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A B S T R A C T 

With unparalleled rotational stability, millisecond pulsars (MSPs) serve as ideal laboratories for numerous astrophysical studies, 
many of which require precise knowledge of the distance and/or velocity of the MSP. Here, we present the astrometric results for 
18 MSPs of the ‘MSPSR π’ project focusing e xclusiv ely on astrometry of MSPs, which includes the re-analysis of three previously 

published sources. On top of a standardized data reduction protocol, more comple x strate gies (i.e. normal and inverse-referenced 

1D interpolation) were employed where possible to further impro v e astrometric precision. We derived astrometric parameters 
using sterne , a new Bayesian astrometry inference package that allows the incorporation of prior information based on pulsar 
timing where applicable. We measured significant ( > 3 σ ) parallax-based distances for 15 MSPs, including 0.81 ± 0.02 kpc for 
PSR J1518 + 4904 – the most significant model-independent distance ever measured for a double neutron star system. For each 

MSP with a well-constrained distance, we estimated its transverse space velocity and radial acceleration. Among the estimated 

radial accelerations, the updated ones of PSR J1012 + 5307 and PSR J1738 + 0333 impose new constraints on dipole gravitational 
radiation and the time deri v ati ve of Newton’s gravitational constant. Additionally, significant angular broadening was detected 

for PSR J1643 −1224, which offers an independent check of the postulated association between the HII region Sh 2-27 and the 
main scattering screen of PSR J1643 −1224. Finally, the upper limit of the death line of γ -ray-emitting pulsars is refined with 

the new radial acceleration of the hitherto least energetic γ -ray pulsar PSR J1730 −2304. 

Key words: gravitation – stars: kinematics and dynamics – pulsars: individual: PSR J0030 + 0451, PSR J0610 −2100, 
PSR J0621 + 1002, PSR J1024 −0719, PSR J1537 + 1155, PSR J1853 + 1303, PSR J1910 + 1256, PSR J1918 −0642, 
PSR J1939 + 2134 – gamma-rays: stars – radio continuum: stars. 
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 I N T RO D U C T I O N  

.1 Millisecond pulsars: a key for probing theories of gravity 
nd detecting the gra vitational-wa ve background 

ulsars are an observational manifestation of neutron stars (NSs) that
mit non-thermal electromagnetic radiation while spinning (Gold
968 ; Pacini 1968 ; Hewish et al. 1969 ). Over 3000 radio pulsars
 E-mail: hdingastro@hotmail.com (HD); adeller@astro.swin.edu.au (ATD) 
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Pub
av e been disco v ered to date throughout the Galaxy and the nearest
embers of the Local Group (Manchester et al. 2005 ). Due to the

arge moment of inertia of pulsars, the pulses we receive on the
arth from a pulsar exhibit highly stable periodicity. By measuring
 train of pulse time-of-arri v als (ToAs) of a pulsar and comparing it
gainst the model prediction, a long list of model parameters can be
nferred (e.g. Detweiler 1979 ; Helfand et al. 1980 ). This procedure
o determine ToA-changing parameters is known as pulsar timing,
ereafter referred to as timing. 
In the pulsar family, recycled pulsars (commonly refereed to as
illisecond pulsars, or MSPs) have the shortest rotational periods.
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he y are believ ed to hav e been spun-up through the accretion from
heir donor stars during a previous evolutionary phase as a low-mass
-ray binary (LMXB) (Alpar et al. 1982 ). As the duration of the

ecycling phase (and hence the degree to which the pulsar is spun-
p) can vary depending on the nature of the binary, there is no clear
pin period threshold that separates MSPs from canonical pulsars. In 
his paper, we define MSPs as pulsars with spin periods of � 40 ms
nd magnetic fields � 10 10 G. This range encompasses most partially 
ecycled pulsars with NS companions, such as PSR J1537 + 1155 
also known as PSR B1534 + 12) and PSR J1518 + 4904. Compared
o non-recycled pulsars, ToAs from MSPs can be measured to higher 
recision due to both the narrower pulse profiles and larger number 
f pulses. Additionally, MSPs exhibit more stable rotation (e.g. 
obbs, Lyne & Kramer 2010 ); both factors promise a lo wer le vel of

andom timing noise. Consequently, MSPs outperform non-recycled 
ulsars in the achie v able precision for probing theories underlying 
oA-changing astrophysical effects. In particular, MSPs provide the 
itherto most precise tests for gravitational theories (e.g. Freire et al. 
012 ; Zhu et al. 2019 ; Kramer et al. 2021 ). Einstein’s theory of
eneral relativity (GR) is the simplest form among a group of possible
andidate post-Newtonian gravitational theories. The disco v ery of 
ighly relativistic double neutron star (DNS) systems (e.g. Hulse & 

