [MDCT3]: Being able to use digital technology reflectively in problem solving and when doing 

(learning or teaching) mathematics. 

Our future work entails further research to investigate, validate and refine the above ‘tentative’ 

MDCT and show their importance in the effective use of digital resources in mathematics education. 
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This paper focuses on professional development of mathematics teachers in collaborative groups. It 
is theoretically based on the model of lesson study and the mathematics teachers’ specialised 
knowledge model. Lesson study appears to be a suitable method of professional development 
stimulated by mathematical trails. A mathematical trail is an activity during which students can 
discover and solve mathematical problems related to real objects. Mathematics teachers collaborate 
and design mathematical trails for their students and thus their competencies develop. Our analysis 
of mathematics teachers’ specialised knowledge addressed during reflection on the conducted 
MathCityMap trail in the form of lesson study points out that all subdomains of pedagogical content 
knowledge as a part of Mathematics Teachers’ Specialised Knowledge (MTSK) have been identified. 
Identified topics accompanied by examples of teachers’ communication acts are presented. 

Keywords: mathematical trail; lesson study; professional development; teachers’ knowledge. 

Professional development in collaborative groups 
Nowadays, collaboration among teachers in activities closely linked to their mathematics lessons is 
considered to be the most appropriate form of professional development of in-service (mathematics) 
teachers (Prediger, 2020). Current Slovak legislation makes it possible to situate in-service teacher 
training directly in schools. A well-designed in-service professional development programme 
influences the knowledge and beliefs of mathematics teachers (Desimone, 2009). 

Lesson study, when more- or less-experienced teachers of mathematics and didacticians work 
together to design an optimal lesson on a pre-agreed topic, seems to be an appropriate method of 
professional development (Murata, 2011). It has a cyclic nature consisting of four stages: study, plan, 
teach and reflect (Lewis et al., 2019) intervening changes in teachers’ knowledge, beliefs, routines of 
professional learning and pedagogies which influence the instruction and therefore students’ learning 
(Figure 1). Beliefs play an important role in assessing curricula, teaching, learning and assessing 
students' knowledge and are grounded in teachers’ knowledge and experience (Carrillo-Yañez et al., 
2018). Teacher knowledge and beliefs influence various areas of mathematics lesson planning, 
implementation, and reflection (Ball et al., 2008; Carrillo-Yañez et al., 2018) including the use of 
students-oriented teaching methods such as a mathematical trail. Implementation of the lesson study 
varies across the countries and needs to be tailored to the national context. 

Mathematics Teachers' Specialised Knowledge (MTSK) model  
The growing interest in research concerning the specific knowledge that mathematics teachers have 
at disposal and use has led to development of analytical models that aim to organize, define, and 
analyze this knowledge in order to interpret, characterize, and even reproduce it. According to the 
MTSK model (Carrillo-Yañez et al., 2018) the teachers’ knowledge consists of three parts: 
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Mathematical Knowledge; Pedagogical Content Knowledge and Beliefs. Mathematical Knowledge 
and Pedagogical Content Knowledge are further divided into three subdomains. Beliefs are placed in 
the center of the knowledge to emphasize the correlation between beliefs and domains of knowledge. 
Mathematical Knowledge 
Carrillo-Yañez et al. 'understand mathematics as a network of systemic knowledge structured 
according to its own rules' (2018, p. 6). A good understanding of this network, the underlying rules 
and properties related to the process of constructing mathematical knowledge allow teachers to teach 
mathematical content in a way of connecting and verifying their own and students’ conjectures. 
Teachers' mathematical knowledge is divided into three subdomains: knowledge of the content of 
mathematics itself (Knowledge of Topic – KoT); interconnected systems that connect the subject 
(Knowledge of the structure of mathematics – KSM); and the way in which mathematics is progressed 
(Knowledge of practices in mathematics – KPM).  

 
Figure 1: Model of lesson study including the framework for assessing teachers' knowledge 

Pedagogical Content Knowledge 

Pedagogical Content Knowledge is knowledge of mathematical teaching and learning - the area of 
teachers' knowledge that may be based on research-based theories in mathematics education or on 
teachers' personal experiences and reflections from their practice. It comprises three subdomains: 
awareness of the potential of activities, strategies and techniques for teaching specific mathematical 
content (Knowledge of Mathematics Teaching – KMT); knowledge about how students think and 
construct knowledge when solving mathematical activities and problems (Knowledge of Features of 
Learning Mathematics – KFLM); knowledge of the curriculum (Knowledge of Mathematics Learning 
Standards – KMLS).  
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Mathematical trails in teachers’ professional development 
A mathematical trail is an activity during which participating students look for and then solve a set 
of mathematical problems on real objects. The tasks are located within walking distance and various 
measuring devices are often used to obtain data needed to solve the problems. Each trail consists of 
at least four mathematical problems. Each problem requires GPS location and an image related to the 
location of the problem (Bočková et al., 2020). MathCityMap trails (MCM trails) are part of outdoor 
education supported by mobile technologies (Barlovits & Ludwig, 2020). They use ‘bring your own 
device’ approach in school as well as out-of-school contexts. In addition to the mathematical version 
of geocaching, students engaged in MCM trail solve mathematical problems related to real objects 
(Čeretková & Bulková, 2020), create the original solutions of the problems, communicate their ideas, 
reasoning and strategies during collaboration in teams what makes mathematical trail suitable tool to 
develop the competences for 21st century as defined by non-profit organization Partnership for 21st 
Century Education (Haringová, 2022). 

MCM trails are created on the portal https://mathcitymap.eu/ and implemented through the 
MathCityMap application. The application is freely available, supported by Android and iOS operating 
systems. This application on mobile devices displays maps, photos of objects that are related to the 
tasks, task assignment and hints helping to solve individual tasks. Answers are entered directly into the 
application, with users receiving immediate feedback on the correctness of their solutions. After 
registration in the portal, users can design their own MCM trails. The tasks can be used for private 
purposes or after review by experts, freely accessible to all MCM users. System allows various task 
formats, multiple choice, short answer, exact value, and number from interval. Each task contains hints 
that should help the solver while solving the task. A hint can be a formula, sketch, instructional question, 
or method of solving a problem. The sample solution is expected to be clear and understandable for 
each solver (Bočková et al., 2020). 

Methodology 
In this paper we describe the collaboration among mathematics teachers from one grammar school 
and the didacticians in the school-based professional development activity. The grammar school was 
given a grant from Ministry of Education, Science, Research and Sport of the Slovak Republic aiming 
at support the collaboration among mathematics, science and computer science teachers in form of 
so-called ‘pedagogical clubs’ where the teachers meet on monthly basis and discuss their needs 
(Šunderlík, 2021). After two years of regular sessions, the teachers asked the second author to join 
their sessions and conduct with them several lesson studies on various topics. The teacher responsible 
for the pedagogical club was interviewed prior to the first meeting, in order to understand the needs 
of participating teachers. According to him, the students in their school lack the opportunities to 
develop collaboration and communication skills, especially after the school year 2020/21 when they 
spent more than three months in on-line education. We considered the MCM trail as a promising tool 
for development of the mentioned competences (Haringová, 2022), at the same time a promising tool 
for initiating the collaboration among the teachers and the didacticians and stimulating the reflection 
on the current practices of participating teachers. 

In this paper we will focus on the intellectual component of the teachers’ professionalism (Evans, 
2014), particularly to the knowledge of mathematics teachers. This study tries to address the 
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following research question: 

What subdomains of mathematics teachers’ specialized knowledge are addressed during reflection 
on enacted MCM trail in form of lesson study? 

The MCM trail was designed for the students of Grade 8. Four teachers with varying length of 
experience and two didacticians (authors of this paper) collaborated in its design. As the first step of 
the lesson-study cycle the teachers solve the MCM trail prepared by didacticians to allow them to 
experience the MCM trail from the students’ view. In the planning phase each teacher posed two or 
three problems and the MCM trail independently. Then the MCM trail was constructed collaboratively 
when teachers and didacticians reflected on the twelve posed problems and chose seven of them for 
a trail. The trail was implemented in the classroom of Grade 8 with 24 students during three lessons. 
Two lessons aimed at solving the tasks on site and the third at reflection and whole-class discussion of 
the students’ solution. The group reflection facilitated by the didacticians was held after enacting the 
MCM trail. All the activities (teachers’ solving the MCM trail, collaborative construction of the trail, 
teachers supervising the students during the enacting of the trail, collective reflection of the 
enactment) were audio-recorded and partially transcribed to allow the thorough analysis of the data.  

For the purpose of this study the collective reflection was transcribed and the turns of the participants 
were coded according to the subdomains of the mathematics teachers’ specialized knowledge 
(MTSK) model by Carrillo-Yañez (2018). The pseudonyms are used for all the participants. The first 
author did the coding of the whole session, the second author coded subset of the turns and in the 
results we list only those examples where both authors used the same codes. 

Results 
First, we provide information about the MCM trail developed collaboratively with the teachers (Figure 
2 and 3). As the grammar school (Gymnasium of Cyril and Methodius, GCM) is situated in the broader 
center of Nitra, the trail is situated in the pedestrian zone. It can be searched in the MathCityMap under 
the name "GCM and pedestrian zone" or using the six-digit code that is automatically generated when 
creating trails on the portal. This MCM trail has the code 196370. The developed MCM trail consists 
of six tasks, which are represented on the map as specific task positions. It is aimed at practicing the 
mathematical knowledge of Grade 8 students. Tasks in the participating teachers' trail are focused on 
working with percentages, decimal numbers, combinatorics, area calculation and application tasks for 
financial literacy. In the figures 4 and 5 there are shown the two tasks from the MCM trail. Definition 
and solution of tasks in English are in Table 1. 
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       Figure 2 MCM trail created by teachers Figure 3 Location of tasks in the map 

   

Figure 4 Small paving tiles   Figure 5 Doors 
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Table 1: Definition and sample solution of the tasks Paving small cubes and Doors 

Definition of task Sample solution 
Small paving tiles

The area around the hatch is paved with small 
cubes. Calculate the area of this area. Write the 
result in square decimeters. 

The content of the large square is 9.8 ⋅ 9.8 ൌ
96.04 dm². The content of the small square 
is 7 ⋅ 7 ൌ 49 dm². The surface area is 
96.04 െ 49 ൌ 47.04 dm². 

Doors 
How much will it cost to renovate the wooden 
part of the door of the Jewish synagogue? 
Old color removal: 0.50	€/mଶ 
Penetration: 1	€/mଶ 
Painting: 3.5	€/mଶ 
Dismantling and assembly of doors together: 
30	€ 
It is necessary to penetrate once and paint twice 
from both sides of the door. 
The door sides are already included in the price.
Round the resulting amount up to whole euros. 

Door width - measure: 169	cm  
Door height - measure or calculate using the 
number of bricks:  
Number of bricks: 33  
Height of 1 brick with joint: 7.5	cm  
Door height: 33.7.5 ൌ 247.5	cm  
Door front surface: ܵ ൌ ܽ ∙ ܾ ൌ 169 ∙
247.5 ൌ 41	827.5	cm²	 
2× door area: 2 ∙ 41	827.5 ൌ 83	655	cm² ൌ
8.3655	m² door  
Costs per m²: 0.50  1  2 ∙ 3.50 ൌ 8.50	€	 
Costs of the door: 8.3655 ⋅ 8.50	 ൌ
	71.10675	€	 
71.10675  30 ൌ 101.1067	€, rounded up 
to whole euros: 102 € 

In order to address the research-question we categorized the participants’ turns in the shared reflection 
based on the mathematics teachers’ specialized knowledge model (Carrillo-Yañez et al., 2018). The 
teachers’ dialogues did not include any communication acts in the domain of mathematical 
knowledge. Among the other acts we identified all the subdomains of pedagogical content knowledge. 
Further we present identified topics accompanied by examples of teachers’ turns in the reflection. 

Knowledge of Mathematics Teaching  

According to initial interviews with the teachers, only one of them uses group-work on a regular 
basis. Therefore, it was not surprising that the aspects of group-work and observing of the group-
work occurred during several phases of the reflection. 

Martina:    They could be so divided into groups that not boys together and girls together, I 
feel so better when they are mixed. 

Pavol: When I was at the task-site (Small paving tiles), they solved it well. The whole 
group said out loud "What should we solve? Is it maybe a square? Measure.” So, 
they measured. “And it's a square? Measure the other side, it looks like it's a square 
and what should we solve?” There were a few wrong ideas. "No, it can't be that 
way. It must be the big one.” So, they figured they had to subtract the bigger one 
from the smaller one.  

Knowledge of Features of Learning  

Teachers observing and supervising students’ solving of problems in mathematical trail addressed 
also several emotional aspects, like “the students were engaged” (Tatiana), “some of the students 
were frustrated by the task with higher difficulty” (Livia) or “the boys liked the practicality of tasks”. 

Also, the mistakes which occurred during the students’ problem-solving were described: 
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Karol: They had it in meters and another they put it in centimeters, but they did not 
convert it and then the content writes that the two meters minus 160 and we were 
in minus. 

Knowledge of Mathematics Learning Standards 

When teachers were supervising students while solving the tasks they found out that most of them 
encountered various problems with measuring and using the measurement tools. None of the teachers 
knew whether measuring is included in mathematics or technology curricula. One of the didacticians 
had to address their uncertainty. 

Daniela:    They have a first measurement in mathematics in the third grade: the student 
knows the means of measurement, the length of their unit and can use them 
independently in practical measurements. 

Another turn identified as belonging to knowledge of mathematical learning standards is related to 
independent problem-solving, including critical views on their own work. This was formulated by 
one of the teachers as follows: 

Pavol: You could see it spinning in their head. "And what are we supposed to do?" and 
then what was normal is that you give the task and then you roughly know what to 
do, but they had to write the data from the task themselves! I liked that they had to 
take a step more, which they don't normally do. 

Concluding remarks 
The main aim of this study was to investigate the potential of technology-supported mathematical 
trail for professional development of mathematics teachers and identify what kind of remarks the 
mathematics teachers have when planning and enacting the MCM trail. Based on the presented data, 
we can claim that the various aspects of teachers’ knowledge were addressed in the shared reflection 
on the enactment of the MCM trail. We identified at least two examples of statements related to each 
subdomain of mathematics teachers’ pedagogical content knowledge as defined by Carrillo-Yañez et 
al. (2018). As seen from provided data, almost all the participating teachers shared their experiences 
in the subsequent reflection.  

It seems that MCM trails are really stimulating activity and therefore a promising approach for 
professional development of mathematics teachers. The affordances of MCM trails for stimulating 
collaboration among the teachers and building community of practices should be further investigated. 
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Computers for all – what happens? The case of Tórshavn 
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The paper presents results from a questionnaire investigating the effects of an impromptu 
implementation of digital hardware in the municipality of Tórshavn. More specifically, we inquire to 
what extent GeoGebra is used in the mathematics classroom, as well as other software/webpages. 
The results indicate that GeoGebra is not used extensively, and that the students do not find it 
particularly helpful. Our study indicates that the digital tools do not play a major role in the 
mathematics classroom in the municipality of Tórshavn.  

Keywords: Digital tools, GeoGebra, Questionnaire.  

Context of the study and theoretical background 
In 2015, the city council of Tórshavn, which is the capital of the Faroe Islands1, decided to provide 
funds for a single school to test a model where every student and every teacher in that school was 
provided with digital hardware, mainly iPads (Olsen & Ólavstovu, 2016; Smith, 2017). The students 
would borrow them from the school, but they could take them home and more or less treat them as if 
they were their own. The provisional outcome of the test was that the students scarcely used the 
hardware in school, instead the Ipads were widely used for non-school related purposes, and 
according to the teachers, digital resources were only sporadically used in the teaching and learning 
context (Olsen & Ólavstovu, 2016). In the following years, many schools in the municipality of 
Tórshavn have adopted a digital approach, however, with differences. Mainly, the Ipads have been 
replaced with PC´s, in particular, chrome books. Some schools let the students bring the PC home, 
while others require that it remains in the classroom. A recurring factor is the lack of teachers’ 
professional development in relation to using the hardware, i.e. the teachers did not get guidance in 
relation to which types of software or webpages might be useful for different educational purposes 
(Olsen & Ólavstovu, 2016). The lack of professional development may influence the digital practice 
in many ways, and we can wonder which software/webpages will be used in the mathematics 
classrooms when such an approach is applied. 

One type of software that has received ample attention in mathematics education research on digital 
technologies is dynamic geometry environments (DGE) (for an overview, see Højsted, 2021), for 
example in relation to reasoning and conjecturing (e.g. Sinclair & Robutti, 2013). A specific type of 
DGE, GeoGebra, is quite popular in Nordic countries, not least in Denmark, where it is commonly 

                                                 
1 The Faroe Islands, which is situated in the north Atlantic Ocean, is a self-governing country within the Kingdom of 
Denmark. The archipelago accommodates a population of approximately 54.000. The capital of the Faroe Islands, 
Tórshavn, has a population of roughly 21.000. Over the last decade, an average of 285 students were enrolled in primary 
school every year in the municipality of Tórshavn (Hagstovan, 2022). 
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used in primary and lower secondary school (Højsted, 2020). However, no research has yet 
investigated to what extent GeoGebra is used in Faroese primary and lower secondary school. 

Therefore, in this paper, we ask: what are the effects of the impromptu implementation of digital 
hardware in primary and lower secondary school mathematics education in the case of the 
municipality of Tórshavn. In particular, to what extent is GeoGebra and other types of 
software/webpages used in the mathematics classroom? 

In the next section, we describe methodological considerations in relation to preparing, distributing 
and analyzing the results of our questionnaire. We then present our results with ensuing analysis, 
followed finally by a concluding discussion. 

Method 
A web-based questionnaire was produced using SurveyXact (www.surveyxact.dk). The questionnaire 
was developed for students in grade 5 (Age 10-11), grade 7 (Age 12-13), and grade 9 (Age 14-15). 
While there were many questions in the full survey, we present results from 4 multiple-choice 
questions, which are most relevant in relation to the aim of this paper. Specifically, we consider 
questions concerning the software/webpages used in the mathematics classroom and focus on 
GeoGebra results.  

In the preparation of the questionnaire, we developed a list of plausible software/webpages that we 
suspected, and in some cases knew, were used in primary and lower secondary school mathematics 
education. In addition, we reached out to the schools and communicated with teachers working with 
these age groups, to inquire about commonly used software/webpages in the mathematics classroom. 

In case the students answered that they used a specific software/webpage, a validation was triggered, 
and sub questions were posed. We present results from sub questions concerning how often they used 
the software/webpage, and to what extent it was helpful for them to learn mathematics. 

The questionnaire was distributed in five of the major schools in the municipality of Tórshavn 
(N=640, fully completed), covering 71% of the student population in the municipality. To counter 
the expected problem of low participation response and completion of web-based questionnaires (Fan 
& Yan, 2010), a research assistant visited every 5th, 7th, and 9th grade classroom in each of these 
schools, providing the students with a link and helping them complete questionnaire. This approach 
ensured a very high participation and completion rate (98%). 

In our analysis approach, we present frequency tables that can fuel our discussion of types of 
software/webpages that are used in primary and lower secondary schools in the municipality of 
Tórshavn. 

Results and ensuing analysis 
One of the main questions of interest is presented in table 1 below, in which the students could select 
from a list with 16 types of software/webpages, those that they used in the mathematics classroom. 
Several software/webpages received less than 5% and are not shown in the results below. 
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 N=640 Which of these do you use in the mathematics classroom? 
Emat.dk 64%
Mathematics eBook 48%
Calculator on the PC 27%
Kahoot 22%
GeoGebra 19%
Wiseflow 18%
Other - explain 18%

Table 1. The commonly used software/webpages according to the students. 

Notice that the students could choose several answers and in the final option, “other – explain”, they 
could also type software/webpages that were not on the list.  While there were many who choose 
other and typed other answers, there was not any particular webpage or software that was mentioned 
frequently enough to warrant being highlighted. 

As we can see in table 1, the webpage emat.dk2 is the most commonly used on the list.  

 N=411 How often do you use Emat.dk in the mathematics classroom? 
Every day 3%
Every week 18%
Every month 29%
Fewer 39%
Don’t know 13%

Table 2. Frequency of usage of Emat.dk. 

While Emat.dk is the most commonly used from the list, we see in table 2 (N=411) that it is not used 
so frequently, mainly once a month or fewer than that. This may indicate that it serves a role as a 
supplement to other forms of teaching.  

A somewhat surprising result of the study is that GeoGebra is not extensively used, with 19% (table 
1) reporting that they use it in their mathematics lessons. In table 3, below, we see the frequency of 
GeoGebra usage in the mathematics classroom, according to these students (N=118).  

 N=118 How often do you use GeoGebra in the mathematics classroom? 
Every day 1%
Every week 2%
Every month 27%
Fewer 60%
Don’t know 10%

Table 3. Frequency of GeoGebra usage, according to the students. 

                                                 
2 Emat.dk is a Danish website, on which students can solve tasks that correspond to the mathematics curriculum in grades 
1-10. The teacher can choose sets of tasks for the students, and she can maintain an overview of the students' progression. 
The students gain points from solving tasks, therefore, they can compete against other students, also from other schools. 
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The results indicate that not only is GeoGebra not used by many students, but of those 118 students 
that report that they use GeoGebra, 60% use it fewer than every month. 

When they are asked if GeoGebra is helpful to understand mathematics (table 4) the students also 
disagree slightly more than they agree - 25% agree or agree completely, while 30% disagree or 
disagree completely. 

 N=118 GeoGebra is helpful for me to understand mathematics 
Agree completely  3%
Agree 22%
Neither agree nor disagree 33%
Disagree  18%
Disagree completely 12%
Don’t know 12%

Table 4. Students’ description of to what extent GeoGebra is helpful for understanding mathematics. 

Concluding discussion 
Returning to our research question, our study indicates that the impromptu implementation of digital 
hardware, without accompanying professional development for the teachers, has resulted in a 
mathematics practice where the digital tools do not play a major role. Mostly, a single webpage, 
Emat.dk, is used in many classrooms, however, not very frequently, along with the mathematics 
ebook (digital version of previous paper-based book), and the PC calculator. GeoGebra usage is not 
very widespread in the municipality of Tórshavn, and in the classrooms where it is used, it is not used 
frequently, and there are indications that many students do not feel that it supports them in learning 
mathematics. This result calls for more research on the practice with these digital tools. One issue 
that seems worth investigating, is whether the teachers possess the necessary professional 
development to effectively implement such tools. 
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The Augmented Reality learning environment connects both real-world and virtual representations 
simultaneously. This contribution investigates how students coordinate conceptual facets belonging 
to the two worlds when conceptualizing the time-distance relationship of a cube sliding down along 
an inclined plane.   

Keywords: Augmented reality, covariational reasoning, conceptual facets, conceptual 
understanding, functional thinking. 

Introduction  
One of the goals of teaching and learning mathematics is to allow students to quantify, interpret, and 
understand the world. To achieve this goal, curricula worldwide integrate modeling activities to 
engage students in mathematizing real-world phenomena. Since the mathematical representation and 
the real world are not explicitly connected, and due to the lack of tools that juxtapose both worlds, 
the link between the real phenomenon and the mathematical representations is made when both 
worlds remain separate. Recently, by using dedicated augmented reality (AR) technology, the 
juxtaposition of the two worlds has become possible.  

So far, the assumption is that juxtaposing the two worlds may help students mathematize the real-
world phenomena and endow them with meanings (Swidan et al., 2019). In this contribution, we want 
to shed light on the specific role of AR in how students interpret a real phenomenon. So, this study 
aims to understand how students use mathematical representations to analyze a real phenomenon and 
what mathematical knowledge they use for this purpose. To achieve this goal, we used Prediger and 
Zindel's (2017) model of conceptual facets to understand the transition between the two worlds and 
the covariational reasoning framework (Thompson & Carlson, 2017) to understand what knowledge 
students use. Understanding the ways in which students transit from one world to another carries out 
theoretical and methodological implementation. Theoretically, this study may shed light on the role 
of AR technology in mathematizing real-world phenomena. Methodologically, we modified Prediger 
and Zindel's (2017) model to fit the analysis of modeling activities; this modification may allow the 
use of the model by other researchers to analyze the learning resulting from the transition between 
the two worlds.  

Theoretical framework  
Conceptual understanding can be intended as a dense network of pieces of knowledge called 
conceptual facets (Hiebert & Carpenter, 1992). This network of facets can be built by compacting 
facets into denser concepts (Aebli, 1981). Prediger and Zindel (2017) propose a model of conceptual 
facets of understanding functional relationships (Figure 1) in tune with these theoretical ideas. The 
model is based on a definition of the conceptual understanding of functional relationships as “the 
ability to adopt different perspectives in different representations and to coordinate them by 
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addressing the facets” (Prediger & Zindel, 2017, p. 4166). Upwards and downwards movements in 
the facet model reveal the processes of compacting and unfolding the conceptual facets. The 
following example outlines the functioning of the model. Thinking of the law of a certain motion of 
a car, a student claiming that a certain function tells for which time you have a certain distance 
traversed by the car is identifying correctly which are the ||dependent|| and ||independent variable|| 
and is unfolding the ||functional dependency|| on the medium level of the facet model. The words 
between || || are the corresponding facets that will be marked in the analytical model.  

 

Figure 1: Facet model 

Our second theoretical perspective is covariational reasoning, which considers the ability to hold a 
sustained image, in the mind, of two quantities' values (magnitudes) that change simultaneously 
(Thompson & Carlson, 2017). The covariation concept is deeply inherent in several dynamic 
phenomena, such as filling a bottle with water (volume-height) or a rolling ball (time-distance). 
Arzarello (2019) and Bagossi (2022) further elaborated the idea of covariational reasoning to include 
what they call “second-order covariation”, which considers covarying between quantities and 
mathematical objects. For example, considering the changes between a car's velocity (quantity) and 
the graph of motion (mathematical object) is a form of second-order covariational reasoning.  

AR is an innovative technology that combines layers of virtual objects and information about physical 
objects from the real world, such as texts, images, graphs, etc. This creates an environment in which 
virtual and real objects coexist (Azuma, 1997). In addition, AR allows uncovering invisible 
mathematical details embedded in dynamic phenomena and presenting them simultaneously. This 
suggests opportunities for real-world modeling phenomena, where the covariation concept is inherent 
and creates meanings through combining both real and virtual worlds. 

The research question guiding this study is: How do students coordinate conceptual facets of the real 
and virtual world representations as they learn covariation in an AR environment? 

Method  
The learning experiment here analyzed was conducted with a group of three 11th graders, Sagi, 
Noam, and Alex, from Israel. The experiment explores the time-distance relationship as a cube slides 
down along an inclined plane, the so-called Galileo experiment. The graph representation, as well as 
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the table of values with numerical measurements of time and distance (virtual world in the facets 
model), were layered over the real inclined plane with the sliding cube (real-world in the facets 
model). The group worked on a corresponding task sheet. Data were collected through video 
recordings documenting all actions and interactions in the learning environment. Since data provided 
by AR and observed by the students through their AR headset is not available or seen by the 
researchers, it was mirrored on a screen to allow us better understand students’ observations and 
explanations (Figure 2). 

 
Figure 2: (a) Galileo experiment, (b) Galileo experiment as seen through AR headset, (c) 

Screen mirroring students' AR headsets, (d) Mirrored data   
To analyze the data, we identified episodes revealing forms of covariational reasoning and 
documenting students while combining both real and virtual worlds. Eventually, we used the Prediger 
and Zindel (2017) multi-facet model to analyze students' conceptualization of covariational 
reasoning. The analysis of students' reasoning is visualized by the facet model in Figures  3, 4, and 5. 
Facets referred to the real-world phenomenon are framed in blue, while the ones referred to the virtual 
world are framed in red. Connectors denote connections between the two worlds. In the analysis, the 
addressed facets in the model are remarked by using || ||. 

Results  
This episode illustrates how Alex connects the real-world phenomenon with the virtual 
representation.  

1 Alex: As the height (of the inclined plane) is greater, then the faster the cube speed 
is, and then it passes the distance in a shorter time than a lower height. 

2 Sagi: From second to second, the distance simply increases. 

3 Alex: Yeah, like, it (the cube) takes less time to pass it (distance) because the 
inclination is... more drastic. 

4 Sagi: If I'm not wrong, the distance... the difference between the distances from 
point to point is greater at the top (of the graph), right? 

5 Alex:  Yes, it sounds correct. 

6 Noam:  At a specific time, the cube traveled a certain distance, ... mm... while the 
plane's inclination... brought to… as if... it (cube) had an acceleration that was 
growing...  dependent on time... which have been created... 

7 Alex: The acceleration affects the graph that is created… 
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Alex in [1] shifts from the real world to the virtual one while demonstrating covariational reasoning. 
His words “as…then…” in [1] suggest that he describes a ||functional dependency|| within the real 
world. It seems that Alex is aware of the ||independent variable|| (height), and the ||dependent variable|| 
(speed). He also outlines the ||direction of dependency||: “As the height is greater, then the faster the 
cube speed is”. After that, Alex focuses on the virtual representations, and similarly, he describes a 
||functional dependency|| between time and distance. In the same utterance, he connects them with 
the height of the inclined plane. This connection suggests that Alex considers the height as a quantity, 
which varies in the real world: “It (cube) passes the distance in a shorter time compared with a lower 
height”.  

 
Figure 3: Facet model for utterance [1] 

 
Figure 4: Facet model for utterance [3] 
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Similarly, in [3], Alex refers to the inclination as a ||varying quantity|| in the real world. Then, he 
shifts his focus of attention to the virtual world. There he identifies ||independent|| and ||dependent 
variables||, and describes explicitly the ||functional dependency|| and the ||direction of dependency|| 
between time (independent variable) and distance (dependent variable) when the cube rolled down 
“it takes the (cube) less time to pass it (distance) because the inclination is ... more drastic”.  

 
Figure 5: Facet model for utterance [7] 

In [7], Alex refers to acceleration as an ||independent variable|| in the real world. Then, he shifts to 
the virtual world and refers to the graph as a ||dependent variable||: “The acceleration affects the graph 
that is created”. Alex identifies a ||functional dependency|| between cube acceleration and the graph 
that represents the real phenomenon. The verb 'affect' used by Alex suggests that he expresses the 
functional dependency as second-order covariational reasoning between the acceleration and the 
graph.  

Final remarks  
As visualized through the facets model, Alex's thinking process indicates the frequent transition 
between real-world and virtual-world representation facets.  He demonstrates the ability to describe 
functional dependency between dependent and independent variables that he explicitly addresses. In 
addition, he also refers to the direction of dependency when he describes the relations between the 
variables. Such description also relates to the changes in the varying quantities of the variables. This 
path of translations among several conceptual facets and unfolding relationships on lower levels of 
the facet model are indicators of a developed conceptual understanding. Coordinating conceptual 
facets of the virtual and real-world representations is attributed to the potential of AR technology 
which brings both worlds to coexist (Azuma, 1997). Juxtaposing virtual representations with the real-
world environment seemingly afford the meanings making of covariation concept in learning 
processes as conjectured by Swidan et al. (2019). The analysis presented in this contribution aims at 
being a preliminary attempt to adapt the conceptual facets model to a learning environment offering 
a coexistence of two worlds, the real and the virtual one. Indeed, instead of addressing the specific 
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representations involved, we focused on the facets belonging to the two worlds. The use of this model 
revealed two main issues: first, the difficulty of analyzing rich covariational reasoning involving more 
than two quantities [1-3]; second, the inadequacy of the model to describe forms of second-order 
covariational reasoning in which not only quantities are involved but also mathematical objects [7]. 
Both these issues will be object of our future research. 
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In a context of secondary mathematics teaching, this paper explores the potential role of digital tools, 

in this case Tinkerplots in the teaching of statistical distributions, in students’ development of 

Allgemeinbildung (Bildung). Relying on the so-called model of ‘levels of reflectiveness’, adapted to 

distributions, as an analytical tool, two excerpts of students’ work and discussions are analyzed. The 

analysis shows that the digital tool indeed has a role to play in relation to students’ self-reflection 

(an essential component of the applied model for Bildung). At the same time, the illustrative case, 

and the analysis of this, also indicates an unfulfilled potential of the ‘higher’ levels of reflectiveness 

in the model in relation to an interplay between use of digital tools and development of Bildung, at 

least in the case of distributions and Tinkerplots. 

Keywords: Bildung, statistical reasoning, self-reflection, digital tools, Tinkerplots. 

Introduction 

Allgemeinbildung, or Bildung, has been an embedded part of the Danish mathematics curriculum for 

primary, secondary and upper secondary school for several decades. In the Danish context, Bildung 

addresses the matters of growing up and managing oneself in a society subject to change and varying 

circumstances. Hence, Bildung in this regard concerns the fact that a democratic society needs 

enlightened and empowered citizens. The teaching of mathematics, as well as all other school 

subjects, must thus contribute to students’ Bildung (Niss, 2021). During the past two decades, Danish 

mathematics education in schools has been subject to a heavy introduction of mathematics digital 

technologies, in curriculum, in textbooks and as part of school examinations (Jankvist et al., 2019). 

Although the curricula for the different mathematical levels do state that digital tools must be used in 

support of students’ mathematical concept formation, reasoning, etc., research suggests that the 

digital tools often come to serve pragmatic purposes rather than the intended epistemic ones (Jankvist 

et al., 2019). As to the potential of having such digital tools support and relate to students’ Bildung, 

it seems fair to say that mathematics teachers are, at best, bewildered. 

In this paper, we display an empirical case from a Danish secondary school that nonetheless seem to 

do exactly this, i.e., illustrate a meaningful interplay between the use of a digital tool, the statistical 

software Tinkerplots, and students’ development of Bildung. We rely on the works of Neubrand 

(2000) and Prediger (2005), and to some extent also Bauer (1990), in relation to the development of 

students’ Bildung in mathematics education, and in particular Prediger’s model of ‘levels of 

reflectiveness’ (to be explained in detail later). More precisely, the research question we ask is: 

How may the model of ‘levels of reflectiveness’, adapted to the teaching of statistical distributions, 

inform the analysis of secondary school students’ development of Bildung in a context of working 

with the digital tool Tinkerplots? 
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We draw on the available experiences and research results from using statistical digital tools, not least 

Tinkerplots, in learning and teaching situations related to statistical distributions, which we briefly 

account for in the following section. Following this comes an introduction to the model of ‘levels of 

reflectiveness’ and the works from which this originates. In the section of methodology, we provide 

the model adapted to teaching distributions and briefly account for educational setting and context of 

the empirical case, which we present next. Finally, we discuss and conclude. 

Research on digital tools in students’ work with distribution 

The affordances of digital technologies to support students in learning statistics are widely explored. 

Research shows that it is easier for students to gain access to key statistical concepts, when freed from 

tidy calculations and drawing of graphs (Ben-Zvi et al., 2018; Biehler et al., 2013). The role of digital 

technologies in statistics teaching should, according to Chance et al. (2007, pp. 2-3), be “…accessing, 

analyzing and interpreting large real data sets, automating calculations and processes, generating and 

modifying appropriate statistical graphics and models, performing simulations to illustrate abstract 

concepts and exploring ‘what happens if…’ type questions.” 

The potentials of digital tools in relation to students’ conceptualization of distribution is explored in 

relation to Minitool, a set of educational software designed to follow a specific hypothetical learning 

trajectory (Bakker & Gravemeijer, 2004; Cobb & McClain, 2004). Whereas Minitool is characterized 

as a route-type, designed to follow a specific learning path, Tinkerplots is characterised as creating a 

landscape “…in which students and teachers may freely explore data” (Garfield & Ben-Zvi, 2004, p. 

402). Ben-Zvi (2004) includes spreadsheets in an empirical study focusing on students’ emergent 

conception of variability when comparing groups. He identifies a parallel development of a global 

understanding of distribution. In the connections project, Tinkerplots gradually became a thinking 

tool in the development of students’ statistical reasoning. The tool assisted the students in learning 

new ways to organize and represent data (Biehler et al., 2013).  

The construct of Bildung – when speaking about statistics 

The notion Bildung stems from a German tradition. It has some similarities with the one of 

mathematical literacy, which is well known in the international math education society. For a 

thorough discussion of the relation between the two notions, see Biehler (2019). As this study is 

embedded in a Danish educational context where curricular aims build on the German notion and can 

be connected to the competence orientation in the mathematics curriculum (Niss, 2021), we focus on 

the term Bildung. 

If mathematics teaching should contribute to students’ Bildung, the teaching must provide 

opportunities for students to reflect on several levels (e.g. Neubrand, 2000; Prediger, 2005). Such 

reflections can take place in concrete classroom situations as what Neubrand (2000) refers to as 

“speaking about mathematics” in his exploration of the twofold tension between learning and 

reflecting. Such opportunities could be established through so-called “didaktic construction” in regard 

to which Neubrand (2000) identified four different levels of “speaking about mathematics”:  

1. Level of the mathematician, e.g., mathematical subjects and problems themselves, the 

correctness of a proof, and logical dependencies. 
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2. Level of the deliberately working mathematician, e.g., mathematical ways of working with 

heuristic techniques in problem-solving, mathematical methods such as systematization, 

classification, abstraction, schemes or techniques of proofs. 

3. Level of the philosopher of mathematics, e.g., mathematics as a whole with a critical distance, 

or the role of its application, proofs as a characteristic issue in mathematics, etc. 

4. Level of the epistemologist, e.g., the characteristic distinction between mathematics and other 

scientific disciplines, including the nature and origin of mathematical knowledge. 

Prediger (2005) further developed Neubrand’s framework. She formulated “reflectiveness” (both the 

ability and the disposition) as the core of Bildung. Mathematics teaching must provide access not 

only to the two first levels, but also to levels three and four (Neubrand, 2000; Prediger, 2005). 

Prediger combined Neubrand’s framework of reflectiveness with Bauer’s (1990) four different forms 

of reflection: comprising content reflection; object reflection; reflection of meaning and sense; and 

self-reflection, thus obtaining a 4 × 3 matrix. In her analyses of a teaching unit on exponential growth, 

she illustrated which kinds of questions might be posed at the different levels. The first two levels 

(those of the philosophical base and the epistemological level) are rather important in the mathematics 

classroom in terms of the development of mathematical literacy (Prediger uses this synonym for 

Bildung). According to Neubrand (2000), teachers should be aware of the reflective potentials of a 

task and provide both opportunities and stimulation for reflection. And as Prediger (2005) notes, 

“Once learners start to pose their own questions on the dimensions of self or sense reflection, they 

can lead to content reflection as well” (p. 254). She explains the lack of self and sense reflection with 

the image of mathematics as depersonalized. 

Methodological aspects of design and setting 

In the context of exponential functions, Prediger (2005) exemplifies the cells of her 4 × 3 matrix of 

levels of reflectiveness. In table 1, we provide an adaption of her framework to the situation of 

teaching statistical distributions, which is to serve in our pending analyses of the empirical case.  

The case stems from a larger project of the first author related to Bildung and use of digital tools in 

Danish secondary school mathematics (grade 6, students age 12-13).  

Two excerpts from a classroom conversation are displayed and analyzed. Here the students were to 

investigate differences in the age of their parents (Figure 1), the age of their parents at the time of 

their first child (Figure 2), and finally compare this to national data of 2020 from Statistics Denmark.  