 aylor 1975 ; W olszczan 1991 ; Burgay et al. 2003 ; Lazarus et al.
016 ; Cameron et al. 2018 ; Stovall et al. 2018 ), and their continued
iming have resulted in many high-precision tests of GR and other 
ravity theories (Fonseca, Stairs & Thorsett 2014 ; Weisberg & Huang
016 ; Ferdman et al. 2020 , and especially Kramer et al. 2021 ).
he precise timing, optical spectroscopy and VLBI observations of 
ulsar-white-dwarf (WD) systems have, in addition, achieved tight 
onstraints on several classes of alternative theories of gravity (Deller 
t al. 2008 ; Lazaridis et al. 2009 ; Freire et al. 2012 ; Antoniadis et al.
013 ; Ding et al. 2020b ; Guo et al. 2021 ; Zhao et al. 2022 ). 
Gra vitational Wa ves (GWs) are changes in the curvature of

pacetime (generated by accelerating masses), which propagate at 
he speed of light. Individual GW events in the Hz–kHz range have
een detected directly with GW observatories (e.g. Abbott et al. 
016 ; see the third Gra vitational-Wa ve Transient Catalog 1 ), and
ndirectly using the orbital decay of pulsar binaries (e.g. Taylor & 

 eisberg 1982 ; W eisberg & Huang 2016 ; Kramer et al. 2021 ;
ing et al. 2021a ). Collectively, a gra vitational wa ve background

GWB) formed with primordial GWs and GWs generated by later 
strophysical events (Carr 1980 ) is widely predicted, but has not 
et been confirmed by any observational means. In the range of
0 −9 –0 . 1 Hz , supermassive black hole binaries are postulated to be
he primary sources of the GWB (Sesana, Vecchio & Colacino 2008 ).
n this nano-hertz regime, the most stringent constraints on the GWB 

re provided by pulsar timing (Detweiler 1979 ). 
To enhance the sensitivity for the GWB hunt with pulsar timing, 

nd to distinguish GWB-induced ToA signature from other sources of 
ommon timing ‘noise’ (e.g. Solar system planetary ephemeris error, 
lock error and interstellar medium, Tiburzi et al. 2016 ), a pulsar
iming array (PTA), composed of MSPs scattered across the sky 
see Roebber 2019 for spatial distribution requirement), is necessary 
Foster & Backer 1990 ). After two decades of efforts, no GWB has
et been detected by a PTA, though common steep-spectrum timing 
oise (in which GWB signature should reside) has already been 
onfirmed by several radio PTA consortia (Arzoumanian et al. 2020 ; 
hen et al. 2021 ; Goncharov et al. 2021 ; Antoniadis et al. 2022 ).
t γ -rays, a competitive GWB amplitude upper limit was recently 
 ht tps://www.ligo.org/science/Publication-O3aFinalCat alog/

D  

D  

t

chieved using the Fermi Large Area Telescope with 12.5 years of
ata (Fermi-LAT Collaboration 2022 ). 

.2 Very long baseline astrometry of millisecond pulsars 

n timing analysis, astrometric information for an MSP (reference 
osition, proper motion, and annual geometric parallax) can form 

art of the global ensemble of parameters determined from ToAs. 
o we ver, the astrometric signatures can be small compared to the
oA precision and/or covariant with other parameters in the model, 
specially for new MSPs that are timed for less than a couple of
ears (Madison, Chatterjee & Cordes 2013 ). Continuing to add 
ewly disco v ered MSPs into PTAs is considered the best pathway
o rapidly impro v e the PTA sensitivity (Siemens et al. 2013 ), and is
articularly important for PTAs based around newly commissioned 
igh-sensitivity radio telescopes (e.g. Bailes et al. 2020 ). Therefore, 
pplying priors to the astrometric parameters can be highly beneficial 
or the timing of individual MSPs (especially the new ones) and for
nhancing PTA sensitivities (Madison et al. 2013 ). 

Typically, the best approach to independently determine precise 
strometric parameters for MSPs is the use of phase-referencing 
e.g. Lestrade et al. 1990 ; Beasle y & Conway 1995 ) v ery long
aseline interferometry (VLBI) observations, which can achieve 
ubmas positional precision (relative to a reference source position) 
or MSPs in a single observation. By measuring the sky position
f a Galactic MSP a number of times and modelling the position
volution, VLBI astrometry can obtain astrometric parameters for 
he MSP. Compared to pulsar timing, VLBI astrometry normally 
akes much shorter time to reach a given astrometric precision (e.g.
risken et al. 2002 ; Chatterjee et al. 2009 ; Deller et al. 2019 ). 
One of the limiting factors on searching for the GWB with PTAs is

he uncertainties on the Solar system planetary ephemerides (SSEs) 
Vallisneri et al. 2020 ), which are utilized to convert geocentric ToAs
o ones measured in the (Solar system) barycentric frame (i.e. the
eference frame with respect to the barycentre of the Solar system).
arious space-mission-driven SSEs have been released mainly by 

wo SSE providers – the NASA Jet Propulsion Laboratory (e.g. 
ark et al. 2021 ) and the IMCCE (e.g. Fienga, Avdellidou & Hanu ̌s
020 ). In pulsar timing analysis adopting different SSEs may lead to
iscrepant timing parameters (e.g. Wang et al. 2017 ). On the other
and, VLBI astrometry measures offsets with respect to a source 
hose position is measured in a quasi-inertial (reference) frame 
efined using remote quasars (e.g. Charlot et al. 2020 ). Although
LBI astrometry also relies on SSEs to derive annual parallax, 

t is robust against SSE uncertainties. In other words, for VLBI
strometry, using different SSEs in parameter inference would not 
ead to a noticeable difference in the inferred parameters. Therefore, 
LBI astrometry of MSPs can serve as an objective standard to
e used to discriminate between various SSEs. Specifically, if an 
SE is inaccurate, the barycentric frame based on the SSE would
isplay rotation with respect to the quasar-based frame. This frame 
otation can be potentially detectable by comparing VLBI positions 
f multiple MSPs against their timing positions (Chatterjee et al. 
009 ; Wang et al. 2017 ). By eliminating inaccurate SSEs, VLBI
strometry of MSPs can suppress the SSE uncertainties, and hence 
nhance the PTA sensitivities. 

Besides the GWB-related moti v ations, interferometer-based astro- 
etric parameters (especially distances to MSPs) have been adopted 

o sharpen the tests of gravitational theories for individual MSPs (e.g.
eller, Bailes & Tingay 2009 ; Deller et al. 2018 ; Guo et al. 2021 ;
ing et al. 2021a ). Such tests are normally made by comparing

he model-predicted and observed post-Keplerian (PK) parameters 
MNRAS 519, 4982–5007 (2023) 
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hat quantify e xcessiv e gravitational effects be yond a Newtonian
escription of the orbital motion. Among the PK parameters is
he orbital decay Ṗ b (or the time deri v ati ve of orbital period). The
ntrinsic cause of Ṗ b in double neutron star systems is dominated
y the emission of gra vitational wa ves, which can be predicted
sing the binary constituent masses and orbital parameters (e.g.
azaridis et al. 2009 ; Weisberg & Huang 2016 ). To test this model
rediction, ho we v er, requires an y e xtrinsic orbital decay Ṗ 

ext 
b due

o relative acceleration between the pulsar and the observer to
e remo v ed from the observ ed Ṗ b . Such e xtrinsic terms depend
rucially on the proper motion and the distance of the pulsar, ho we ver
hese (especially the distance) can be difficult to estimate from
ulsar timing. Precise VLBI determination of proper motions and
istances can yield precise estimates of these extrinsic terms, and
herefore play an important role in orbital-decay tests of gravitational
heories. Likewise, Gaia astrometry on nearby pulsar-WD systems
an potentially serve the same scientific goal though the method is
nly applicable to a small number of pulsar-WD systems, where
he WDs are sufficiently bright for the Gaia space observatory (see
ection 5.2 ). 
Last but not least, pulsar astrometry is crucial for understanding

he Galactic free-electron distribution, or the Galactic free-electron
umber density n e ( � x ) as a function of position. An n e ( � x ) model is
ormally established by using pulsars with well determined distances
s benchmarks. As the pulsations from a pulsar allow precise
easurement of its dispersion measure (DM), the average n e between

he pulsar and the Earth can be estimated given the pulsar distance.
ccordingly, a large group of such benchmark pulsars across the

ky would enable the establishment of an n e ( � x ) model. In a rele v ant
esearch field, extragalactic fast radio bursts (FRBs) have been used
o probe intergalactic medium distribution on a cosmological scale
e.g. Macquart et al. 2020 ; Mannings et al. 2021 ), which, ho we ver,
emands the removal of the DMs of both the Galaxy and the FRB host
alaxy. The Galactic DM cannot be determined without a reliable
 e ( � x ) model, which, again, calls for precise astrometry of pulsars
cross the Galaxy. 

.3 The MSPSR π project 

sing the Very Long Baseline Array (VLBA), the PSR π project
ripled the sample of pulsars with precisely measured astrometric
arameters (Deller et al. 2019 ), but included just three MSPs. The
uccessor project, MSPSR π, is a similarly designed VLBA astro-
etric program targeting e xclusiv ely MSPs. Compared to canonical

ulsars, MSPs are generally fainter. To identify MSPs feasible for
LBA astrometry, a pilot program was conducted, which found 31

uitable MSPs. Given observational time constraints, we selected 18
SPs as the targets of the MSPSR π project, focusing primarily on

ources observed by pulsar timing arrays. The 18 MSPs are listed in
able 1 along with their spin periods P s and orbital periods P b (if
 vailable) that ha ve been obtained from the ATNF Pulsar Catalogue 2 