The role of the mathematical software, Tinkerplots, was to assist the students in their exploration of 

data (Ben-Zvi, 2004), and hopefully also become a “thinking tool” to them (Biehler et al., 2013). 

More precisely, the hope was that it would support students’ concept formation from informal to 

formal as well as support their statistical reasoning along the way. The students investigated data in 

pairs with one computer in each group. In the classroom conversations, the students who wanted to 

share details from their investigations connected their computers to the interactive display beside the 

blackboard. Other students then compared their own work and commented in a classroom dialogue. 

At the beginning, the digital tool was unknown to the students. Students’ work on the computer as 

well as classroom conversations were video recorded and analyzed with the seven-step model of 

Powell et al. (2003) for analyzing students’ mathematical ideas and reasoning through video data.  
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We considered this methodology appropriate for the study, as it comprises an openness to the variety 

in the articulation of such reflections.  

Table 1: Levels of reflectiveness exemplified with distribution 

 Object and content 

reflection 

Reflection of sense and 

meaning 

Self-reflection 

Level of 

Mathematical 

(statistical) 

content 

(1.1) Is the mean the most 

sensible measure of 

central tendency for this 

data, or would the median 

be better?  

 

(1.2) What are the 

potentials of viewing data 

as patterns instead of 

individual values? 

(1.3) Which kind of 

conclusions can I draw about 

variation in data? 

What can distribution tell me 

about my own experiences of 

the world around me? 

Level of the 

deliberatively 

working 

mathematician 

(statistician) 

(2.1) How can 

distribution be 

represented (table, 

histogram, boxplot, etc.) 

and which terminology is 

suitable (terms of center, 

shape and spread)?  

(2.2) In which ways can 

different representations 

expose different features of 

the distribution? 

(2.3) What is the connection 

between my conception of 

distribution and the formal 

description? 

Level of the 

philosophical base 

of mathematics 

(statistics) 

(3.1) When and how can I 

draw conclusions about a 

larger population with the 

help from distribution? 

(3.2) Which types of 

questions can be answered 

by describing data through 

distribution? And which 

types cannot? 

(3.3) How do I experience the 

differences between working 

with statistics and other 

mathematical subjects in 

school?  

Level of the 

epistemologist 

(4.1) How is statistics 

connected to 

mathematics? What are 

differences and 

similarities between the 

two disciplines? 

(4.2) What role does 

statistics play in society? 

What is the power of 

statistical arguments? 

(4.3) What implications can 

it have for me, when 

statisticians (or others) use 

statistics for societal issues? 

 

An illustrative empirical case 

Excerpt 1: Balancing between individual values and shape – the affordances of the tool 

The following is an excerpt from the beginning of a lesson. The teacher had initiated a discussion 

about the work that students had done in the prior lesson. In the lesson, students explored data about 

their parents’ ages using Tinkerplots. The idea was to recapitulate what features the students had 

found useful as well as any initial conclusions about gender differences in their informal descriptions 

of the distribution of the data. In the excerpt, Albert had connected his computer to the active board. 

He was guided by Frida in finding the best way to represent the data. Frida and Emma explained why 

grouping data as displayed in figure 1 was the best representation. 

Frida:  I think we chose … well, one time sideways  
Frida makes a little gesture with her hand from left to right. 
Teacher: One more time? Can you try to do it one more time [addressed to Albert]? 
Albert pulls one of the dots one more time to the right.  
Frida: Over, over, over … there! 
Teacher: That was the one you liked the best? 
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Frida:  Yes. 
Teacher: Do you remember why you thought it was the best one? 
Frida: Well, it was not like too lumpy, so you could not see it properly. But it is not like 

too spread out, so it is not really… yes.  
Teacher: Because if you chose one of each age, then it would be almost in one line? 
Emma raises her hand. 
Teacher: Emma? 
Emma: We thought that one was good as well, because you could sort of … there in the 

middle, what is the mean. If you pulled it more out that would not be clear.  
 

 

Figure 1: The ages of the parents in our class, Frida and Emma’s favorite representation 

The feature of the tool invited the students to test different representations. The teacher asking the 

students why made them reason about what was useful to them in order to view distribution of data 

as a shape instead of individual values. In addition, Emma’s desire to see the mean in the 

representation pointed to the usefulness of seeing the variation in data through the lens of distribution.  

Excerpt 2: Emma reflects on her own situation compared to the distribution 

The next excerpt is from the last part of the session, where the teacher gathered the students to share 

their experiences and findings in the data. The students expressed considerations about the differences 

they found in the three data sets, in particular those on their own parents’ ages and their parents’ ages 

at the birth of their first child. The teacher asked why the two curves were not similar in shape. She 

was of course referring to only some of the students being firstborn.  

 

Figure 2: Parents ages at first child (left) and today (right) 

Mathew: Well, it might be because one of the parents had an earlier relationship, and then 
they have a child from before they come into this one.  

Teacher: So it could be, if you are the youngest in the family, then it is clear that your parents 
would have a different age than at the time of their first child. 
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Emma raises her hand. 
Teacher: Emma? 
Emma: That is the case with my dad. He was 26, when he got his first child, but that was 

with someone called Miranda. That is my two oldest brothers. They are like 36 and 
39, so… but when he got me, he was 52. 

Teacher: So your dad could be a part of the statistics as young, when he got his first child. 
But not so young, when he got you? 

Emma:  Yes.  

Here, the two students did not connect to the teacher’s idea that the main difference between the two 

data sets was about the students having different places in the row of siblings. Mathew articulated the 

idea of some parents having their first child from an earlier relationship as an explanation. Emma was 

reflecting on her own dad’s placement in the two datasets. He represented the ‘right-hand tale’ in the 

distribution of their parents’ ages (as being old), while he also represented the ‘left-hand tale’ in the 

distribution of ages at first child (being young).  

Discussion 

The first excerpt is an example of students exploiting the affordance of the tool to investigate informal 

and formal representations. They are reflecting on the content level—cell (1.1) in table 1—e.g., what 

is a good representation for seeing the central tendency. Yet, they also reflected about distribution as 

an aggregate, e.g., not too many and not too few details. When the students were asked to give an 

argument about the “best” representation, it might have invited students to reflect on the level of the 

deliberately working mathematician (or statistician) as self-reflection (2.3), and potentially also 

reflection on sense and meaning (2.2). What the students thought was the best representation without 

any expectation of an exact answer, but instead with an interest in students’ reasoning, provided them 

with an opportunity to reflect upon the question: “What do I appreciate in order to ‘see’ properly?” 

They were impelled to bring themselves in a position where they could see something coherent in 

their data, hence a deliberately working statistician. The affordance of the tool to let students shift 

fast and easily between representations invited them to choose the best representation among several. 

When asked to choose the best representation, this gave rise to reflections on more than one level. 

The students’ personal opinion of the use of the tool also, in this case, gave rise to view distribution 

as a coherent description of data, hence sense making (2.2).  

In the second excerpt, where Emma identified singular data in data set distribution, she was able to 

connect her own perspective to that gained through investigation of variation of the twofold dataset. 

This was a way of putting her own situation into the perspective of the lesson learned from looking 

at the distribution of the data. Surely, this is on the level of self-reflection, as Emma reflected on her 

own situation in relation to the data distribution. In our interpretation of the excerpt, we lean towards 

placing this in the level of the deliberatively working statistician (2.3). Still, presence of aspects of 

the level of content (1.3) cannot be ruled out. 

The affordance of Tinkerplots is to develop conceptual knowledge of statistical key concepts in 

parallel with explorations of data. If data is meaningful to students, which is also a principle for good 

statistical learning environments (Ben-Zvi et al., 2018), then self-reflection becomes an obvious part 

of the investigation of data. Still, these kinds of reflection must of course happen in an interplay with 

a development of a more and more sophisticated notions of statistical concepts and processes. In our 
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illustrative case, the students were novice learners of statistics and they were unfamiliar with the 

digital tool (Tinkerplots) at the beginning of the teaching unit. Nevertheless, the affordance of the 

tool gave rise to initial sense making of distribution (content level), and exploited how distribution 

could be useful (sense and self-reflection) in parallel with the development of more fine-grained ways 

to describe ‘range’, ‘shape’ and ‘central tendencies’. 

Recalling Prediger’s (2005) problematization of the lack of self-reflection in the classroom, it seems 

safe to say that in our case, where the students investigated data about themselves, the presence of 

self-reflection was obvious. The affordance of the digital tool invited the students to develop 

representations, which then could enable them to “see properly”, i.e., a desire to view the distribution 

of the data as an aggregate. As also pointed out by Prediger (2005), “Once learners start to pose their 

own questions on the dimensions of self or sense reflection, they can lead to content reflection as 

well” (p. 245). Even though Prediger’s (2005) own example of self-reflection had a different character 

and was formulated in a context of exponential functions, the two excerpts above exemplify that 

conceptual knowledge can indeed take place in an interplay with self-reflection. The reflections on 

how distribution should be represented in order to make sense to me, and how my own situation is 

related to the story that data can tell us by viewing the data through the lens of distribution, are 

steppingstones to reflections on the content level. This observation is further supported by the ways 

in which students can investigate data with the tool and make instant shift between representations. 

Conclusion 

Returning to our research question, it clearly appears that the model for ‘levels of reflectiveness’ is 

indeed useful when discussing students’ development of Bildung in a context of working with 

statistical distributions. That digital tools, and not least statistical tools such as Tinkerplots, can aid 

students in their concept formation and reasoning processes, i.e., in relation to ‘object and content 

reflection’ and ‘reflection of sense and meaning’ (columns 1 and 2 of table 1) is already well 

documented in the research literature. A crucial aspect of Bildung, however, is the dimension of ‘self-

reflection’ (column 3 in table 1). The analyses of the two excerpts, and in particular the student 

Emma’s excerpt, suggest that digital tools do have a role to play in this respect too. By means of the 

visualizations in Tinkerplot (and potentially the shifting between these), Emma was able to interpret 

some of her own experiences to the world around her through her understanding of distribution, i.e., 

self-reflection at the level of the deliberatively working statistician (2.3). Not only in terms of 

analysis, but also in terms of design of teaching activities may the model of ‘levels of reflectiveness’ 

have something to offer to the interplay between use of digital tools and development of Bildung. In 

particular, we contemplate that also the level of the ‘philosophical base’ and that of the 

‘epistemologies’ may benefit from a well thought through use of digital tools such as Tinkerplots, 

and this not only in relation to self-reflection. This is to say, we see an unfulfilled potential only 

waiting to be explored. 
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Abstract: We report on an exploratory study in which we used self-assessment and peer assessment 
in a mathematics class for pre-service middle-school teachers.  

Keywords: assessment, mathematics, teacher education, computer aided instruction. 

Assessment and feedback are amongst the most effective tools teachers can use to promote students’ 
learning (Hattie, 2008). Assessment, however, can be resource-intensive, especially when it comes 
to giving written feedback on students’ assignments. Hence, peer-assessment can be a tool by which 
students can achieve better learning without [the university spending] extra resources, as described 
by Maugesten (2005). Generally, peer assessment and self-assessment can be performed in various 
manners with different objectives (Topping, 1998). Following Panadero et al. (2016, p. 804), we 
define self-evaluation as any activity by which students describe or evaluate the qualities of their own 
learning processes and products. We use Topping’s (1998, p. 250) definition of peer assessment as 
being an arrangement in which students evaluate the work of peers of similar status. Our interest in 
self- and peer assessment stems from the goal of enhancing both students mathematical and 
assessment skills without increasing the workload of university staff. 

Falchikov and Goldfinch (2000) reviewed peer assessment studies in higher education, though not 
specifically in mathematics. They highlight the importance of the grading criteria and instructions 
which are given to the students. See also Li et al. (2019), in which moderate correlation between 
student-given grades and teacher-given grades is found (in line with our findings); this correlation 
was however higher when using paper-based rather than computer-assisted assessment. This is 
interesting as ICT tools are crucial to facilitate and scale our research into teaching practice. 

In the present article, we report on an exploratory study in which we used self-assessment and peer 
assessment in a mathematics class for pre-service middle-school teachers. Although we gathered a 
variety of data, including self- and peer assessment data on a mathematical task, mathematical 
confidence score and interviews, only some data is relevant to this paper (see Methodology section). 
Our study is similar to Zevenbergen (2001) but differs in important details (our students only graded 
one delivery not several and the scores they awarded were inconsequential for student grades). 

Our main goal was to investigate how pre-service teachers assess their own and each other’s 
mathematical work, and how these activities of assessing benefit them. Through collection of 
assessment data and semi-structured interviews, we aim at answering the following question: How 
accurately do pre-service teacher’s assessment of own and peer’s work agree with the educator’s 
assessment? 
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In planning and executing this peer-assessment experiment, we were crucially assisted by ICT tools: 
the online learning platform and questionnaires facilitated the distribution of assignments to peers for 
grading and allowed students to give feedback effectively to each other. This level of automatization 
enabled peer assessment beyond an experimental setting as a routine teaching practice. 

Methodology and research setting 
The group from which we collected data consisted of three different classes of pre-service teachers 
in a Norwegian university. The first two groups were two sections of the same mathematics course, 
given at two different campuses of the university. These students (݊ ൌ 36) were in their second year 
of a 5-year integrated master’s program of middle-school teacher education. The third group consisted 
of one class of fourth year students (݊ ൌ 11) participating in the final mathematics course in a five-
year integrated high-school teacher education program. All three groups were studying probability 
and statistics, which allowed for similar assignments. 

In each of these classes, the number of participants was rather low (47 student across all three groups), 
so we cannot, in general, expect our results to be statistically significant. Therefore, all of our findings 
should be interpreted as a preliminary evaluation. However, see Schönbrodt and Perugini (2013) for 
an overview of (small) sample size versus stability of correlations. 

The aspects of the study’s protocol relevant to this paper are described below: 

1. Measure students’ mathematical confidence through an online questionnaire inspired by 
Pierce (2007). The score ranges from 1 (low) to 5 (high). 

2. Develop a homework assignment with several mathematics exercises. We purposefully 
included exercises of different nature: from computation-based to very open. 

3. Immediately after completing the problems and delivering their work, the students were asked 
to complete a questionnaire in which they assessed their own performance out of 10 for each 
task (self-assessment). 

4. Develop a grading guide. The content of the guide was carefully considered such that it 
provided a framework without dictating how the grading and feedback should be executed. 

5. The participants were randomly assigned a peer’s work and asked to give written feedback on 
each task, as well as give a grade out of 10 for each task using the grading guide (peer-
assessment). 

6. Independently, we graded the students’ papers, with the same criteria (educator evaluation). 
7. We interviewed three students, and transcribed each interview. 

The self-assessment in step 3 was performed by the participants without access to the grading guide 
used in steps 5 and 6. This was done to obtain expectation of performance directly without measuring 
against an external corrective. Our research design included the following aspects. All scores (self-
assessment, peer assessment or educator evaluation) were converted to percentages in the data-
analysis. Next, even though we asked the students to give formative assessment to their peers, we 
will restrict our analysis on the numerical grades. It is also worth noting that in the self-evaluation, 
students were asked to estimate how well they performed, and not which grade they think they would 
get, or which grade they would give themselves. How important this request is to the numerical results 
is unclear and may require further investigation. 
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Results of empirical research 

The full set of participants consisted of 47 students, some of whom did not participate in all activities. 
Non-answers pertaining to these participants have been removed from the statistics of the items they 
were not included in. Thus, the data set fluctuates depending on the item, but always contains at least 
42 students in every item. The statistical methods used in this section are standard and can be found 
in introductory statistics texts (e.g., Ross, 2010). Computations were carried out using Python’s 
Pandas and SciPy packages. We evaluated the point scores (in percent) achieved by participants on 
the assignment in three categories: Educator evaluation (given by the authors), self-assessment 
(awarded by the students themselves on delivery), peer assessment (awarded by another student). The 
histogram in Figure 1a shows the percentage scores divided into 7.5% bins each. 

The histogram gives a visual indication that the educator evaluation and self-assessment are already 
(asymptotically) normally distributed. Note that there is a large deviation between the self-
assessments and the peer assessment item. On average the students have evaluated each other much 
more positively (mean = 80.3%) than the educator has evaluated them (mean = 58.8%). This might 
be a consequence of the process not being anonymized (students knew whom they assessed and by 
whom they were assessed). 

The mean of the self-assessment score of 63.1% is similar to the mean of scores awarded by the 
educators. Computing the (Pearson) correlation for both items yields a coefficient r= 0.31 which is 
significant on the 5% scale (p=0.04). Interestingly though, the correlation coefficient for educator 
evaluation vs. peer assessment score (a student received from another) turns out to be r= 0.34 with 
p=0.03. In future work, we will investigate the underlying mechanisms of these findings. Beyond the 
summative assessment, we collected items tracking the student’s confidence in mathematics on a 
scale from 1 (lowest) to 5 (highest). We called their mean the confidence score (cf. Figure 1b). 

In the complete group there is a weak correlation between confidence score and points awarded in 
self-assessment of the exercise (r= 0.24, p=0.14). The result is not significant, which is not surprising 
considering the size of the group considered (cf. Schönbrodt & Perugini, 2013). However, the 
confidence score is also weakly correlated to educator evaluation (r=0.22, p=0.07) with a surprisingly 
low p-value (though it doesn’t meet the 0.05 conventional threshold for significance). Therefore, this 

Figure 1: Distribution of students according to assessment scores in percentages (a) and the 
confidence score calculated based on the self-assessment questionnaire (b). 
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lends some credibility to the items evaluated for the confidence score as a useful albeit weak predictor 
for success in mathematical exercises. We plan to expand the collection of items to make the 
confidence score more robust and useful as a predictor. 

Conclusion and outlook 
Preliminary analysis of the interview data suggests that the activity of assessing gave students a 
deeper understanding of the material, maybe more so than receiving feedback from other students.   
In future papers, we will explore this point, and investigate the role of the grading aid. We also plan 
to investigate to which extent the validity of the peer-evaluation can be improved by having the 
student’s grade (and therefore compare) several of their peers’ works. Iterating on these findings, we 
will adapt peer-review practices in future courses via a design-based research process. 
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The recent addition of programming to mathematics in the Norwegian curriculum indicates that 
mathematics teachers and future mathematics teachers need ways to teach this new content, based 
on what they already know. However, research on pre-service teachers experience with programming 
and their views of integrating programming into mathematics education is scarce. The aim of this 
research is to address this gap using the responses from a survey of 408 pre-service teachers at three 
institutions in Norway. The results indicated that students with experience with programming rank 
the value of problem solving in programming higher than other mathematical and pedagogical topics. 
At the same time, both experienced and non-experienced students ranked geometry as the least likely 
to be supported by programming, especially in relation to Scratch.  

Keywords: Programming, Pre-service teachers, online survey.  

Introduction  
The importance of programming as a core competence for the future work force has become 
increasingly evident, with schools bearing most of the responsibility for helping pupils acquire this 
competence (Balanskat & Engelhardt, 2015). In recent years Computational Thinking (CT) and its 
related concepts, such as coding, programming and algorithmic thinking have been promoted as 
equally fundamental as numeracy and literacy (Bocconi et al., 2016). There is a lack of consensus on 
the definition of CT, however many researchers (Bocconi et al., 2016) use Wing’s (2011) definition, 
“CT is a thought process and a specific type of problem solving that entails distinct abilities as to 
design solutions that can be executed by a computer.” Given that this definition has influenced the 
incorporation of CT into the Norwegian curriculum, we use it in our project. As part of CT, 
programming requires the ability to analyze, understand, and solve problems by verifying algorithmic 
requirements (Grover & Pea, 2013). Since 2020, programming and CT have been included in the 
Norwegian mathematics curriculum:  

Computational thinking is important in the process of developing strategies and procedures 
for solving problems. Problem solving in mathematics is about students developing a solution 
to a problem they do not already know. It is also about analyzing and work with known and 
unknown problems, solving them and assessing whether the solutions are valid. (Ministry of 
Education and Research, 2020). 

The introduction of CT into school curricula around the world is creating a demand for in-service 
professional development and redesigned teacher education courses for pre-service teachers (Bocconi 
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et al., 2016). Yet, implementing effective pedagogical approaches may be challenging when teachers 
lack knowledge of programming or experience of integrating programming into mathematics 
education or both (Kaufmann & Stenseth, 2021). The recent addition of programming to curricula 
indicates that most—if not all—mathematics teachers need to find ways to teach this new content. 
Furthermore, mathematics teachers and preservice teachers are interested in working with 
programming but they do not feel prepared for this task (Kaufmann & Maugesten, 2022; Misfeldt et 
al., 2019) and they do not identify the connection between programming and mathematics (Pörn et 
al., 2021). Therefore, there is a need to understand how preservice teachers’ current views on 
integrating programming into mathematics education and how they value programming in different 
mathematical and pedagogical topics. To do this, we wanted to investigate how the pre-service 
teachers considered the usefulness of programming in different topics, and how they consider the 
usefulness of a specific programming tool, Scratch. We know, from earlier research, that Scratch is 
used to some degree in primary school, especially in grades 5-7 (Kaufmann et al., 2018). In this 
context, the following research question guides this paper: “How do preservice teachers view 
programming as part of mathematical and pedagogical topics?” We focus on preservice teachers’ 
views about programming generally and Scratch, specifically, their previous experience with 
programming and the relationship to the teaching of mathematical and pedagogical topics. 

Relevant literature  
Recently, there has been an increase in research focusing on programming in mathematics education. 
Studies have found strong connections between teachers’ CT in programming and problem-solving 
processes, through, for example, using debugging and tinkering to explore the structure of an 
algorithm (Bråting & Kilhamn, 2021; Kaufmann & Stenseth, 2021). There are also a few studies on 
preservice teachers’ views on programming and the teaching of programming within the mathematics 
curriculum (Pörn et al., 2021). 

Although limited research exists examining teachers and programming (Moreno-León et al., 2016), 
relevant research has been conducted regarding teachers’ views on the use of technology that 
corroborate the following findings: preservice teachers’ beliefs play a key role in their pedagogical 
decisions and affect whether they adopt technology and how technology is integrated into their 
classroom practices (Tondeur et al., 2016). Pörn et al. (2021) studied Finish primary preservice 
teachers’ views of programming in mathematics and the connections they saw between mathematics 
and programming. They found that most teachers connected programming in primary school as an 
activity, which means the explicit activity of writing, giving, or following instructions. Some teachers 
consider programming as an important subject related to logical thinking and problem solving. 
Connection to specific mathematical content was scarce, and the examples were only connected to 
spatial thinking and geometrical shapes. Pörn et al. (2021) concludes that primary school teachers do 
not fully apprehend the interplay between mathematical and computational content and learning. 
Similar results were obtained by Misfeldt et al. (2019) who collected data from 133 Swedish teachers, 
showing that, although teachers were positive toward working with programming in mathematics, 
everyone could not see the relationship between the two, or the relevance of including it into the 
subject. 
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Even though preservice teachers do not identify the connection between programming and 
mathematics, they might view other potential benefits with programming as pedagogical topics. 
Kilhamn et al. (2021) interviewed 20 Swedish mathematics teachers who, as early adopters, taught 
programming in their ordinary mathematics lessons. These teachers were interviewed with the 
intention of capturing different aspects of their talk about programming in mathematics. The results 
indicate that the teachers describe programming as useful and engaging on a general level, not 
necessarily connected to mathematics. Their arguments for using programming in mathematics are 
that programming increases engagement and it is a powerful tool. Similar results were identified by 
Kaufmann and Maugesten (2022). In their study, preservice teachers’ survey answers were analyzed 
about programming being placed in the mathematics curriculum and its usefulness for teaching-
specific mathematical topics as numbers, algebra and function and geometry, and pedagogical topics 
as problem solving, multicultural classroom, and differentiated teaching. The results indicated that 
the respondents held more positive views with regards to using programming in multicultural 
classrooms and differentiated teaching than mathematical content, such as geometry and numbers as 
well as algebra and functions. Further, the participants rated the usefulness of programming for 
geometry significantly lower than other topics. This result was surprisingly as the origins of including 
programming with mathematics had been related to strengthening students’ understanding of 
geometry (Papert, 1980). 

The results presented above indicate that preservice teachers do not identify the connection between 
programming and mathematics, but view other potential benefits with programming connected to 
pedagogical topics. They are interested in using programming in mathematics, but do not feel 
prepared for including programming in mathematics education (Kaufmann & Maugesten, 2022; 
Misfeldt et al., 2019). The results do not consider if the participants are experienced or non-
experienced in programming. There might be that experienced preservice teachers have different 
views of integrating programming with mathematics because of their experience with programming. 
Consequently, there is a need to better understand how experienced and non-experienced preservice 
teachers view and value programming in mathematics education. Therefore, we analyzed the 
responses to a questionnaire to investigate preservice teachers’ experience with programming and 
how they valued programming and Scratch in relation to their future mathematics teaching. 

Methodological approach  
The pre-service teachers were enrolled in the following institutions: 408 respondents from the 
Western Norway University of Applied Science (57% of the respondents), The Arctic University of 
Norway (16%), and Østfold University College (27%). The three institutions were convenience 
sampled, with all pre-service students being in their first, second, or third year of teacher education. 
In terms of gender, 70% of the participants were women, and 30% were men. This gender distribution 
approximates the study population of pre-service teachers in these three institutions specifically and 
in Norway generally. Therefore, we consider this sample as representative (a prerequisite for external 
validity) of the population. The participants in the survey were either enrolled in a master’s level 
program for teachers of Grades 1–7 (208 students) or Grades 5–10 (200 students). There is an overlap 
between grade 5-7 which was where research suggested that more Norwegian classrooms used 
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Scratch. Therefore, we believe it is most likely that preservice students would be familiar with 
Scratch. 

Our focus is on four of the questions about programming. Two of these questions are about pre-
service teachers’ experiences with programming. The first question regarding their experience was, 
“how often they programmed in their leisure time.” The participants had the following alternatives; 
Never, rarer than once a month, one or twice a month, one or twice a week and more than twice a 
week. We defined those who answered never and rarer than once a month as non-experienced in 
programming, while the other preservice teachers (N=12) we defined as experienced. The second 
question about their experience was the kind of digital tools they had engaged with during their 
teacher education. The participants could choose between several digital tools, with one category 
being programming, with examples provided being Scratch, Python and Java. 70 participants 
answered they had experience with programming during their teacher education. Those two questions 
were merged into two groups; experienced (N=82; there were no overlapping respondents) and not 
experienced (N=326) with programming.  

The other two questions were about the preservice teachers’ views of the usefulness of programming, 
and the usefulness of Scratch, related to different topics. They were asked to rate the value of 
programming and Scratch1 in teaching specific mathematical and pedagogical topics on a five-point 
scale (1 “completely useless” to 5 “very useful”) for five topics: (1) numbers, algebra, and functions; 
(2) geometry; (3) problem-solving; (4) multicultural classrooms; and (5) differentiated teaching. We 
consider topic 1 – 3 related to content knowledge, and topic 4 – 5 to pedagogical knowledge in the 
TPACK model (Mishra & Koehler, 2006).      

A nonparametric test of two independent samples, the Mann–Whitney U test, was employed to 
identify differences between pre-service teachers’ experiences with programming and their views on 
the usefulness of programming and Scratch. We hypothesized that respondents with experience with 
programming would rank the value of programming and Scratch higher than those who had no 
experience. We assumed that their experience would contribute to them seeing possible connections 
between programming/Scratch and mathematics/pedagogy.  

Results  
In the Mann–Whitney U test, responses were scaled from 1 – 5 (1 “completely useless” to 5 “very 
useful”) that were then used for comparison. Table 1 and 2 present the differences in the mean ranks 
between the participants categorized as experienced and non-experienced with respect to 

                                                 
1 When answering the questions about the usefulness Scratch in different topics the respondents could choose the category 
“I do not know the tool.” Of the remaining preservice teachers, 58 with no experience of programming and 45 with 
experience of programming rated the value of Scratch in different topics. The remaining 305 participants, were excluded 
from the analysis because they did not know Scratch.    
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programming. The results indicated no significant difference between the two groups in all the five 
questions in relation to programming in general and Scratch in particular.  

We find the largest difference between the two groups and programming (Table 1) related to the topic 
problem-solving. In this case those who had experience with programming rated the value of 
programming in relation to problem-solving higher than those who had no experience. There are also 
no significant differences in relation to Scratch (Table 2). The largest differences between the 
experienced and non-experienced was to do with the topics numbers, algebra and functions, 
multicultural classroom and differentiated teaching. In all these cases those who have experience with 
programming ranked these topics higher than those who were non-experienced.  

Programming: 
Experience\Mean rank 

Numbers, algebra 
and functions 

Geometry Problem-
solving 

Multicultural 
classrooms 

Differentiated 
teaching 

Yes (N=82) 96,31 98,28 101,72 97,30 94,86 

No (N=326) 97,28 89,37 88,67 89,12 89,40 

Asymp. Sig. (2-tailed) 0,911 0,287 0,121 0,328 0,508 

 Table 1: Mean rank for programming in different topics for experienced versus non-
experienced with programming  

Scratch: 
Experience\Mean rank 

Numbers, algebra 
and functions 

Geometry Problem-
solving 

Multicultural 
classrooms 

Differentiated 
teaching 

Yes (N=45) 56,86 48,09 49,92 51,98 52,19 

No (N=58) 48,23 43,34 44,60 43,73 43,55 

Asymp. Sig. (2-tailed) 0,132 0,379 0,333 0,127 0,110 

 Table 2: Mean rank for Scratch in different topics for experienced versus non-experienced 
with programming 

The mean rank helps us to find a statistically difference between the two groups. In the next two 
tables we report on the mean values which are better for illustrating the mean rank in different topics. 
In all topics, except numbers, algebra and functions (Table 3), preservice teachers who had experience 
with programming rated the topics higher than those who had no experience. Both the experienced 
and non-experienced preservice teachers rated the value of programming in multicultural classroom 
and differentiated teaching high, much higher than geometry. For experienced pre-service teachers 
only problem-solving was ranked higher, than multicultural classroom and differentiated teaching. 
This difference is reinforced in the responses to Scratch (table 4). The results in this table indicate 
that both experienced and non- experienced preservice teacher students did not rate the value of 
Scratch much higher for the pedagogical topics, such as multicultural classroom and differentiated 
teaching, than mathematical topics.  

We also conducted a paired sample t-test to find if there were significant differences between how 
preservice teachers rated the use of Scratch in the different topics. The participants ranked the value 
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of differentiated teaching (and multicultural classroom) significant higher (p < .05) than the other 
three topics problem solving, geometry and numbers, algebra and functions.  

Programming: 
Experience\Means 

Numbers, algebra 
and functions 

Geometry Problem-
solving 

Multicultural 
classrooms 

Differentiated 
teaching 

Yes (N=82) 3,25 3,02 3,46 3,26 3,44 

No (N=326) 3,28 2,77 3,12 3,05 3,31 

 Table 3: Mean value for programming in different topics for experienced versus non-
experienced with programming 

Scratch: 
Experience\Means 

Numbers, algebra 
and functions 

Geometry Problem-
solving 

Multicultural 
classrooms 

Differentiated 
teaching 

Yes (N=45) 3,18 3,10 3,21 3,81 4,05 

No (N=58) 2,81 2,84 2,92 3,35 3,61 

 Table 4: Mean value for Scratch in different topics for experienced versus non-experienced 
with programming 

Discussion and conclusion  
In Norway, it is expected that everyone who teaches mathematics will also teach programming, since 
the inclusion of programming in the mathematics subject from 2020. Nevertheless, many teachers 
and preservice teachers do not have experience with programming or with integrating programming 
in the mathematics. It is therefore important that teachers have relevant pedagogical, technological 
and mathematical knowledge (Mishra & Koehler, 2006) to include programming in mathematics. To 
design appropriate courses to support these preservice teachers, it is important to know about their 
existing views about programming in different pedagogical and mathematical topics. We expected 
that preservice teachers would rank problem-solving higher than the other topics because of the strong 
connection between problem solving and CT in the Norwegian curriculum. Our findings show that 
this was more likely for those who had experience with programming as they ranked problem solving 
higher than other topics. This is in alignment with findings from Bråting and Kilhamn (2021). Even 
though not statistically significant, we found the greatest difference between those who had 
experience with programming and those who did not in how they rated the value of problem solving, 
than for the other topics. This indicates that preservice teachers may need experience with 
programming before they are able to see the connection with problem-solving, even if they are aware 
that this is explicitly stated in the curriculum.  

We also expected that the preservice teachers would rank the pedagogical topics differentiated 
teaching and multicultural classroom lower than the other mathematical topics because there is no 
research evidence to suggest that such pedagogical concerns could be supported through the use of 
programming in mathematics learning. However, our findings show that the preservice teachers 
ranked the value of the pedagogical topics as the same as (and in some cases a little bit higher) the 
mathematical topics, regardless of their experience with programming. This is reinforced in relation 
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to their views on Scratch, which showed a significant higher ranking of the pedagogical topics than 
the mathematical. This result may be in alignment with other research (Gadanidis et al., 2017; 
Kaufmann & Maugesten, 2022; Misfeldt et al., 2019), which showed that even though not all 
preservice teachers understood the relationship between mathematics and programming, or were 
apprehensive about programming, they were positive about working with programming. We can only 
speculate on these results, but pre-service teachers may think that students can work at their own pace 
when they program (differentiated teaching) and that the language (often programming language are 
in English or you can choose the preferred language) is not a hindrance (multicultural classroom).   

As presented in the literature review, the participants emphasize pedagogical domains in describing 
the advantages of programming in mathematics, but they do not see the connection between 
programming and mathematical topics (Kilhamn et al., 2021; Misfeldt et al., 2019). In our study the 
respondents considered the importance of programming in already defined mathematical and 
pedagogical topics. Despite the Norwegian curriculum emphasize the connection between 
programming and mathematics (numbers, algebra and functions and geometry), the preservice 
teachers still rank pedagogical topics higher than the mathematical. Although we assumed preservice 
teachers with experience of programming would rank mathematical topics higher than pedagogical, 
this was not the result in our study. These results are in contrast with our beliefs that experience with 
programming is important (as the teachers in Misfeldt et al’s (2019) study called for), to identify the 
connection between programming and mathematics. The reason for this discrepancy could be that in 
our survey the participant only answered questions about experience with programming at leisure and 
at school, but we need to know more about what kind of experience the participants have with 
programming. 

Geometry is the topic experienced and non-experienced ranked the lowest, both for programming 
generally and for Scratch specifically. We find this result rather surprisingly, especial because of the 
strong link between Scratch and geometry (Gadanidis et al., 2017; Kaufmann et al., 2018). There are 
many similarities between how to program the avatar in Scratch and Papert’s (1980) turtle. We 
believe one reason could be that those respondents who have experience with Scratch did not 
necessarily have experience in using Scratch in mathematics. This might also explain the rather high 
rankings of the pedagogical topics in relation to Scratch. Therefore, further research is, thus, required 
to explore the connection between mathematics and programming (Kilhamn et al., 2021; Pörn et al., 
2021) as teachers need more information on how programming can advance students’ understanding 
of mathematics. 
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The SMART system (“Specific Mathematics Assessments that Reveal Thinking”) is an efficient diag-
nostic online tool that analyses response patterns to elicit students’ (mis)conceptions. To examine 
whether its multiple choice and multiple true-false items (translated into German) adequately capture 
the understanding of algebraic letters of German students, a comparison to open-ended questions 
and diagnostic interviews was performed. In general, the concordance between SMART test results 
and students’ explanations was high and only a few deviations were observed. 

Keywords: formative assessment, online diagnostic, student thinking, understanding variables. 

Introduction 
Technology can support teachers in the time-consuming task of conducting formative assessment. 
But to reliably reveal students’ thinking, instead of only checking the correctness of responses, online 
tests need to be designed in precise ways. To achieve this, the development of SMART tests is based 
on research including an analysis of student response patterns. Currently, SMART tests are being 
adapted and implemented for use in German-speaking countries by the DZLM (German Centre for 
Mathematics Teacher Education). Our accompanying research project SMART[alpha] examines the 
effects of using SMART tests on different levels, exemplarily on the topic of understanding variables. 
We are investigating how and the extent to which teachers’ competencies, as well as students’ under-
standings, develop through the use of SMART, depending on whether teachers participate in an ad-
ditional professionalisation programme. Since automatic diagnosis is at the core of the SMART sys-
tem, the underlying test items and the evaluation logic are examined more closely in advance of the 
main study. In this paper, we focus on the research question whether the translated multiple-choice 
and multiple true-false items are able to adequately reveal (mis)conceptions of algebraic letters of 
German secondary school students. 

Theoretical Background 
Formative assessment can be described as “all those activities undertaken by teachers, and or by 
their students, which provide information to be used as feedback to modify the teaching and learning 
activities in which they are engaged” (Black & Wiliam, 1998, pp. 7–8). Important core elements of 
formative assessment include gathering evidence of students’ understandings, e.g. through appropri-
ate tasks, and adapting instruction based on the diagnostic information gathered (Black & Wiliam, 
1998). In this context, it is important that learners’ diagnoses do not stop at a superficial level such 
as assessing only the correctness of an answer. Rather, diagnoses should focus on conceptual under-
standing of the content and possible misconceptions. Such an in-depth diagnosis is the basis for teach-
ers to plan the next learning steps – individually, in groups, or for the whole class. However, without 
technical support, understanding-based formative assessment is often difficult to realise as individual 
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diagnosis is time-consuming and identifying patterns in students’ responses is often complicated 
(Stacey et al., 2018). 

When devising an online tool for formative assessment, various aspects need to be considered. For 
this report, we focus on the item format, as appropriate tasks are crucial for eliciting students’ think-
ing. When deciding between open-ended (OE) and multiple-choice (MC) formats, different af-
fordances and limitations need to be considered. Since OE tasks do not restrict students’ responses, 
they “have the potential to fully reveal student understandings” (Hubbard et al., 2017, p. 2). However, 
students may omit areas for which they are not confident. Furthermore, student answers depend on 
their writing skills and on how they interpret the task, which can lead to unclear or ambiguous re-
sponses. Therefore, despite their potential, OE items may provide insufficient information on student 
thinking (Hubbard et al. 2017). Choosing from given MC options can, on the one hand, support a 
correct understanding of the task and avoid unclear responses. On the other hand, this can lead to 
working backwards (which may alter the difficulty or addressed competency of the item) or random 
guessing (Bridgeman, 1992). Furthermore, selection of one response option does not allow for any 
inferences about the student’s opinion on the other options. Here, multiple true-false (MTF) items 
can be an expedient alternative as they require an active decision for each response option (Hubbard 
et al. 2017). Although the reasoning behind the choices made cannot be assessed, items can be de-
signed in a way to reveal students’ thinking by analysing response patterns since “in contrast to care-
less errors, misconceptions […] lead to predictable errors in student work” (Akhtar & Steinle, 2013, 
p. 36). However, rationally uninterpretable error types may occur when carefully chosen distractors 
make the task more difficult (Birenbaum & Tatsuoka, 1987). With regards to digital assessment tools, 
the possibilities of inputting solutions (e.g. symbols) with a keyboard and of automatically analysing 
responses also need to be taken into account when choosing item formats (Stacey & Wiliam, 2012). 