Manchester et al. 2005 ). The astrometric results for three sources
PSR J1012 + 5307, PSR J1537 + 1155, PSR J1640 + 2224) involved
n the project have already been published (Vigeland et al. 2018 ;
ing et al. 2020b , 2021a ). In this paper, we present the astrometric

esults of the remaining 15 MSPs studied in the MSPSR π project.
e also re-derived the results for the three published MSPs, in order

o ensure consistent and systematic astrometric studies. 
NRAS 519, 4982–5007 (2023) 

 ht tps://www.at nf.csiro.au/research/pulsar/psrcat /

w  
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Along with the release of the catalogue results, this paper cov-
rs several scientific and technical perspectives. First, this paper
 xplores no v el data reduction strate gies such as inv erse-referenced
D phase interpolation (see Section 3.2 ). Second, a new Bayesian
strometry inference package is presented (see Section 4 ). Third, with
ew parallax-based distances and proper motions, we discriminate
etween the two pre v ailing n e ( � x ) models (see Section 6.1.1 ), and
nvestigate the kinematics of MSPs in Section 6.2 . Fourth, with new
arallax-based distances of two MSPs, we re-visit the constraints on
lternative theories of gravity (see Section 7 ). Finally, discussions
n individual pulsars are given in Section 8 , which includes a
efined ‘death line’ upper limit of γ -ray pulsars (see Section 8.7 ).
he study of SSE-dependent frame rotation, which depends on an
ccurate estimation of the reference points of our calibrator sources
n the quasi-inertial VLBI frame, requires additional multifrequency
bservations and will be presented in a follow-up paper. 
Throughout this paper, we abide by the following norms unless

therwise stated. (1) The uncertainties are provided at 68 per cent
onfidence level. (2) Any mention of flux density refers to unresolved
ux density S unres in our observing configuration (e.g. a 10-mJy
ource means S unres = 10 mJy). (3) All bootstrap and Bayesian results
dopt the 50th, 16th, and 84th percentile of the marginalized (and
orted) value chain as, respectively, the estimate and its 1- σ error
ower and upper bound. (4) Where an error of an estimate is required
or a specific calculation but an asymmetric error is reported for
he estimate, the mean of upper and lower errors is adopted for the
alculation. (5) VLBI positional uncertainties will be broken down
nto the uncertainty of the offset from a chosen calibrator reference
oint, and the uncertainty in the location of that chosen reference
oint. This paper focuses on the relative offsets, which are relevant for
he measurement of proper motion and parallax, and the uncertainty
n the location of the reference source is presented separately. 

 OBSERVATI ONS  A N D  C O R R E L AT I O N  

s is mentioned in Section 1.2 to achieve high-precision pulsar
strometry requires the implementation of a VLBI phase referencing
echnique. There are, ho we ver, a v ariety of such techniques, including
he normal phase referencing, relayed phase referencing, inverse
hase referencing, and interpolation. These techniques are described
nd discussed in Chapter 2 of Ding 2022 . Generally, a given phase
eferencing approach and hence observational set-up maps directly to
 corresponding data reduction procedure though occasionally other
ata reduction opportunities could arise by chance (see Section 3 ). 
The MSPSR π project systematically employs the relayed phase

eferencing technique, in which a secondary phase reference source
explained in Chapter 2 of Ding 2022 ) very close to the target on the
ky is observed to refine direction-dependent calibration effects. The
bserving and correlation tactics are identical to those of the PSR π

roject (Deller et al. 2019 ). All MSPs in the MSPSR π catalogue
see Table 1 ) were observed at L -band with the VLBA at 2-Gbps
ata rate (256 MHz total bandwidth, dual polarization) from mid-
015 to no later than early 2018. To minimize radio-frequency
nterference (RFI) at L -band, we used eight 32 MHz subbands
ith central frequencies of 1.41, 1.44, 1.47, 1.50, 1.60, 1.66, 1.70,

nd 1.73 GHz, corresponding to an ef fecti v e central frequenc y of
.55 GHz. The primary phase calibrators were selected from the
adio Fundamental Catalogue. 3 The secondary phase calibrators
ere identified from the FIRST (Faint Images of the Radio Sky at
 astr ogeo.org/r fc/

https://www.atnf.csiro.au/research/pulsar/psrcat/
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Table 2. An example set of astrometric results for J1738 + 0333, where the 
presented uncertainty excludes the calibrator reference point uncertainty as 
described in the text. 

obs. date αJ2000 (RA.) δJ2000 (Decl.) 
(yr) 

2015.6166 17 h 38 m 53 . s 969242(3 | 5) 03 ◦33’10 . ′′ 90430(9 | 17) 
2015.8106 17 h 38 m 53 . s 969329(3 | 6) 03 ◦33 ′ 10 . ′′ 90491(9 | 18) 
2016.6939 17 h 38 m 53 . s 969726(5 | 6) 03 ◦33’10 . ′′ 90981(16 | 21) 
2017.1304 17 h 38 m 53 . s 970000(6 | 7) 03 ◦33’10 . ′′ 91262(21 | 25) 
2017.2068 17 h 38 m 53 . s 970040(2 | 4) 03 ◦33’10 . ′′ 91217(7 | 15) 
2017.2860 17 h 38 m 53 . s 970078(3 | 5) 03 ◦33’10 . ′′ 91307(11 | 17) 
2017.2997 17 h 38 m 53 . s 970062(17 | 17) 03 ◦33’10 . ′′ 91272(59 | 61) 
2017.7232 17 h 38 m 53 . s 970208(15 | 16) 03 ◦33’10 . ′′ 91484(64 | 74) 
2017.7669 17 h 38 m 53 . s 970248(7 | 8) 03 ◦33’10 . ′′ 91466(27 | 33) 

Notes. •This table is compiled for PSR J1738 + 0333. 
•The values on the left and the right side of ‘ | ’ are, respectively, statistical 
errors given in J1738 + 0333.pmpar.in.preliminary 5 , and systematics-included 
errors provided in J1738 + 0333.pmpar.in 5 . 
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wenty-cm) catalogue (Becker, White & Helfand 1995 ) or the NVSS
NRAO VLA sk y surv e y) catalogue (Condon et al. 1998 ) (for sky
e gions not co v ered by the FIRST surv e y) using a short multifield
bservation. Normally, more than one secondary phase calibrators
ere observed together with the target. Among them, a main one that

s preferably the brightest and the closest to the target is selected to
arry out self-calibration; the other secondary phase calibrators are
ereafter referred to as redundant secondary phase calibrators. The
rimary and the main secondary phase calibrators for the astrometry
f the 18 MSPs are summarized in Table 1 , alongside the project
odes. At correlation time, pulsar gating was applied (Deller et al.
011 ) to impro v e the S/N on the target pulsars. The median values
f the gating gain, defined as (S/N) gated /(S/N) ungated , are provided in
able 1 . 

 DATA  R E D U C T I O N  A N D  F I D U C I A L  

YSTEMATIC  E R RO R S  

e reduced all data with the psrvlbireduce pipeline 4 written in
arseltongue (Kettenis et al. 2006 ), a python -based interface

or running functions provided by AIPS (Greisen 2003 ) and DIFMAP
Shepherd, Pearson & Taylor 1994 ). The procedure of data reduction
s identical to that outlined in Ding et al. ( 2020b ), except for four

SPs – PSR J1518 + 4904, PSR J0621 + 1002, PSR J1824 −2452A,
nd PSR J1939 + 2134. For PSR J1518 + 4904, the self-calibration so-
utions acquired with NVSS J151733 + 491626, a 36-mJy secondary
alibrator 13 . ′ 8 away from the pulsar, are extrapolated to both the
ulsar and NVSS J151815 + 491105 – a 4.5-mJy source about a factor
f two closer to PSR J1518 + 4904 than NVSS J151733 + 491626. The
ositions relative to NVSS J151815 + 491105 are used to derive the
strometric parameters of PSR J1518 + 4904. For the other excep-
ions, the data reduction procedures as well as fiducial systematics
stimation are described in Sections 3.1 and 3.2 . 

At the end of the data reduction, a series of positions as well
s their random errors σR 

i (where i = 1, 2, 3,. . . refers to right
scension or declination at different epochs) are acquired for each
ulsar. For each observation, on top of the random errors due to
mage noise, ionospheric fluctuations would introduce systematic
rrors that distort and translate the source, the magnitude of which
enerally increases with the angular separation between a target
nd its (secondary) phase calibrator (e.g. Chatterjee et al. 2004 ;
radel, Charlot & Lestrade 2006 ; Kirsten et al. 2015 ; Deller et al.
019 ). We estimate fiducial values for these systematic errors σS 

i 

f pulsar positions using the empirical relation (i.e. equation 1 of
eller et al. 2019 ) derived from the whole PSR π sample. While

his empirical relation has pro v en a reasonable approximation to
he actual systematic errors for a large sample of sources, for an
ndi vidual observ ational set-up σS 

i may o v erstate or underestimate
he true systematic error (see Section 4 ). We can account for our
ncertainty in this empirical estimator by re-formulating the total
ositional uncertainty as 

i ( ηEFAC ) = 

√ (
σR 

i 

)2 + 

(
ηEFAC · σS 

i 

)2 
, (1) 

here ηEFAC is a positive correction factor on the fiducial systematic
rrors. In this work, we assume ηEFAC stays the same for each
ulsar throughout its astrometric campaign. The inference of ηEFAC 

s described in Section 4 . We reiterate that the target image frames
ave been determined by the positions assumed for our reference
NRAS 519, 4982–5007 (2023) 