Algebra is a field in which an online tool for formative assessment of students’ understanding might 
be helpful as there still exists a lack of basic competencies to handle variables, algebraic expressions, 
and equations in a proper way (Arcavi et al., 2017). In our research, we focus on the understanding 
of algebraic letters. According to Küchemann (1981), students can hold six different interpretations 
of algebraic letters: Letter evaluated, Letter not used, Letter used as an Object, Letter used as a Spe-
cific Unknown, Letter used as a Generalised Number, and Letter used as a Variable. Steinle et al. 
(2009) report not only non-numerical thinking (e.g. Letter as Object (LO) or Letter ignored/not used) 
but also incorrect numerical ways of thinking. In this case, students replace letters by numbers but 
have an incorrect idea about what values the letters can take: They think that the value of a letter is 
in some way related to its position in the alphabet, or they interpret algebraic letters as a mere place-
holder for a number in a number sentence, so they allow one letter to have several values in one 
expression (Empty box), or they believe that different letters must stand for different numbers (Dif-
ferent Letter means Different Number).  

SMART tests 
SMART tests have been in development at the University of Melbourne, Australia, since 2008. Most 
SMART tests focus on the conceptual understanding of key fundamentals from years 5 to 9 and can 
be completed online within 10–15 minutes (Price et al., 2013). According to the framework suggested 
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by Fahlgren et al. (2021), SMART can be described as formative assessment through technology that 
is following a rather migratory approach. While Fahlgren at el. (2021) distinguish between sending 
and displaying, processing and analysing, and providing interactive feedback as the functionalities of 
technology (of which only the first two are addressed by the SMART system), Aldon et al. (in press) 
propose a modified framework that distinguishes between communicating, analysing and adapting. 
In terms of communication, SMART enables easy provision and processing of diagnostic tasks. Since 
students also interact with the SMART system through inputs, according to Aldon et al. (in press), 
SMART would be categorised as assessment through and with technology. Much more important, 
however, is the analysis: SMART offers an extended analysis that automatically analyses patterns 
between individual diagnostic items (Steinle et al., 2009) and thus allows insights into students’ un-
derstanding by flagging levels of understanding and misconceptions of individual students. In addi-
tion, explanations, tasks, and teaching suggestions for the individual misconceptions and levels of 
understanding are provided to support teachers in planning targeted interventions. Since it is the 
teacher who makes these decisions, SMART offers a passive adaptation according to Aldon et al. (in 
press). However, Fahlgren et al. (2021) restrict adaptivity to an automatic adaption by the technology 
itself and therefore classify SMART as a non-adaptive system with feedback provided to teachers 
(receiver) on an intermediate level between micro and macro as “it is based on a number of items, 
although in a special (small) domain” (2021, p. 78). 

For our research project, we focus on two SMART tests about understanding variables. The first test 
Values for Letters is based on results by Fujii (2003) about students’ understanding of the conventions 
for the values that pronumerals may take, e.g. that in one algebraic expression, a letter must stand for 
only one number and that different letters can stand for the same number. Steinle et al. (2009) as well 
as Akhtar and Steinle (2013) modified Fujii’s test items and examined the frequency and the under-
lying misconceptions of students’ response patterns. Based on the analysis of the responses to 18 
short items, students are classified as showing understanding at one of five stages; in addition, several 
misconceptions are reported if they occur (see Table 1 for a shortened description). 

Table 1: Test Values for Letters – Stages of understanding and misconceptions 

 Stage 0 GE or A0 Stage 3 Different Letter means Different Number (+R) 

Stage 1 A1 or non-systematic errors Stage 4 In one algebra question, a letter must stand for only one 
number and different letters can stand for the same num-
ber. (+R) 

Stage 2 Empty box 

 GE Instead of correctly substituting numerical values into an algebraic equation, students combine the given 
elements of pronumerals and values in some way 

A0 Students strongly associate algebraic letters with their position in the alphabet, using letters and their 
position numbers interchangeably. 

A1 Some of these students give a letter a value related to its place in the alphabet, such as ܾ ൌ 2. Other 
students believe that the values of consecutive letters must be consecutive numbers, or that if one letter 
is before another in the alphabet, its value must be smaller. 

R When the same letter is used more than once in an equation, these students recognise that it has the same 
value, but state this value separately for each occurrence. 

The second test Meaning of Letters was developed based on Küchemann’s work (1981) adapting his 
“pencil” item (Akhtar & Steinle, 2017). Collaborative discussions between the Australian and our 
research team have resulted in an extended version of this test, containing three additional items, two 
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of them being similar to the “Students and Professor” problem (Rosnick, 1981). This test assesses 
whether students know that letters, when used in algebra, stand for numbers. Many students interpret 
and use algebraic letters as abbreviations for words or to stand for things and they think that algebra 
is mainly just mathematical shorthand (LO). Three stages and a more sophisticated way in which 
students can exhibit the LO misconception are reported (see Table 2 for a shortened description). 

Table 2: Test Meaning of Letters – Stages of understanding and misconception 

 Stage 0 LO misconception in most items, rarely interpreting algebraic letters as standing for numbers 

Stage 1 Sometimes algebraic letters correctly interpreted as standing for numbers and sometimes LO  

Stage 2 Algebraic letters consistently interpreted correctly as standing for numbers, rather than as objects. 

 SAC Solution as coefficient – Because they interpret algebraic letters as standing for objects, these students 
believe that they need to find a solution to a problem situation before they can describe it with an equa-
tion. Instead of writing or choosing an equation that describes the relationship between numbers in a 
word problem, these students prefer an equation which explicitly shows a solution. 

The latest English version of the test items and full descriptions can be retrieved via smartvic.com. 

Methods 
Our aim was to examine whether the translated SMART test items (MC and MTF) of the two tests 
Values for Letters and Meaning of Letters adequately capture the (mis)conceptions of German stu-
dents. Translating the items into German, we had to adjust a few of the contexts, e.g. doughnuts 
became “Enten” (ducks) because an object starting with the same letter as our currency (euro instead 
of dollars) was required for this task. Moreover, we changed some of the completion stems into ques-
tion stems as the German wording seemed rather complicated and not so familiar to students. This 
should not have an impact on the diagnosis though, as research shows no difference in discrimination 
between those two item formats (Haladyna et al., 2002). We then asked a class of 8th-grade students 
to fill in the two SMART tests online. Based on the automatic diagnosis, we chose individual students 
for the interviews to cover as wide a range of stages of understanding and misconceptions as possible. 
However, these choices were limited by the lack of consent forms and absences due to the illness of 
some of the students on the day of the interviews. Hence, we eventually conducted interviews with 
six students on the Values for Letters test and with five students on the Meaning of Letters test. During 
the semi-structured interviews one week after the online test, students were presented with a pen-and-
paper test (PP) of the parallel version of the two SMART tests which had been modified slightly in 
terms of item format: In order to examine the possible effects of MC/MTF items providing corrective 
feedback or provoking non-prominent misconceptions, some of the items were changed into OE 
tasks. To compare these modified PP tests to the online tests, response patterns were analysed fol-
lowing the same decision rules as the automatic online analysis. 

Three of the 11 interviews have been analysed in more detail to date, i.e. in addition to the comparison 
of SMART diagnoses for the online test and the modified PP version, students’ interview responses 
have been analysed qualitatively with regards to their conceptual understanding and misconceptions 
as well as to effects of item formats. 

First results 
For the first test Values for Letters, we can report an absolute concordance between the diagnosis of 
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the online SMART test and of the modified PP version from the interview settings for all six students. 
Moreover, in the interview of Student 1, the same misconception is evident in his explanations during 
the interview as diagnosed in the online test (Stage 2). After giving the correct solution 5 as a value 
for ܽ in the equation ܽ  ܽ  ܽ ൌ 15, he finds another possibility: 

Student 1:  Yes, one possibility would be ܽ is 7 for example. And then ܽ is 5 and ܽ is 3; so 
each ܽ has different numbers, but that would still give 15. 

This reveals that Student 1 interprets an algebraic letter rather as a mere placeholder (Empty box). It 
needs to be mentioned though, that the student only gave this answer after being asked if there was 
another possible solution. In the following MTF task however, he immediately accepted comparable 
statements (e.g. ܽ ൌ 7, ܽ ൌ 7, ܽ ൌ 1) as correct. Furthermore, he showed the R misconception which 
is further evidence for Stage 2 understanding. (Note that misconception R is only reported for Stages 
3 and 4 by the SMART system since for Stage 2, misconception R is a direct consequence of the 
placeholder-misinterpretation which needs to be addressed first; that means this is no deviation from 
the SMART diagnosis.) 

In contrast to the SMART diagnosis which revealed no problems with substituting into very easy 
expressions, Student 1 showed some irritation when answering the second task (MC). For the ques-
tion “ܽ ൌ 1 and ݃ ൌ 7. What is ܽ  ݃?”, he correctly chose 8 as a response, but also 1ܽ  7݃. It is 
possible that the task asking to tick all possible answers and the presentation of responses in two 
columns tempted him to choose another, wrong answer from the second column. However, after jus-
tifying his choice of the correct response, he instantly corrected himself and explained exactly why 
this second choice had been wrong. Thus, his explanation confirmed the absence of the GE miscon-
ception as diagnosed by the online test. 

Overall, for the Values for Letters test, it was observed that OE tasks did not always suffice for iden-
tifying a certain misconception. For example, it was not possible to rule out misconception A1 when 
only the solution ݀ ൌ 4	ܽ݊݀	݁ ൌ 5 was given to the question of which values ݀ and ݁ could take to 
make ݀  ݁ ൌ 9 true. Subsequent MTF tasks proved to be more revealing as they ask students to also 
judge solutions that do not comply with the A1 misconception. 

For the second test Meaning of Letters, concordance between the diagnosis of the online SMART test 
and of the modified PP version was also high for the five students, but not perfect. In one case, the 
difference only lies in the frequency of the LO misconception shown in items accounting for the 
higher stage (Stage 1 online compared to Stage 0 PP). However, this does not change the diagnosis 
of the misconception being present. In the other case, the modified PP test was not only diagnosed at 
Stage 1 instead of Stage 0 online, but it also did not reveal any signs of the SAC misconception as 
opposed to the online test. The corresponding interview with Student 2 provides no clear evidence 
for SAC either but shows a strong prevalence of an interpretation of letters as objects in her explana-
tions despite giving correct answers. Interestingly, she does not only choose the correct MC response 
options but is also able to formulate the correct equation for a given context herself. However, her 
explanations give the strong impression that she simply combines given numbers and letters in the 
correct way without understanding their meaning: 

Student 2:  Um, it says that an apple costs 2 euros. And ܽ stands for apple and therefore 2ܽ, so 
2. 
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Interviewer:  Why 2? 
Student 2: Because an apple costs 2 euros. And 3݇ because a kiwi costs 3 euros and ݇ stands 

for kiwi. 

In addition to using ܽ as an abbreviation for apple instead of standing for the number of apples (LO), 
she does not consider the operation linking the number and the letter at all. Moreover, our interpreta-
tion that she is combining numbers and letters without complete understanding is affirmed by further 
explanations in the course of the interview as well as by the first SMART test that diagnosed her at 
Stage 0 because she was combining given elements instead of substituting correctly (GE). 

With regards to the ignored operation, a related observation was made in the explanations of Student 3 
who was asked for the meaning of the letter ݁ in a context-related equation (MC task):  

Student 3: So, when we write in detail, we write with a multiplication sign. But 5݁? (10 sec) 
Interviewer: What are you thinking about? 
Student 3 I don’t know, because 5 times ݁? 
Interviewer: What bothers you about it? 
Student 3: Somehow, I forgot that you can also add a multiplication sign because somehow 

that confuses me now. Umm. 
Interviewer: Why? Because it’s strange with the muffin then? Or what is strange about it? 
Student 3: Because of the ݁. You can also just write 5 equals 10. But then you can only write 

5 muffins equal 10 euros. 

This shows that an omitted multiplication sign in a given equation might make it easier for students 
to choose an LO interpretation as “muffins”. However, being reminded of the convention of the omit-
ted multiplication sign, Student 3 is not able to make sense of the equation at all as her interpretation 
of the letter as an abbreviation for an object is very persistent. Furthermore, her last statement in the 
transcript excerpt shows that she has no comprehensive understanding of equations, which is an ad-
ditional hurdle to overcome an LO interpretation. 

In general, Student 3 shows a strong urge to find solutions for given equations rather than thinking 
about the meaning of the algebraic letters used. For example, the OE version of the first item was 
asking for the meaning of the letter	ݐ in a given equation; this prompted her to give a value for ݐ 
instead of a context-related meaning. Only when provided with the MC options, she chose “tons” as 
her response. After being asked for an explanation, she quickly changed her mind to “tractors” 
though. This suggests that here, on the one hand, MC options can be helpful to make the task’s aim 
clearer, on the other hand, they may tempt students to make a quick, unfounded decision. 

Student 3’s desire to find a solution becomes also visible when finding an equation. She uses the 
values she has found, presumably by guessing and checking, as coefficients for her equation respec-
tively checks if the coefficients of a given equation are a possible solution for the described situation. 
This is not only the case in MC items as was expected from the online test, but also in the OE task, 
she starts figuring out a solution first. 

Discussion and Outlook 
For the first test Values for Letters, we observed a very high concordance between SMART diagnosis 
and misconceptions visible in the interview. (Of course, the other five interviews still need to be 
analysed in more detail, but the diagnoses of the modified PP items already indicate no major devia-
tions.) This suggests that the translated SMART items are suitable for assessing the understanding of 
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German students. The advantages – or even more the necessity – of MTF items in addressing certain 
misconceptions (e.g. A1) became apparent and thus reaffirm the future use of this item format. 

The interviews regarding the second test Meaning of letters revealed various challenges that need to 
be considered. First, we saw that it is possible for students to choose and formulate correct equations 
despite interpreting algebraic letters as abbreviations for objects. As the test also includes two items 
explicitly asking for the meaning of the letter, chances nevertheless are high that the automatic 
SMART diagnosis would only deviate by only one stage and would still flag the LO misconception. 
For the use in the classroom, this is not a severe problem since SMART tests are only intended for 
formative use. They provide a quick ‘snapshot’ of the student’s current understanding to support the 
planning of the next learning steps. Additional, more time-consuming forms of diagnosis, e.g. diag-
nostic interviews, are generally recommended and able to provide a more detailed insight. Second, 
there were indications of guessing in MC items. This is problematic since LO errors are easy to make 
(not only for novices) but can be overcome by checking for them. MC items, however, can tempt 
students to make a quick decision without further thinking. To prevent this, we are planning to add 
two OE questions asking for an explanation of why the selected equation was chosen. (For now, these 
items cannot be automatically analysed by the SMART system, but only be used for research.) We 
hope that these items will also provide an even more detailed insight into the students’ conception of 
variables and enable us to check the accuracy of the automatic diagnosis on a large scale during our 
main study. Third, we are currently discussing if the multiplication sign should be used at least in 
some of the given equations in order to avoid irritations due to the invisible multiplication sign. On 
the one hand, this might support students in ruling out LO responses, but on the other hand, this could 
also be even more confusing (as seen in the interview with Student 3). Maybe the analysis of the 
remaining interviews will provide guidance in this matter. 

Overall, the analysis of student interviews has shown that the SMART diagnosis based on MC/MTF 
items quite reliably reveals German students’ misunderstandings of algebraic letters, and thus, pro-
vides teachers with helpful information about individual students without having to invest a vast 
amount of time for diagnostic interviews with each student. 

References 
Akhtar, Z., & Steinle, V. (2013). Probing students’ numerical misconceptions in school algebra. In 

V. Steinle, L. Ball & C. Bardini (Eds.), Mathematics education: Yesterday, today and tomorrow – 
Proceedings of the 36th annual conference of the Mathematics Education Research Group of Aus-
tralasia (pp. 36–43). MERGA. 

Akhtar, Z., & Steinle, V. (2017). The prevalence of the ‘letter as object’ misconception in junior 
secondary students. In A. Downton, S. Livy & J. Hall (Eds.), 40 years on: We are still learning! – 
Proceedings of the 40th annual conference of the Mathematics Education Research Group of Aus-
tralasia (pp. 77–84). MERGA. 

Aldon, G., Barzel, B., Cusi, A., & Olsher, S. (in press). Rethinking teachers’ formative assessment 
practices within technology-enhanced classrooms. In B. Pepin, G. Gueudet, & J. Choppin (Eds.), 
Handbook of digital resources in mathematics education. Springer. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 214



 

 

Arcavi, A., Drijvers, P., & Stacey, K. (2017). The learning and teaching of algebra: Ideas, insights, 
and activities. Routledge. 

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5(1), 
7–74. https://doi.org/10.1080/0969595980050102  

Bridgeman, B. (1992). A comparison of quantitative questions in open�ended and multiple�choice 
formats. Journal of Educational Measurement, 29(3), 253–271. https://doi.org/bqmsvg  

Fahlgren, M., Brunström, M., Dilling, F., Kristinsdóttir, B., Pinkernell, G., & Weigand, H. G. (2021). 
Technology-rich assessment in mathematics. In Mathematics Education in the Digital Age (pp. 
69–83). Routledge. 

Fujii, T. (2003). Probing students understanding of variables through cognitive conflict: Is the con-
cept of a variable so difficult for students to understand? In  N. A. Pateman, B. J. Dougherty, & J. 
T. Zilliox (Eds.), Proceedings of the 27th PME International Conference, Vol. 1 (pp. 47–66). PME. 

Haladyna, T. M., Downing, S. M., & Rodriguez, M. C. (2002). A review of multiple-choice item-
writing guidelines for classroom assessment. Applied Measurement in Education, 15(3), 309–333. 
https://doi.org/10.1207/S15324818AME1503_5  

Hubbard, J. K., Potts, M. A., & Couch, B. A. (2017). How question types reveal student thinking: An 
experimental comparison of multiple-true-false and free-response formats. CBE—Life Sciences 
Education, 16(2), ar26. https://doi.org/10.1187/cbe.16-12-0339  

Küchemann, D. (1981). Algebra. In K. M. Hart, M. L. Brown, D. E. Küchemann, D. Kerslake, G. 
Ruddock, & M. McCartney (Eds.), Children’s Understanding of Mathematics: 11–16 (pp. 102–
119). John Murray. 

Price, B., Stacey, K., Steinle, V., & Gvozdenko, E. (2013). SMART online assessments for teaching 
mathematics. Mathematics Teaching, 235(4), 10–15. 

Rosnick, P. (1981). Some misconceptions concerning the concept of variable. The Mathematics 
Teacher, 74(6), 418–420. 

Stacey, K., Steinle, V., Price, B., & Gvozdenko, E. (2018). Specific mathematics assessments that 
reveal thinking: An online tool to build teachers’ diagnostic competence and support teaching. In 
T. Leuders, J. Leuders, K. Philipp, & T. Dörfler (Eds.), Diagnostic competence of mathematics 
teachers – Unpacking a complex construct in teacher education and teacher practice (pp. 241–
263). Springer. https://doi.org/10.1007/978-3-319-66327-2_13  

Stacey, K., & Wiliam, D. (2012). Technology and assessment in mathematics. In M. Clements, A. 
Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics 
education (pp. 721–751). Springer. https://doi.org/10.1007/978-1-4614-4684-2_23  

Steinle, V., Gvozdenko, E., Price, B., Stacey, K. & Pierce, R. (2009). Investigating students’ numer-
ical misconceptions in algebra. In R. Hunter, B. Bicknell & T. Burgess (Eds.), Crossing divides – 
Proceedings of the 32nd annual conference of the Mathematics Education Research Group of 
Australasia (Vol. 2) (pp. 491–498). MERGA. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 215



 

 

Primary school teachers meet learning analytics dashboards: from 
dispositions to performance in classroom practice  

Manolis Mavrikis1, Stefanie Vanbecelaere2, Fien Depaepe2 and Eirini Geraniou1  

1UCL Institute of Education, University College London, London, UK;  
m.mavrikis@ucl.ac.uk and e.geraniou@ucl.ac.uk  

2ITEC, an imec research group at KU Leuven, Kortrijk, Belgium; 
stefanie.vanbecelaere@kuleuven.be and fien.depaepe@kuleuven.be  

Abstract: This paper looks into teachers’ use of Learning Analytics Dashboards, visualization tools 
that present data regarding students’ learning progress in and out of lessons. Based on data of two 
studies conducted in Belgium and England, we discuss primary school teachers’ dispositions and 
performance regarding the use of learning analytics dashboards in the classroom. We argue on the 
importance of looking into specific elements of teacher competence in using such dashboards in their 
practice but also understanding the broader educational context and the teachers’ goals. We 
conclude by suggesting further research into the relationship between teachers’ dispositions and how 
they make sense of the information presented on dashboards in practice, to inform future dashboard 
design and teacher training opportunities.  

Keywords: primary teachers, learning analytics dashboards, digital competence  

Introduction  
There is much hype about the use of learning analytics to inform classroom practice. This can be seen 
in the proliferation of digital learning environments that provide visualisations and other forms of 
information to support teachers’ awareness and decision making based on summarised data that 
students leave in the respective digital tool. Commonly referred to as ‘learning analytics dashboards’ 
(LAD) these visualizations show aggregated data about learners, learning processes, and/or learning 
contexts (Schwendimann et al., 2017). LAD are promising because they can inform teachers’ 
instructional behaviour (Connor, 2019), support real-time classroom orchestration (Mavrikis et al., 
2019) or promote reflection on behalf of the teacher (Molenaar & Knoop-van Campen, 2016). The 
use of dashboards has been shown to result in improved knowledge about the learner and adapted 
lesson plans involving individualised scaffolding (Aslan et al., 2019; Xhakaj et al., 2017). 
Furthermore, teachers might reflect on the impact of their instructions and implemented learning 
design. As such dashboards can improve teachers’ reflection on their own practice and hence improve 
teaching quality (Ndukwe et al., 2020). Altogether, the aspiration is that LAD can support 
individualised learning experiences and improved student learning outcomes.  

There has been a lot of research on the design and use of LAD in higher education (Rienties et al., 
2018; Wise & Jung, 2019). Also, in primary education teachers increasingly use digital technology, 
a phenomenon that was accelerated by the distance and online education during the global pandemic 
(Kovanic et al., 2021). While research shows positive results of using dashboards for teachers (thus 
indirectly for learners) in primary education, there is a large variation in how teachers use these 
dashboards in the classroom (Molenaar & Knoop-van Campen, 2016). For example, teachers’ 
interactions with dashboards vary with regards to when they look at the dashboard (during versus 
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after a lesson), how much they look at the dashboard, and the kind of feedback (personal, meta-
cognitive, social, etc.) they give to learners (Van Leeuwen et al., 2021). It is well understood that 
whether digital technologies, including dashboards, will lead to meaningful student learning is linked 
with teacher competence (Molenaar & Van Campen, 2016; Ndukwe et al., 2020) and particularly, 
digital competence including “knowledge, skills, attitudes, abilities, strategies, and awareness that are 
required when using ICT” (Ferrarri, 2012, p. 30). Mathematics teachers’ digital competence in 
particular has also been explored and presented as the combination of instrumental skills and 
knowledge (e.g., the ability to use digital tools), advanced skills and knowledge (e.g., the ability to 
apply digital tools to particular tasks), and attitudes of skills and knowledge application (Jasute & 
Dagiene, 2012). However, when looking into the research of dashboards in mathematics education, 
there is little understanding of how specific elements of teacher competence relate to effective 
dashboard use and how decision-making is influenced by the broader educational context.  

Theoretical Background  
One model that has been widely used in mathematics education research to investigate teacher 
competence is the competence model of Blömeke et al. (2015). They conceptualize teacher 
competence as a multifaceted concept consisting of dispositions, situation-specific skills and 
performance (Depaepe et al., 2020). First, dispositions refer to teachers’ cognitive and affective-
motivational traits. Cognitive traits necessary to interpret LAD incorporate data literacy skills, 
defined as “the ability to effectively engage with data and analytics to make better pedagogical 
decisions” (Ndukwe et al., 2020, p. 3). Affective-motivational traits include professional beliefs about 
data and the use of LAD. In relation to the use of data for instructional purposes in particular, previous 
studies have revealed the importance of teacher self-efficacy (i.e., teachers’ beliefs in their own 
abilities to use learner data to enhance learner performance) and perceived usefulness (i.e., teachers’ 
beliefs about the use of learner data to enhance learner performance) (Dunn et al., 2013; Reeves & 
Honig, 2015). Previous studies also documented the importance and interrelations of beliefs about 
teaching mathematics with technology, self-efficacy, and epistemological beliefs (e.g., Thurm et al., 
2022). These dispositions are assumed to impact the second facet of professional competence, i.e., 
situation-specific skills including cognitive processes such as perception, interpretation and decision-
making before, during and after actual classroom behaviour (Blömeke et al., 2015). In view of LAD, 
perception refers to the extent to which teachers get oriented and apply focused attention to what is 
presented on the dashboard (Van Leeuwen et al., 2021). Interpretation refers to how teachers filter, 
organize or analyse the perceived data from dashboards and combine this information with prior 
expertise and experiences with the learners (Van Leeuwen et al., 2021). Decision-making refers to 
the instructional actions teachers plan to undertake based on the data or the assessment of the 
effectiveness of these actions (Wise & Jung, 2019). Third, teachers’ situation-specific skills are 
considered to impact their actual performance in a classroom (Van Leeuwen et al., 2021). Specific 
teacher actions can include selecting suitable instructional methods, prioritizing which content to 
teach or emphasize, reteaching and designing support for these learners in most need of them (Aslan 
et al., 2019).  

However, there are some reasons why the implementation of LAD is not self-evident for primary 
education teachers. First, using LAD teachers often have limited opportunities to learn about analytics 
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and how they can be useful for teaching. Due to a lack of emphasis on this topic in teacher training 
programmes, it can be expected that teachers’ self-efficacy towards the use of data and the extent to 
which they perceive using data for instructional purposes valuable for their teaching practice, is rather 
low (Dunn et al., 2013; Reeves & Honig, 2015; Wise & Jung, 2019). For example, Vanlommel et al. 
(2020) observed that teachers greatly relied on intuitive processes rather than on data to decide about 
the transition of pupils during their last year of primary education. Second, primary education teachers 
are generalists and may lack data literacy skills which are necessary to interpret the many 
visualisations presented on dashboards (Merk et al., 2020; Van Leeuwen et al., 2021). For example, 
teachers reported to have difficulties with interpreting dashboards, making meaningful connections 
between the various data components and making instructional decisions about specific groups or 
whole classrooms (Molenaar & Knoop-van Campen, 2016). Third, using digital artefacts in real-time 
classroom practice is complex. Taking the perspective of the ‘theory of instrumental orchestration’ 
(Drijvers et al., 2014), a type of orchestration is required so that the use of LAD, an available artefact 
in the learning environment the teacher uses for a mathematical task, is exploited in ways that improve 
didactical situations (Drijvers et al., 2014; Trouche, 2004). Fourth, research also pointed at limitations 
in teachers’ ability to make data-driven decisions. Sun et al. (2016) conducted a systematic review on 
the use of learner assessment data. They found that while teachers use data often to identify learners’ 
weaknesses and gaps, they consider it difficult to adapt instruction accordingly.  

Methods and Participants  
The overarching question of this paper is what teachers’ dispositions are towards the use of LAD and 
how this relates to their actual performance regarding the use of LAD in their teaching. We report 
here on two different cases from studies in Belgium and England.  

In Belgium, a study was conducted to investigate teachers’ dispositions towards LAD, their situation-
specific skills and performance to use dashboards. Participants were required to have at least one year 
teaching experience and were recruited by contacting schools in Flanders. In total, 45 (9 men, 36 
woman) in-service primary education teachers of Flanders agreed to participate in the study. Teachers 
taught in different years of primary education (Year 1: n=7, Year 2: n=9, Year 3: n=8, Year 4: n=14, 
Year 5: n=9, Year 6: n=15). Their teaching experience varied from less than 5 years (n=21), between 
5- and 20-years (n=12) to more than 20 years (n=12). Teachers dispositions and performance were 
measured through an online questionnaire. At the beginning of the questionnaire, teachers were given 
an example of a LAD as well as an explanation of what a LAD is. The first part of the questionnaire 
assessed teachers’ dispositions (i.e. their perceived value towards the use of data in the classroom, 
and self-efficacy towards the use of LAD). For the scale that measured perceived value, we translated 
the Survey of Educator Data Use according to Wayman et al. (2009) into Dutch and adapted the items 
to the context of this study, regarding LAD. The items had to be evaluated on a 4-point Likert scale: 
(1) strongly disagree, (2) disagree, (3) agree and (4) strongly agree. Internal consistency of the scale 
was good (9 items, Cronbach’s α=.75) (Field, 2017). Self-efficacy was investigated using the scale 
of Walker and colleagues (2018). The items were translated to Dutch and were adapted to the context 
of this study, specifically for LAD. The scale uses a 5-point Likert scale: (1) totally disagree, (2) 
disagree, (3) neither agree nor disagree, (4) agree and (5) totally agree. The internal consistency was 
very good (12 items; Cronbach’s α=.83). A second part of the questionnaire assessed teachers’ 
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performance. As there are no existing scales to measure this, one self-constructed multiple choice 
item measured how often teachers use LAD, and one self-constructed item assessed for which 
purposes teachers use LAD (teachers were allowed to indicate one or more than one answer). 
Interviews were conducted with each teacher to assess their situation-specific skills in particular 
situations but due to space limitations we do not report on that part in this paper.  

In England, at the time of this writing, we are piloting a study with teachers who already use LAD in 
their teaching practice. Participants are identified from schools with three different LAD: a platform 
focusing specifically on practice for multiplication tables, an online tutoring service for primary 
mathematics, and a reading and spelling online resource. We piloted our instruments and interviews 
with two schools, and we are in the process of recruiting and training participants for the main study. 
Participants are given a short questionnaire on their profile and experience with educational 
technology in general, a diary to include their interactions, observed once a month in relevant 
planning and classroom sessions, and complete a semi-structured interview that focuses on their 
performance regarding the actual usage of LAD, reflect on their notes and focus on identifying how 
they relate the data presented in the dashboard with the decisions they are taking. In this paper, we 
hone in on one of our participants in the multiplication tables practice platform: a Year 4 teacher at a 
state school with 12 years teaching experience and a year experience with the specific platform.  

Teachers’ dispositions towards dashboards and actual performance in Belgium  
Regarding teachers’ dispositions, the mean score for perceived value towards the use of data to inform 
classroom decisions was 2.86 (SD = 0.54) meaning that they rather agree towards the idea that data 
are useful to make informed classroom decisions. Similar results were found for teachers’ self-
efficacy towards how confident they are to use a dashboard in the classroom. The teachers’ mean 
score on this scale was 3.76 (SD = 0.80) showing that teachers rather feel competent to use dashboards 
in classroom practice. Regarding teachers’ performance, all 45 teachers indicated that they use digital 
learning tools in their classroom practice to train learning content with pupils. Regarding the 
availability of dashboards, 39 out of 45 teachers report that the digital learning tools they use contain 
a dashboard. When asking how familiar teachers are with these LAD, we get mixed responses. Almost 
half of the teachers (42.3%) report that they have not heard of LAD before they participated to the 
study, or they knew what LAD were but never have used them before. The other teachers used LAD 
less than once a month (17.8%), once or twice a month (17.8%), (almost) weekly (13.3%) or (almost) 
daily (8.9%). The teachers that reported to use a dashboard did this for different purposes. Teachers 
use the data displayed on dashboards mostly to plan content to focus more on during the following 
lessons (42.2%). Teachers also use the data on dashboards to tailor instruction to individual students’ 
needs (33.3%) or to form small groups of students for targeted instruction (31.1%). The data on 
dashboards is used less to ask for additional support in the classroom for certain learners (22.2%) or 
to discuss the data with the student, colleague or parent (24.4%). Most teachers use dashboards for 0 
(n=12), 1 (n=12) or 2 reasons (n=12), far fewer teachers use them for more than two reasons. 
Pearson’s correlation coefficients were calculated between the variables. A significant positive 
relationship was observed between how much teachers use dashboards and the variety of purposes 
they use the dashboards for (r(43)=0.37, p = 0.012). A significant negative correlation between 
teachers’ experience with dashboards and teachers’ perceived value (r(43)=-0.33, p = 0.029) was 
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found. This implies that teachers who report higher use of dashboards, also tend to perceive them as 
less valuable compared to teachers who reported less frequent use of dashboards. No significant 
correlation was observed between teachers’ experience with dashboards and their self-efficacy 
towards the use of dashboards.  

The case of Lena in England: actual LAD usage  
In this case study, Lena (not the teacher’s real name), had no prior training in the dashboard from the 
multiplication tables platform (which we will call MTP to keep it anonymous) or prior training on 
possible dashboard purposes. She has been using the MTP in a Year 4 classroom regularly (almost 
weekly) throughout the term and recommends to parents to access it at home too. Her use of the 
dashboard is occasional (once every two weeks) and not necessarily systematic. Following a 
preliminary qualitative data analysis of the interview, a key observation was that Lena approached 
the dashboard with an explicit objective that varied depending on the specific goals of the class for 
that week and what she had asked from parents at home. In particular, the MTP contains different 
game types and teachers encourage students to focus on one game or another depending on their 
emphasis that week (e.g. learn a specific multiplication table, several together as a practice test, or 
some whole-classroom competitions). Similar to the purposes reported above for the Belgium 
teachers, Lena accessed the dashboard to (i) plan which multiplication table she should focus on the 
following lesson, (ii) allocate specific multiplication tables for certain students, and (iii) identify small 
groups of students for targeted instruction. Less frequently, the dashboard was used to tailor feedback 
to specific students and to provide specific recommendation to parents e.g., in parent meetings or 
with other colleagues. However, Lena reflected on the fact that there is not enough time in her 
workload to focus on the two last purposes so she mainly used the “average daily minutes over the 
last 7 days” as a proxy to prioritise which students to ‘nudge’ to use the platform more. This helped 
her implement the “little and often” principle that is key to multiplication tables fluency and recall. 
At this point, it is worth reflecting on the teacher’s intentions and the overall context behind the use 
of the dashboard in this case. During the interview it became clear that two intertwined forces are 
shaping Lena’s actions, revolving around the multiplication tables check (MTC) that is statutory for 
primary schools in England. According to the UK government, the aim of the MTC is to determine 
whether pupils can recall their multiplication tables fluently. The test adds significant pressure to 
some schools and teachers and some parents and students find it particularly stressful. Lena (like 
other teachers) is concerned that the test is encouraging rote learning and creates unnecessary time 
pressures, therefore possibly contributing to maths anxiety for some pupils. Driven by both the desire, 
on one hand, that the school does better on the test and on the other hand that the pupils are supported 
as much as possible. The first matters as in essence the results will be used to analyse school 
performance that plays a role in parental decisions for selecting a school. The emphasis on individual 
pupils, however, was also important for Lena not only to support them to master specific 
multiplication tables but to use the data from the dashboard to help provide additional support 
wherever possible as it provided a diagnostic function that the MTC is not intended for. “The 
dashboard”, Lena said, “helps me see exactly which times table they struggle with [..] and if I had 
more time or a teaching assistant, I could target with precision”.  
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Conclusion  
We started this paper referring to the common rhetoric and aspiration in the field of Learning 
Analytics to design dashboards and other tools that support teachers so as, in turn, they can support 
students with their learning. Although it is assumed that LAD can lead to better support students and 
even more individualized learning (Molenaar & Knoop-van Campen, 2016), its effectiveness very 
much depends on the teacher’s competence to use LAD (Blömeke et al., 2015). Therefore, in this 
study we investigate two elements of teacher competence, namely their dispositions and performance 
towards the use of LAD in the classroom. Two data collections provide both quantitative (case 
Belgium) and qualitative (case England) data enabling a more holistic view on teachers’ competence 
to use LAD. Both cases are comparable as both samples involve primary education teachers and using 
LAD (as part of a digital learning environment) to inform classroom practice is in both countries a 
relatively new tool that can support teachers. 

First, we discuss the data from the Belgian case. The data demonstrated that teachers’ perceived value 
and self-efficacy towards using LAD are moderate. This is also reflected in the reported actual usage 
of the teachers. Although many teachers report to use digital tools that contain a LAD, they do not 
report to use LAD regularly. A possible explanation for the limited use of LAD, is that teachers 
actually do not have time for this or do not believe to have time to use LADs. Another explanation 
revolves around the perceived value of LAD in that the information that is presented on current 
dashboards is not valuable enough for teachers to justify their use. This is also reflected in the negative 
correlation we observed between teachers’ experience with using LAD in classroom practice and 
perceived value. Although there is a growing realization of advanced dashboards that can trigger 
interventions or even prescribe new pathways or strategies to improve student success (Kovanic et 
al., 2021), it is possible that the data presented on dashboards that are used at scale are rather limited 
and only present relatively simple descriptive information (such as accuracy, time). 

Second, we discuss the data from England. The case of Lena demonstrated that -although she 
mentioned to have limited time- LAD can be useful, at least to a certain extent. We saw how the 
dashboard is beginning to be part of her practice – an instrument that is being exploited in several 
ways leading to specific actions. We also saw how this is shaped, if not motivated, by the overall 
schooling context and the national multiplication tables test that creates additional pressure to her. 
Applying this lens reveals a complex interplay of factors that shape the use of the LAD in this case 
in practice. From the case of Lena, it becomes clear that a situated account of how and why LAD are 
used in practice is required, analogous to a situated action perspective (e.g., Suchman, 1987). 
Similarly, research in mathematics teacher training has demonstrated that a key element of teacher 
knowledge and instructional quality is the enaction of this knowledge in practice (Tabach, 2021). 

These results can inform the development of teacher training. The training may offer an answer to a 
key challenge in the area of Learning Analytics to facilitate teachers’ journey from information to 
insight to action (Molenaar and vanCampen, 2019). Based on the theoretical framework of Blömeke 
et al. (2015), it is assumed that teachers’ dispositions indirectly (through teachers’ situation specific 
skills) influence teachers’ actual performance. Targeted training that focuses on improving teachers’ 
perceived value and self-efficacy may be helpful to support teachers’ use of LAD in practice. For 
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example, it may be useful to present LAD and discuss explicitly which data can be helpful in 
classroom practice. Furthermore, from the case of Lena, it became clear that the use of LAD is very 
context dependent. Therefore, preparation for mathematics teachers requires not only acquiring 
general pedagogical training but bringing “the mathematics competence into play with the issues 
regarding the teaching and learning of mathematics” (Niss & Hojgaard, 2011, p.83). 
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In a previous study, we did a crossover experiment with 45 math teachers giving feedback to 60 
completed linear equation tasks in two conditions: the semi-automated condition in which they could 
re-use feedback and were encouraged to write atomic feedback; and a condition in which they wrote 
classic feedback. Atomic feedback consists of a set of formulation requirements that makes feedback 
significantly more reusable; instead of writing long pieces describing lots of different mistakes at 
once, they must (1) identify the independent error occurring and (2) write small, independent 
feedback items for each error. We already know that the semi-automated system led teachers to give 
significantly more feedback instead of saving time. This paper now explores the differences and 
similarities of the provided feedback in both conditions using text mining. We found that the word 
frequencies and sentiments are similar in both feedback types, while atomic feedback contains fewer 
abbreviations, more section titles, and more concrete instructions. 

Keywords: semi-automated assessment, feedback, atomic, reusable feedback, handwritten tasks. 