 available at https:// github.com/dingswin/ psrvlbireduce 

5

6

ources (or virtual calibrators, see Section 3.1 ), and that any change
n the assumed reference source position would transfer directly into
 change in the reco v ered position for the target pulsar. Accordingly,
he uncertainty in the reference source position must be accounted
or in the pulsar’s reference position error budget, after fitting the
ulsar’s astrometric parameters. 
All pulsar positions and their error budgets are provided in

he online 5 ‘pmpar.in.preliminary’ and ‘pmpar.in’ files. The only
ifference between ‘pmpar.in.preliminary’ and ‘pmpar.in’ (for each
ulsar) files are the position uncertainties: ‘pmpar.in.preliminary’ and
pmpar.in’ of fer, respecti vely, position uncertainties σi (0) = σR 

i and

i (1) = 

√ 

( σR 

i ) 2 + ( σS 
i ) 2 . As an example, the pulsar positions for

SR J1738 + 0333 are presented in Table 2 , where the values on the
eft and right side of the ‘ | ’ sign stand for, respectively, σ i (0) and

i (1). Additionally, to facilitate reproducibility, the image models
or all primary and secondary phase calibrators listed in Table 1 are
eleased 6 along with this paper. Following Deller et al. ( 2019 ), Ding
t al. ( 2020b ), the calibrator models were made with the calibrator
ata concatenated from all epochs in an iterative manner. 

.1 1D interpolation on PSR J0621 + 1002 and 

SR J1824 −2452A 

ne can substantially reduce propagation-related systematic errors
sing 1D interpolation with two phase calibrators quasi-colinear with
 target (e.g. Fomalont & Kopeikin 2003 ; Ding et al. 2020a ). After
D interpolation is applied, the target should in effect be referenced
o a ‘virtual calibrator’ much closer (on the sky) than either of the
wo physical phase calibrators, assuming the phase screen can be
pproximated by a linear gradient with sky position (Ding et al.
020a ). 
According to Table 1 , seven secondary phase calibrators (or

he final reference sources) are more than 20’ away from their
argets, which would generally lead to relatively large systematic
rrors (e.g. Chatterjee et al. 2004 ; Kirsten et al. 2015 ; Deller
t al. 2019 ). Fortunately, there are three MSPs – PSR J0621 + 1002,
SR J1824 −2452A, and PSR J1939 + 2134, for which the pulsar and

ts primary and secondary phase calibrators are near-colinear (see
nline 5 calibrator plans as well as Fig. 1 ). Hence, by applying 1D
 https:// github.com/dingswin/ publication related materials 
 https:// github.com/dingswin/ calibrator models for astrometry 

https://github.com/dingswin/psrvlbireduce
https://github.com/dingswin/publication_related_materials
https://github.com/dingswin/calibrator_models_for_astrometry


The MSPSR π results and implications 4987 

Figure 1. Left: The calibrator plan for VLBI astrometry of PSR J1939 + 2134 (see Table 1 for full source names), where PSR J1939 + 2134 serves as the 
secondary phase calibrator and J1935 is the primary phase calibrator. Right: The zoomed-in field for reference sources as well as the virtual calibrator (VC) 
along the J1935-to-pulsar line. For the inverse 1D interpolation on PSR J1939 + 2134, we used the VC location that forms the largest included angle (65 . ◦7) with 
the two reference sources (see Section 3.2 for explanation), which corresponds to � VC − PC / � PC − psr = 1.2836 (i.e. the VC-to-J1935 separation is 1.2836 times 
the J1935-to-pulsar separation). 
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nterpolation, each of the 3 ‘1D-interpolation-capable’ MSPs can 
e referenced to a virtual calibrator much closer than the physical 
econdary phase calibrator (see Table 1 ). 

We implemented 1D interpolation on PSR J0621 + 1002 and 
SR J1824 −2452A in the same way as the astrometry of the radio
agnetar XTE J1810 −197 carried out at 5.7 GHz (Ding et al.

020a ). None the less, due to our different observing frequency (i.e.
.55 GHz), we estimated σS 

i differently. The post-1D-interpolation 
ystematic errors should consist of (1) first-order residual systematic 
rrors related to the target-to-virtual-calibrator offset � psr-VC and 
2) higher-order terms. Assuming negligible higher-order terms, we 
pproached post-1D-interpolation σS 

i with equation ( 1 ) of Deller 
t al. ( 2019 ), using � psr-VC as the calibrator-to-target separation. The
ssumption of negligible higher-order terms will be tested later and 
iscussed in Section 4.1.3 . 