Introduction 
In this research project, we investigate how we can give feedback to handwritten math assignments 
more efficiently. After all, handwritten tasks remain important to train higher-order thinking skills 
and genuine problem-solving in mathematics education (Bokhove & Drijvers, 2010). Therefore, we 
propose a semi-automated approach: teachers write feedback items, and the computer saves these 
items so they can easily be re-used when other students make similar mistakes (Moons & 
Vandervieren, 2020).  

In this section, we first introduce atomic feedback, while the actual results of this project (Moons et 
al., 2022) are briefly presented in the research context. These are necessary to thoroughly grasp the 
differences between the two feedback types under investigation in the methods and results-section. 

Atomic feedback 

How to write feedback that can easily be re-used for other students? Long pieces of classic feedback 
are often too targeted to a specific student. Hence, we came up with atomic feedback: a collection of 
form requirements for written feedback from which we could show that it makes feedback 
significantly more reusable (Moons et al., 2022). To write an atomic feedback item, teachers must:  

(1) identify independent errors,  
(2) write small feedback items for each error separately, and 
(3) if an error reflects a structural mistake/misconception, create two feedback items: 

a. one item containing feedback on the misconception in general and  
b. one or more sub-items addressing specific mistakes.  
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Atomic items ultimately form a point-by-point list covering only items that are relevant to a student’s 
solution. The list can be hierarchical in order to cluster items that belong together. Clustering ensures 
that feedback can be written as atomically as possible and prevents teachers from writing overly 
specific items because it provides an orderly way in which to present related feedback to students 
(e.g., through thematic clustering or a visual presentation of both general and specific feedback on 
the same error). 

A comparison of classic and atomic feedback is presented in Figure 1. As demonstrated by this 
comprehensive example, any classic feedback text can be rephrased as an atomic text. 

 

Figure 1: A comparison between classic and atomic feedback 

Research context 

In a crossover experiment with 45 Belgian math teachers (Moons et al., 2022), the teachers wrote 
feedback on all completed linear equations tasks of 60 students in two conditions. All teachers were 
given a random selection of 30 tasks on which to provide classic feedback, and they assessed the 
other 30 in the semi-automated condition in which they could re-use feedback and were encouraged 
to write atomic feedback. Teachers got a small introduction training on writing atomic feedback. Half 
of the teachers started with writing atomic feedback, the other half with the classic feedback 
condition. Across all teachers, each task was assessed an equal number of times under both 
conditions. 

For the semi-automated condition, a self-developed plugin in Moodle was used. Teachers always had 
three options in this condition: formulating atomic feedback, indicating that a solution was perfect, 
or indicating that a solution was missing (see Figure 2a). When formulating feedback, they could use  
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Figure 2: Screens of the semi-automated tool with atomic feedback (a) & classic feedback (b) 

keyboard shortcuts to create a hierarchical list of feedback items. When a teacher typed something, 
the system searched the feedback items that had already been entered to detect possible matches (see 
Figure 2a). The system searched only within the feedback items that the teacher had already entered 
for that particular question. In the classic feedback condition, the teachers received only a text box to 
type feedback (see Figure 2b), with no possibility of re-using feedback and simulating the limited 
possibilities of writing feedback on a piece of paper. In both conditions, teachers were also asked to 
give each student’s answer a score out of 10. 

The 60 completed linear equations tasks on which teachers gave feedback, consisted of three items: 
(1) solving an equation, (2) manipulating a formula (see Figures 1 and 2), and (3) a word problem. 

In Moons et al. (2022), we could already prove that feedback items meeting the atomic feedback 
requirements were significantly (p < .001) more re-used than items classified as non-atomic (odds 
ratio: 2.6). Furthermore, results showed no significant time differences between paper-based classic 
feedback versus semi-automated atomic feedback, but the teachers in our sample wrote significantly 
(p = .02) more feedback characteristics using the semi-automated system with atomic feedback 
compared to giving classic feedback, with a Cohen’s d = 0.41, approaching a medium effect.  

However, a key research question remained unanswered: we know by now that the semi-automated 
system with atomic feedback resulted in teachers giving significantly more feedback instead of saving 
time, compared to the ‘paper-based’ condition with classic feedback, but how do the two types of 
feedback compare in practice? A first attempt toward answering this question is made in this paper.  
As more feedback does not necessarily mean better feedback (Glover & Brown, 2006), this first 
comparison of both feedback types is of crucial importance. 

Methods 
To answer this question, we explored the provided feedback for both the atomic as well as the classic 
feedback type using text mining techniques (Silge & Robinson, 2017; Kwartler, 2017). Text mining 
is the process of transforming unstructured text into a structured format to identify meaningful 
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patterns and new insights using computer algorithms. It can be seen as a qualitative research method 
(Ho Yu et al., 2011) ‘using quantitative techniques’.  

In this paper, we compared word frequencies, did a sentiment analysis, and compared the Markov 
chains of bigrams and the pairwise correlations for both feedback types. All the analyses were done 
using R (Silge & Robinson, 2017).  

Since the teachers participating in the study provided their feedback in Dutch, all analyses were 
conducted in this language. In the data pre-processing phase, we first removed all Dutch stop words 
(= words very frequently used like ‘a’, ‘the’, ‘of’,.. in English, which are semantically almost 
meaningless). To make the results interpretable for an English-speaking audience, only in the final 
data analysis step of reporting/visualising, we automatically translated all content to English using 
the DeepLr-package. You will notice that in the results section, sometimes two words are shown 
while we speak about individual words, stemming from the fact this is indeed a single word in Dutch.  

Results & Discussion 
Comparing word frequencies 

A common first step in text mining is to compare word frequencies. The frequency of a word is the 
proportion of the number of times a word occurs out of the total word count. In Figure 3, a scatter 
plot of the used words in both feedback types is given. Words close to the identity line have similar 
relative frequencies in both feedback types. It is apparent from this plot that most words scatter around 
this line, meaning that the majority of the words appear in both feedback types with a similar relative 
frequency. For example, ‘off’, and ‘x’ appeared almost equally frequent in both feedback types. The 
observation that most words appeared in both feedback types with an almost equal relative frequency 
was confirmed by calculating the Pearson’s correlation coefficient of the word frequencies in both 
feedback types. It returned a high, positive correlation of r(928) = 0.89 with 95% CI [0.87, 0.90]. 

 

Figure 3: Comparing the word frequencies of atomic and classic feedback  

Words that are far from the line are found more in one feedback type than the other. For example, 
‘super’ and ‘beautiful’ were found more in classic feedback, while ‘perfect’ was found more in atomic 
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feedback. This can be explained by the default presence of a button to immediately indicate ‘perfect’ 
for a good answer in the atomic feedback condition. In the classic feedback condition, teachers always 
had to write something themselves, and it seems they naturally chose a more diverse range of 
encouraging words. Also notable is the increased presence of a lot of abbreviations in the classic 
feedback condition, which DeepL understandably failed to translate, like ‘opl’ (Dutch abbreviation 
for ‘solution’), ‘vd’(= ‘of the’) or ‘antw’ (= ‘answer’). This was slightly confirmed by computing a 
two-proportions z-test of words of 3 characters or less in both conditions; there was a significant 
difference between atomic and classic feedback, z = 9.31, p < .001. Teachers shortening feedback is 
one of the well-known coping mechanisms described in the literature (Price et al., 2010) to overcome 
the workload stemming from giving feedback. It seems that our semi-automated system with atomic 
feedback restrains teachers from using abbreviations all too often, as they can re-use feedback items. 
This might render feedback more readable for students.  

Sentiment analysis based on given scores 

Analysing the sentiment of a text is often done by using a pre-existing lexicon that assigns a sentiment 
to individual words (like ‘beautiful’ = positive, ‘incorrect’ = negative); subsequently, the sentiment 
of the whole text can be determined (Silge & Robinson, 2017). However, in this crossover 
experiment, teachers were asked to give a score out of 10 to every question in both feedback types, 
meaning we could perform a sentiment analysis by using an (arbitrary) division in points. We looked 
at the words belonging to a score < 5 (sentiment: bad), to a score ≥ 5 and ≤ 7 (sentiment: moderate) 
and to a score > 7 (sentiment: good). The distribution of all these sentiments for both feedback types 
can be found in Figure 4.  

 

Figure 4: Comparing the sentiments of atomic and classic feedback 

The distribution of sentiments of both feedback types looks largely the same: proportionally, an 
almost equal amount of words is spent on bad answers, and atomic feedback features a bit more 
feedback on moderate feedback than classic feedback, which has, in turn, proportionally more words 
coupled to good answers. A Chi-Square Goodness of Fit test indicated that the sentiment distributions 
differed significantly across atomic and classic feedback, χ²(2, n = 31053) = 166.65, p < .001; 
although this result has little practical importance as this test is severely overpowered.  

Let’s look at the more characterising words for each sentiment in each feedback type than others, 
using the td-idf-measure (term frequency-inverse document frequency). We see that both the bad and 
moderate sentiments contain abbreviations for classic feedback, meaning they are more characteristic 
for classic feedback than atomic feedback for these sentiments. For the good sentiment, a variety of 
appreciation words appear in the classic feedback condition, while ‘perfect’ dominates the atomic 
feedback for this sentiment. Yet again, the default presence of the ‘Perfect’-button in the atomic 
feedback condition might have teachers stop bothering to write some more words of appreciation 
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when an answer was entirely correct. Not surprisingly, the top tf-idf values of words for the atomic 
feedback type are higher, as feedback could be re-used in this condition, making some words more 
dominant in their importance for this feedback type than less re-used words in classic feedback. 

Cluster analysis: Markov chains of Bigrams & Pairwise correlations 

To increase the readability of the plots in this paragraph, we limit ourselves to the feedback given in 
question 2 (see Figures 1 and 2) on the linear equations task in both conditions. In Figure 5, you can 
find the visualisation of the Markov chains of atomic feedback (blue) and classic feedback (red). It 
visualises the most common two words’ co-occurrences (= bigrams). Although it represents a directed 
graph, we have omitted the arrows to increase readability. We see that atomic feedback has a denser 
linking structure between consecutive words. Notably, more concrete instruction is given on fixing a 
particular error, while the classic feedback limits itself more often to short statements like ‘incorrect 
order of operation’, ‘isolate h’,…  

 

Figure 5: Markov chains of bigrams for atomic feedback (blue) and classic feedback (red) 

Recall that atomic feedback consists of a hierarchical list in which different items can be clustered, 
which can also be seen in its Markov chain: the different components of the graph, often contain a 
kind of title like ‘calculation rules’, ‘notation’, ‘step 1’,… These structuring elements hardly occur in 
the classic feedback. 

As a last step, we also compared pairwise correlations of the words occurring in the same feedback 
to a student’s answer. This comparison is different from the previous one with Markov chains. The 
difference is that the co-occurrence network (Figure 5) asks a question about which word pairs occur 
most often, and the correlation network asks a question about which words appear more often together 
(not necessarily consecutive) in the feedback to a student’s answer than with other words. In Figure 
6, you can find the correlation network of the atomic feedback given to question 2 (see Figures 1 and 
2). You see that the different clusters appeal to the same student’s mistakes. Also, this network shows 
a denser linking structure than the correlation network of classic feedback (not shown). 

both

pi

2step
f irst

bring

double

unknown

only

last f actor

letter

1

all

transf er

one

error

incorrect

solution

stand

hinstead of

second

then

ev ery where
y

2pir

think

additional

use

lef t

term

notation

v iew

y our

side

lef t side

change

order

edit

bl

same
equality

solv e

addition

place

right side

2pirh
a

operations

wrong

correct

times

sides

f actors

in addition to

tip

mathematical

r

arrows

arrow

terms

state

parts

b

good

exercises

subtract

explanation

again

2pih

prev ents

response

multiplication

so that

f etch

in which

implement

isolate

equations

segregated

remain

transition

of f

install

road sections

separate

try

part
calculation rules

pi

2

f irst

step

both

bring

last

double

f actor

2pi

two

cond

h

y

all

other

term

v ery

same

a

ax

additional

y ou

sides

in addition to

r

order

must

f actors

only

well

b

exist

edit

then

terms

change

transf er

transf er rules

any

some

incorrect

instead of

if

lef t side

solution

steps

1

arrows

2pir

of f

side

arrow

good

isolate

exercises

hav e
reduce

where

operations

explanation

correct

implement

put

bef ore

letters

needed

parts

state

plus

exchanged

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 229



 

Figure 6: Correlation network of atomic feedback given to question 2 

Conclusion 
To wrap up this paper, we collected all our observations in Table 1. With this explorative study 
comparing atomic and classic feedback using text mining techniques, we identified some essential 
characteristics of both feedback types. Observation (D2) emerges naturally from the design of the 
semi-automated feedback tool, while observation (D4) is an essential characteristic of atomic 
feedback; however, it is still surprising that teachers do not naturally structure their feedback in the 
classic feedback condition. The observation of Price et al. (2010) that teachers shorten feedback to 
reduce the workload of giving feedback is also reflected in Table 1: differences (D1), (D3) and (D5) 
seem to signal this coping mechanism in the classic feedback condition. In the atomic feedback 
condition, this urge seems less prevalent, as teachers could reuse feedback and explaining feedback 
in a bit more detail was seen as an investment for assessments to come. When comparing the (relative) 
number of words belonging to bad, moderate and good scores (S2), it is notable that teachers spend 
an almost equal (relative) number of words in both conditions. The default presence of a ‘Perfect’-
button in the atomic feedback condition might have discouraged teachers from spending some more 
words on good answers. Some might wonder how similarity (S1) can co-exist with the reported 
differences. It is important to note that Figure 1 compares relative frequencies. So strongly correlated 
word frequencies only indicate the same ‘vocabulary’ was used when giving feedback. However, as 
the atomic condition contains more feedback, these words appear more repeatedly in that condition. 
So, while the (same) teachers used a similar vocabulary in both conditions, this similarity is not at 
odds with the observed differences.  

Two critical follow-up questions remain: (1) Do both feedback conditions reflect the same types of 
feedback and address the same errors? (2) To what extent do these differences make feedback 
better/worse to interpret for students? Question 1 is already being investigated; question 2 is on the 
wish list. 
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Table 1: Observed similarities and differences between atomic and classic feedback 

 Atomic Feedback Classic feedback 

Similarities (S1) Similar in both word usage and relative word frequency (r = 0.89) 

(S2) Equal distributions of feedback belonging to bad, moderate, and good answers 

Differences (D1) More feedback (Moons et al.,2022)

(D2) Good answers often labelled 
‘perfect’ without anything more 

(D3) Limited use of abbreviations 

(D4) Many structuring elements such as 
section titles 

(D5) More concrete instruction on how 
to improve mistakes 

(D1) Fewer feedback (Moons et al.,2022)

(D2) Good answers praised with a 
variety of appreciation words 

(D3) Abbreviations common 

(D4) No structuring elements 
 

(D5) More limited to short statements 
on mistakes 
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The study focuses on ways of enhancing mathematics teachers educated use of Technology-Based 
Interactive Resources (TBIRs) in merging the Experimental-Mathematics (EM) with Formal 
Mathematics (FM). We designed and analysed professional development environments offering the 
teachers relevant experience in learning, teaching, and designing resources on their own. The paper 
presents the case study of an experienced leading teacher (Sol) in three time-points during the first 
year of his professional development. The study implies amalgamation of three aspects of teachers’ 
professional knowledge: mathematical knowledge needed for EM – FM merging; pedagogical 
functions of TBIRs; instrumentational orchestration. 

Keywords: Technology-Based Interactive Resources, Experimental Mathematics, Instrumentational 
orchestration, Teachers’ professional knowledge.  

Theoretical background 
The information technology has changed the nature of mathematical experience, suggesting that 
mathematics may become an empirical discipline, a place where things are invented by running 
experiments and observing what happens (e.g., Borwein, 2016). The process has led to the 
development of the new mathematics approach called "experimental mathematics". The approach 
builds on previous approaches to mathematics, yet adds something new - extensive use of computer 
tools such as algebraic manipulations and calculations, sophisticated visual tools, simulations and 
data analysis to deal with mathematical problems. To infer from computer-based results, one must be 
able to distinguish relevant from irrelevant, variant from invariant, obvious from proof-demanding, 
random from systematic. These types of mathematical activities, invoked in teaching approaches 
based on educated use of TBIRs, bridge the tension between “traditional rigorous” mathematics and 
EM enabled by modern technology. There are profound differences between the traditional page in 
math curriculum materials that appears on paper and the new page that derives its principles of design 
and organization from the screen and the affordances of technology (e. g., Naftaliev & Yerushalmy, 
2017). In traditional curriculum materials, content is displayed in a static mode and students are 
invited to interpret it with limited possibilities of interaction, e.g., by pointing to a figure or tracing 
with a pencil. In contrast, recent technological advancements have enabled the production of 
TBICMs: a new type of materials that enables a broader interaction between the users and content. 
TBICMs comprise a set of interactive diagrams (IDs), namely, a relatively small unit of an interactive 
materials that can be used for different purposes: an exposition, a task, an exercise, etc. In such 
materials, students are invited to interpret the content by interacting with it, e.g., by playing a video 
clip, interacting with a graph, or changing the given examples (e. g., Naftaliev, 2018). 
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Considering the relevant school mathematics learning and teaching implications, Arzarello & 
Manzone (2017, p. 123) remark that teachers can create a classroom climate, according to which 
students enter into the logic of inquiry: “When such a climate is introduced in the classroom students 
learn to rely on arguments and reasoning rather than authority, they make use of their factual 
knowledge, and they come to a deeper understanding of the way mathematical facts are related. 
Experimental and theoretical features will not be seen any longer as contrasting but as complementing 
components of processes that coach students to investigate, conjecture, and prove.” 

Mathematics teachers find it challenging to integrate technological interactive resources into their 
lesson plans and revise their practice accordingly (Trouche et al., 2013). Naftaliev (2018) mentions 
three challenges that prospective teachers face when integrating TBIRs in teaching-learning.  The 
first is a mismatch between TBIR orientations and their own. Although aware of the pedagogical 
possibilities of TBIRs, they continue to interact with the materials in conventional ways. Second, 
there is an imbalance between what students learn by engaging in TBIR-facilitated interactions and 
what they “should” learn according to the teachers’ goals. Third, teachers have difficulties in dealing 
with knowledge that students develop via TBIRs and in designing teaching-learning processes to help 
them progress. 

Thus, teaching with interactive curriculum resources should be considered more than a technological 
change; indeed, it is an attempt to create new paths to the construction of mathematical meaning 
(Naftaliev, 2018). It should be the aim of TBICM-aided mathematics teachers to orchestrate students' 
learning and manipulation of tools by implementing well designed tasks and lessons (Leung, 2017). 

To facilitate students’ engagement with interactive resources, teachers must learn how to promote 
and guide the exploration while bridging the tensions among the curricular requirements, 
opportunities for students’ active personal learning, and their own beliefs, values, and preferences 
(Naftaliev, 2018). They need to examine the interactions among the mathematical content to be 
taught/learned; interactive curriculum resources that directly affect the way the content is taught; their 
instructional practices; and students’ working modalities and experiences within the specific 
educational setting. The mutual influence of teacher and material implies that curricular resources 
allow but also constrain their use by teachers, as do teachers’ orientations toward curricular resources 
(Choppin et. al., 2018; Naftaliev, 2018). The emergence of digital curriculum resources has blurred 
the boundaries between designer and user. Historically, curricular resources were designed by small 
teams of people who were external to the context in which these resources would be used 
(Gravemeijer, 2004). With the advent of digital curricular resources, however, teachers can undertake 
design work at two stages: at inception and in translating resources into teaching tools ((Pepin et al., 
2017; Choppin et al., 2018).  

Naftaliev & Yerushalmy studied how, as the core of engaging TBIRs, IDs can be designed to form a 
pedagogical tool for various teaching intentions and students’ needs and developed a semiotic 
framework for pedagogical functionality of interactive materials (e.g., Naftaliev & Yerushalmy, 
2017; Naftaliev, 2018). The framework is characterized by three types of ID functions that address a 
variety of learning and teaching settings: presentational (refers to type of example in the ID), 
orientational (refers to mode of representations in the ID), and organizational (refers to the connection 
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between all the components of the ID).  The presentational function refers to the three types of 
examples in IDs: specific, random, and generic. “Sketchiness” vs. “rigorousness” of diagrams is an 
important factor in user orientation. The organizational function looks at the system of relations 
defining wholes and parts and specifically at how the elements of text combine together. IDs can be 
designed to function in three different ways: Illustrating, Elaborating, Guiding. Similar TBIRs 
designed according to different pedagogical functions should be considered different learning settings 
(ibid.). The results of the studies find this framework valuable and productive as a tool for teachers’ 
professional development (Naftaliev, 2018). 

Trouche et al. (2013) and Gueudet & Trouche (2012) refer to instrumental orchestration as the 
teacher’s intentional and systematic organization and use of the various artefacts available in a 
learning environment in order to guide students’ learning. Teachers’ orchestration includes 
arrangement of learning environments, or “didactical configurations”, and intentional guidance of 
their exploitation modes (ibid.). When teachers interact with TBIRs, they develop particular schemes 
of using it. The schemes may vary from teacher to teacher even if the same resource is used because 
they depend on such major factors as the teachers’ orientations and knowledge.  

Research design  
Table 1: Stages of teacher engagement with TBIRs in the course of the PD 

Teachers 

as learners 

In first 2-day workshop the participants experienced learning mathematics based on use of TBIRs in 
merging the EM with FM. 

Teachers 

as 

reflective 

learners 

During the second 2-day workshop the participants were exposed to the theoretical frameworks and 
reflective analysis guided by the researchers, of the materials and of the learning and teaching 
processes at the first workshop, through the mathematical and pedagogical functionality lenses. In the 
workshop the teachers were also exposed to possibilities of work in the GeoGebra platform and to the 
general aspects of the project and its structure and purposes. 

Teachers 

as 

designers 

The workshops were followed by group work coordinated by the leading teachers. Each one of three 
groups chose a topic and designed a teaching unit. The participants were asked to justify their design 
from two principal viewpoints: mathematical approaches and pedagogic functionality. The units were 
tried-out by their peers and discussed in pairs and in full group so that each designer got feedback on 
his/her group’s work. This was followed by another workshop that included the reflective analysis by 
the participants of their experiences with the units both as teachers, i.e., in reference to the units they 
had designed, and as learners, i.e., in reference to their peers’ units. 

In our research, we study ways of promoting secondary and high-school mathematics teachers’ 
knowledge, skills, and orientations in order to enrich their teaching practices with educated and 
perceptive use of TBIRs, for the implementation of the experimental-mathematics approach in school 
alongside with formal, deductive mathematics. To attend this objective, we design and analyze five 
stages in the course of the professional development (PD): teachers as learners; teachers as reflective 
learners; teachers as teachers; teachers as reflective teachers and teachers as designers. Each stage is 
designed and re-designed in several cycles to provide teachers with necessary kinds of experiences 
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with TBIRs. The following questions we find important to answer, on the way of attaining the 
objective: (1) Are there amendments in teachers’ attitudes towards mathematical background of the 
TBIRs designed by them, and if there are – how they can be characterized? (2) Does the teacher start 
to differentiate among different pedagogical functions of TBIRs? (3) Are there amendments in 
teachers’ orchestration modes applied at different stages of designing and implementation of the 
TBIRs designed and/or learned by peers? 

During the first six months of PD, we had performed a series of meetings in various formats: six 
plenary workshops and regular zoom or face-to-face meetings of working groups coordinated by the 
leading teachers / research assistants. The three stages in the course of the PD described in Table 1. 
The data for the case study in the paper was picked from the documents obtained during the described 
above period of the project, reflecting the three different instances of the period. The participant (Sol, 
pseudonym) is an experienced leading teacher and teachers’ educator. We analyse Sol’s evolution 
using the three documents which were obtained at three different timepoints of the first year: (1) The 
questionnaire answered by the participants prior to the beginning of the project, and the lesson plan 
submitted at the same time. (2) The first unit based TBIRs designed by the Sol’s group after the first 
two workshops. (3) The questionnaire answered after the unit had been designed. These documents 
are being analyzed through the lenses of the three theoretical frameworks. 

Sol’s evolution as teacher at three timepoints  
Orchestration modes (Response to Research Question 3) 

At the first stage, before the workshops, the usage of interactive tools in Sol’s document was only 
optional as an addition to static materials: printed tasks and exercises using Google forms.  

Unlike the first stage, the second one was organized around several interactive tasks with variety of 
didactic purposes: exploratory tasks, exercising, demonstration. The students were encouraged to 
engage with the tasks, to work with the peers, to present and discuss their work with whole class, and 
only in the end the teacher demonstrated the key idea of the unit.  

Supposedly the difference between the modes at the first and the second stages was due to the 
workshops held in between. An important fact is that Sol explicitly listed some challenges he faced 
related to orchestration of classroom activity based on TBIRs: “waste” of time, documentation of 
students’ work, choice of platforms, design of tasks, etc. Sol didn’t mention any challenges either in 
mathematics or in pedagogical functionality of TBIRs. 

Mathematical contents (EM / FM) (Response to Research Question 1) 

As it was described by Sol in the questionnaire at the first stage, the main role of technology is in 
“discovery of new theorems and investigation”. Sol did not provide any constructive suggestions 
regarding the role.  

After the first workshop, Sol and his group chose to design a unit with IDs on loci, focusing on the 
perpendicular bisector and on the locus of vertex of the triangle of given area and with two other 
vertices fixed. As the group participants emphasized, the task focused on loci which are straight lines. 
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The GeoGebra applet on which one of the units is based, was downloaded from the Ministry of 
Education site. 

The notion of locus in formal mathematics involves necessary and sufficient conditions on points 
belonging to it: in order to claim that a set of points is a locus defined by a certain property, one has 
to ensure that for all the points in it the property holds, whereas for any other point it does not hold. 
Therefore, developing an adequate intuition involves reference to both these issues. In formal 
mathematics, any definition is explicitly or implicitly an “if and only if”, that is, two-way, statement. 
Nevertheless, in formulating formal definitions, the “if and only if” part is frequently omitted, 
remaining implicitly implied, but not explicitly stated. Unlike a general mathematical definition, a 
proper formulation of the definition of locus explicitly requires both logical directions.  

The locus in the first part of the Sol’s group unit is that of a point equidistant from the endpoints of a 
given segment. The “candidate” for locus is formed in a dynamic (GeoGebra) applet as a trace of the 
moving point whose distances from the endpoints are maintained equal; they are presented 
numerically or graphically, opting for any of the two representations. The activity and instructions 
given to the students, lead to the understanding that all the points equidistant from the segment 
endpoints, are on the bisector perpendicular. No instructions or suggestions are aimed at what is 
didactically coined as “non-examples”; in this case, at points that do not belong to the bisector 
perpendicular, to make sure that for them the property of being equidistant from the segment 
endpoints does not hold. Moreover, the interactive diagram design is limited to constructing 
equidistant points alone, not suggesting to consider an arbitrary point, though the diagram is designed 
within the open platform.  

The locus presented in the second part of the unit, is that of the third vertex of a triangle whose area 
and side (i.e., two vertices) are given both visually and by their numerical values. Two points on two 
sides of the given segment are suggested as “candidates”; these points are “draggable” and 
“traceable”, thus suggesting the locus form. In this case, as well, the implication was one-way, 
through two lines resulting from the applet.  

The diagram design leads to certain intuition on how the locus of triangle vertices is located. Namely, 
the locations of the vertices suggested in the example lead to understanding that they are located on 
two separate lines parallel to the given side. If not for the advantages of technology, this conjecture 
would probably be far from obvious. On the other hand, provision of abundant numerical data in the 
diagram has two consequences: first, it explicitly links the notion of locus to analytic geometry, both 
in tools to be used and in the representation of the result; second, it provides redundant information 
that does not enhance the students’ insight into the geometric configuration. Another limitation refers 
to the visual effect of the limited-scale field in which the applet is designed, the scale of the applet 
field being non-variable. The open GeoGebra platform enables “unlimited”, “infinite” dragging, thus 
providing the image of the object as a line. The finite working space renders the result to look like 
two parallel segments, and it is far from obvious that they are parts of infinite lines who are the locus 
sought for in the problem. 

The title of the ID given by the site of the Ministry of Education is: “The triangle by two vertices and 
area”. The title given by the group is “Triangles of constant base and equal areas”. Actually, both 
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titles do not mention a “locus”; thus, it seems not to be necessarily what is being sought for, though 
it is implicitly understood and mentioned by the participants. The explicit definition of locus is 
lacking in the whole unit; an explicit formal proof doesn’t seem to be expected in this specific task, 
unlike the task with perpendicular bisector where a partial proof was expected, referring to one logical 
direction of the locus property. To be sure, in intertwining experimental and formal mathematics, the 
experimentation and the formal proof of the conjecture, ensuring that an object observed with the aid 
of the tool stands for the formal definition, are two sides of the same coin. 

 As we have observed in the task designed by his group, the reference to formal or experimental 
mathematics, as well as to their intertwining, as mentioned e.g., as “discovery of new theorems”, 
lacked some important features. No clear-cut definition was given either to locus in general, or to 
perpendicular bisector of segment, so that the starting point of a theorem to be discovered is absent. 
In addition, the experimentation as planned in the unit referring to both loci, leads only to one 
direction in the locus properties, with no indication of the “if and only if” part in the definition of the 
locus concept. Though Sol obviously makes use of visualization features provided by the tools, his 
readiness to apply them in the teaching unit is limited, subject to his conception of time restrictions 
and to the matriculation exams expectations.  

In the reflective questionnaire, after the group learning and teaching activity, the claims of 
mathematical discovery remain at the declarative level, no deeper remarks or suggestions provided 
in either topic. Though one of the peers explicitly asked whether a formal proof was expected, 
eventually Sol made no amendment in his initial design. 

Pedagogical functions of TBIRs (Response to Research Question 2) 

As we can conclude from the documents’ analyses, there is no explicit reference to pedagogical 
functions in Sol’s documents. The analysis of TBIRs’ pedagogical functions in Sol’s documents 
presented here was performed by the researchers. The materials Sol referred to in the questionnaire 
at the first stage were static and interactive materials were only optional. Nevertheless, we have 
discerned several implicit pieces of evidence on variety of pedagogical functions in the unit designed 
by Sol’s group at the second stage.  

Of the four activities involved in the first part of the unit, only one was designed as an interactive 
diagram based on the open GeoGebra platform. Its organisational function was that of an illustrating 
diagram. It demonstrated only the points on the perpendicular bisector, and suggested no possibilities 
for further exploration, though the platform being open, these possibilities are not restricted. From 
the point of view of presentational function, this is a generic example: it does not depend on specific 
values of endpoint co-ordinates, enabling “playing-around” with the given segment. Thus, the 
implication is that whatever the observations are based on this diagram, they do not depend on the 
chosen segment. From the point of view of orientational function, the diagram is designed in a metric 
mode, and has no characteristics of a schematic mode: the information the students receive is pre-
designed and focuses on purely numeric values, explicitly providing the distances of the point from 
the segment endpoints.  

The second part of the unit focused on locus of the third vertex of triangle whose two vertices and 
area are given. It is intended to lead to the appreciation that the constraints on the movement of the 
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third vertex of the triangle of given side and area are such that (the part of) its locus is a straight line 
parallel to the given side. Moreover, it explicitly suggests trying location of vertices at two sides of 
the given line, thus leading to both (disjoint) parts of the locus. The diagram is of the guiding type 
because it provides the following resources: the numerical values of the points coordinates, of the 
area, and upon the request – the heights of the triangles; the traces of the vertices being dragged allow 
conjecturing on the locus being asked for. The vertices of two triangles given in the applet explicitly 
suggest that the locus consists of two separate parts. The diagram is purely metric, presenting the 
numerical data of all the given objects with no option of disregarding the numerical data and 
presenting it as a geometric sketch. The example in the diagram is of the generic type, enabling the 
variation of all the given objects. 

To sum, we have discerned variety of pedagogical functions in the interactive unit designed by Sol’s 
group at the second stage, such as illustrating and guiding functions, metric modes of IDs, generic 
example. As we have observed in the analysis of the questionnaire following the design and 
implementation of the first unit, he referred to pedagogical functions of units – both his own and of 
his peers’. Sol chose to characterize his peers’ unit as elaborating diagram, referring to its open 
character, too open to the best of his judgment. To his opinion, there are too many options for a 
student to choose from, therefore the student will need further instruction and direction; he claims the 
unit would profit from subdivision into smaller parts. After he was involved in learning and teaching 
with the units, he could appreciate the importance and the relevance of pedagogical functions due to 
this experience. It was apparently much less lucid to him at the initial stage. 

Conclusions and challenges  
To sum up our observations and analysis, we discern the beginning of formation of the new attitude 
to teaching mathematics interweaving formal and experimental approaches involving TBIRs. As we 
have observed, the teachers refer to pedagogical functions of their units only after they themselves 
have been involved in learning and teaching with TBIRs. And yet, the reflective analysis of the units 
designed by the groups of teachers resulted in both the researchers’ and the teachers’ conclusion, that 
the units designed by the teachers at that stage did not reflect at a satisfactory level the expectations 
of teaching and learning modes. One of our conclusions was that the teachers’ initial intention in their 
design was going along the “well-trodden paths”, i.e., translating the paper-and-pencil tasks into 
interactive tasks without any change in the teaching paradigm.  

Thus, we infer that during the first year, the teachers’ mode of action with TBIRs was very much 
influenced by the long experience accumulated in their previous teaching with static materials and 
based on apposite paradigms. Studies conducted about teachers’ selection of resources and classroom 
practices support our conclusion concerning teachers’ choice of design principles being closely linked 
to their beliefs and teaching practices (e.g., Naftaliev, 2018). We assert that the real challenge is 
changing the paradigm and not only introducing this or that technological platform. The paradigm 
comprises the amalgam of the three key aspects: merging EM and formal mathematics based on the 
TBIR use, including the appropriate deepening and enhanced flexibility of the teachers’ mathematics 
knowledge; classification of pedagogical functions of TBIR; instrumentational orchestration modes. 
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Sorting tasks are commonly used in mathematics education to highlight certain features of a group 
of objects or a certain concept. Such tasks can also use extra-mathematical objects which, compared 
with inner-mathematical objects, are not reduced to essential features and often contain additional 
ones, hence are more complex. This makes the application of mathematical ideas to extra-
mathematical objects more demanding and is of special interest because it requires one to transfer 
and apply mathematical ideas outside the world of mathematics. Our goal was to identify students’ 
classification strategies. In this study, 29 students were presented with ten traffic signs, representing 
extra-mathematical shapes, and were asked to classify them regarding reflective symmetry. This was 
done in a digital environment, providing automated real time feedback on the correctness of the 
classification. Signs clustering analysis highlight complex combinations of strategies. 

Keywords: Reflective symmetry, mathematical applets, feedback, open learning environments. 

Introduction 
As using examples and non-examples has been shown to be beneficial for learning (Tennyson, 1980), 
we ask students to classify extra-mathematical objects (traffic signs), being examples for reflective 
symmetry, as having one or multiple lines of symmetry (LoSs). This was realized in a digital 
environment: It allows students to interact with objects and gain feedback based on the interaction in 
real time – a feature that may influence the working process. Importantly, feedback may support the 
learning process (Hattie & Timperley, 2007). Therefore, acknowledging the inherent difficulty of 
tasks that involve extra-mathematical objects and the interference of feedback in problem-solving, 
we asked: Which clusters of extra-mathematical shapes emerge based on students’ sorting patterns? 

Intuitiveness on categorizing traffic signs with respect to reflective symmetry 
Categorizations seem to be influenced by intuition, meaning that some examples are intuitively 
accepted for representing a concept while others are not (Tsamir et al., 2008). That is, intuitive (non-
)examples are directly acceptable without further need for justification (Fischbein, 2002). Secondary 
Intuitive describes that a second level of intuition is developed through instruction (Fischbein, 2002).  

Such a categorization of (non-)examples being intuitive or non-intuitive was found to be useful for 
categorizing basic geometric shapes regarding reflective symmetry (Noster et al., 2022). Students 
face different criteria which may influence their judgement, when asked to classify traffic signs with 
respect to reflective symmetry. As this represents a multitude of elements, this can be a rather 
complex task due to the amount of information that needs to be processed (Sweller, 2012), what 
makes assumptions on (non-)intuitiveness of categorizing objects rather difficult. However, we 
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present four criteria, which appear to the authors as being the most important ones as they are derived 
by a careful analysis of the signs and in one case by previous empirical findings, representing possible 
indicators for intuitiveness of (non-)examples. 

Similarity of Inner and Outer Shape of Signs 

The overall shape (circle, triangle, square) of the sign is defined by the outer most boarders, which 
we refer to as outer shape. Within that, an inner shape can be identified, meaning that there is a shape 
inscribed into the outer shape (e.g., arrow, exclamation mark, circle). The relationship between the 
inner and outer shapes may impact the classification task, as if they are not similar to each other (e.g., 
an arrow in a circle), each of them must be examined and compared to the other regarding their LoSs. 

Basic Geometric Shapes 

Shapes such as circles, triangles or quadrilaterals are in the focus of mathematics instruction and can 
be assumed to be somewhat familiar to learners. Therefore, they are of relevance for examining extra-
mathematical objects, especially when they are dominantly apparent as they are in traffic signs outer 
shapes and to some extent the inner shapes as well. 

Orientation of LoSs 

It was shown that students seem to struggle with inclined LoSs, meaning that they are oriented neither 
horizontally nor vertically (Kuchemann, 1980; Hoyles & Healy, 1997). Therefore, the orientation of 
the LoSs needs to be examined, as there is reason to believe that inclined LoSs are harder to identify. 

Number of LoSs Inherent in a Sign 

Tsamir et al. (2008) raised the point, that the more critical attributes an object is missing the more 
likely it is to be accepted intuitively as non-example and therefore, may affect student’s ability to 
categorize geometric shapes. This may also be the case for categorizing traffic signs. It may be more 
likely to identify multiple LoSs, the more LoSs are inherent of a sign. For example, detecting two out 
of an infinite amount of LoSs (circle) may be easier than identifying two out of two LoSs. 

Methodology 
Research Field and Population 

By 4th-grade, students from both Germany and Israel are expected to understand reflective symmetry 
in two-dimensional geometry. They should be familiar with the term "Line of Symmetry", be able to 
identify LoSs, and to correctly classify shapes based on reflective symmetry-related characteristics. 

Data was collected (N=29 – 12 female /17 male, 9-12 years, M=10, SD=0.9) in a pilot project carried 
out in Israel (n1 = 12) and Germany (n2 = 17) with further results being published separately (Noster 
et al., 2022). We are aware of a statistically significant difference in age between the two country-
based groups (Mann-Whitney's W-value=38, at p<0.01, with Rank-Biserial Correlation of 0.63), 
however none of the research variables proved a difference between these two groups. Also, there 
were no gender differences between the country-based groups, with χ2(1)=2.26, at p=0.13. Therefore, 
we treated the whole population as one group. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 241



 

 

Research Tool and Process 

Our main research tool was a first version of an applet integrated, designed and developed using 
GeoGebra. The applet presents users with different shapes that are to be classified as either owning 
or not owning a certain property. This task design was used in a small series of three applets (see next 
section). In the task discussed in this study ten traffic signs are presented to the participants, which 
they are asked to classify by dragging each image into one of two regions (see Fig 1); one region 
would hold the images with a single LoS, the others – images with multiple LoSs. This builds upon 
the previous task in which participants were asked to decide whether objects have a line of symmetry 
or not and aims at a different aspect of reflective symmetry (meaning that objects may own multiple 
LoS at the same time). After dropping a shape in one of the regions, immediate feedback is available 
in the form of an updated cumulative count of correct and incorrect classifications. Users can keep 
dragging shapes from anywhere to anywhere on the screen. This allows for learners to analyze their 
mistake and revise it, which may have remained unnoticed without the feedback function. The 
automated feedback therefore serves as a tool to provide learning opportunities, that makes students 
aware of their mistakes. We ran the applet on either a large-screen tablet or a touch-screen laptop. 

 

Figure 1: GeoGebra applet used in this study 

Data Collection, Preparation 

Data collection took place in early March 2022. Members of the research team had met with each of 
the participants individually. In Israel, these meetings took place in the students’ homes, after getting 
an approval from their parents; in Germany, these meetings took place in school, after getting an 
approval from their parents, the responsible teachers as well the school management. First, the 
researcher made sure – by asking them directly about it – that the participant was familiar with the 
concept of reflective symmetry and was able to classify shapes based on this property. Then, the 
researcher presented the participant a similar (non-symmetry related) applet, which had the very same 
graphical interface and made sure that the participant got familiar with the interface and engaging 
with the applet, as well as the feedback. Next, the researcher presented the participant with a 
symmetry-related applet where they were asked to classify quadrilaterals based on the existence/non-
existence of LoSs (Noster et al., 2022), an applet that is not included in the current analysis. Finally, 
the researcher presented the participant with the applet studied here and let them use it by themselves 
until they stated that they were done. Each such meeting was a few minutes long (up to approx. 5). 
While using the applet, we captured the screen, and used these recordings for our analysis. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 242



 

 

The videos were manually coded with the basic unit of analysis being an image-movement, that is, 
dragging and dropping a traffic sign image from one region on the screen to another region. We had 
524 image-movements, with number of image-movement per participant ranging between 10–69 
(M=18.1, SD=13.9). Most common were movements from the “pool” (the area where all the images 
are initially located) to either the single LoS (157, 30% of all shape-movements) or the multiple LoSs 
(151, 29%) areas. There were relatively high instances of image-movements between the symmetry 
classification areas, either from the single LoS to the multiple LoSs (114, 22%) or vice versa (84, 
16%), and only 18 image-movements (3%) from either of these to the pool area. We documented the 
following fields for each movement: action ID (across the whole population, to make each movement 
distinguishable), user ID (so that movements can be linked to the corresponding student), user-action 
number (count of actions for each user ID), country, object dragged, area from which the object was 
dragged [pool, single symmetry, multiple symmetries; see figure 1], area in which the object was 
dropped [pool, single symmetry, multiple symmetries; see figure 1], correct classification [yes, no, 
N/A (in case of dropping at the pool)]. These fields were used for calculating the variables. 

Research Variables 

To explore strategies of sorting traffic signs by their LoSs (single vs. multiple), we measured 
participants’ interactions with these images. The following variables were measured for each traffic 
sign image separately. 

Total Moves. Number of steps in which the traffic sign image was dragged. 

Correctness on First Attempt [0=No, 1=Yes]. Whether the first classification attempt of a traffic sign 
image was correct. 

Step of First Attempt to Classify. Serial number of the step in which the traffic sign image was first 
attempted to be classified, whether this attempt was successful or not. 

Data Analysis 

For answering the research question, we used hierarchical cluster analysis. Using this method, we 
partition the objects population into groups (clusters) where items in each group are "similar" to each 
other more than to items in other groups; similarity is based on the values of the research variables. 
This is a bottom-up, unsupervised method that makes no prior assumptions on the way the data is 
organized (cf. Kaufman & Rousseeuw, 2009). In our case, each object (traffic sign image) is to be 
considered as residing in a 3-dimensional space defined by the three research variables; we used 
Pearson correlation to measure distance between objects in this space. Variables were standardized 
using Z-scores before clustering. Analysis was conducted in JASP 0.14. 

Findings 
Characterizing the Classification Process 

Examining our participants' interaction with the applet vis-à-vis the three research variables gives us 
a rich understanding of their behavior. Analyzing our data at the level of the traffic sign images, we 
may infer not only how difficult they were to classify (i.e., Correctness on First Attempt), but also 
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the way our participants strategized their classification (Step of First Attempt) and to what extent they 
interacted with them later (Total Moves). 

On average, it was the Road Closed image that was attempted to be classified the earliest (M=3.8, 
SD=3.9), and Pass This Side was attempted to be classified the latest (M=9.0, SD=4.1). The three 

images with the highest rate of correctness were Priority Road, Proceed Straight, and No Entrance— 
all with M=0.83, SD=0.38—and the image with the lowest success rates on first attempt was Yield 

(M=0.24, SD=0.44). Regarding total moves throughout the applet use, Yield took the highest average 
(M=2.21, SD=1.89), and No Stopping took the lowest average (M=1.43, SD=0.84). Note that 

participants were able to move objects as often as they wished. Findings are summarized in Table 1: 
Characterization of the traffic sign images' classification (highest value/lowest value of a column) 

Table 1 show that extremal values of the research variables do not coincide for specific traffic sign 
images. That is, our data depicts a complex relationship between the research variables, hence we 
used cluster analysis, which is multivariate by its very nature. 

 

Image Traffic 
Sign 

Average (SD) Image Traffic 
Sign 

Average (SD) 

Step of 
First 

Attempt 

Correctness 
on First 
Attempt 

Total 
Moves 

Step of 
First 

Attempt 

Correctness 
on First 
Attempt 

Total 
Moves 

 Priority 
Road 

6.2 (3.1) 0.83 (0.38) 1.83 
(1.93) 

 No 
Parking 

6.9 (3.9) 0.59 (0.50) 2.10 
(1.80) 

 Proceed 
Straight 

5.5 (3.7) 0.83 (0.38) 1.69 
(1.69) 

 Follow 
This 
Way 

8.2 (6.1) 0.76 (0.44) 1.59 
(1.12) 

 Road 
Closed 

3.8 (3.9) 0.79 (0.42) 1.89 
(2.13) 

 No 
Entrance 

7.1 (4.1) 0.83 (0.38) 1.72 
(1.44) 

 Warning 6.8 (5.0) 0.72 (0.45) 1.93 
(2.19) 

 No 
Stopping 

7.5 (4.2) 0.79 (0.42) 1.43 
(0.84)

 Yield 7.5 (5.1) 0.24 (0.44) 2.21 
(1.89) 

 Pass 
This 
Side 

9.0 (4.1) 0.72 (0.45) 1.79 
(1.50) 

Table 1: Characterization of the traffic sign images' classification (highest value/lowest value of a column) 

Table 1 show that extremal values of the research variables do not coincide for specific traffic sign 
images. That is, our data depicts a complex relationship between the research variables, hence we 
used cluster analysis, which is multivariate by its very nature. 

Cluster Analysis 

To define the optimal number of clusters, we used three metrics: AIC (Akaike Information Criterion), 
BIC (Bayesian Information Criterion), and Silhouette. Note that these metrics are used for model 
selection, i.e., each of them is useable when there are multiple models to compare. We compared 
models of 2-5 clusters. AIC and Silhouette values were optimal for a 3-cluster model, while BIC was 
optimal for a 2-cluster model. After examining these two models, we chose to continue with a 3-
cluster model (AIC=28.5, BIC=31.2, Silhouette=0.68), which helped us interpret the results in a more 
insightful way. Findings are summarized in Table 2. 
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Cluster A holds three objects: "Priority Road", "Proceed Straight", and "Road Closed". On average, 
these objects were the easiest to correctly classify, as evident by the cluster mean value and the very 
low standard deviation of Correctness of First Attempt (M=0.82, SD=0.02); this variable takes its 
highest value in this cluster. Also, objects in this cluster were attempted to be classified early in the 
process of using the applet, as evident by the mean value of First Attempt (M=5.2, SD=1.2), which is 
the smallest across clusters. 

Cluster B holds three objects: "Warning", "Give Way", and "No Parking". Although showing a rather 
high variance, on average, objects in this cluster were the most difficult to correctly classify, as 
evident by the cluster mean values of Correctness of First Attempt (M=0.52, SD=0.2)—the lowest 
across clusters—and Total Moves (M=2.1, SD=0.1)—the highest among clusters. These objects were 
attempted to be classified relatively late while using the applet, as evident by the mean value of First 
Attempt (M=7.1, SD=0.4).  

Cluster C holds four objects: "Follow This Direction", "No Entry", "No Stopping", and "Pass This 
Side". On average, these objects were attempted to be classified the latest compared with the other 
clusters, as evident by the value of First Attempt (M=8.0, SD=0.8), however were mostly correctly 
classified, as evident by the high value and the low dispersion of Correctness of First Attempt 
dispersion (M=0.78, SD=0.05), and by the fact that Total Moves takes the minimal value in this cluster 
(M=1.6, SD=0.2). 

Cluster Traffic Signs First 
Attempt 

Correctness 
of First 
Attempt 

Total 
Moves 

Interpretation 

A  M=5.2 
(SD=1.2) 

M=0.82 
(SD=0.02) 

M=1.8 
(SD=0.1) 

Early attempts to classify, high 
correctness rate, some attempts 

B  M=7.1 
(SD=0.4) 

M=0.52 
(SD=0.2) 

M=2.1 
(SD=0.1) 

Relatively late attempts to classify, low 
correctness rate, multiple attempts 

C  M=8.0 
(SD=0.8) 

M=0.78 
(SD=0.05) 

M=1.6 
(SD=0.2) 

Late attempts to classify, high 
correctness rate, some attempts 

Table 2: Statistics of the research variables for each cluster 

Discussion 
The question we asked in this study was: Which clusters of extra-mathematical shapes emerge based 
on students’ sorting patterns? Data was collected from 29 upper-elementary students from Germany 
and Israel. All students worked individually in the same digital environment that provided immediate 
feedback to their attempts to classify traffic sign images as either having one or multiple LoSs.  

Three clusters emerged from cluster analysis, based on students’ classification behavior. They seem 
to be spatially linked to the arrangement they are presented in the applet, indicating that the 
arrangement may have influenced the order in which students engaged with the objects. Looking at 
the order in which the clusters were sorted, cluster A clearly stands out with being attempted first. 
Based on the mean values it seems as if cluster B was approached second and C last. Considering the 
standard deviations, cluster A still stands out, while cluster B and C do not seem to be distinguishable 
all that well regarding first attempts. This leads to the conclusion that signs from cluster A have been 
clearly attempted first, with signs from clusters B and C being to a certain extent both secondly with 
a tendency of signs from cluster C being classified later in the process than the ones from cluster B. 
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Cluster B stands out (negatively) regarding correctness compared to the other two clusters, which are 
hardly distinguishable in other variables then First Attempt. As cluster B was not approached first 
and a learning effect cannot be ruled out while working the task (especially due to the automated 
feedback), the difference between cluster A and B regarding correctness is to be stressed even more. 
Classifications of signs from cluster C may have benefited from being classified later in the process, 
by having classified signs from (at least) cluster A as references. A discussion of criteria possibly 
influencing students sorting patterns is helpful for understanding how and why these clusters differ. 

None of the criteria seems to be dominant, as they seem to be spread out through the clusters (similar 
inner and outer shape in A and B; (non-)examples of multiple LoSs, basic geometric shapes, inclined 
LoS in A, B, C). A deeper analysis of the signs however indicates that it indeed seems to be influential. 

All signs owning both a horizontal and a vertical LoS, therefore not requiring identification of an 
inclined LoS for correctly categorizing as multiple LoSs, were amongst the easiest to classify and 
belong to either cluster A (Priority Road, Road Closed) or C (No Stopping, No Entry) with at least a 
moderate amount of correctness. On the contrary, signs that required identification of inclined LoS 
for correct classification (Yield & No Parking sign) were the most difficult to classify and belong to 
Cluster B. Amongst the criteria discussed in this paper, the orientation of LoSs seems to be the best 
descriptor explaining difficulty leading to the assumption that horizontal and vertical LoSs are 
recognized more easily than inclined LoSs. 

Taking students intuition into account, cluster A seems to represent Intuitive (non-)examples of extra 
mathematical objects, as they are categorized not only first, but also with rather high success rates, 
leading to the conclusion that they were (correctly) accepted as (non-)examples more directly than 
the signs from the other clusters. This seems to be due to the vertical and horizontal orientation of 
LoSs. The other end of the spectrum regarding correctness is represented by cluster B with low 
correctness rates. It also goes along with later and multiple classification attempts and can be referred 
to as non-intuitive, as their first (intuitive) classification led to a wrong result, making it necessary to 
reconsider their choice. This seems to be due to the relevance of inclined LoSs. Cluster C that differs 
mainly from cluster A in that it was approached last, where several signs were already classified 
correctly. This could be an indication for the notion of Secondary Intuitiveness as this cluster shows 
lowest count of Total Moves and a rather high correctness rate, which could be the result of either a 
learning process throughout working the task or recalling further information about reflective 
symmetry. As we cannot be certain that either of these two conditions is true and that cluster C is 
merely a result of the arrangement of signs, they might be attributed to the intuitiveness category. 

Although faced with a rather small number of participants, our findings suggest that overall students’ 
strategies seem to be: first start off with the easiest subtasks; second analyze harder subtasks, possibly 
by using the feedback function; third work the remaining subtasks. The information on strategy used 
by students is of great importance for development of further classification tasks in digital 
environments. One for creating an elaborate, digital feedback mechanism that goes beyond stating 
correctness and respond to students’ strategies derived from the sorting patterns. In case of 
participants struggling solving the task by beginning with other than intuitive objects, they can be 
asked to start with intuitive ones (in our case e.g. Road Closed or Proceed Straight). When recognized 
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that students seem to struggle with classifying non-intuitive objects hints about possible reasons for 
that can be provided (e.g. have you considered that lines of symmetry do not have to be either 
horizontal or vertical?). Beyond deriving information for a feedback-system it can be used for 
developing intelligent tutoring systems which assign tasks to learners based on previous tasks. Tasks 
can be assigned as suggested by the clusters and have learners (correctly) classify intuitive (non-) 
examples first, before going over to correctly (classify) non-intuitive objects and finally sorting 
secondary intuitive ones. This classification also leaves room for variation in the order of which 
objects are presented and may increase performance by not sticking to the order learners chose in this 
study. These are only a few suggestions on how these findings and especially the categorization of 
(non-)intuitiveness can be used to innovate future development and research of digital environments. 
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This study aims to find out which aspects of a virtual learning environment could support 
mathematics teachers in distance learning during the COVID-19 pandemic. We conducted interviews 
with secondary school and university teachers who worked with GeoGebra Classroom, a virtual 
learning environment, during distance learning, used qualitative content analysis to get an insight in 
their experiences. Through using qualitative content analysis, we found out that teachers used 
GeoGebra Classroom A) as a working tool during distance learning to monitor the students’ work in 
an organized way, and B) to teach remotely in an efficient way, furthermore C) teachers missed 
opportunities to provide individual feedback and collaborative learning. 

Keywords: Distance learning, virtual learning environments, online learning, mathematics 
education, GeoGebra classroom. 

Introduction 
In the 21st century, technologies are becoming more and more important and as it is schools’ task to 
prepare children for current challenges and future developments, technologies should be a vital 
element of teaching (BMB, 2017). Vital skills to be learned at schools are often described as "21st 
Century Skills". Prominent examples of these skills are for example creativity, critical thinking, social 
skills, communication, or media and technology literacy. Acquiring these skills should prepare 
students for today's and tomorrow’s labor world (Larson & Miller, 2011). Due to the COVID-19 
pandemic and the associated closure of Austrian schools and universities in 2020/21 teachers and 
students had to rely on digital technologies to communicate with each other and 21st century skills 
were suddenly no longer a nice to have but required elements to sustain teaching and learning. The 
sudden reliance on digital technologies faced teachers with challenges (Schrammel et al., 2020; 
Weinhandl et al., 2021). In this period, we accompanied teachers and conducted interviews to find 
out which difficulties they experienced and how a virtual learning environment (VLE), like GeoGebra 
Classroom, can support teachers during distance learning (DL). Thereby, we pursued the following 
research question:  

Which technological features of GeoGebra Classroom, as an example of a virtual learning 
environment, facilitated teaching mathematics in secondary schools and at university level during 
pandemic-related distance learning in Austria? 

To answer the research questions, we conducted interviews with secondary school and university 
teachers and analyzed the data using Mayring's (2015) qualitative content analysis. 
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Theoretical Background 
Teaching Math during COVID-19 crisis 

In addition to challenges such as social isolation, a lack of equipment and experience, or poor internet 
connection, teachers report further difficulties at the beginning of the pandemic (Almarashdi & 
Jarrah, 2021; Azhari & Fajri 2021). Especially for math teachers, the situation of DL was a challenge, 
as mathematic is an abstract subject that made it difficult for students to understand though online 
learning. For teaching math, specific characteristics and specials representations like symbols, 
formulas and graphs are needed. As teachers cannot just write on blackboard, it is not easy to 
communicate math during DL (Cassibba et al., 2020; Drijvers et al., 2021; Noviani, 2021; Ní Fhloinn 
& Fitzmaurice, 2021). Fakhrunisa and Prabawanto (2020) examined challenges and opportunities that 
math teachers perceived during DL. Teachers struggled with selecting a tool which fits their needs 
and can be reached easily by students. Teachers were not able to monitor students learning motivation, 
and it was difficult to make accurate assessments of students learning outcomes (Fakhrunisa & 
Prabawanto, 2020). In our study we aimed to find out, how a freely available VLE, which is especially 
made for teaching math (e.g., GeoGebra Classroom) can support teachers with the above-mentioned 
difficulties. 

Teachers reported that they missed the opportunity to observe students’ work, as they are used to 
wandering around the classroom. On the one hand, monitoring students’ progress is necessary to 
notice when students are struggling and to warn them when they are in danger to fall behind. 
Furthermore, teachers cannot see if they are really participating, especially when the camera is turned 
off. (Niemi & Kousa, 2020; Ní Fhloinn & Fitzmaurice, 2021). On the other hand, teachers can also 
discover the potential of students while observing their work (Stillman, 2019). According to Ní 
Fhloinn and Fitzmaurice (2021) another challenge was to conduct classroom discussions, as teachers 
found it difficult that students explore resources in more depth and to provide feedback in real-time. 
Furthermore, teachers mentioned that they missed the possibility of doing group-work during DL and 
that the absence of group-work increased the workload of the teachers (Ní Fhloinn and Fitzmaurice, 
2021). Another barrier explored by Noviani (2021) is the fact that students feel ashamed to ask their 
teacher while DL. To overcome these barriers, we examined teachers' experiences with a VLE that 
enabled observation of student work in our study. 

GeoGebra Classroom as an example of a virtual math learning environment  

To face some of these challenges, especially the difficulty that teachers were not able to monitor 
students’ work in real time and to foster classroom discussions, we examined how a VLE could 
support teachers during DL. First, we want to clarify what we mean with DL, as Phipps & Merisotis 
(1999) already mentioned that “the technology is evolving, the definition of what DL is continues to 
change” (p.11). We assume that DL is a way of studying in which students and teachers do not attend 
the school or university, but study and teach from where they live and communicate over the internet 
(Dictionary Cambridge, 2022). By a VLE, we mean a web-based system for delivering educational 
content and enabling communication (Macmillian Dictionary, 2022). 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 249



 

 

An example of such a VLE is GeoGebra Classroom1, which facilitates using all GeoGebra apps and 
other online tools. We choose GeoGebra Classroom for our study, as on the one hand it is a VLE 
developed for teaching mathematics and on the other hand it makes it easy to communicate math. 
GeoGebra Classroom is a virtual platform which enables teachers to assign interactive tasks to their 
students and view their students’ progress on specific tasks in real time. All progress will be sent to 
teachers immediately, so students do not have to upload or submit their work. Teachers see which 
tasks students have, or have not, started and if they are struggling. By sharing the teacher's screen, 
rich and interactive discussions can be held with the whole class (GeoGebra, 2022). To determine 
which technological features of a VLE could be vital for teaching mathematics, we accompanied 
teachers using GeoGebra Classroom during pandemic-related DL.  

 

Figure 1: Teacher View in GeoGebra Classroom: Teachers can monitor the students work in real-time 
– Activity: https://www.geogebra.org/m/uc7gxp8j 

Data Collection and Participants 
To obtain data about using GeoGebra Classroom during DL in secondary schools and at university, 
five interviews were conducted. Due to the COVID-19 situation, we used audio-visual tools for the 
interviews, which also offered the possibility that interviewees share their screen and show some 
examples. All interviews were recorded. The interviews were conducted from February 2021 to April 
2021. At this time, Austrian schools and universities have been completely closed for two times and 
were also closed when the interviews were conducted (Weinhandl et al., 2021). 

All interviewees had used GeoGebra Classroom in their lessons during DL. Two interviewees are 
teaching math didactics courses for pre-service teachers at the Johannes Kepler University, and three 
interviewees are teaching math in secondary schools in urban and rural areas. In terms of professional 
experience, we selected both teachers who are just beginning their tenure and experienced teachers 
who are about to retire. So, the interviewees were between the ages of 30 and 60. Of the five teachers 
in our study, two are women and three are men.  

                                                 
1 GeoGebra Classroom: https://www.geogebra.org/classroom 
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Particularly, the problem-centered interview was used to collect data. This procedure allows 
interviewees to speak as freely as possible. Before the interviews were conducted, a guide was created 
to support the interviewer to monitor that all relevant topics are covered during the interview 
(Mayring, 2016). The main topics of the interview guide were •) how the VLE was used, •) which 
features of an VLE could facilitate teaching math and •) which additional features of an VLE are 
desired by mathematic teachers. The interviews latest from 14 to 30 minutes (on average 21 minutes).  

Data Analysis 
As a first step, audio files were transcribed so that the recorded data could be properly processed. 
During the transcription, the language was smoothed out and transferred to standard German, as 
interviews were conducted in everyday speech. The qualitative content analysis according to Mayring 
(2015) was chosen as the evaluation method, as this enables a systematic analysis of the source 
material. In this way, statements made by interviewed teachers could be structured and summarized. 
For the interpretation of the data, the summary was chosen as the form of analysis. The aim of this 
form is to reduce the material and to retain the essential content. A manageable corpus is to be created 
through abstraction, in which the basic material is nevertheless to be represented (Mayring, 2015).  

First the transcripts were openly coded by the authors. In this process, individual coding units which 
should support answering the research question, were provided with a keyword. A coding unit was 
any complete statement by a teacher about the experience with the use of GeoGebra Classroom.  
Thereby a higher level of abstraction and generalizability should be reached. Next, individual coding 
units from the transcripts were reduced to the essential content for our study by dropping text passages 
not closely related to our research question. Then, coding units with a higher level of abstraction were 
combined into categories. Coding units were combined into categories by grouping those units with 
similar properties regarding our research aim (Mayring, 2015). Up to this point, secondary teacher 
and university teacher data were treated separately. In the next step, we merged the data, performed 
further reduction processes as described above, and thereby developed categories with an even higher 
level of abstraction and generalizability following Mayring’s (2015) suggestions for interpreting data. 

The goal of qualitative content analysis was achieved after the third reduction process. A large amount 
of material was reduced to a manageable form, which still ensured the preservation of essential 
content. Since the categories were derived directly from the source material in a generalization 
process, this is an inductive category formation (Mayring, 2015). 

Results 
In the following section, the core categories of our study are outlined in more detail and supported 
with original quotes from our interviews. The original quotes were translated from German to 
English. For each quote we provide additional information, whether the interviewee is female (F) or 
male (M) and whether the teacher is teaching at secondary school (S) or teaching at university (U). 

Usage of GeoGebra Classroom as a working tool 

GeoGebra Classroom was used by the interviewed teachers in secondary school in mathematics and 
geometric drawing classes and at the university for mathematics didactic courses for pre-service 
teachers and teacher training courses for in-service teachers. It was used as a work tool during online 
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classes and as a homework submission system. “In the end, I used GeoGebra Classroom in two 
variants. On the one hand as a homework submission system and on the other hand as a tool during 
distance learning. From the homework side, I think it was super handy as it just gives me the ability 
to pause the classroom at a set time, so the students can't continue working.” (F,U) 

Monitor students’ work in an organized way 

What the teachers liked about GeoGebra Classroom was that they had the opportunity to monitor 
students` work in real time. Therefore, they were able to give specific feedback and assistance, since 
even in DL it was immediately apparent where difficulties arose. “… that I can monitor students, not 
so much to check them, but rather to help them. Because if I just want to check it, I can simply set a 
deadline, and then you must hand it in, and theoretically it doesn't matter how you get there. Whereas 
if I see a student has been struggling for xy minutes now and maybe just going the wrong way or 
maybe just needs a little nudge to get back in the right direction, I find it very helpful” (M,S) 

The teachers appreciate that they could see the results of all students at a glance. For example, a 
teacher reported on the use of GeoGebra Classroom when exploring angles:” I then said, now you all 
set it to about 30 degrees, and then they had to estimate how big 30 degrees is, and I saw exactly 
what they do… and that's really something that you can see at a glance, even with 23 children, 
whether it fits or not. So that was really cool too” (F,S) 

Another secondary school teacher commented positively that this made it easier to understand 
students' work, for example with homework. The teacher was therefore able to look at students' work 
afterwards. He also appreciated that GeoGebra Notes2, a whiteboard software which can be used in 
Classroom, allowed students to photograph handwritten notes and submit them in the classroom. 

Another advantage mentioned was that students did not have to upload any files, as their work was 
automatically saved immediately. ”Uploading Excel worksheets to Moodle overwhelms some 
children in the 5th grade. I don't have the problem in GeoGebra. You have to log in, edit your book 
and get out afterwards and the book is automatically saved with the latest status, which I consider 
very positive” (M,S). 

A further benefit is that a sequence could be easily created from several resources: “On the one hand, 
you can easily make your own sequence out of several resources. So that I take resources from my 
colleagues and with just a few clicks I have a sequence on a topic that is now being dealt with” (M,S) 

The pause function was found to be very useful for homework. ”For homework, I think it was super 
handy as it gives me the ability to pause the classroom at a set time, so the students can't continue 
working. I can then assess and, after the assessment, activate the course again so that the students 
can access it again” (F,U)     

Need for opportunities to provide feedback and collaborative learning 

Teachers can use GeoGebra Classroom to monitor student work, but they cannot give them individual 
feedback or intervene in constructions directly in Classroom. For communicating with each other, 

                                                 
2  GeoGebra Notes: https://geogebra.org/notes 
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they need to use another platform, like Zoom. It is hard for teachers to only give verbal feedback to 
their students, therefore teachers miss the possibility to give direct feedback: “I would like to have 
the possibility to actively intervene in a construction. So, if a student says: "this doesn't work for me", 
I look in and see what's wrong, but I find it very difficult to verbally formulate what the problem is. I 
would either like to take a red pen and draw on it and say:” look, there's the problem”, or just type 
it in directly. But then the student would have to see it … I don't have any possibility to give feedback 
directly... So, I would like to have some way how I can intervene in the construction, or how I can 
comment, so that the student can see what I'm talking about right now (F,U). 

Compared to teaching in classroom, teachers also miss the possibility of collaborative learning. 
Instead of assigning tasks to individual students, they would like to assign them to a group of students, 
so that they can solve tasks collaborative: “Group work would be nice at this time. So that children 
can document solution approaches for tasks together in groups…”(M,S)   

“…that you can do group work assignments, so students get a trickier assignment, or they get the 
classic type 2 assignments from the last maturity exam, and they solve them together. That I can now 
say that it is not assigned to one student, but it is assigned to groups, and I can then get in touch with 
these groups.” (M,S) 

In our study, we found further problems, which are briefly described here. The problems that the 
interviewed teachers had while using GeoGebra Classroom were very technology specific and often 
not reproducible. In the situation of DL, teachers often did not know if it is a real problem or if the 
students did something wrong. A secondary school teacher said that he did not let the students create 
an account at the beginning to avoid an additional registration platform. Once it happened that a 
student’s work progress was not saved. However, it was not clear here either whether the problem 
was with GeoGebra Classroom or with the student. To be on the safe side, the teacher had the students 
log in with their Office 365 account the next time they used GeoGebra Classroom. Since then, the 
teacher has not been able to identify any more issues. 

Other issues can be traced back to missing features and bugs. So missed a teacher the possibility of 
entering Greek letters with the GeoGebra Keyboard in open-ended questions: “It was all about angles 
and the students didn't know how to enter alpha, beta, and gamma…” (F,S) 

Discussion 
Analyzing our study data indicated that teachers appreciate it that they can monitor students’ work in 
real-time, even when they are physically separated from each other. This is a big advantage of 
GeoGebra Classroom, because Niemi and Kousa (2020) or Ní Fhloinn and Fitzmaurice (2021) 
mentioned that not being able to monitor students’ work in DL was one of the main difficulties. As 
Noviani (2021) point out that students feel ashamed to ask their teacher during DL, the real-time 
synchronization could also avoid this problem. As the teacher can see if a student is struggling, the 
teacher can get in contact with the student to provide further help, like he would also do in the real 
classroom. According to Noviani (2021) or Cassibba et al. (2020) communication mathematical 
language was another challenge for teachers and students during DL. This was mentioned also in our 
results, as students missed the option to enter Greek letters when answering open questions. The 
results of our study indicate that teachers wish to be able to do collaborative work with GeoGebra 
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Classroom and that they miss the possibility to give individual feedback to their students. These 
findings were supported by the findings of Ní Fhloinn and Fitzmaurice (2021), as they also mentioned 
that teacher miss these possibilities during DL.  

Conclusions and Limitations 
The results of our study indicate that GeoGebra Classroom can really help teachers in times of DL, 
especially for monitoring their students’ work in real-time, like they used to do while teaching in the 
classroom at school. Another benefit was, that all work is saved automatically, so this avoids students 
having problems with uploading files. In addition to these advantages, our study also produced 
suggestions for future improvement. We found out, that a VLE should offer the possibility that 
students can collaborate in groups. Furthermore, there is the need for individual feedback. So, 
teachers would like to give feedback directly in the VLE without communicating through an 
additional platform, like it is the case when using GeoGebra Classroom.  

The results of our study must always be interpreted restrictively, as the interviewed teachers are 
experts in using technologies for teaching and learning. Even before the school and university closed 
and teachers were forced to teach with technologies, the interviewees already used different 
technologies, and they knew GeoGebra very well. Furthermore, the results of our study should be 
interpreted having in mind that the results are based on information from five teachers. To sharpen 
and further elaborate the results of our study, further teachers will be interviewed by us. To be able 
to generalize the results of our study further, it will also be necessary to conduct interviews with 
teachers who have less experience in using technologies and GeoGebra. This study had a focus on 
Austrian teachers, so another possibility for generalization would be an international study, which 
includes experiences of teachers of other countries as well.  
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The focus of this paper is on how preservice mathematics teachers appropriate computer 
programming as an instrument for their own mathematical learning and thinking, and for 
educational resources they create for others. This is part of a 5-year naturalistic on-going research, 
where we examine how university students use computer programming as a computational thinking 
instrument for mathematics inquiry, using a mixed methodology and an iterative design approach. 
We present the phases of instrumental, personal and professional, and documentational geneses 
that such future teachers go through, and exemplify parts of these through data from the case 
studies of two students. This work has implications for the design of future professional 
development programmes for the integration of computer programming in mathematics education. 

Keywords: Programming, mathematics, preservice teacher education, instrumental and 
documentational approaches, naturalistic observation. 

Introduction 
Computer programming and computational thinking have taken renewed importance in the last 
decade in education. Many regions, such as some in Canada, now require the teaching of coding or 
computational thinking in schools, including in mathematics curricula (e.g., Ontario Ministry of 
Education, 2020). Thus, the importance that future mathematics teachers appropriate programming 
as an instrument, both for mathematical learning as well as for their teaching practice. However, 
little research has been done in terms of how to promote such appropriation, particularly in the case 
of teachers. In this paper we analyse elements of an undergraduate programme where mathematics 
students, including future mathematics teachers, learn to use computer programming for 
mathematics inquiry. Our analysis seeks to illustrate the various geneses that future teachers go 
through in order to appropriate programming and how the design of the university programme 
promotes those geneses. Such analysis has implications for the design of other professional 
development programmes.  

This analysis is part of a larger five-year, naturalistic (i.e., not design-based), on-going research (see 
Buteau, Gueudet et al., 2019, Gueudet et al., 2022), which takes place at Brock University (Canada) 
where students have the option to take a sequence of three one-semester courses called Mathematics 
Integrated with Computers and Applications (MICA) courses. During those courses, mathematics 
students and future teachers engage in programming and developing interactive microworlds-type 
objects or environments for investigations of pure and applied mathematical ideas (see Buteau et 
al., 2016). Our research questions have focused on how students come to appropriate programming 
as an instrument for mathematical inquiry and on how the MICA learning environment supports the 
development of students’ instrumental geneses.  
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In our previous research, we have been using the instrumental approach (Rabardel, 2002) to analyse 
how MICA participants, mainly mathematics majors, appropriate programming as an instrument 
that they can use for mathematical investigations (Buteau, Gueudet et al., 2019; Gueudet et al., 
2022). And in Mgombelo et al. (in press), we presented the case study of a MICA preservice 
teacher using programming in the design of a learning object to teach a mathematics concept. Here, 
we build on that work, with the aim of analysing how the MICA program presents opportunities for 
future teachers to appropriate computer programming both as a personal instrument for their own 
learning of mathematics as well as a professional resource for mathematics teaching.  

Conceptual and theoretical framework 
As mentioned, our research uses as framework, the instrumental approach, which has at its core the 
concept of instrumental genesis: how an artefact becomes an instrument. In instrumental genesis, an 
instrument is psychologically constructed by attaching to the artefact (mobilized to realize a type of 
task), schemes that organise the activity of the subject (Trouche, 2004), through the dual processes 
of instrumentation (how the artefact affects the user) and instrumentalisation (how the user affects 
the artefact). Students’ instrumental geneses can be steered by how a course is orchestrated.  

In this paper, the task of analysing the future teachers’ knowledge development and work, is more 
complex, since the instrumental genesis is not just for turning programming into a personal 
instrument for oneself, but also as an instrument for professional work. Thus, we rely also on two 
further frameworks that have emerged from the instrumental approach: the double instrumental 
genesis (Haspekian, 2014); and the documentational approach to didactics (Trouche et al., 2018).    

Haspekian (2014) explains that a same artefact –in our case, computer programming– becomes two 
different instruments for a teacher: a personal instrument for mathematical activity and professional 
instrument for the teacher’s didactical activity. She calls this double instrumental genesis, and says: 

The personal instrumental genesis leads (as for pupils) to the construction and appropriation of a 
tool into an instrument for mathematical work, and differs from the professional instrumental 
genesis, which leads to the construction and the appropriation of the previous instrument into a 
didactical instrument for mathematics teaching activity [...] these two geneses are not 
independent (in some cases [...] this double instrumental genesis may happen simultaneously), 
neither are they independent of pupils’ instrumental geneses. Applying the instrumental 
approach to the [artefact] seen as a teaching instrument built by the teacher, let’s precise the two 
processes of this professional genesis:   
- An instrumentalization process: the tool is instrumentalized by [the] teacher in order to serve 
her didactic objectives. It is distorted from its initial functions and its didactical potentialities are 
progressively created (or “discovered” and appropriated in the case of an educational tool).    
- An instrumentation process: [the] teacher, as a subject, will have to incorporate in her teaching 
schemes that were relatively stable some new ones integrating the tool use.  

(Haspekian, 2014, p. 98). 

Another extension of the instrumental approach, also related to teachers’ professional development, 
is the Documentational Approach to Didactics (Trouche et al., 2018). This approach focuses on how 
mathematics teachers interact and use resources (including the digital ones), through the design, re-
design or ‘design-in-use’ of resources for their own work and/or the collective work with other 
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teachers. Resources –which we can think of as “didactic artefacts”–, can be material (e.g., 
textbooks, digital resources, manipulatives, tasks), social (e.g., forum conversations) and cognitive 
(e.g., frameworks/theoretical tools used in work with teachers) (Trouche et al., 2018). When 
teachers interact with resources, they change and develop their professional knowledge; this is 
called the teacher’s documentation work, generated through the dialectic documentational genesis 
process, involving instrumentalisation –how resource affordances influence teachers’ practice– and 
instrumentation –the development of schemes of usage of these resources according to the teacher’s 
instructional needs. Through documentational genesis, a system of resources together with their 
utilization schemes, becomes a document. 

Context and methodological aspects 
As mentioned above, our research focuses on the teaching and learning that takes place within the 
MICA programme at Brock University. This programme, launched in 2001, currently consists of 
three one-semester courses, taken over three years: MICA I, II and III/III* –where III is for 
mathematics and science majors, and III* is for preservice teachers. During these three courses, 
students design, program (in VB.Net, Python or, in MICA III*, one in Scratch), implement and test 
a total of 14 programming-based mathematics investigation projects (4 or 5 in each course) in 
various topics (e.g., conjectures about primes; stock market analysis; dynamical systems; prey-
predator models). Most of these are Exploratory Objects (EOs) –microworld-type interactive and 
dynamic computer-based models “ developed to explore a mathematical concept or conjecture, or a 
real-world situation” (Buteau & Muller, 2009, p. 1112). At the end of each term, students, 
individually or in groups of two or three, develop a final project, for which they select the topic.  

In MICA I and II, for their final projects, most students generally have to create an original EO, but, 
in some cases, they may choose –preservice teachers, in particular– to create, instead of an EO, a 
Learning Object (LO) to teach a mathematics concept, which may be relevant to their future 
profession; an LO is defined as “an interactive and dynamic computer-based environment that 
engages a learner through a game or activity and that guides him/her in a stepwise development 
towards an understanding of a [school] mathematical concept” (Buteau & Muller, 2009, p. 1112). In 
MICA III*, the final project consists of developing and, when possible, implementing a teaching 
resource of programming-based mathematics activities, in accordance with a regional curriculum, 
for mathematics classrooms, that could be done in collaboration with a teacher and shared in 
collaborative resource networks (e.g., in http://mkn-rcm.ca). �The 2020 MICA III* final project 
consisted of designing a teaching resource for grade 9 (with each team designing for a different 
mathematical topic). The design of the teaching resource used as a model the UK’s ScratchMaths 
(UCL, 2018) curriculum and pedagogy. The aim was for MICA future teachers to develop fluency 
in Python programming and to put into practice their understandings of learning math through 
programming. That teaching resource had to include: tasks using Python programming, worksheets 
in Jupyter Notebook, a short video and follow-up resources for teachers (and optional additional 
resources, which could be in Scratch), investigate curricular and didactical strategies for their 
teaching and use their own knowledge about mathematics, programming and teaching to design it. 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 258



 

 

Although the three-course sequence was initially developed (and implemented) independently from 
a particular established theoretical framework, as argued in Buteau et al. (2016), it is considered to 
be framed by a constructionist (Papert, 1991) approach: We consider the EOs created by students to 
be microworlds and objects-to-think-with (Papert, 1980); furthermore, analyses of the learning 
environment of the course sequence show an orchestration that promotes students’ engagement in 
constructionist experiences for learning mathematics (Buteau et al., 2016, Sacristán et al., 2020) 
that may facilitate the appropriation of programming as an instrument for mathematical inquiry.  