.2 Inverse-r efer enced 1D interpolation on PSR J1939 + 2134 

or PSR J1939 + 2134, normal 1D interpolation (Fomalont & 

opeikin 2003 ; Ding et al. 2020a ) with respect to the primary
hase calibrator ICRF J193510.4 + 203154 (J1935), and the brightest 
econdary reference source NVSS J194104 + 214913 (J194104) is 
till not the optimal calibration strategy. The ≈10-mJy (at 1.55 GHz) 
SR J1939 + 2134 is the brightest MSP in the northern hemisphere,
nd only second to PSR J0437 −4715 in the whole sky. After
ulsar gating, PSR J1939 + 2134 is actually brighter than J194104. 
SR J1939 + 2134 is unresolved on VLBI scales, and does not
how long-term radio feature variations (frequently seen in quasars), 
hich makes it an ideal secondary phase calibrator. Both factors 

ncouraged us to implement the inverse-referenced 1D interpolation 
or simply inverse 1D interpolation) on PSR J1939 + 2134, where 
SR J1939 + 2134 is the de-facto secondary phase calibrator and 

he two ‘secondary phase calibrators’ serve as the targets. To a v oid
onfusion, we refer to the two ‘secondary phase calibrators’ for 
SR J1939 + 2134 (see Table 1 ) as secondary reference sources or
imply reference sources. 
Though inverse phase referencing (without interpolation) has been 
n observing/calibration strategy broadly used in VLBI astrometry 
e.g. Imai et al. 2012 ; Yang et al. 2016 ; Li et al. 2018 ; Deller
t al. 2019 ), inverse interpolation is new with the 2D approach of
yland et al. ( 2022 ) at 8.3 GHz being a recent and independent
ev elopment. We implemented inv erse 1D interpolation at 1.55 GHz
n PSR J1939 + 2134 in three steps (in addition to the standard
rocedure) detailed as follows. 

.2.1 Tying PSR J1939 + 2134 to the primary-calibrator r efer ence 
rame 

nverse 1D interpolation relies on the residual phase solutions 
φn ( � x , t) of self-calibration on PSR J1939 + 2134 (where � x , t , and
 refers to, respectiv ely, sk y position, time, and the n -th station in a
LBI array), which, ho we ver, change with � � x psr – the displacement

rom the ‘true’ pulsar position to its model position. When | � � x psr |
s much smaller than the synthesized beam size θ syn , the changes
n �φn ( � x , t) would be equal across all epochs, hence not biasing
he resultant parallax and proper motion. Ho we ver, if | � � x psr | � θsyn ,
hen the phase wraps of �φn ( � x , t) would likely become hard to
nco v er. The main contributor of considerable | � � x psr | is an inaccurate
ulsar position. The proper motion of the pulsar would also increase
 � � x psr | with time, if it is poorly constrained (or ne glected). F or
SR J1939 + 2134, the effect of proper motion across our observing
uration is small ( � 1 mas across the nominal observing span of
.5 years; see the timing proper motion in Section 5 ) compared to
syn ∼ 10 mas. 
In order to minimize | � � x psr | , we shifted the pulsar model position

n an epoch-to-epoch basis by � � x cor (which ideally should approxi- 
ate −� � x psr ) to the position measured in the J1935 reference frame

see Section 4.1 of Ding et al. 2020a for explanation of ‘reference
rame’). This J1935-frame position was derived with the method 
or determining pulsar absolute position (Ding et al. 2020b ) (where
194104 was used temporarily as the secondary phase calibrator) 
xcept that there is no need to quantify the position uncertainty.
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e typically found | � � x psr | ∼ 50 mas, which is well abo v e θ syn ∼
0 mas. After the map centre shift, PSR J1939 + 2134 becomes tied
o the J1935 frame. 

.2.2 1D interpolation on the tied PSR J1939 + 2134 

he second step of inverse 1D interpolation is simply the normal 1D
nterpolation on PSR J1939 + 2134 that has been tied to the J1935
rame as described abo v e (in Section 3.2.1 ). When there is only
ne secondary reference source, optimal 1D interpolation should see
he virtual calibrator mo v ed along the interpolation line (that passes
hrough both J1935 and PSR J1939 + 2134) to the closest position
o the secondary reference source (e.g. Ding et al. 2020a ). Ho we ver,
here are two reference sources for PSR J1939 + 2134 (see Table 1 ),
nd the virtual calibrator point can be set at a point that will enable
oth of them to be used. 
After calibration, a separate position series can be produced for

ach reference source. While we used each reference-source position
eries to infer astrometric parameters separately, we can also directly
nfer astrometric parameters with the combined knowledge of the two
osition series (which can be realized with ste rne 7 ). If the errors in
he two position series are (largely) uncorrelated, this can provide
uperior astrometric precision. Since position residuals should be
patially correlated, we would ideally set the virtual calibrator at
 location such that the included angle between the two reference
ources is 90 ◦. While achieving this ideal is not possible, we chose
 virtual calibrator location that forms the largest possible included
ngle (65 . ◦7) with the two reference sources to minimise spatially
orrelated errors (see Fig. 1 ). This virtual calibrator is 1.2836 times
urther away from J1935 than PSR J1939 + 2134. Accordingly, the
φn ( � x , t) solutions (obtained from the self-calibration on the tied
SR J1939 + 2134) were multiplied by 1.2836, and applied to the

wo reference sources. 