Our research uses a mixed methodology and an iterative design approach. Over the years, we have 
collected data from all MICA courses, including course materials (syllabus, assignment guidelines, 
etc.); students’ weekly lab reflections; pre/post-questionnaires; EOs with associated reports; final 
projects (original EOs or LOs; final MICA III* teaching resource project); and student/instructor 
semi structured interviews. In addition to that from several MICA I and II courses, we have data 
from two MICA III* courses (in 2020 and 2022), with detailed data of 7 participants from the first 
and of 4 from the second (as well as anonymous responses to a questionnaire from larger cohorts). 
For this paper, we use data from the 2020 MICA III* course; for one MICA III* participant, Kassie 
(pseudonym), we have analysed also her MICA II data. 

Part of our research work has consisted in analysing in detail some students’ instrumental geneses, 
by codifying their responses to the questionnaires and interviews, together with other source 
material, to analyse in-depth their schemes. We have also analysed the orchestration of the MICA 
courses (as noted above; e.g., see Sacristán et al., 2020). It is also worth noting that Buteau and 
Muller (2009) present several development process models (dp-models) of EOs and LOs, which 
point to some aspects of MICA students’ instrumental geneses, as has been discussed in Buteau, 
Gueudet et al. (2019) and Mgombelo et al. (in press).  

Instrumental and documentational geneses in MICA 
Whereas some of our previous papers focus on more detailed analyses, in this paper, we attempt to 
present a broader perspective of the complex geneses (personal, professional and documentational) 
involved in developing programming –the initial artefact (or resource)– as both a personal 
instrument for mathematical work, as well as a didactic instrument in the professional teaching 
activity. The geneses begin with students creating EOs and developing schemes that allow them to 
appropriate programming as an instrument for mathematical inquiry. Creation of EOs begins in 
MICA I but continues up to MICA III/III*. Future teachers then develop further their personal and 
professional geneses by creating LOs. Later, in their design work for the final teaching resources of 
the MICA III* final project, future teachers learn how to integrate programming with didactic 
intentions in the design of tasks. In that work, the resource of programming needs to interact with 
other elements (other resources, that together with programming constitute a system of resources) –
a process of documentational genesis. (These processes are schematised in Figure 1).   

This resource system is enriched by the constructionist orchestration (Sacristán et al., 2020; Buteau 
et al., in press; also Buteau, Sacristán & Muller, 2019) offered by the MICA instructor that 
promotes future geneses: (i) a didactical configuration (based on a previous collective analysis by 
MICA’s instructors –Buteau et al., in press) that centres on selected programming artefacts (e.g. 
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Python, Scratch, etc.); (ii) an extended didactical configuration that includes assignments and 
projects to work on collaboratively (with guidelines and lectures on how to design the 
programming-based teaching resource); and offering the possibility to share MICA III* teaching 
resources to a professional online network; and (iii) a didactical performance that offers guidance, 
expert support, discussion sessions, and encouragement to learn as a teacher.   

 
Figure 1. Future teachers’ instrumental and documentational geneses in the MICA programme 

Detailed examples of the various geneses of the future teachers, are beyond the scope of this paper, 
but we exemplify parts of these through data from two students: Kassie and Barbara (pseudonyms). 

Personal and professional instrumental geneses 

Before taking the first MICA course, Kassie had no previous programming knowledge. Through the 
MICA courses, she not only developed that knowledge, but she developed instrumental schemes 
relating math and programming (some data illustrating this from Kassie’s EOs work in MICA II, is 
given in Sacristán et al., 2020, and Buteau et al., in press), and later schemes for using programming 
for teaching math concepts (e.g., a scheme for articulating a learning trajectory in programming 
language –see Mgombelo et al., in press).  

In her personal instrumental genesis (from MICA I to MICA III*), there are two aspects: 
(i) appropriation of programming as a tool, and (ii) of using programming for mathematics.  

In terms of the first, it is interesting how when, in MICA III*, she had to program in Scratch and 
Python, and she commented that her previous MICA VB.Net programming experience allowed her 
to “produce a program that works”, although she acknowledged that she also needed to change her 
perspective (MICA III*, AR1). So, part of a scheme may be: “If I have experience in programming, 
then it is easier to program (math tasks) in other languages (Python/Scratch).” (This was also found 
in other students: for instance, Barbara, after recalling her MICA II LO creation, said “So, we had a 
lot of VB.net [coding] experience at that point  [...] so we didn't struggle that much” –FI).  

In terms of the second, Kassie made reference to the challenges she faced (she wrote: “connecting 
what I am programming with the math that is involved in the actual program has been something 
that is rather difficult” –MICA III*, AR3). But she explained how, in writing the computer program 
of an assignment, she had to understand the mathematics and programming concepts and relate 
them, and how that changed her thinking (“…the program [...], it teaches you a different way of 
thinking and allows you to expand your horizons in a subject”  –MICA II; LR1); she later added: 
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Kassie:  …when working through the program I was able to understand this problem 
better. This resulted in an increase of my understanding through the program 
aspect but as well as my math understanding. (MICA III*, AR1).  

Also, the reflections promoted by the course orchestration (Trouche, 2004), prompted her to think 
about how to improve her abilities of programming for mathematics:  

Kassie:  In regard to the math aspect of programming I want to learn how to question 
“what if I changed this, what would the result be?” I believe this would further 
develop my understanding of the problems I am given. (MICA III*, AR3) 

At the end of MICA II, Kassie created an LO with her partner for other users to learn about 
derivative  –an interactive tool that would generate random equations and graphs and lead the user 
to find the derivatives. In Mgombelo et al. (in press), we showed some of Kassie’s instrumented 
schemes that corresponded to some steps of the development process of an LO and how Kassie 
developed some schemes, including the above-mentioned one of articulating the learning trajectory 
in programming language. This illustrated part of her professional geneses. Later, Kassie and her 
partner designed a teaching resource (for the final MICA III* project) for teaching exponents, that 
not only included Python tasks, but also Scratch, which shows how she instrumentalised the 
different programming languages for designing tasks to learn about a mathematics concept. 

Documentational genesis in a MICA III* final project 

We consider that an extension of the professional genesis, are documentational geneses. Creating 
LOs already involves a certain degree of documentational genesis. But the final MICA III* project 
requires deeper interactions of diverse resources and knowledge (including that of programming for 
math). The orchestration of the project, which has a set of requirements, as outlined above, 
promotes this. And students respond to those requirements in the “teacher resources” –which are 
systems of resources with usage schemes, i.e., documents– that they develop for teachers.  

    
Figure 2. Fragments of Barbara and her partner’s Teacher Resource (MICA III* final project) 

For example, Barbara and her partner developed a teacher resource for exploring the relation of 
equations with their graphs with Python (Figure 2). That resource included the activity summary of 
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the “Teacher Resource'', together with accompanying self-contained Python worksheets (for 
students) in Jupyter Notebook (as well as a solution file for the teacher) and additional resources 
that include the required video, as well as posters, and cards for additional activities. The activity 
summary begins with the programming knowledge required for students (in this case, the future 
teachers chose for the programming done by students to be carried out “by example” so that 
extensive programming knowledge would not be needed, with a code that is re-used and modified); 
contains clear learning objectives in terms of the math content and alignment to the regional 
curriculum, as well as “the five Es'' of the ScratchMaths pedagogy, activity instructions, discussion 
points, things to note, etc. Thus, in Barbara’s case, in her documentational genesis, one of her 
schemes, with the goal (for her teaching resource) of designing math tasks that integrate coding, 
was based on a previous programming and math (p+m) scheme (Gueudet et al., 2022) developed 
through her personal instrumental genesis, that now extended to the new situation of designing 
teaching tasks, which require professional knowledge (e.g., curricular considerations) in interaction 
with her programming (for math) knowledge.  

Concluding remarks 
In this paper we have attempted to illustrate how during the MICA activities, future teachers, 
through a constructionism-based orchestration, have the opportunity to develop both their double 
instrumental geneses of programming for mathematical investigations, as well as the dual processes 
of documentational genesis: Their instrumentalisation in terms of how programming affordances 
influence their task design for the programming-based teaching resources that they design, can 
scaffold other students’ activity. And their instrumentation involving usage schemes within the 
design of the teaching resource; for instance, a usage scheme that guides their task design provides 
future teachers with the opportunity to interact with a wide and diverse system of resources for their 
teaching: computer programming, curricular resources, worksheets, specialised software, etc. In this 
way, we have extended the research presented in our previous papers by analysing the complex 
geneses involved in teachers’ knowledge development, and illustrate ways for the design of other 
professional development programmes in the field. Nevertheless, our work continues with more 
detailed analyses of the data that we have collected.   
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In this study we draw on the resources approach in mathematics education and the concept of agency, 
to develop deeper understandings of university mathematics students’ use of resources in an 
innovative learning environment. Results show that agency is indeed distributed amongst the 
students, problem owners, tutors, and resources (e.g., students’ previous knowledge). Moreover, we 
contend that the agency can be developed and exercises depending on the ‘agentic space’.    

Keywords: Agency, innovative learning, learning experiences, resources. 

Introduction 
The motivation to carry out this research stems from the intention to analyze the relationships between 
curriculum and innovative learning environments. (1) regarding curriculum Dewey (1938) opposed 
the idea that the curriculum is a prescription of what learners have to undergo. He argued that learning 
cannot happen by the external motivation of a prescribed curriculum and the provided resources, but 
that learning starts with the experiences and interests of the learner and is built up by negotiation (e.g. 
between teacher and student). (2) Regarding the scope of an environment to shape the self and agency, 
Radford (2021) notes that “we find ourselves in front of a world with different political, economic, 
and legal apparatuses and, as a result, with a different agentic space” (p. 186). Leaning on these 
argumentations, we are interested in students’ learning experiences in particular environments 
[agentic spaces].  

Our aim is to investigate how, under which circumstances and in which environments (agentic 
spaces), ‘agency’ is developed, exercised or ‘negotiated’ (e.g. by students by using particular 
resources for their learning of mathematics). We are also interested in who are the ‘agents’, which 
kinds of agency are developed/exercised/negotiated. Hence, our research question (RQ) is the 
following:  

How students' use of resources and the interaction between the different agents develop agency and 
help students to solve their mathematics modelling problems? 

Theoretical frames 
We used two theoretical frames: (a) the ‘lens of resources; and ‘(b) agency’. (a) In terms of the ‘lens 
of resources’, we draw on Instrumental Approach (IA, Trouche, 2004), to address the question of 
students’ selection and use of resources. The IA involves the process of instrumentation, where the 
affordances of resources influence the user/subject’s practice and knowledge; and the process of 
instrumentalization, where the user/subject adapts the resources to his/her own needs. Moreover, we 
use the notion of ‘resource/s’ that students have access to and interact with in and for their learning 
and studying, assuming that the ways students learn mathematics is influenced/shaped by their use of 
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the various resources at their disposal. As ‘resources’ we include digital curriculum resources (e.g., 
e-textbooks, e-worksheets), social and cultural resources (e.g., conversations on social media, with 
tutors, peers and friends), cognitive resources (e.g., concepts and techniques on the web), and general 
technology resources (e.g., software, internet). (b) In terms of agency, we understand the term 
‘agency’ as ‘distributed agency’ (Carlsen et al., 2016), distributed over the different ‘agents’ involved 
(in the activity): students, teachers, (digital) resources (involved in the learning environment), and the 
mathematics. We contend that the two theoretical frameworks allow us to answer our RQ as they 
allow us to understand how the resolution of a mathematical modelling problems involves the 
interplay between resource affordances and the actual students’ use of resources, and distributed 
agency among the participants and the resources themselves that influence and shape students' actions 
and decisions.  

Methodology 
In this study we used a qualitative case study approach (Cohen et al., 2007). We investigated, at a 
Dutch university of technology, the learning experiences of applied mathematics students in a 
master's course: the Modelling week. It is part of a mandatory course in the Applied Mathematics 
master program on professional skills development. 

Modelling week and data collection strategy 

The Modelling week allowed students to work for a week (Monday to Friday) on realistic problems 
proposed by stakeholders from outside the university (problem owners hereafter); these came from 
regional businesses and industry. As a team, students were expected to propose a solution and 
recommendations to companies via formulating a mathematical model of the given problem and 
applying mathematical methods for their solutions. The course consisted of three moments: (1) ‘Kick-
off’(course information and teams set); (2) ‘Lego workshop’ (on team dynamics); and (3) ‘Modelling 
week’ (students worked on the solution of the problem guided by university tutors and problem 
owners). The modelling week ended on Friday with the presentation of the results by each team.  

The data collection strategies are summarized in Table 1 (below). 

Participants Instrument 

Students Exit Cards, interviews, drawings, and surveys 

Tutors                  Interviews 

Problem owners (PO) Interviews 

Table 1: Instruments for data collection from participants of modelling week  

The exit cards were filled out by the students at three different data points (Monday, Wednesday, 
Friday), and consisted of five questions to be answered by students regarding their: feelings about 
their work, perceived learnings, and hurdles/difficulties experienced. The interviews were conducted 
at the end of the week, based on students' drawings of their resource systems (Schematic 
Representation of Resource system-SRRS; Pepin, et al., 2016). The SRRSs are a schematic 
representation of how students used and integrated different resources throughout the week. Eight 
teams of 5-7 students each participated in the course and four of them agreed to participate in our 
research. 
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In this paper, we report on results from a team of seven students (S1-7) involved in the problem 
entitled ‘Design of a cooling plate’, associated with devices that need to maintain an adequate 
temperature to operate. The PO provided a two-dimensional outline of the cooling plate in which an 
optimal channel system should be established. According to the objectives of this paper, (1) we 
identify the different resources mentioned by the students in their SRRS and exit cards, and the ways 
they were used as part of the interviews; and (2) we analyze the PO and tutor interviews.  

Discussion of results and concluding remarks 
Due to space limitations, we present the SRRS of one student where we can observe the resources 
used during the Modelling week; and results from exit cards regarding the interaction of students with 
some resources, including digital resources. 

SRRS from S5 Student comments on resources 
Regarding Linux: 
S3: The project requires Linux which nobody in the 
group knows how to install and operate. We spent 
almost the whole working day figuring that out. 
S5: working with a different operating system is 
challenging. 
Regarding the Communication with PO: 
S4: I liked the most that the man of the company had 
so much time for us to help us set everything up [in 
terms of Linux]. 

 

Figure 1: SRRS from S2 (left) and student comments from exit cards (right) 

In Figure 1, we observe that S5 grouped the resources used into seven groups. These also include 
communication with the problem owner and the tutor, mathematical knowledge from previous 
courses (Vector Calculus), and digital resources (e.g., Internet). The exit cards highlight some 
difficulties encountered by students at the beginning of the week when using a digital resource: Linux. 

On the use of Linux, the problem owner pointed out his reasons for students to use it: 
PO: I think it's maybe, at least for mathematicians, it is also good that they have seen 

Linux some time. Because when they are going to do scripting then they will use it 
anyway. All companies use Linux when you really do a hardcore scripting or 
coding, then you should use that. 

Some of the guidelines that the PO and the tutor gave to the students are noted in Table 2: 

Agent Guidelines to students 

PO -I provided them with at least two MASH files that they did not have to make that themselves (…) 
because I think they didn't have just time to make the mashes and do all observations themselves. 
-Also, the presentation, that was also a bit set up like a tutorial with a lot of text and all the equations in 
there and also the installations and some links as well. And I provided the task script. 

Tutor -[I said to students] You should work together. You should divide tasks and you should be able to 
communicate with the problem owner. 
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-They had some questions about the mathematical formulations on Tuesday, so they did not understand, 
and I explained, and I gave them some intuition about the fluid dynamics.  

Table 2:  Guidelines to students from two agents: PO and Tutor  

Regarding students' use of resources, we observed the instrumentation and instrumentalization 
processes in two resources: Linux and students' communication with the PO. S3 (Figure 1) states that 
it was necessary to set up and learn about the use of Linux (instrumentation) to be able to work with 
it later, according to their own needs, to solve their problem (instrumentalization). On the 
communication with the PO, S4 points out the help received (instrumentation); and we observe that 
this communication in turn arises and develops according to the needs of the students, as the tutor 
also promotes (Table 2). On the development of agency, we observe that (1) human (PO, tutor, and 
students) and non-human agents (e.g., resources and prior mathematical knowledge) shape students’ 
actions and decisions. This is observed, for example, in the PO's intention for students to use Linux 
and the subsequent resources it provides (MASH files), in addition to the tutor's guidance. 

Answering the RQ the research results show that during the Modeling week for students to solve their 
mathematics modelling problem, they need, in addition to using various resources, to develop and 
exercise agency. But this agency does not correspond merely to students’ free actions, but is 
distributed among different agents: students, PO, tutor, digital resources (e.g. Linux) and previous 
mathematical knowledge. This means that not only persons (e.g. students, problem owners) develop 
and exercise agency, but also resources can become ‘agentic’, in particular in ‘agentic spaces’.  
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There is a rapid growth in the availability of digital platforms specifically designed to allow for 
mathematical communication between multiple users, to help teaching and learning mathematics. Yet 
their uptake by mathematics teachers is slow. We seek to explore the affordances of such digital 
platforms to support mathematics teachers to integrate technology as part of their practice. 
Specifically, we ask: What are the platforms affordances that may support instrumentation and 
instrumentalization processes leading to the development of teacher’s didactic instrument to plan and 
enact a mathematical activity in a digital environment? We performed an a priori analysis of STEP 
and DESMOS platforms attempting to identify their affordances, and found that the platforms afford 
support to teachers while enacting technology-based mathematics activities. Yet, teachers’ ability to 
make decisions based on data gathered and visualized in dashboard embedded needs to be developed. 

Keywords: affordances; learning management systems; teachers’ instrumental genesis. 

Introduction 
The integration of digital technology into everyday school experience in mathematics lessons is still 
slow (Clark-Wilson, Robutti, & Thomas, 2020). Our previous study highlights that although 
mathematics teachers use digital technology to search for resources and to plan their lessons, they use 
it much less in the classroom (Trgalová, & Tabach, 2020). This slow uptake may be due to a gap in 
teachers’ digital competencies (Hegedus et al., 2016). At the same time, there might be a perception 
of a limited potential afforded by the digital technology to the mathematics teacher. 

Norman (2013) used the term affordances in the context of Human–Computer Interaction to refer to 
action possibilities that are readily perceivable by an actor. There is a lack of studies that analyze 
affordances (and constrains) of digital platforms for mathematics teachers. Research studies focusing 
on teachers’ use of digital technology tend to show an increased complexity of teachers’ professional 
activity, requiring mastering the technology not only for doing mathematics, but also for teaching 
mathematics (Haspekian, 2011). 

We consider specific kinds of technology that provide both a learning environment for students and 
a system that can support teachers’ activity (e.g., planning, monitoring, assessing). We are therefore 
interested in Virtual Learning Environments (VLE) or Leaning Management Systems (LMS) (Borba 
et al., 2016). Considering this innovative technology, we explore affordances (and constrains) of two 
platforms specific for mathematics. We also consider the implications of these affordances to the 
didactic instrument teachers might develop in order to make use of the affordances. 
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Theoretical background 
From a human-computer interaction perspective “An affordance is a relationship between the 
properties of an object and the capabilities of the agent that determine just how the object could 
possibly be used” (Norman, 2013, p. 11). Importantly, Norman stresses that an “affordance is not a 
property. An affordance is a relationship. Whether an affordance exists depends upon the properties 
of both the object and the agent” (ibid). Hence, while we are studying the affordances of platforms 
for teaching mathematics, at the same time we envision what the teacher needs to be able to do in 
order to take benefit from these affordances.  

The relational dimension of affordance leads us to chose the instrumental approach as a theoretical 
framework (Rabardel, 2002). The instrumental approach allows studying processes by which users 
transform a (digital) tool - an artefact, into an instrument enabling them to achieve their goals. While 
the artefact (material or symbolic) is available to the user, the instrument is a personal construct 
elaborated by the user during her activity with the artefact in the course of the so-called instrumental 
genesis. The process of instrumental genesis comprises two interrelated sub-processes: 
instrumentation leading to the constitution and the evolution of schemes of use of the artefact by the 
user, and instrumentalisation during which the user adapts and personalizes the artefact according to 
her knowledge and beliefs. 

The theoretical construct of double instrumental genesis (Haspekian, 2011), developed in line with 
the instrumental approach, encompasses both the personal and the professional instrumental geneses 
of teachers who use ICT. Whereas the personal instrumental genesis is related to the development of 
a teacher’s personal instrument for a mathematical activity from a given artefact, the professional 
instrumental genesis yields a professional instrument for a teacher’s didactic activity. This view is 
resonant with Krumsvik and Jones’s (2013) claim that “digital competence of teachers is more 
complex than in other occupations” (p. 172) as it embeds ability to (1) use technology (personal use), 
and (2) use technology in a pedagogical setting (professional use). 
To avoid confusion between teacher’s personal and professional activities, we use the term 
mathematical instrumental genesis to refer to teacher’s personal activities in relation with their 
teaching (transforming an artefact into a mathematical instrument, i.e., for doing mathematics with 
technology), and the term didactic instrumental genesis to refer to a teacher’s professional activities 
(transforming the same artefact into a didactic instrument, i.e., for teaching mathematics with 
technology) (Trgalovà, & Tabach, 2020). It is reasonable to assume that these two developmental 
processes, that is, the mathematical and didactic instrumental geneses, are interconnected. In this 
paper, we focus on the potential didactic instrumental genesis related to the use of digital platforms. 

Being a mathematics teacher includes a number of professional activities, among them lesson 
planning, enacting, monitoring and assessing students’ activities. Stein, Engle, Smith, and Hughes 
(2008) aimed at helping teachers to manage instruction based on challenging tasks and students’ 
suggested solutions. To this end the researchers collect five practices that should be mastered by 
teachers: anticipating, monitoring, selecting, sequencing, and connecting. The innovative move of 
Stein et al. was in grouping together these practices as a sequence that together makes the enactment 
of such instruction more manageable for teachers. Anticipation, should be done before the lesson, as 
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part of the lesson planning. The teacher is invited to anticipate what students might answer, what 
(mis)conceptions might be expressed in students’ work, and what are the teaching goals. The other 
four practices are enacted during the lesson. Monitoring takes place while students work on the 
chosen challenging task. The teacher observes their actions and as needed provides challenging 
questions, or help without giving away the procedure that might solve the task. Selecting is done in 
the perspective of a whole class discussion, based on the teacher’s observations of students’ work 
while monitoring. The teacher considers which of the solutions she observed to present to the whole 
class. Next, the teacher needs to consider how to sequence, i.e., in which order to present in the whole 
class discussion the various solutions she selected, to lead the discussion towards the lesson aims. 
Finally, the teacher needs to connect the various solutions among students, and connect them with 
the lesson aim. Boston and Smith (2011) found connecting to be the hardest practice to enact. 

Based on the theoretical framework, we ask: What are the affordances and constraints of the platforms 
likely to support instrumentation and instrumentalization processes leading to the development of 
teacher’s didactic instrument, to plan and enact a mathematical activity in a digital environment? 

Methods 
We perform an a priori analysis of two platforms specifically designed to support mathematics 
teaching and learning. We did not observe teachers or students using the platforms, rather, we attempt 
to identify their affordances in order to understand their potentials and limitations in supporting 
teachers’ instrumental geneses in relation with the five practices, and to infer knowledge and skills 
mathematics teachers need in order to take benefit from these affordances. This analysis enabled us 
to foresee the kinds of didactic instruments for mathematics teaching teachers can develop from the 
platforms. 

Method of analysis of virtual learning environments 

We assume that platforms as digital artefacts have affordances in the sense that they offer the teacher 
possibilities for action and interaction. Gueudet et al. (2021) claim that digital education platforms 
foster specific instrumentation and instrumentalization processes to teachers. The platforms “allow 
the teacher to design according to his/her pre-existing schemes”, which is directly linked to 
instrumentalization (p. 88). On the other hand,  

a platform can structure and support teachers’ design practices: through the mathematical 
content it offers, how the content can be sequenced and through particular features that are 
offered for the lesson designs. […] this corresponds to instrumentation processes; its outcome 
is a modification of the teachers’ schemes (ibid.).  

Following these authors, we first analyze affordances the platforms offer in terms of potential 
instrumentation and instrumentalization processes (macro-level analysis). In particular, we are 
interested in platforms affordances allowing teachers to design their own resources 
(instrumentalization) and supporting their professional practices (instrumentation).  

As we focus more particularly on teachers’ planning and enacting a technology-supported 
mathematical activity in a classroom, referring to the five practices framework leads us to look for a 
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support the platforms offer to teachers in anticipating, monitoring, selecting, sequencing and 
connecting, as described in the theoretical background. Table 1 summarizes our method of analysis. 

Table 1. Features of virtual learning environments 

Selection of learning management systems 

We chose STEP (Seeing The Entire Picture) and DESMOS. The two platforms afford an interactive 
environment for students and a support for teachers. The following similar affordances define them 
as learning management systems: they provide instructors with a way to create and deliver content, 
monitor student progress and participation, and assess student performance (Borba et al., 2016). First, 
in terms of organizing: teachers can create a class, assign students into a class, assign activities to the 
class, and students can submit their solutions to the system. Second, in terms of creating activities: 
the particularities of what information the system needs to be provided with and the specific screens 
and steps are different, but the teacher can create an activity. Third, the platforms include activities 
to be used and the teacher can search among the existing activities: the platforms afford searching 
based on mathematical topic, and grade level. Each platform might have other unique search fields 
but these two basic search criteria are common. Fourth, in terms of modifications: the platforms allow 
to choose an activity and duplicate it to a particular use, and modify the activity or parts of it. The 
specific modification options vary between the platforms. Fifth, in terms of following students’ 
progress along the assigned tasks: the platforms provide the teacher with a dashboard on which she 
can see for each student at least which tasks she has already done. Becoming familiar with the 
interface of each platform and mastering its use is part of the didactic instrumental genesis of the 
teachers. These common affordances are considered at the macro-level analysis; next we highlight 
the platforms unique affordances in relation with these five aspects. We also provide a brief analysis 
of both platforms in terms of their affordances supporting the above-mentioned five practices for 
planning and enacting technology-based activities. 

  

Macro-level: 
Affordances in terms 
of potential 
instrumentation and 
instrumentalization 
processes 

Instrumentation 
Affordances likely to make evolve teachers’ practices, e.g.,  
differentiation, assessment. 
Pedagogical principles likely to impact teachers’ practices. 

Instrumentalization Affordances allowing teachers designing resources, either by adapting 
existing ones or by creating new ones. 

Micro-level: 
Affordances 
supporting planning 
and  enactment of 
technology-supported 
activities 

Anticipating 

E.g., preview mathematical activities in a students’ mode to become 
aware of the potentialities and constraints of the digital environment in 
which students will act, suggestion of possible students’ answers and 
description of (mis)conceptions. 

Monitoring Dashboard features: kind of data provided about (groups of), 
visualization and interpretation of these data. 

Selecting Suggestions by the platform of possible answers, correct or not, 
deemed worthwhile to be addressed in the class. 

Sequencing Suggestions by the platform of the order of the selected answers in 
which they should be addressed. 

Connecting Hints provided by the platform helping teachers link students’ 
strategies and answers with mathematical ideas. 
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Findings 
The STEP platform 

STEP was designed by mathematics education researchers from Haifa University and developed by 
Carmel-Haifa University Economic Corporation Ltd. (Israel). It is 

an automatic formative assessment platform in mathematics that helps teachers and students 
make use of rich and interactive assignments in the classroom in order to empower the teacher’s 
decision making in real time – during the actual course of the lesson1.  

Macro-level analysis. STEP may be used by the teacher for creating assessment activities from 
scratch. As the STEP platform is built on Geogebra, the teacher needs to create the mathematical 
situation via Geogebra. The teacher needs to make several decisions along the process of creating a 
new activity. This is part of the instrumentalization process the teacher is undergoing while creating 
an activity. The teacher decides on the type of task that is the most relevant to the aims of the 
assessment. Several types of task can be created: multiple selection items; yes-no questions; provide 
up to 10 examples of…; provide three examples which fulfill a given set of conditions. While creating 
an activity the system “walks” the teacher along a sequence of screens. These screens support the 
design of the activity by the teacher, and are part of the instrumentation process the teacher undergoes. 
Also, there are existing activities that can be adopted and modified. An activity consists of a sequence 
of a few tasks. Modifications can be done by removing one or more tasks from the sequence of 
activities, or modify one or more tasks. Finally, while students are working on a particular activity 
and submitting parts of it, the platform affords the teacher to follow students’ submissions using a 
dashboard, to analyze these submissions on-line and make decisions on the lesson summary phase.  

The DESMOS platform 

DESMOS is developed in US by a team of researchers, teachers, software engineers and developers 
and is available in 18 languages. Besides math software tools such as graphing calculator, scientific 
calculator or geometry tool to support students’ math activity, the platform offers “free digital 
classroom activities, thoughtfully designed by teachers for teachers to support and celebrate the 
different ways students come to know mathematics”2. These activities are guided by DESMOS 
“pedagogical philosophy”3 that may have impact on teachers’ practices (instrumentation).  

Macro-level analysis. The activities provided in the DESMOS platform are guided by DESMOS 
“pedagogical philosophy”: Incorporate a variety of verbs (e.g., not only calculating but also arguing, 
predicting, comparing, validating) and nouns (e.g., not only produce numbers, but also represent them 
on a number line and write sentences about those numbers); Ask for informal analysis before formal 
analysis, e.g., ask estimation before calculation, sketch before graph, conjecture before proof; Create 
an intellectual need for new mathematical skills; Create problematic activities; Give students 
opportunities to be right and wrong in different, interesting ways; Delay feedback for reflection, 

                                                 

1 https://carmel-ltd.haifa.ac.il/index.php/technologies/130-education/mathematics-education/221-step-seeing-the-entire-
picture-technology-empowering-formative-mathematics-teaching-in-the-classroom 
2 https://www.desmos.com/about?lang=en 
3 https://blog.desmos.com/articles/the-desmos-guide-to-building-great-digital-math/?lang=en 
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especially during concept development activities; Connect representations; Create objects that 
promote mathematical conversations between teachers and students; Create cognitive conflict; Keep 
expository screens short, focused, and connected to existing student thinking; Integrate strategy and 
practice; Create activities that are easy to start and difficult to finish; and Ask proxy questions. This 
set of principles help us understand the nature of the activities in this platform. There is an attempt to 
move away from drill and practice activities toward encouraging opportunities for conceptual 
understanding and students’ engagement. From the teacher’s perspective, it seems that the platform 
encourages teachers to adopt instruction based on students’ mathematical solutions (instrumentation). 
These solutions are expected to be a starting point for the teacher to make sense of the ways students 
are thinking.  

There is a special website4 devoted to helping a teacher learn how to build an activity from the 
beginning – DESMOS activity builder. An activity can be created by a single teacher or by teams. 
The site is user-friendly, with short videos and many demonstrations. An important “rule of thumb” 
is that each screen within the activity will be devoted to one mathematical goal. Creating an activity 
is part of the instrumentalization process a teacher may undergo while working with the platform. 

A comparative micro-level analysis 

In Table 2 we summarize affordances STEP and DESMOS offer to teachers in terms of supporting 
five practices to plan and enact mathematical activities: italics highlight indirect affordances; grey 
cells highlight no affordance.  

Table 2. Platforms affordances supporting the five practices  

 STEP DESMOS 
Anticipating Examples of solutions Prompting during planning (check list) 
Monitoring Correctness of students’ answers (stop 

light) 
Access to students’ submissions 
General class performances 
Filtering submissions 

Correctness of students’ answers (stop light) 
Individual student performances 
Aggregated view of the class performance 

Selecting Filtering based on properties 
Suggestions for discussions 

Access to students solutions 
Recommending to think on it prior to the lesson 

Sequencing No affordance No affordance 
Connecting Teacher’s guide Suggesting to think on it before the lesson 

Table 2 demonstrates that there is a variety in the platforms affordances to support teacher’s work 
along the five practices. Monitoring is clearly afforded. The platforms provide the teacher with 
information regarding the correctness of students answers. The support is in the form of indication, 
mainly color coded, about not-attempted / correct / incorrect response. As one of the roles of teachers 
is to verify the correctness of student work, this affordance of the platforms takes some of the load 
off the teacher, allows her to make a better use of her time in class, and supports the monitoring 
practice. Yet, as noted by Penuel and Shepard (2016), this “stop light” presentation might be an 
oversimplification of students’ learning. However, DESMOS allows an aggregated view of students’ 
responses, which provides the teacher with additional valuable information on their students’ actions; 
                                                 

4 https://learn.desmos.com/create 

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 273



 

 

STEP platform in addition allows the teacher to filter interactively into the mathematical properties 
of their students’ submissions. 

The platforms vary in their affordances for anticipating students’ answers. While STEP provides 
examples of possible submissions by students, DESMOS invites the teacher to answer to tasks in the 
activity using the students’ preview, in the form of a check list to do before the lesson, bringing the 
practice of anticipation into one’s mind. The platforms indirectly afford selecting. In the STEP 
platform it is the possibility of filtering students’ submissions that might support the teacher in 
determining which examples to select as a basis for the whole class discussions. DESMOS invites the 
teacher to think about which productions could be discussed in the whole class while planning.  

Sequencing is not supported by the platforms. This practice has to do with the actual submissions of 
the students in the particular class, and hence this is up to the teacher to consider in a way that leads 
to the lesson aims. We see the question of how an automatic system can afford help to this important 
teachers’ practice as a challenge for future developments of LMS. Finally, connecting is indirectly 
afforded by the platforms. STEP provides hints for possible connecting actions based on the examples 
provided as possible answers and a minimal mathematical analysis for each example. The check list 
provided by DESMOS, specifically the following – “Write a summary of the activity’s main ideas: 
How can you incorporate student work in that summary? What parts of the activity can you skip to 
ensure there is sufficient time for the summary?” may support teachers in connecting students’ 
answers and the lesson aims. 

Concluding remarks 
Sinclair and Robutti (2020) brought to the fore two main functions of the use of digital technology, 
namely “(a) as a support for the organisation of the teacher’s work (producing worksheets, keeping 
grades) and (b) as a support for new ways of doing and representing mathematics” (p. 245). As we 
show in the presented study, the use of LMS may have a third function: as a support provided to the 
teacher while enacting technology-based mathematics activities.  

Indeed, our analyses of the platforms highlight that teachers’ practices related to planning and 
enacting a technology-based mathematical activity in a classroom can be supported by digital tools 
to some extent. Yet, the teachers need to be able to take profit from the platform affordances, by 
enhancing their didactical instrument. Our findings highlight several components of didactic 
instrumental genesis that mathematics teachers need to develop in order to take benefit from digital 
platform affordances. These components include the ability to base decision making on data gathered 
and visualized in dashboard, the decisions pertaining the five practices. In accordance with Hamilton 
et al.’s  (2009) claim that “making sense of data requires concepts, theories, and interpretative frames 
of reference” (p. 5), we argue that the development of these components needs to be supported in 
teacher education or professional development programs. 
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3D printing is a relatively new technology in schools and is becoming popular among teachers and 
students. Therefore, developing new ways of using this technology in educational settings is needed. 
In this design-based research, we have developed and tested a process to develop STEAM tasks 
fostering students’ mathematical modelling and problem-solving skills. 

Keywords: Mathematical modelling, problem-solving, technology, 3D printing and modelling. 

Introduction 
In this paper, we share ideas and experiences from our research on using technology as an educational 
resource. Our goal was to design classroom interventions at the high school level, integrating 
technology to enable students with new skills and ways of thinking. For this goal, we propose a 
STEAM teaching approach focusing on architectural modelling and 3D printing. 

3D printers are becoming more accessible to schools and are transforming from an emerging 
technology into reality in a significant number of classrooms all over the world. Therefore, 
educational researchers must explore this technology’s use and propose ways of taking advantage of 
its possibilities. In that direction, Witzke & Hoffart (2016) presented three ways 3D printing 
technology is used in Mathematics education. Firstly, using it to reproduce the existing tools for 
visualisation (Knill & Slavkovsky, 2013). Secondly, for elaborating individualised materials for 
teachers or students (Lieban et al., 2019). Thirdly, to allow students to model and print objects (El 
Bedewy et al., 2021a; Tejera et al., 2022). Our proposal is focused on the third use, as it engages 
students with open-ended modelling tasks. 

Our approach for the task design on the modelling process of architectural structures fits mathematical 
modelling principles, and the tasks can be understood as problem-solving tasks. El Bedewy et al. 
(2021a) used architectural modelling as a real-life example to foster mathematics learning through 
problem-solving strategies in a STEAM practice. In that study, the problem-solving approach allowed 
participants to analyse and model the architectural structures in several ways. Moreover, Donevska-
Todoroba & Lieban (2020) explored problem-solving heuristics using digital and 3D printed 
manipulatives, stating that different tasks produce differences in problem-solving strategies. 
Furthermore, El Bedewy et al. (2022) used several visualisation tools to allow the 3D transformation 
process using Augmented Reality and 3D printing. Additionally, Tejera et al. (2022) designed 
architectural modelling tasks based on mathematical modelling principles showing that the tasks fit 
the modelling cycle developed by Blum & Leiß (2007). 
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Methodology 

The study was carried out as a cycle of design-based research (Reimann, 2011). Two researchers 
designed the tasks and structure presented in the Proposed Work Process section. We aim to validate 
and improve the proposed sequence. The tasks were implemented with three groups of high school 
students in Uruguay (40 students) and one group of high school students in Austria (35 students). We 
observed the implementation and took field notes in every application of the sequence. The 
observations were aimed at three elements: The process of technology utilisation, the modelling 
process, the school content emerging from the modelling process and the interaction with the 
technological artefacts. 

Theoretical Framework 

Mathematical modelling principles from Blum & Leiß (2007) and the construct of Instrumental 
Genesis (Rabardel, 1999, 2002; Trouche, 2005) were considered for the task design and the analysis 
of the students' process. From the Instrumental Genesis theory, we considered GeoGebra and 3D 
printers as artefacts, which play an essential part in understanding and integrating technology in task 
design. 

Mathematical modelling 

Mathematical modelling is “the process of translating between the real world and mathematics in 
both directions'' (Blum & Borromeo, 2009, p.45). We observe these processes through the lenses of 
the modelling cycle presented by Blum & Leiß (2007), see Figure 1. The framework helped us design 
the work process and tasks presented to students and analyse their productions as a part of the design 
cycle. The main reason behind our exceptional attention to modelling processes is that:  

Mathematical models and modelling are everywhere around us, often in connection with powerful 
technological tools. Preparing students for responsible citizenship and for participation in societal 
developments requires them to build up modelling competency. (Blum & Borromeo, 2009, p.47)  

Such modelling could assist students in understanding the world supporting mathematics learning 
and increase their motivation, concept formation, retention, and contribution to fostering students’ 
mathematical competencies and attitudes. Furthermore, as culture plays a significant role in 
architecture, we must adopt an approach that considers the cultural aspects of mathematical 
modelling (Villa-Ochoa & Berrío, 2015) because this study was applied in several countries with 
different teachers and students who considered a wide variety of architectural structures from 
different regions. 

Problem Solving 

When referring to problem-solving in this study, we do it in the wider sense, as presented in 
Donevska-Todoroba & Lieban (2020). The three stages of this process are finding the problem, 
problem-solving (in the traditional way), and further developing the problem. These phases relate to 
the Blum & Leiß modelling cycle as follows. See Figure 1. Finding the problem is present in stages 
1, 2 and 3 of the modelling cycle through noticing and simplifying the mathematical objects linked 
to the architectural structures. Solving the problem takes part in phases 3, 4, 5 and 6 when students 
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participate in the mathematisation, creating and manipulating the mathematical representations to 
obtain the desired representation of the architectural structure, both in virtual and 3d-printed form. 
The solving the problem phase is also when the use of GeoGebra and the 3D printer takes place, 
giving place to the instrumental genesis process. For further developing the problem part, the cycle 
stages are 6, 7, 1 and 2, as students explore the results, test them, and post new variations of the 
problem to improve their models.  

 

Figure 1: Modelling Cycle seeing through the task 

Instrumental Genesis 

Instrumental Genesis describes changes in the interaction between a subject and an artefact as the 
subject gains experience and practice in using the artefact (Rabardel, 2002). An artefact can be 
physical or symbolic, as in our case, the commands in GeoGebra software are the symbolic artefact, 
and the 3D-printer is the physical. The interaction between a subject and an artefact has a physical 
and a psychological component, for example, in interpreting the information received by the subject 
and making active decisions on the artefact. Rabardel (1999) introduces of instrument to identify the 
assimilation by the subject of some characteristics of the artefact whose domain allows him to achieve 
the objective. An instrument is formed by an artefact and by schemes of use resulting from the 
interaction of the subject with the artefact, schemes that may have been elaborated by the subject 
himself or have been appropriate. 

Instrumental genesis has two components: Instrumentalization concerns the emergence and evolution 
of the components of the artefact that are part of the instrument: selection, regrouping, production 
and institution of functions, the transformation of the artefact into structure and operation and 
extending the initial conception of the artefacts. Instrumentation refers to the emergence and 
evolution of the schemes of use: their constitution, their operation, their development, and the 
assimilation of new artefacts to already constituted schemes (Rabardel, 1999, p.9). 
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In the context of this study, instrumental genesis processes include a variety of elements, among 
which we focus on handling the GeoGebra’s commands necessary to carry out the modelling process 
and its simplification:  

● A necessary command: each command has a certain number of parameters from which it does 
something, the type and quantity of these parameters for the same command can change 
depending on the information available; that is, a command admits more than one definition. 
For example, surface commands has three definitions: Surface( <Expression>, <Expression>, 
<Expression>, <Parameter Variable 1>, <Start Value>, <End Value>, <Parameter Variable 
2>, <Start Value>, <End Value> ), Surface( <Function>, <Angle> ), Surface( <Curve>, 
<Angle>, <Line>). This command is necessary for carrying out the modelling process. 

● Simplification commands: as some commands perform a single action, such as the symmetry 
and translation commands, others act in different ways depending on the selected objects, 
such as the sequence command that allows generating a sequence of constructions that 
depends on the chosen objects and can even incorporate the use of other commands. We think 
that these commands could be used as a tool to simplify the modelling process. 

Proposed Working Process 

The adopted working process applies three main stages that enable us to foster and assess the task 
outcomes. The process starts with the teacher’s topic introduction, then the student-guided work, and 
finally, the review of learning outcomes. Each stage is divided into smaller tasks that guide us in 
managing and evaluating the working process. It is vital to share the last part of the task with the 
students before starting the work process to allow them to begin designing the report and gather all 
the pieces from the mathematical modelling process, as shown in Figure 2. 

 

Figure 2: Work process overview 

The first part of the working process that includes the Teacher’s topic introduction is essential as it 
consists of a sequence of straightforward tasks such as photos of architectural structures that show 
mathematical elements. Moreover, this stage includes the questions “What do you notice? What do 
you wonder?”. A proper choice of images can assist students in beginning a dialogue about the factors 
of interest that may be mathematical, cultural, historical, or architectural, and generates a climate of 
inquiry withinside the classroom (Rumack & Huinker, 2019). After that, an example of the GeoGebra 
modelling process must be shown if the group does not have the technical knowledge to perform the 
task independently.  

The second and main stage of the project’s working process begins with students bringing ideas to 
school about what they are interested in for modelling and 3D printing. At this stage, it is essential to 
give time to students to think and provide their arguments on the relevance of the shape they intend 
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to model. The students’ presentation is a vital moment for the out-of-the-field content to go into the 
school and enhance the work with knowledge from different disciplines, ways of understanding, and 
students’ abilities. Then the modelling procedure follows the stages of the proposed modelling cycle, 
as shown in Figure 1. 

In this context, often strategic interventions are most adequate, which means interventions which 
give hints to students on a meta-level (“Imagine the situation!”, “What do you aim at?”, How far 
have you got?”, What is still missing?”, “Does this result fit to the real situation?”, etc.). (Blum & 
Borromeo, 2009, p.52) 

The final stage of the working process passes in the communication and meta-cognition levels, as in 
the develop the problem further stage (Donevska-Todoroba & Lieban, 2020). Students are requested 
to arrange and present a document with the architectural structure information, a description of the 
modelling method used, and reflections on the acquired abilities within the project. The following 
section displays some examples of the students’ work. 

Students work 

This architectural model is the work process of a 16-year-old student in a vocational school in Austria. 
The student chose the Pisa tower from Italy as the architectural model to reproduce, studying the 
cultural and historical aspects of the structure previously. Figure 3 shows the student GeoGebra 
modelling and the 3D printing of this architectural model. 

 

Figure 3: Pisa tower in Italy 

The following two examples are from students in Uruguay. The first model is the work of three 17 
years old students in the last high school year of the design and mathematics path. This group chose 
the work of the Brazilian architect Oscar Niemeyer and then the Cathedral of Brasilia as the structure 
to model. As shown in Figure 4, students use GeoGebra commands jointly with complex 
mathematical concepts to represent the shape of the building and make a 3D printable model. The 
process of instrumentalisation was evident when students started looking for the command needed to 
generate a revolution surface without knowing about it. Moreover, when they calculated the angles 
of rotation needed to generate the different building layers through the surface’s command, the 
instrumentation process becomes clears as part of the simplification. 
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Figure 4: Brasilia’s Cathedral in Brazil 

Another example from Uruguay is the work of three 15 years old students working in an 
extracurricular space for mathematics. They completed the task of modelling and printing this 
astronomical observatory from the fourth century BC in Korea, presented to them as a challenge by 
the mathematics teacher (El Bedewy et al., 2021b). In Figure 5, the GeoGebra modelling process and 
the final printed model are presented. In this example, students went further, wondering about the 
connection between the trigonometric function they used to model the building and the movement of 
celestial bodies. The situation with this students shows the development of the problem further in 
connection with interpreting, validating, and exposing stages of the modelling cycle and the 
connection with other subjects outside mathematics. 

 

Figure 5: Cheomseongdae in Korea 
Discussion and further perspectives 
This paper presents a working process to develop architectural modelling tasks in a secondary school 
setting and the subjacent theoretical framework. We have discussed connections between our 
proposed process and the modelling cycle, allowing us to consider architectural modelling as a subset 
of mathematical modelling. The implementation also shows that the selection of GeoGebra as an 
artefact was proper because the use schemes needed for the task forced the mathematical concepts to 
emerge in instrumental genesis.  

In recent years, words like transdisciplinarity, interdisciplinarity, STEM, and STEAM permeate 
schools and teaching practices daily. Therefore, contributions to teachers’ practices must be made, 
considering that mathematics does not need to be diluted to be part of these innovations. Our 
contribution to this matter is a way to teach high-level mathematics integrated with science, 
engineering, art and culture.  
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In this paper, we report preliminary findings from a pilot study of a first-year mathematics 

undergraduate student’s reasoning when proving tasks with an Interactive Theorem Prover (Lean - 

https://leanprover-community.github.io). Gemma, the participant we discuss in this paper, was 

interviewed for about one hour via a video conference application. During the interview, she was 

given a Logic statement and was asked to initially prove it on pen-and-paper and then code the proof 

in Lean. She was also asked to comment on her engagement with Lean aiming to explore her 

perceptions of the Interactive Theorem Prover. Our findings show Gemma’s perceptions of Lean and 

its affordances and discuss her interactions with Lean and other resources (e.g., her pen-and-paper 

proof and Lean notes produced by the lecturer).   

Keywords: Interactive theorem prover, Lean, students’ reasoning, programming, logic proofs.   

Lean theorem prover and related literature  

Programming is becoming an essential part of university mathematics. A recent study in the UK 

discusses the significant increase, observed in the last ten years, in the number of modules that include 

programming in mathematics degrees (Iannone & Simpson, 2021). However, a study investigating 

common programming languages taught in UK undergraduate degrees found that commonly used 

tools were MATLAB and the statistical package R, and that in pure mathematics modules 

programming was very limited (Sangwin & O’Toole, 2017). Interactive theorem provers have been 

used in pure mathematics and computer science research since de Bruijn’s creation in the late 1960s 

of the seminal Automath prover (de Bruijn, 1980). However, only recently are they starting to be used 

in teaching pure mathematics (Avigad, 2019; Thoma & Iannone, 2021). Despite the increased use of 

programming in university mathematics, further research on the relationship between mathematics 

learning and programming is still needed (Lockwood & Mørken, 2021).  

Lean is an interactive theorem prover which provides instant feedback on the logical coherence of the 

proof and the symbolisms used. The interface is separated into two sections (see Figure 1 – right hand 

side B and C). The programming section, where the user writes the code (Figure 1.B), and the 

feedback section which illustrates the goals at the given line of code and provides feedback via error 

messages (Figure 1.C). Recent studies on Lean show the potential role that it can play in instruction 

and the impact it can have on students’ mathematical understanding as they focus on the languages 

at play: natural language, mathematical and programming language (Avigad, 2019). Thoma and 

Iannone (2021) studied the impact that engaging with Lean may have on students’ proof writing. 

They found that the main differences in the written proofs between Lean users and the non-Lean users 

were the precise introduction of the mathematical objects involved in the proof, and the often overt 

breakdown of the proofs in goals. However, the number of students that engaged with Lean in that 
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project was small and the focus was mainly on the pen-and-paper proofs. In the current study, we 

investigate further students’ engagement with Lean by focusing on students’ perceptions and the 

reasoning skills the students employ when engaging with Lean proofs. Our research questions are: 

RQ1: What are students’ perceptions of the role of Lean in learning mathematics? RQ2: What types 

of reasoning do students engage with when solving proof tasks with an interactive theorem prover?  

Context and methodology  

This study took place in the second semester of a first-year undergraduate mathematics module in a 

UK research-intensive university and was approved by the ethics board of the second authors’ 

institution. The lecturer of the module (the third author of this paper) introduced Lean in the first 

semester to his students by providing lecture notes on the use of Lean, support material tailored to his 

module and extra weekly sessions on Lean. The pilot study included a questionnaire (N=43), given 

to the students during one of the lectures, which asked about their engagement with Lean and invited 

them to participate in an interview. The subsequent interviews were conducted via video conferencing 

and they lasted approximately one hour. In this paper, we discuss the case of Gemma (not the 

participant’s real name), one of four students who agreed to be interviewed. During the interview, the 

students were asked questions regarding their engagement with Lean and the difficulties they had 

when initially engaging with it. They were then given two tasks and asked to solve them using a think-

aloud protocol (Van Someren et al., 1994). In the first task, they were provided with a halfcompleted 

proof of the logic statement ((p ∨ q) →r) ↔ ((p → r) ∧q→ r)) written in Lean code and they 

were asked to complete it. For the second task, students were asked initially to prove on a virtual 

whiteboard the statement: p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) and then prove it in Lean. The interviews 

were then transcribed and both audio and video data were analysed. An initial analysis showed that 

Gemma was the only student who consulted many times her pen-and-paper proof while constructing 

her Lean proof. In this preliminary analysis we focused on identifying instances in the interview 

where Gemma discussed her perceptions of Lean in terms of proving statements and instances, during 

the coding process, where she referred to other resources (e.g., her solution on pen-and-paper, her 

lecturer’s notes on Lean).   

Preliminary findings and discussion  

In her interview, Gemma discusses the affordances of Lean and how it helped to learn about proof:  

Gemma: (…) doing the exercises in Lean made me think about the process of proving easier to 
think about it. It became a lot more, I guess systematic (…) I think the fact that it 
breaks down after you've done every line, it breaks down what your goal is again 
and all the hypotheses you've got, I think it made me really bear in mind what I 
know, what I've got to prove. And it just helped me. Yeah…Go through more 
systematically I think.   

She discusses the affordances of Lean in terms of breaking down the goals (this feature can be seen 

in Figure 1 – section C). She also notices that for each of the goals Lean also provides the “hypotheses 

you’ve got” and how these features allowed her to have a clear image of what is to be proven and 

what the hypotheses in each of these goals are. It seems Lean provided her with a frame for thinking 

about proofs in a more structured way.   
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Also, Gemma discusses the different languages at play, as also noted in Avigad’s (2009) study.  

Gemma:  So when I was doing my proofs initially I was kind of writing them in the way that 
Lean would write them and then almost translating them back to English.  

In the next section, we present Gemma’s solution to the second task which she initially wrote on the 

virtual whiteboard (Figure 1 – section A) and then in Lean (Figure 1 – section B). We observe that 

her writing on the virtual whiteboard shares similarities with the Lean code and that the assumptions 

are clearly indicated. Initially (Figure 1 – section A) she breaks the equivalence statement in two 

implication statements and attempts each one separately. For each of the implication statements she 

writes her assumptions, indicates how the different hypotheses are connected and how they provide 

the sub-goals. During the Lean coding process, she refers to her pen-and-paper proof multiple times 

aiming to identify the next step of the proof. She verifies that Lean accepts her code and is seeking 

support from her lecturer notes when she is not clear about the syntax of a particular line of code. At 

one point, Gemma received an error message. In attempting to understand the error, she checked her 

code initially thinking that there were incomplete brackets after resolving that this was not the case, 

she then decided to delete all the brackets from her code. This action resulted to a different error 

message which then triggered another reflection on her code. She returned all the brackets by undoing 

her previous action and shared the following while double-checking her brackets:   

Gemma: So I think when I'm splitting it up into kind of separate subgoals, it's helpful for me to 
see. (…) it's helpful for me to break it all up. So for example, (…) when I was 
splitting it into two goals, ohh I wanted then one bracket to be that first goal. And 
then the second bracket to be the other goal? Ohh it's not because I didn't solve the 
other. Ohh, that's because I forgot I was too eager, I forgot another goal (…)  

During this extra check of the brackets, Gemma identified that she had forgotten one section of her  

 

Figure 1: Gemma’s solutions. On the left-hand side, Gemma’s proof on the virtual whiteboard (section A) and 

on the right-hand side the Lean coded proof (Sections B and C - Gemma wrote one final line in her proof but 

here we share a screenshot from the previous line to illustrate the affordances of Lean)  

proof and realised that this  was the reason she was rece iving the error message.    

  

Proceedings of the 13th ERME Topic Conference MEDA3 held on 7-9 September 2022 in Nitra, Slovakia    ISBN 978-80-558-1912-9 286



In conclusion, Gemma utilised Lean’s features during her proof by engaging with the immediate 

breakdown of the goals, the hypotheses, the feedback function, and the error messages. These are 

skills fundamental both to mathematics writing and programming, though in conventional 

mathematical writing, ‘responding to error messages’ means engaging with the feedback of a tutor. 

It is also important to observe that Gemma’s pen-and-paper proof is structured in a similar way to 

that of a Lean proof (e.g., the spacing between the paragraphs which are indicated with brackets in 

the Lean coded proof) indicating that there is a sort of cross-contamination (if we may call it this way) 

between the work in Lean and her work on pen-and-paper.   

In the next steps of the analysis, we will focus on investigating further the role of Lean in students’ 

proof production and their use of resources when solving Lean proofs, how they engage with their 

own pen-and-paper proof or the materials provided by their lecturer. Initial analysis of the other 

students’ work on the same task illustrate that other students mainly refer to the feedback they receive 

from Lean and not much to their pen-and-paper proof. Finally, considering the role of programming 

and the call for further research on the relationship between mathematics learning and programming 

(Lockwood & Mørken, 2021) our work aims to investigate further students’ reasoning with a 

programming language which is closely linked to pure mathematics and proof. Students’ engagement 

with Interactive Theorem Provers might have an impact on their epistemologies regarding 

mathematics and proof. Our future work would seek to provide further insight into these issues.  
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Hybrid teaching can be challenging due to technological complexity and motivational differences 
between students attending classes virtually or physically. In hybrid teaching, resources and activities 
should convey similar content and at the same time motivate students in both setups, however, 
resources and activities like manipulatives often are optimised for either physical or virtual 
interactions. By using 3D modelling, we aim to create a hybrid version of manipulatives that can be 
represented physically and virtually, matching the teaching situation, and offer similar content. In 
this paper, we outline a workshop, share our experiences, and highlight our design-based research 
study for such hybrid settings. 

Keywords: 3D modelling, augmented reality, 3D printing, geometry, manipulative. 

Introduction 

When using physical manipulatives and games, students can learn a multitude of skills due to looking 
at it from different angles (Simon, 2022). However, physical learning resources are not always 
sufficient for hybrid teaching. Giving resources to students attending class in person and not 
providing them for those attending virtually leads to different learning experiences and motivation. 
Emerging technologies can help create virtual and physical manipulative versions that can be used in 
class and remote. Therefore, we use technologies based on 3D modelling (3DM) for developing 
manipulative-like resources such as puzzles that can be created by students and visualised virtually 
by Augmented Reality (AR) or physically by 3D printing (3DP) which gain importance in education 
(Trust et al., 2021). 3DP and AR have 3DM as prerequisite and have potential assisting in developing 
and training maths skills, particularly in geometry when working with solids (Ng 2017). They can 
improve transitions between virtual concepts and physical representations and open possibilities of 
transporting and visualising mathematics concepts (Lieban et al., 2018; Cahyono et al., 2020;). AR 
and 3DP can help understanding 2D and 3D projections and switch from digital to physical media 
which is useful for hybrid teaching (Sholikhah, 2021; Linder et al., 2017). They can help experience 
concepts such as mirroring, rotation, translation, geometry, or algorithms and support skills like 
problem solving and critical thinking (Lieban et al., 2018) as they are used to create 3D objects. 3DM 
followed by AR and 3DP bridges virtual and physical realms and can therefore be subject general 
and subject specific for cross disciplinarity and hands-on-approaches (Weinhandl et al., 2021). 

Students and teachers can profit from integrated multidisciplinary teaching and learning approaches 
using technologies but despite these potentials, teachers still rarely use them. Teachers had to use 
technologies during the Covid-19 pandemic to support their lessons, but many educational settings 
were underprepared for e-learning (Lynch, 2020). Hybrid teaching was described as even more 
challenging for teachers, one reason was the lack of teaching resources (Tuul, 2022). Switching 
between dimensions and going from digital to physical can make hybrid teaching situations 
challenging. We developed a workshop using 3DM to create hybrid manipulatives based on playful 
interaction in a design-based manner which were tested in hybrid teaching and workshops with pre-
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service teachers and collected feedback with questionnaires. This paper outlines connections between 
technologies, topics in mathematics connected to 3DM, and we highlight the design ideas behind. 

Technologies, manipulatives, and connections to hybrid teaching 
For teachers to adapt to new technologies, research indicates that the technology and resources for 
applications need to be available (Holzmann et al., 2018). The technology also needs to be known 
but a study by Trust et al. (2021) showed that while many teachers are familiar with AR (40%), 3DP 
is often new (24%). Using technologies in lessons that are not part of everyday teaching processes 
such as 3DM, AR and 3DP has characteristics of interactive lectures where students solve open 
questions (Singleton et al., 2020). This, combined with simple exercises to learn 3DM, AR and 3DP, 
can be useful in hybrid teaching. Since the attention of teachers is often diverted between the two 
groups of students, technologies like GeoGebra can be used to observe progress, visualise 3D models 
using AR and provide models usable for 3DP. All students can simultaneously create geometric 3D 
models with similar support (Lieban & Lavicza, 2019; Haas et al., 2021).  

Students are motivated by playing with puzzles and digital games with manipulative like qualities 
and new technologies can add to the motivation of students (Moral-Sanchez & Cabello-Fortes, 2021). 
Manipulatives can be physical objects but also virtual as representations on eg. screens (Simon, 
2022). Manipulatives can help students to learn about mathematics in a playful way (Ha & Fang, 
2013). Before a virtual or physical object can be created, they usually are a virtual 3D idea that can 
modelled digitally (Lieban et. al, 2018). With digital 3DM for virtual AR and physical 3DP, students 
can combine this and can create their own versions of digital puzzles offering opportunities for game 
design based on mathematics. The digital, virtual, and physical experience can be useful in hybrid 
education as all parts of the process from 3DM to AR to 3DP can complement students' experiences.  

We propose 3D modelled labyrinths and mazes as puzzles based on mathematical principles which 
students can create and solve using new technologies for extra motivation and hybrid teaching. 
Hybrid teachers often utilise concepts such as flipped classroom scenarios where asynchronous 
teaching happens (Saichaie, 2020). Technology supported hybrid teaching can also be synchronous 
as many had to teach online and on-site simultaneously during the Covid-19 pandemic (Tuul, 2022). 
To give both groups adequate attention and learning experiences, resources should be usable in both 
settings with a similar learning outcome and students’ progress should be observable with an available 
technology known to mathematics teachers. GeoGebra is used by many maths teachers and has a 
functionality where teachers can observe activities of students (Widada et al., 2021). However, an 
activity that contains purely virtual manipulatives might not always be the best solution in all settings. 
Using tactile senses and the body can add to learning experiences (Shvarts et al., 2021).  

Mathematical concepts in 3D models 
Labyrinths and mazes can be found in architecture, art, as decorations and gardening features, and 
solving them can be a motivational experience dating back about 4000 years (Saward, 2017). They 
are usually created based on mathematical principles and algorithmic rules (Fenyvesi et al., 2013). 
Thompson and Cheng (2015) indicated that creating labyrinths and mazes can help train concepts 
such as combinatorics, reasoning, or geometrical operations used for spatial thinking. These concepts 
are part of maths curricula and can be supported by using manipulatives (Simon, 2022). In addition, 
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students should train spatial orientation and understand the connections between 2D and 3D shapes. 
They should investigate geometry and quantity theory and concepts such as parallel, intersections, 
scaling, tilting and angles. These concepts should be developed by students in a playful way by for 
example creating puzzles or mosaics. Creating mazes requires concepts described in the curriculum 
like tilting, thinking about symmetries, removing boundaries on surfaces, and thinking about 3D 
geometry and scaling (Fenyvesi et al., 2013). Creating and modelling a maze puzzle in GeoGebra can 
help students to learn about the mathematics behind their puzzle ideas and increase their motivations. 
GeoGebra offers the possibility to observe each student's maze creation with the classroom 
functionality where a teacher sees both the progress of students in class and at home which helps in 
hybrid teaching. While creating mosaics might require physical attendance, 3DM and visualising 
results in AR or 3DP can offer experiences for hybrid teaching. Observing geometrical objects by 
AR or realising them by 3DP can also be seen as part of a mathematical modelling (MM) process 
(Ulbrich, 2022). Therefore, this might also strengthen problem-solving skills in maths. The 
development of technologies requires teachers, amongst fulfilling the role of being a teacher of 
content, to also use and teach technologies. This generates situations where teachers have new 
responsibilities when using technologies in their classrooms (Top et al., 2021). A teacher’s role is 
providing content and technology-related knowledge so they should create environments that support 
technology use (Top et al., 2021). We thought that this exercise might be an activity introducing 
technology for first steps in 3DM in teacher training courses revolving geometry. 

Methodology, methods, and data collection 
The initial activity of creating 3DM mazes was created for a science hybrid festival with hundreds of 
attendees with the idea of making mathematical patterns experienceable. About 120 attendees ranging 
from 5 to 65 years old tested these pre-modelled labyrinths and mazes at home and on site using 
mobile devices and inspired us to use the activity as teaching resources. Due to in-service teachers' 
remarks about the lack of resources for their synchronous hybrid classes, we refined the activity from 
out of class spaces to fitting classroom settings and hybrid teaching. First, we formalised the activity 
by creating steps for a workshop from discussion about mathematical features of geometric objects 
to creating hybrid manipulative which we then tested in online workshops. As we wanted to get 
feedback on possible use cases and were curious whether the exercise could hold benefits for teachers, 
we made adaptations for pre-service mathematics teachers (PSMTs). A workshop was created with 
steps from inspiration by existing labyrinths and mazes to drawing and creating them for AR and 3DP 
and then discussing and sharing one’s maze. We applied design-based research (DBR) principles 
(Reeves, 2006) and tested in different settings. The workshop was created as mathematics exercise 
with the curriculum in mind and was refined using feedback and notes we took about our observations 
and remarks the attendees gave us during and after the activity. The workshop was tested in online 
workshops, hybrid classes for pre-service teachers (PST) and at presentations where we collected 
qualitative data by open questionnaires about expectations, possible fields of use, participant’s 
technology use and surprises. Participants filling out the questionnaire were from 16 and 48 years 
old. First, we conducted online workshops that were attended by a large variety of participants from 
five to about 40 years to gain a broad view on possible improvements. Groups ranged from five to 20 
participants including pupils and in-service and PSTs. Next, we did hybrid classes for PSTs that were 
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attended by teachers from mostly mathematics. The PSTs attended hybrid workshops embedded in 
lectures as an introductory exercise. The group sizes reached from 14 to 60 PSTs, depending on the 
lecture. The initial activity took 20 minutes, emphasising AR while the online workshops took up to 
two hours because of discussions about mathematical principles due to inspirational pictures of 
historical labyrinths and focusing on 3DM as well as 3DP. In next iterations, time was reduced to 
maximum 90 minutes to better fit lectures, participants were asked to develop mazes on pen and paper 
and GeoGebra Classroom was used to see their progress. We observed that this was also a source for 
discussing mathematical operations like tilting and scaling when commenting participant’s current 
states of work. Internal discussions about notes from observations and comments from questionnaires 
helped to find a balance between discussions before and after creating and observing the 3D solids. 

As an example, a workshop at a partnering university for one hour with about 13 participants in 
person and about the same amount online started with introducing connections between mazes and 
labyrinths and mathematics. Next, we showed a video how we used AR solving mazes. Next, we let 
participants search for inspirational pictures of existing mazes and encouraged them to discuss their 
mathematical features. Next, we asked them to first draw and then create their own mazes in 2D and 
3D using GeoGebra Classroom. Finally, they used AR to walk through a maze using tablets locally 
and smartphones remotely. In this instance, 3DP was not possible due to the short time but 3D printed 
versions of mazes were shown around before sending the link to a questionnaire. We then sat together 
later discussing our notes and the questionnaire talking about possible changes. 

The resulting activity design 
Following these ideas, an activity was created that can be used in class, at home, has manipulative 
like and game features, that inspires to move and can be observed by a teacher using a technology 
well known by many mathematics teachers. In addition, resources can be created and shared using 
the activity also enriching it for everyone else by using GeoGebra. 3D models can be created using 
GeoGebra based on mathematical principles and using mathematical expressions. AR can be used on 
smartphones and has therefore a high availability. It can be used to visualise existing 3D models 
created for sharing that can also be downloaded from GeoGebra for 3DP in class or at home. 

 

Figure 1: Examples of rectangular and square shapes creating labyrinthic structures by tilting 90 
degrees (Reproduced from Fenyvesy, Jablan and Radovic, 2013) 

In geometry, students should understand relations of spatial positions and location relations of 
objects. Concepts such as parallel, intersections, right angles, as well as describing geometric figures 
by bounding surfaces, edges and corners should be learned. The focus is especially on squares and 
rectangles, assembling and disassembling them. Fenyvesy et al. (2013) describe how simple mazes 
can be created by cutting and tilting parallel lines by 90 degrees as seen on Figure 1. Applying this 
can train geometry concepts. Playful design with solids and surfaces is an activity teachers do in 
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lectures by eg. folding paper, creating mosaics, drawing symmetrical pictures on grids, investigating 
edges and forms by performing tilting movements, removing boundary surfaces, and creating 
symmetrical pictures. Many of these actions can be found in the described exercise which makes it 
valuable for using with younger children. Another dimension can be added when modelling mazes 
and investigating them later using AR and 3DP which can train spatial orientation from inside a 
geometrical object by AR or from the outside as a manipulative in a 3D printed form.  

This creates a hybrid form of a manipulative which can be used synchronously by participants that 
physically and virtually attend a lecture. Students can attend in class or at home, not immersed in a 
virtual environment and experiencing virtual objects in their surroundings. They can manipulate 
virtual objects by rotation, scaling, moving in and out as is usual with virtual manipulatives and 
experience and analyse them (Piekarski & Thomas, 2003). In addition, the 3D models can be turned 
into physical manipulatives by 3DP which trains skills arching over many subjects and can be seen 
as part of an MM process (Asempapa & Love, 2021). 

 

Figure 2: A drawing of a labyrinth and the GeoGebra AR representation 

The activity goal was that PSMTs should train their MM and visuospatial skills and learn how to give 
pupils an introduction to mathematical features of mazes and 3DM lessons in hybrid settings. Inspired 
by walking through mazes using AR and pictures in art, pupils should start by drawing their maze 
locally on pen and paper and then create 3D models of them for AR or 3DP as seen in Figure 2. 

Results and first findings 
In the initial idea, we had 2D and 3D mazes where the 2D mazes were explorable only virtually and 
the 3D mazes only by AR. We found the activity to be motivating especially for younger children 
until lower secondary who, in contrast to other attendees, often redid the activity multiple times. 
Feedback during workshops and from questionnaires gave us the idea that this activity had 
motivational aspects also contained more potential to train skills connected to geometry and 
visuospatial orientation within geometrical forms and solids. Therefore, we formalised the activity to 
a workshop combining 2D and 3D versions of labyrinths and mazes and added 3DM and 3DP as we 
got feedback that the 3D mazes were more interesting to the attendees of the festival. 3DP was added 
being shown remotely as we wanted to strengthen the connection to physical manipulatives and 
searching for images to show and discuss mathematical features. Asked about the participants' 
expectations in the questionnaire, they said they were interested in learning fun new tools. Remarks 
ranged from enjoying the combination between history, art and mathematics pointing us towards 
possible use in lessons to a joyful and motivational way of learning multiple new technologies 
combined with mathematics. Feedback from attendees was that using mathematics to create puzzles 
was much fun. They reported that the 3DM part helped them understand the mathematical features. 
3DP because of their efforts made attendees proud. The participants engaged in creating mazes and 
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reported they were inspired to create more mazes and felt more confident with using GeoGebra as a 
3DM tool, as well as using these technologies and the exercise in future. The engagement of all 
participants and the motivation they showed hints to a highly motivational aspect of the workshop. 
The workshop was then used to introduce PSMTs to 3DM, AR and 3DP in hybrid teaching and as an 
example they could use for their own teaching. This feedback and other analyses of the data in the 
future will reveal more connections to mathematics curricula and reactions from pupils will give us 
ideas on the game qualities combined with mathematically modelling a solid and testing their ideas.  

Testing and refining 3D models of solids in an MM manner can be done by either using a mobile 
device for AR or a 3D printer and then remodel the solid. They can be enlarged to human size by AR 
to look at it from the inside, solving it as a virtual manipulative or they can be 3D printed to investigate 
it as a physical version. Finally, pupils should reflect on mathematical concepts they chose by sharing 
them. Feedback from two PSMTs was that they saw a strong connection towards MM and planned 
to use the activity with their pupils. Some remarked during lessons they enjoyed connections between 
scaling and printing time as it shows changes in volume due to operations with vectors. They said 
they enjoyed thinking about which mathematical operations could be used to create mazes they found 
beautiful. Our observation was that while students had more fun in creation and exploration of mazes 
in AR leading to simpler designs, PSMTs were motivated to use many mathematical principles 
leading to a high complexity and a very long creation time with more focus on developing and 
creating them using 3DP. We found motivational aspects, connections to geometry by going from 2D 
to 3D objects, the benefit of having manipulative-like object creation and manipulation and the use 
of manipulatives in synchronous hybrid lessons with the possibility to observe a student’s progress. 
Moreover, we found that the activity is useful for PSMTs as an introduction to certain technologies 
and that they as learners themselves feel they better understand certain mathematical principles. 

Discussion and future ideas 
The created workshop leads to motivation and engagement in hybrid teaching situations by using a 
playful activity and uncommon technologies. We observed participants in offline, online and hybrid 
situations finding the use and possible improvements and received feedback in questionnaires about 
the mathematical concepts used and learnings of participants. The feedback pointed towards a 
motivational boost and several connections to the mathematics curriculum such as going from 2D 
forms to 3D forms. Especially the 3D version of mazes led us to develop this further as a hybrid 
mathematics exercise and refine it with the help of additional feedback. We observed that depending 
on the age group and teaching situation, the exercise might be presented in varying complexities and 
with varying emphasis on certain steps. By participants creating their own 3D models, the 
mathematical complexity is adapted as the mazes can be created either simpler or more complex. The 
combination of multiple representations with new technologies seemed helpful because especially 
older participants such as PSMTs learned to use the technologies and use their mathematics skills at 
the same time. The GeoGebra classroom helps to keep track of how actively engaged participants 
were and which parts were challenges. The collected data will be processed in more depth exploring 
which ideas and expectations participants had of connections to the curriculum and analysed more 
in-depth in the future to find out more about which concepts can be taught. 
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With more testing we might see which positive learning effects mazes lead to. Using the activity in 
lessons by the PSMTs can give us data on student’s improvements. Improvements of PSMT’s MM 
skills will be explored during lectures about 3DM. We will work on which learning features of mazes 
and look at how a 3DM maze creation can help with learning goals. Finally, we want to look into 
which benefits this activity holds for PSMTs apart from learning technologies. We believe that 
working with 3DM, AR, and printing PSMTs might help develop better MM skills. As 3DP can be 
seen as part of a MM process, we want to investigate further whether PSMTs profit from this activity.  
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In this study we developed a heuristic worked example video aiming at enhancing upper secondary 
students’ modeling competencies based on a theoretically derived framework. The video includes 
interactive elements such as self-explanation prompts which were implemented using the h5p-plugin 
in a Moodle-based learning management system. To enable transfer, students solved a related mod-
eling task afterwards. We investigated the perceived advantages and challenges of nine student pairs 
when working with the video and the modeling task subsequently. A qualitative content analysis re-
vealed that students liked certain design features and the possibility of self-regulating their learning 
while the latter was also perceived as difficult. Students experienced challenges regarding the dura-
tion of the video and the transfer of the content to the subsequent task. The results indicate a great 
potential of the interactive elements. Also, further ways of improving this kind of video are discussed. 

Keywords: Mathematical modeling, interactive video, h5p, heuristic worked examples. 

Introduction 
Instructional videos are an important medium in the educational context and therefore it is essential 
to provide carefully designed videos. In order to meet those demands, several frameworks for design-
ing instructional videos have been developed (e.g., Kay, 2014). Due to various advantages of videos, 
such as the opportunity of dynamic visualizations (Berney & Bétrancourt, 2016), it should also be 
considered how videos can be used to enhance mathematical learning. One common format employed 
in mathematics are worked example videos which present a problem and a step-by-step solution (Kay, 
2014). In order to make this instructional approach usable for teaching heuristic skills as needed in 
mathematical modeling, we developed a framework combining recommendations from video and 
multimedia research (e.g., Fiorella, 2021) with elements of heuristic worked example research (e.g., 
Reiss & Renkl, 2002). To gain an insight into students’ perception of this kind of video, a heuristic 
worked example video based on this framework was produced and students were interviewed about 
their perceived advantages and challenges when working with this video.  

Theoretical Background 
Instructional videos for teaching mathematics 

Producing videos has become easier during the last years and many videos can be found online. A 
study by Kay and Kletskin (2012) reported undergraduate students’ reasons to watch pre-calculus 
videos. Due to the visual method of learning, watching videos is easier to follow compared to reading 
written material. As self-regulation involves learners systematically activating and sustaining their 
behaviors towards the attainment of their goals (Schunk & Greene, 2018) and videos can be-re-
watched or paused in contrast to explanations by a teacher, videos offer an opportunity for self-regu-
lated learning. Students like the component of a “student problem” which means that they solve a 
problem similar to the one in the video while watching it (Kay & Kletskin, 2012). More general, the 
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opportunity to watch videos anywhere and anytime makes them convenient for studying (Fung et al., 
2021). Despite the various reasons to watch videos when learning mathematics mentioned before, 
students are also confronted with challenges. Students may have difficulties when concepts are ex-
plained differently than in class. Moreover, students face problems with the self-regulated use of 
videos and may watch them only before exams or when the teacher asks them to do so. Students also 
report issues with a lack of support when watching a video (Fung et al., 2021).  

Learning and teaching mathematical modeling 

Mathematical modeling can be characterized as the process of translating a real-world problem to a 
mathematical model and thus using mathematics to solve the real-world problem. It involves steps 
like structuring information, working mathematically and applying results to the real-world problem 
(Blum, 2015). As skills in pure mathematics are not sufficient, the process is quite demanding. On 
the other hand, modeling can be successfully taught and learnt for example through activity rich en-
vironments (Niss & Blum, 2020). One instructional approach to teach modeling is having students 
work with heuristic worked examples. Those usually present a problem and a step-by-step solution 
while making used heuristics explicit along the way (Reiss & Renkl, 2002). A study by Zöttl et al. 
(2010) investigated heuristic worked examples in the context of geometric modeling problems in a 
computer-assisted environment with 8th-graders. Results indicate that this instructional approach en-
hanced students’ modeling competencies. Even though there has been further research regarding heu-
ristic worked examples for teaching modeling, Renkl (2017) still proposes to extend this research. 

Heuristic worked example videos for teaching mathematical modeling 

In order to combine the potential of instructional videos for learning and the promising approach of 
heuristic worked examples for teaching modeling, we developed a framework for designing heuristic 
worked example videos in the domain of modeling (Wirth, in press). In the beginning, the problem 
is presented through real-world scenes and thereby may provide an authentic task context (Greefrath 
& Vos, 2021). The segmentation of the video using a solution plan supports the step-by-step expla-
nation of the solution. Furthermore, integrated breaks after each step allow to include self-explanation 
prompts, asking students to connect what they have seen to prior knowledge and to clarify open is-
sues. Prompts are also included within the video to let students anticipate the next step. If students 
anticipate the next step correctly, students are given the opportunity to skip instructional explanations. 
This design feature aims at avoiding the expertise reversal effect which states that learning can be 
hindered if students are confronted with unnecessary explanations (Kalyuga, 2021). Follow-up learn-
ing tasks make the video part of a larger concept. By explaining heuristic strategies, it is intended to 
give an insight into problem-solving methods. Layout decisions are based upon design principles for 
multimedia learning with instructional video (Fiorella, 2021) and, for example, include dynamic 
drawings. A conversational language aims at keeping students engaged. As little is known about 
using videos to enhance a demanding competency like modeling, this study focuses on students’ per-
ception of this certain type of video. Due to the design, the mathematical content and the real-world 
context of this type of video, there may be different or further perceived advantages and challenges 
than the above-described. Thus, we decided to focus on the following research questions:  
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1. What are the perceived advantages when students work with a heuristic worked example 
video on a modeling problem and solve a related task afterwards? 

2. What are the perceived challenges when students work with a heuristic worked example video 
on a modeling problem and solve a related task afterwards? 

Method 
Sample 

To answer the research questions, we conducted a study with 9 pairs of students (11 female, 7 male) 
from upper secondary schools in Germany between the age of 15 and 20 (M = 17.17, SD = 1.25). 

Procedure and Instruments 

We used a qualitative design to collect data. A heuristic worked example video was designed accord-
ing to the above-described criteria. The video is 29 minutes and 32 seconds long. Implementing the 
video into a Moodle-based learning management system using the software h5p enabled the following 
interactive design features: Pausing, rewinding, fast-forwarding, system-integrated pauses, self-ex-
planation prompts, skipping explanations at certain points, a table of content displaying the different 
segments and corresponding bookmarks in order to switch between segments. In the instruction at 
the beginning, students were informed about the procedure and were made familiar with the interac-
tive design features. Students worked with the heuristic worked example video which included the 
lifeguard task (see Figure 1). As a component of the larger concept, students solved a modeling task 
afterwards. To enable transfer, the modeling task and the task in the video differed in context and had 
slightly different mathematical models but both located in the domain of optimization problems. Stu-
dents worked in pairs in order to enhance communication. They were allowed to revert to the video 
while solving the task. Afterwards, each pair of students was interviewed regarding their perceived 
advantages and challenges when working with the video and the task afterwards. The whole session 
was videotaped. 

 

Figure 1: A brief description of the lifeguard task presented in the heuristic worked example video 

Data Analysis 

For data analysis, we transcribed the interviews. Then, we analyzed the transcripts using Mayring’s 
(2015) content analysis. As little is known about working with heuristic worked example videos and 
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we could not use an existing elaborated category system, the category system was developed induc-
tively based on the material. In short, a summarizing procedure was used to generate categories with 
regard to the research questions and thus “perceived advantages” and “perceived challenges” served 
as main categories. All data were coded by the first author and a second well-trained rater. Interrater 
reliability was very good (Cohen’s Kappa κ = .83).  

Results 
We started by analyzing the perceived advantages. An overview of all categories regarding perceived 
advantages and challenges is provided in Figure 2.  

Perceived advantages 

Design. Students reported advantages that closely relate to the design of the video. They liked the 
overall structure of the video. The integrated breaks in between each segment supported concentra-
tion. Providing step-by-step explanations following the solution plan helped them to monitor the so-
lution process. Students remembered certain steps of the modeling process with the help of the solu-
tion plan and overall, it reminded them to structure their work. The integrated self-explanation 
prompts helped students to concentrate. The prompts served as a starting point to create an own so-
lution. Speaking to a peer about the content helped students to monitor whether they have understood 
what they have seen so far. Another feature that students rated positively were the explanations. Those 
offer an additional approach to the ones of the teacher but can be re-watched. The explanations made 
clear why one step led to the next one and were described illustrative because they were connected 
to scenes from the real world. This closely relates to the perceived advantage of visualizations. Work-
ing with scenes from the real world underlined the importance of making assumptions while paying 
attention to the context. This is exemplified in the following excerpt: 

Student A: What I also liked is that the paths were drawn on the picture of the pool, so one 
could visualize that. And not that there is a sketch first but that one kept an eye on 
different things. Like when it was said “you have to consider the starting platforms”. 
On a sketch, you wouldn’t have seen that at all. 

Moreover, students felt that the real-world scenes made it more realistic to work on a modeling task. 
Comments on visualizations also related to the way of the dynamically displayed calculations which 
made it easier to comprehend those.  

Self-regulated learning. As the previous described advantages relate to what was predefined through 
the video’s design, the following categories highlight how students use certain design features in a 
self-regulated way (see Figure 2). At two points, the video was paused and students were asked to 
work mathematically. When continuing the video, the result was presented briefly and students got 
to choose whether they want to skip the information on how to get the solution. Students acknowl-
edged this as a way of adaption to the level of learning. It would have been unnecessary to watch the 
explanation but students still liked that they had the option. Further ways of adapting the video to the 
level of learning include the possibility of fast-forwarding the video, rewinding the video and pausing 
the video in order to take notes. Another possibility to use the video in a self-regulated way is the 
direct control of students’ self-created answers. This relates to the above-described brief presentation 
of the result and the optional explanation. Students compared their own ideas to the result in the video. 
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Even when students had the correct answer, they still liked the explanation in order to clarify how 
they got the answer. When they did not answer the question correctly, the explanations helped them 
to understand how they would have gotten the correct answer.   

 

Figure 2: Perceived advantages and challenges with the number of coded segments 

Perceived challenges 

The three inductively developed categories regarding the perceived challenges were transfer, dura-
tion and self-regulation (see Figure 2).  

The category of transfer includes the perceived difficulty to transfer the content of the video to the 
following task. Students reported issues with applying the structure and the general approach of the 
video when they felt the video was not present (despite the fact that they were allowed to use the 
video). The second category regarding challenges is the duration of the video. Students mentioned 
that this was too long for their usual reasons to watch a video (e.g., as exam preparation) and wishing 
the video to be shorter. The third challenge relates to a student stating that she would have difficulties 
working with this video alone. She would experience the challenge of self-regulation having a hard 
time answering the prompts and thus she would watch the video continuously.  

In the following we take a closer look at the perceived challenges when working with the video and 
how the perceived advantages might affect those. 

The challenge of transfer and the advantage of the structure. While students mentioned that they have 
a hard time transferring what they have seen to the task after the video, students also mentioned that 
the structure of the video helped with transfer. Especially the step-by-step approach to problem solv-
ing may enable working in the different steps of the modeling cycle. 

The challenge of duration and the advantage of the structure. The advantages of self-explanation 
prompts and the adaption to the level of learning were also addressed. While the video is perceived 
relatively long, the step-by-step structure of the video helped students to focus, as the following ex-
cerpt underlines: 

Student B: A challenge is maybe that it takes relatively long to watch it. We did it step-by-step, 
so it was okay for the attention span. But I think for example if you were to watch 
it in one piece, I think then at some point the patience thread would snap. 

Not only the breaks between each segment but also working with the self-explanation prompts sup-
ported concentration. Also, the possibility of skipping explanations and thus adapting the video to the 
level of learning helped students to focus. Students claimed that they would not pay attention to these 
parts if they had to watch them. Two groups of students still would have liked the video to be shorter. 
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Discussion and conclusion 
When asking students about advantages while working with a heuristic worked example video, they 
indicate various aspects which led to six inductively developed categories (see Figure 2). Many of 
them relate to the inherent design of the video. The perceived advantage structure refers to segmen-
tation which is one category the videos design is based on. Students spoke of the solution plan, the 
integrated breaks and the step-by-step explanations solving a presented example. They also acknowl-
edged the integrated self-explanation prompts as a support to stay focused. Because it is recom-
mended to include generative activities such as opportunities to self-explain in videos (Fiorella, 
2021), these answers show that they can help to achieve the desired effect. Moreover, students were 
able to follow the explanations. The mentioned visualizations relate to layout decisions made, for 
example, that the handwriting is building up dynamically. Video-taping scenes from the real-world 
might be worth the effort since students found them to make it more realistic to solve a modeling task 
and, thus, offering an authentic approach to modeling tasks in school (Greefrath & Vos, 2021). The 
possibilities of adaption to the level of learning included skipping parts of explanations. Students 
indicated if having to watch those when it would have been unnecessary, they would not pay attention. 
This is consistent with the expertise reversal effect (Kalyuga, 2021). It underlines the potential of 
adaptive elements when implementing a video into a learning management system with software like 
h5p. The instructor can configure the video offering students to skip parts of the video at predefined 
points. This differs from students being able to fast-forward the video because they might scroll 
through the video unsystematically. Further ways of adapting the video to the level of learning in-
cluded pausing. Nevertheless, there might be a gap between the perception and the actual use of the 
adaptive elements. Taking a closer look at the videotaped phase of working with the video would 
provide deeper insights into how students actually engaged with the adaptive elements. This could 
also help to better understand how students used the video as an instrument of direct control.  

In order to get an idea of the challenges while working with the heuristic worked example video, 
students’ answers were grouped into three categories (see Figure 2). One challenge concerns the 
transfer of the content or structure of the video to another modeling task. It was intended to offer the 
students the opportunity to practice by integrating the video into a larger concept (solving a related 
task after watching the video). Some students indicated that the structure of the video helped with 
transfer. Other students still had a hard time to transfer the structure to another task when the video 
was “not present”. Even if a table of content and bookmarks were used to help students switch be-
tween individual segments, this may not have helped students to find the part they were looking for. 
Again, a closer look at the phase of working with the video would provide insights into how search 
strategies were applied. An option to support students making the transfer could be to supply an 
overview page of what they have seen in the video. Thereby they can review the solution process at 
once. The second reported challenge concerns the duration of the video. As solving a modeling task 
can be quite complex, the recommendation to keep videos shorter than six minutes (Guo et al., 2014) 
could not be followed. To compensate for this, it was ensured that individual segments lasted less 
than six minutes. As described above, the structure, the self-explanation prompts and the adaption to 
the level of learning helped students to stay focused but some students still wished for a shorter video. 
Nonetheless, with a shorter video, other perceived advantages would not be possible. Especially the 
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step-by-step explanations would have to be reduced, which many students referred to as an advantage 
of the video. However, giving high-knowledge learners the possibility to skip more parts of the video 
could help to keep instructional explanations to a minimum for this group of students and thus help 
with reducing the length of the video. Another option would be to provide meta-knowledge (e.g., on 
how to look for a comparison value) on demand only. These are instances to further avoid the exper-
tise reversal effect (Kalyuga, 2021) and could be used to provide the same video to students with 
different levels of modeling competency. The third perceived challenge came from one student put-
ting herself into watching the video alone. Struggling with self-regulation could lead to ignoring the 
self-explanation prompts. As the prompts were mainly designed to discuss concepts with a partner, 
students could be prompted to write down their answers when watching the video alone. This may 
help with not rushing through the video and eventually lacking concentration. Overall, when consid-
ering the challenges, it is also important to keep in mind that students may not be used to working 
with a heuristic worked example video. For example, since other videos are often shorter, this could 
intensify the perception of the duration as challenging.  

Our study has some limitations we want to acknowledge. A qualitative research approach with a small 
sample size was used to gain first insights into students’ perceived advantages and challenges when 
working with a heuristic worked example video and a related task afterwards. The design only allows 
for hypothetical generalization which need to be confirmed in future studies. Further limitations 
emerge from the video and task that were used and must be kept in mind when interpreting the results. 
Nevertheless, the results are consistent with previous research analyzing advantages and challenges 
when using videos to teach mathematics (Fung et al., 2021; Kay & Kletskin, 2012). Additional per-
ceived advantages mainly resulted from certain design features like the use of interactive elements. 
The potential of using scenes from the real-world might be especially fruitful within videos for teach-
ing modeling. Further perceived challenges mostly related to the relatively complex content, but these 
results can be used to improve the design of heuristic worked example videos. Video designers should 
be aware of students’ issues to transfer the content of the video to another task. Moreover, it is im-
portant to keep the video short or at least to give the students the opportunity to skip parts. Adapted 
generative activities for individual learners could involve prompting students to write down a short 
summary after each step. Overall, this study contributes to heuristic worked example research by 
taking the potential of instructional videos into account and thereby continuing the proposed research 
on heuristic worked examples in (mathematical) modeling (Renkl, 2017).  
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Introduction 
During the Covid-19 epidemic, using modern technology became a necessity, hence the interest in 
teachers’ concerns grew (Keese et al. 2022). Keese found that only teachers confident about applying 
technology will implement technology. However, the intention to use technology in education has its 
roots earlier. Since the 1970s there have been studies on using computers creatively (Papert 1972). 
However, before designing creative tasks, one must understand, what creativity is and how to use 
technology to enhance creativity. Along these lines, the Austrian government purchased digital 
devices for all year-five and year-six students in the fall of 2021. This project aims to bridge the gap 
between the highly digitalised world and the classroom. Convincing teachers to implement 
technology despite their concerns requires tasks carried out easily. After presenting the theoretical 
framework, this paper will describe a creative task carried out as a joint project with an art teacher. 

Theoretical Framework 
Seymour Papert is considered to be the founder of constructionism. The focus of constructionists as 
indicated by their name is construction. Through constructing an artefact the students gain an insight 
into mathematical structures and gain an understanding of mathematical phenomena (Harel und 
Papert 1991). Harel and Papert also claimed that tasks integrating mathematics and art enhance the 
effectiveness of instruction. However, creativity must be learnt and practised. As Robinson Resnick 
claimed, the current students will have jobs that do not exist yet and require creativity (Resnick und 
Robinson 2017). Therefore, it is today’s teachers’ responsibility to prepare the students for these 
demands (Holbert et al. 2020). To support the teachers a collection of ready-made tasks is needed. 
The following paragraph will describe such a task. 

Making videos using Clips and GeoGebra 
The pandemic changed teaching and learning strategies. Although videos have been utilised during 
the long lockdown periods, students were to view these videos and not make them. The task described 
requires the students to make videos applying an easy-to-use App, Clips. There are already studies 
about the motivating effects of using Clips (Larkin und Jorgensen 2016). However, there seems to be 
little known about the possibilities for tasks combining mathematics and art. A year-five class had to 
draw circles using GeoGebra and use Clips. The students had to take a screenshot of the stages and 
create a short video. STEAM teaching projects intend to show students that mathematical skills are 
required in science, technology, engineering and art. This video task combines mathematics and art.  

You can find some examples at the following links: 
https://drive.google.com/drive/folders/1chAMIhc5NBVRbWQT2EDFEilnce_szV-Y?usp=sharing 
https://drive.google.com/drive/folders/1_IYDFVk5BCgJmdyXF5cEKFR33791mCAT?usp=sharing 
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The students were experimenting with circles while using technology. Additionally, they were 
collaborating. Further, we took time to evaluate the videos. They showed their creations, praised each 
other, and practised constructive criticism. A similar task was given to a year-six class. They were to 
draw triangles which added up to an animal. The rest of the class was to guess what animal would 
appear. The project was carried out in collaboration with the art teacher. Here you can see some of 
their screenshots. 

  

Figure 1 – 2: Cookie monster and a rabbit 

Final remarks 
All participants found the tasks enjoyable. The joy of creating, collaborating, and gaining 
acknowledgement from the other students enhanced learning. Further study is required, however, to 
understand the effect of expectation. The moments when the students were watching the videos and 
were full of expectations need further research. 
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The poster and its background 
Our proposed poster presents the software mathematikus.de which we designed to support the 
development of visuospatial abilities. The importance of these abilities is undisputed and well 
documented (e.g., Maier 1994). They play a crucial role in many aspects of thinking, and their 
targeted improvement seems possible (e.g., Gilligan, Thomas, & Farran 2019). However, traditional 
methods to promote visuospatial abilities are often limited. We discuss three obstacles that impede 
the development of visuospatial abilities in mathematics lessons and demonstrate how our software 
could be used to overcome such shortcomings. Students’ ways of working with the software and their 
reasoning strategies are the subject of our research, which we will report later. 

Five aspects of “visuospatial ability” 
Visuospatial qualification is the ability of humans to perceive objects in their environment and 
mentally process these sensory impressions. We can create mental pictures of objects without regard 
for their actual existence and perform mental operations on them, such as mental rotation or spatial 
perspective-taking (cf. Maier 1994). This complex construct needs to be differentiated into multiple 
facets or aspects for which concrete tasks can be developed to enable efficient teaching. Since 
Thurstone’s (cf. 1938) conceptualization of visuospatial abilities, there were numerous factor-
analytic attempts to identify such composing factors (cf. Carroll 1993). Even though there is no clear 
consensus about the factor-analytical structure of visuospatial ability, for our purposes, we utilized 
the following five reappearing aspects to categorize exercises that are meant to foster these abilities: 
Spatial perception, spatial visualization, the imagination of rotation, the imagination of spatial 
relations, and spatial orientation. 

Reasons for fostering visuospatial abilities 
Acquiring visuospatial abilities is by no means merely useful for correctly answering a handful of 
scholastic geometry-related problems, but rather seems to be of fundamental value in a myriad of 
areas, including scientific thinking (cf. Castro-Alonso & Uttal, 2019). The ability to imagine numbers, 
numerical relations and operations is crucial for success in mathematics (cf. Georges, Cornu, & 
Schiltz 2019). Mental calculation can be seen as an imaginary motion along a number line. 
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Three obstacles in the development of visuospatial abilities 
When fostering visuospatial abilities, e.g., in geometry lessons, three obstacles can be observed in 
praxis: The availability of training materials is usually limited and restricted to widespread solids 
without atypical variations (1). Often, commonly used exercises contain time-consuming secondary 
activities. For instance, students must draw, cut, and fold when verifying whether a hexomino forms 
a cube (2). Lastly, many tasks which require the student’s imagination are missing concrete three-
dimensional verification methods. Therefore, students can be limited to their teacher’s assessment 
without the possibility to visually comprehend the proposed solution (3). 

Mathematikus.de – software-aided development of visuospatial abilities 
Utilizing software allows for extensive variability: Virtual solids can be effortlessly created without 
being restricted to just a few physical solids. Additionally, it is possible to implement immediate 
visual feedback such as observable animations. We developed mathematikus.de based on commonly 
used exercises for fostering visuospatial abilities. On our poster, we depict various exercises we have 
implemented and explain our didactical considerations behind these tasks. We show how the 
implemented informative feedback should support the students’ learning process. Our next step is 
examining the students’ work and reasoning-strategies while solving the tasks presented in 
mathematikus.de. One of our key interests is how much prior experience with three-dimensional 
solids students need to grasp and solve tasks presented on the two-dimensional screen which merely 
allows for an abstraction of three-dimensional problems. 
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Introduction 

The video clip teaching, with the characteristics of short and exquisite, lively and convenient, and 
dynamic and repeatable, has been applied in many education and teaching levels, and is gradually 
becoming the hotspot and frontier of education and teaching reform (Hong et al. 2016). 

In the research, the micro-video clips can be divided into four types: creating situations, reproducing 
history or life, introducing mathematical ideas and displaying mathematical methods (Li et al., 2019). 
We select some math-related historical materials, Popular Science, or real slice of life micro-video of 
educational value, make micro-video clips no more than ten minutes, and apply it to teaching. On the 
one hand, because the history of mathematics is of great importance to mathematics teaching 
(Jankvist, U., 2009). However, not enough class time, not sufficient historical materials or not 
knowing how to use them properly has always been a confusion for primary school teachers. On the 
other hand, choosing Popular Science knowledge or using real slice of life micro-video is to deepen 
understanding of knowledge from the perspective of interdisciplinary application, and understand 
that mathematical knowledge comes from life and serves life. The application of micro-video clips 
in mathematical teaching has been tested to be an effective way in China (Wang, 2005; Huan, 2021).   

The teaching application of micro-video clips 

Different types of micro-video clips adapt to different teaching aspects, see Table 1 (Li et al., 2019), 
and the process is: Design→Making→Application→Assessment, re-circulates based on the feedback. 

Types of micro-video Suitable teaching aspects 

Creating Situations Introduction of the Theme, Exploration of New Knowledge 
Reproducing History or life Exploration of New Knowledge, Application in Examples, Summary 
Introducing Ideas Exploration of New Knowledge, Summary 
Displaying Methods Exploration of New Knowledge, Application in Examples 

Table 1: Types of micro-video and teaching aspects 

Case 1: Micro-video clips of the history of mathematics in the area of a circle 

The teacher made a short video clip with animation effects of the historical mathematicians’ methods 
with the researcher’s help (see Figure 1), and it was arranged to be shown in the teaching summary 
session. Based on the cognitive characteristics of the students, the teacher selected the divide-and-
patch method that was similar to Liu Hui (C.225-295AD) and Herbert Slaught (1861-1937) in her 
class (Hong et al., 2015). Firstly, students divided the circle equally into 4, 8 and 16 parts based on 
their life experiences, then they put together one by one. Secondly, the teacher used the graphing 
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software to dynamically demonstrate the complex patchwork of dividing the circle into 32, 68, and 
128 parts (see Figure 2). Finally, they inductively derived the formula for the area of a circle together 
by observation and reasoning. The questionnaire survey of the students after the class showed that all 
students “liked” this teaching way because it was “lively and interesting”. 

 

Figure 1: Screenshot of the animated micro-video on the history of mathematics 

                
Figure 2: The divide-and-patch of a circle and two circles 

Case 2: Life micro-video clips in the awareness of angles 

In the opening of the teaching, the teacher played a micro-video of a real-life bird feeding, and gave 
a task which the birds open their mouths to compare sizes (see Figure 3). Interviews with students 
showed that the use of real slice of life micro-video can enhance the connection between mathematics 
and life, and develop students’ ability to observe the real world with mathematical vision. 

 
Figure 3: Screenshot of the real-life bird feeding in the video 

Conclusion 

The teaching effect shows that the application of micro-video clips contributes to develop students' 
core mathematics competencies. In addition, when designing micro-video clips, we need consider the 
characteristics of the materials: Interestingness, Scientificity, Validity, Learnability and Humanity 
(Wang, X., 2018), and the relationship between different teaching aspects and the type of micro-video, 
choose the appropriate presentation, pay attention to the deep integration of technology and materials, 
highlight the mathematical ideas or methods, and serve the achievement of teaching objectives. 
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Abstract: The notion of function is primordial in teaching mathematics. The inverse of a function has 
a well-known mathematical definition. However, it is useful to clarify what are the discrepancies 
between mathematical definition of inverse function, the commands like Invert and NInvert when 
using GeoGebra as function graphing tool of the software. Some examples to be presented are aimed 
to underline the right use of ICT tools, the same time to attract the attention on the possible limits, 
failures in applying them. It is a need for advanced critical thinking both for teachers and students, 
when applying these tools. 
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The inverse of a function, symmetry problems 

There are several definitions of the inverse of a function the teacher can use, depending on the 
learners' mathematical knowledge level. Teaching the notion of inverse function offers the chance to 
address questions to students to deepen their understanding when using ICT tools like GeoGebra, see 
[1], and [2]. There are two distinct commands built in the software for this purpose, Invert and 
NInvert. 

Let us analyze some examples to point out the problems the students will meet.  

 

Example 1. Take the function :	ሾെ1, 1ሿ 	→ 	 ሾ0, 1ሿ, given by ሺݔሻ ൌ √1 െ  ଶ. The function isݔ
obviously not invertible, as for example ሺെ0.6ሻ 	ൌ ሺ0.6ሻ	 	ൌ 	0.8. 

                   
   Figure 1. The graph of  in GeoGebra       Figure 2. The graph of , invert of  in GeoGebra 

Applying the commands Invert or NInvert, GeoGebra returns the ݍ, as invert of	, see Figure.2. 

Is this the right answer? No. As the function is not invertible, all what can be done is to take 
a restriction of it, either ݐ:	ሾ0, 1ሿ 	→ 	 ሾ0, 1ሿ, or ݑ:	ሾെ1, 0ሿ 	→ 	 ሾ0, 1ሿ, given by  
ሻݔሺݐ ൌ ሻݔሺݑ ൌ ඥሺ1 െ  .ଶሻݔ
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The first gives the first quadrant, and the inverse overlaps with the initial function, while in the 
second case the graph of the inverse of the restriction of p belongs to quadrant four, see [3]. 

Example 2.   Let us take now the function ݎ:	ሺെ∞,∞	ሻ 	→ 	 ሾ0,∞ሻ given by ݎሺݔሻ ൌ  ଶݔ	

 

          

       Figure 3. The graph of ࢘ in GeoGebra    Figure 4. Function ࢙ Invert(r) 

Applying the commands Invert or NInvert, GeoGebra returns the function	ݏ, as invert of ݎ 

Again, the question should be: Is this the right answer? No. As the function is not invertible, all 
what can be done is to take a restriction of it, either ݒ:	ሾ0,∞ሿ 	→ 	 ሾ0,∞ሿ, given by ݒሺݔሻ ൌ   ଶ orݔ	
,∞ሾെ	:ݓ 0ሿ 	→ 	 ሾ0,∞ሿ, given by ݓሺݔሻ ൌ  .ଶ, see the page on [4]ݔ	

Discussion, conclusions 

The students need to get experience to use discerningly the available software packages, and to find 
the reason for the differences which appear as computer program answer, and the mathematics 
behind. The same rules apply here as in case of any other smart tool, it is important the basic 
knowledge and the understanding that the computer software will return an answer, but that might be 
different from what is taught in a theoretical course. 
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Geometry is an integral part of mathematical education in Slovakia and abroad as well. It supports 
the development of spatial imagination, deductive and logical thinking, and prepares the pupils for 
world and work. Spatial imagination is some of the most essential human abilities useful for 
everyday life. However, some current research shows that spatial ability has a declining trend. It 
can be caused by a reduction in geometry curriculum and geometry education content or the 
insufficient teacher readiness, who must pass on knowledge to their learners.  

The term spatial ability can be understood very subjectively, and we can think it is the proper 
orientation in the forest, a new city, or reading maps. According to Mohler and Miller (2008), 
teaching spatial ability is important for “to teach the technical language” and “to develop the 
students’ ability to visualize and solve problems in three dimensions”. Linn and Petersen (1985) 
define spatial ability as a „skill in representing, transforming, generating and recalling symbolic, 
non-linguistic information “.  

There are certain groups of people who think that spatial ability can only be innate, we are aware 
that even in early childhood, it is possible to form a spatial ability. The family has an impact on the 
formation of the child’s spatial ability. Preschool and primary school education teacher plays in 
developing spatial ability an important role, too. For that reason, Marchis (2017) states that these 
teachers must have a very well-developed spatial ability. However, a lot of national studies confirm 
that these teachers have low levels of spatial ability. The same is true in Slovakia and this fact is 
confirmed by our research.  

This poster aim is to present the GeoGebra applets, which help students to visualize the spatial 
ability tasks. The applets were designed based on research by future primary school teachers. The 
research was conducted in September 2021 and the research sample consisted of 78 Bachelor´s 
students of Teacher training for preschool and primary education at Constantine the Philosopher 
University in Nitra. The students finished their secondary school studies at various types of schools 
with various mathematics curricula, and thus had different geometrical skills.  

The students solved spatial ability tasks, which were related to the cubes and cube nets. The first 
task was focused on the rotation of the dice according to the fields of the plan. In the second task, 
students had to complete the numbers on the cube nets created from the dice in the task assignment. 
The third task was the same as the second task, but the cube net was nonstandard for the students.  

The students had problems with solving the spatial ability tasks, because only 15.4 % of students 
correctly solved them. The biggest problem was that students could not imagine the rotation of the 
cube in different directions. They knew how to rotate the cube until they came to the bend and then, 
they could not imagine the next step. Only 20.5 % of students correctly write the number of all dots 
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to the plan. Students also had a problem with adding the number of dots on the cube net. More 
students could insert the suitable number of dots on the dice, when the dice was standard and more 
used than when the dice was nonstandard for the students.  

In the interpretation of the results, we have shown that students have some problems with solving 
the tasks. Students used paper and pencil while solving the tasks. It is questionable whether students 
would achieve more correct solutions using some software or tools. For this reason, we decided to 
design the solved tasks in GeoGebra. Our goal was to show the students how they can solve the 
tasks with using dynamic geometric software and get acquainted with GeoGebra software.  

Solutions of Task A, Task B and Task C are available on our own GeoGebraic profile in a format 
GeoGebra book called MEDA 2022: https://www.geogebra.org/m/adsz5sww. 

We know that students have problems with spatial imagination. For this reason, it is necessary to 
develop students' spatial ability. Armahs writes that (2018) low geometry learning experiences 
cause low spatial ability. Vallo (2021) about geometry also claims that spatial ability should be 
constantly evolving. We need to show students the various tools for spatial ability development. We 
believe that the proposed applets helped students to visualize the task and they support them in 
creating their own tools in GeoGebra while their teaching practice. We think it is very important to 
create for students a creative and varied learning environment using non-standard tasks but also a 
non-standard solution using software to develop spatial ability. 
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The poster and its environment  
The proposed poster presents the block-based programming experiences of the pre-service teachers 
with their first introduction with programming at university-level education. Our aim is to report the 
results of the impact of programming workshops on the professional development of pre-service 
teachers and how this initiative is helping them to become better future teachers.  A very positive and 
impactful learning response from them is a highlighted part of this research. In the last decades, 
computer technology has changed our society dramatically. The school-going elite of today is 
meeting and interacting with information technology almost everywhere. Recently, many European 
countries have introduced basic programming in their national curricula in view of the increasing and 
futuristic importance of information technology. As a part of the “Digitalization Strategy for Basic 
Education 2017-2021” (Education & Research, 2017), the Norwegian Ministry of Education has 
introduced programming (coding) in different courses at primary and secondary school levels. The 
school year 2020-2021 is the first year with this revised curriculum in Norway.  Competence goals 
for programming in mathematics have been introduced at all levels in primary and lower secondary 
school in the revised curriculum (Utdanningsdirektoratet, 2020a). 

Challenges and collaborative work 
The challenges associated with this inclusion in the revised curriculum (LK20) in schools and in the 
teacher-education institutions are manifold. It is natural for the schools and teacher-education 
institutions to reflect this reality. In the present research, our focus will remain on the measurements 
and actions taken by the Nord university and its partner university in their teacher-education program 
for pre-service teachers. The Nord University is collaborating on a joint research project, improving 
Teacher Education in Mathematics (iTEM), with the Technical University of Liberec (TUL) in the 
Czech Republic. One of the main goals of this research is to investigate the perceptions held by pre-
service teacher at Nord university in Bodø campus and at TUL Czech Republic towards the use of 
the block-based programming with micro:bit. Micro:bit is a pocket-sized programmable device that 
helps the students to get more involved in the world of coding (programming). It targets the young 
people´s inspiration to be creative with digitalization and develop fundamental skills in Science, 
Technology, Engineering, and Mathematics (STEM) (Sentance et al., 2017).  
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Planning and discussion 
To help and improve the students’ learning skills through programming instruction, it is important to 
provide appropriate activities and tasks (Popat & Starkey, 2019). We designed and presented 
activities on micro:bit in the workshops conducted at different levels in teacher education program at 
Nord University Norway and at TUL Czech Republic. We targeted one of the learning goals from 
LK20 (Utdanningsdirektoratet, 2020a) related to the programming in the Norwegian revised 7th-
grade mathematics curriculum in schools and designed activities that transform the micro:bit into a 
digital dice. Students performed guided instructions and made a digital dice. Subsequently, students 
recorded the data on shaking the micro:bit as they do conventionally with a normal cast of dice. To 
achieve this goal, students learned the art of algorithmic thinking and the basic skills of the 
programming such as defining the variables, working with loops, understanding of basic logic, and 
implementing a build-in math module with built-in feature. The feedback of the participants was 
recorded via an online questionnaire. The contents of this poster are mostly related to the responses 
of the participants on their experiences with programming. Most of the pre-service teachers who 
attended the workshops reflected that the micro:bit is a useful tool to develop algorithmic thinking, 
easy to use, and enjoyable to work with in relation to both its programming environment and problem-
solving capabilities.  A sizable percentage of teacher-students showed a keen interest in block-based 
programming with micro:bit and expressed that they learned a lot because of these workshops. 
Furthermore, they expressed great interest in using the micro:bit in their future teaching programs in 
schools. It is worth mentioning that few of these students who were writing their research reports in 
their third-year study program at Nord university designed the micro:bit tasks and presented them in 
schools during their teaching practice period due to high demands on programming from school sides. 
Key findings of this research work will be presented in the poster. 
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Theoretical Background 
Calculus is an important component of many school curricula for upper secondary grades worldwide, 
in Germany as well. Students’ difficulties regarding calculus concepts, for example the missing 
conceptual understanding of derivatives, were investigated in several studies. Sari et al. (2018) state 
that students are not able to explain derivatives but describe the derivation rules for a specific function 
instead. The concept of basic mental models (BMMs – German: Grundvorstellungen) is well-
established and “describes the relationships between mathematical content and the phenomenon of 
individual concept formation” (vom Hofe & Blum, 2016, p. 230). Thus, BMMs are a requirement for 
learners to give mathematical concepts meaning. Regarding derivatives, Greefrath et al. (2022) 
determine the four BMMs “local rate of change”, “tangent slope”, “local linearity” and “amplification 
factor”. According to educational standards in Germany, applying mathematics in realistic contexts 
is of high importance. For this reason, the local rate of change, which is based on the idea of 
instantaneous velocity, has become more important in German schools. Students should develop an 
understanding of the local rate of change as the limit of the average rate of change. Furthermore, the 
traditional approach to derivatives was provided through the tangent slope at a point of the graph, 
which is equal to the slope of the curve at that particular point. Here, the tangent should be understood 
as a ‚clinging straight line‘. The other two BMMs are not focused due to their subordinate role in 
teaching calculus in German schools. Calculus, and notably derivative is a dynamic concept, so that 
technology like dynamic geometry software GeoGebra is predestined to help students exploring and 
acquiring a conceptual understanding (Sari et al., 2018). Especially, the BMM “tangent slope” is in 
its core a dynamic one, because the transition from the secant to the tangent can be visualized well 
dynamically. According to the meta-analysis by Berney & Bétrancourt (2016) dynamic, in contrast 
to statistic visualizations, have a significantly positive influence on students’ learning outcomes if 
they have a representational function. Given the potential of dynamic visualizations, it is significant 
to find out whether the results of many studies can also be applied to learning derivatives, which has 
not been investigated in mathematics didactical research yet. From this theoretical background, the 
following research questions emerge for a project that will be piloted next school year:  

1. To what extent do lessons with dynamic visualizations of derivatives have a positive 
influence on mathematical competencies of learners compared to lessons with the same 
content but focusing on static visualizations? 

2. Are there any differences concerning the influence of dynamic visualizations on the basic 
mental models “local rate of change” and “tangent slope”?  

Method 
The project “AdVise” (German: Ableitung dynamisch mit Visualisierungen entdecken; English: 
discovering derivatives through dynamic visualizations) will be conducted with about 250 students 
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in grade 10 and 11, who have not received an introduction to derivatives yet. The quasi-experimental 
between-subjects design (Fig. 1) is inspired by Schukajlow et al. (2015) and Brnic (2020). 

 
Figure 1: Overview of the pre-post design (own figure based on Brnic (2020)) 

Classes are split and a similar average level of achievement is aimed at between the two groups. This 
approach will be realized by using a pre-test, which contains tasks about functional thinking and 
linear functions, both BMMs “local rate of change”, “tangent slope” and also graphical 
differentiation. There, the focus lies on the qualitative introduction of derivatives, because this is the 
framework for the lesson sequence. The test items, focusing on conceptual understanding, are taken 
(and partly modified) from several validated test instruments, centralised examinations in Germany, 
and adapted exercises from mathematics school books. The experimental group works with a digital 
learning environment including dynamic visualizations mostly created with GeoGebra. For example, 
learners can trace a tangent line along a graph, while the program is plotting the graph of the 
derivative. The control group is given the same digital learning environment, but only static 
visualizations are integrated. In order to keep traits constant, the teacher teaches both groups 
staggered; the lessons without the teacher are planned as practice sessions in order to deepen the 
content learned prior (Brnic, 2020). A first version of the instrument for measuring conceptual 
understanding of derivatives as well as the lesson sequence with dynamic (and static) visualizations 
will be presented and discussed at the conference.  
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RC: Local rate of change; TS: Tangent slope; GD: Graphical differentiation
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Aim and rational of the study 
Recently, there has been a growing interest in cultivating computational thinking (CT) as a 21st-
century skill in mathematics education (Nordby et al., 2022a). However, the interest has resulted in 
divergent definitions of what CT encompasses in an educational context (Lockwood & Mooney, 
2017).  

Despite the effort of conceptualising CT in education there is little direct guidance of how to integrate 
CT into the learning and teaching of core subjects such as mathematics, and research show that CT 
concepts seems to be an add on appearing on its own in the mathematics classrooms (Nordby et al., 
2022b). This goes against the visions of Papert (1980), which highlighted LOGO programming in 
education already in the 80’s. He believed that “…certain uses of very powerful computational 
technology and computational ideas can provide children with new possibilities for learning…” in 
subjects such as mathematics (Papert, 1980 p. 17). 

There are limited empirical research that show full integration of CT in the teaching and learning of 
mathematics (Nordby et al., 2022a). As such, there is a need to highlight more of these learning 
opportunities to inform how CT can be integrated as a tool to enrich mathematical concepts in 
education. If CT should sustain as a tool in teaching mathematical concepts, it is important that the 
teaching resources that are available for mathematics teachers, highlights how this integration is 
possible. Our aim with this paper is twofold: (1) explore how the resources integrate CT and 
mathematics; and (2) explore in what way the resources provide conceptual understanding in 
mathematics.  

Theoretical framework 
This study is inspired by the work of assessing conceptual understanding in mathematics done by 
Niemi (1996). The key measure of conceptual understanding in this current study goes beyond 
procedural knowledge of memorizing computational algorithms, focusing more on how 
representations are used to facilitate meaningful mathematical experiences. Following Niemi’s 
(1996) ideas of mathematical conceptual understanding, we address two major types of analysis; (a) 
semantic analysis and (b) structural analysis. The semantic analysis is used to identify the type of 
activity and what central mathematical concept that is represented. The structural analysis gives us 
the opportunity to investigate how the activity facilitate construction and meaning to the mathematical 
concepts and how mathematical ideas are created. 
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Methodology 
14 primary mathematics teachers, six in Canada-Ontario and eight in eastern Norway, were contacted 
with the question of what resources they used when implementing CT in their mathematics teaching. 
The result was 42 different resources, spanning from interactive robots to teaching books aligned to 
their specific grade.  

Analysis 
The 42 resources were analysed, and five different categories was created: (1) unplugged (e.g. step 
by step instructions to move in a grid on paper); (2) interactive puzzles/games (e.g. codespark); (3) 
interactive robots (e.g. BitBot); (4) block based interactive environment (e.g. Scratch); and (5) 
excluded resources (not applicable due to no coding related). In the second level of analysis we used 
the categories developed by Israel and Lash (2020) to systematise how the different resources were 
integrated (i.e. no, partial and full integration). In the third level of analysis we followed Niemi’s 
(1996) two major categories of analysing conceptual understanding of mathematics in resources 
found in the category of full integration: (1) semantic analysis (representations and mathematical 
concepts); (2) general analysis (how the mathematical representations are connected to promote 
learning).  

Preliminary results and implications 
A preliminary analysis suggests that resources in category (4) using Scratch, shows a greater tendency 
towards full integration than the other categories. Category (1) and (2) shows limited integration, 
mainly focusing on computational concepts. In relation to conceptual understanding of mathematics 
in the resources that have full integration, we find that students are given the opportunity to explore 
mathematical concepts and relationship, be creative and active in the learning, and experience visual 
representation of the mathematics in action. In the upcoming months we will further investigate the 
resources with the question: “what ought to be”, aiming to look at what possibilities lies in the 
different resources to enhance mathematical learning. 
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