.2.3 De-shifting r efer ence sour ce positions 

fter data reduction involving the two steps outlined in Sections 3.2.1
nd 3.2.2 , one position series was acquired for each reference
ource. At this point, ho we ver, the two position series are not yet
eady for astrometric inference, mainly because both proper motion
nd parallax signatures have been remo v ed in the first step (see
ection 3.2.1 ) when PSR J1939 + 2134 was shifted to its J1935-
rame position. Therefore, the third step of inverse 1D interpolation
s to cancel out the PSR J1939 + 2134 shift (made in the first step)
y moving reference source positions by −1 . 2836 · � � x cor , where the
ultiplication can be understood by considering fig. 1 of Ding et al.

020a . This de-shifting operation was carried out separately outside
he data reduction pipeline 4 . After the operation, we estimated σS 

ij 

f the reference sources (where j = 1, 2 refers to an individual
eference source) following the method described in Section 3.1 . The
nal position series of the reference sources are available online 5 .
he astrometric parameter inference based on these position series

s outlined in Section 4 . 

 ASTROMETRIC  INFERENCE  M E T H O D S  A N D  

UASI-VLBI-ONLY  ASTROMETRIC  RESULTS  

fter gathering the position series 5 with basic uncertainty estimation
see Section 3 ), we proceed to infer the astrometric parameters.
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 https:// github.com/dingswin/ sterne 8
he inference is made by three different methods: (a) direct fit-
ing of the position series with pmpar , 8 (b) bootstrapping (see
ing et al. 2020b ), and (c) Bayesian analysis using sterne 7 

see Ding et al. 2021a ). The two former methods directly adopt
i (1) = 

√ 

( σR 

i ) 2 + ( σS 
i ) 2 as the position errors. In Bayesian analy-

is, ho we ver, we inferred ηEFAC along with other model parameters
sing the likelihood terms 

P 1 ∝ 

( ∏ 

i 

σi 

) −1 

exp 

[ 

−1 

2 

∑ 

i 

(
�εi 

σi 

)2 
] 

, (2) 

here σ i = σ i ( ηEFAC ) obeys equation ( 1 ); �εi refers to the model
ffsets from the measured positions. As is discussed in Section 4.2 ,
ayesian inference outperforms the other two methods, and is hence
onsistently used to present final results in this work. In all cases,
he uncertainty in the reference source position should be added
n quadrature to the uncertainty in the pulsar’s reference position
cquired with any method (of the three), in order to obtain a final
stimate of the absolute positional uncertainty of the pulsar. 

To serve different scientific purposes, we present two sets of
strometric results in two sections (i.e. Sections 4 and 5 ), which
iffer in whether timing proper motions and parallaxes are used as
rior information in the inference. 

.0.4 Priors of canonical model parameters used in Bayesian 
nalysis 

o facilitate reproduction of our Bayesian results, the priors (of
ayesian inference) we use for canonical model parameters and
EFAC are detailed as follows. Priors for the two orbital parame-

ers can be found in Section 4.3 . We universally adopt the prior
niform distribution U(0, 15) (i.e. uniformly distributed between
 and 15) for ηEFAC . This prior distribution can be refined for
uture work with an ensemble of results across many pulsars. With
egard to the canonical astrometric parameters (seven parameters
or PSR J1939 + 2134 and five for the other pulsars), we adopt
 

(
X 

(DF) 
0 − 20 ˜ σ (DF) 

X , X 

(DF) 
0 + 20 ˜ σ (DF) 

X 

)
for each X , where X refers

o one of αref , δref , μα , μδ , and � . Here, X 

(DF) 
0 stands for the direct-

tting estimate of X ; ˜ σ (DF) 
X represents the direct-fitting error corrected

y the reduced chi-square χ2 
ν (see Table 3 ) with ˜ σ (DF) 

X ≡ σ
(DF) 
X · √ 

χ2 
ν .

he calculation of prior range of X is made with the function
te rne .pri ors .ge ne rate i ni tsf i le 7 . We note that the adopted priors
re relaxed enough to ensure robust outcomes: shrinking or enlarging
he prior ranges by a factor of two would not change the inferred
alues. Meanwhile, the specified prior ranges are also reasonably
mall so that the global minimum of equation ( 2 ) can be reached. 

.1 Astr ometric infer ence disr egarding orbital motion 

.1.1 Single-r efer ence-sour ce astrometric inferences 

ll MSPs (in this work) excepting PSR J1939 + 2134 have only one
eference source. For each of these single-reference-source MSPs,
e fit for the five canonical astrometric parameters, i.e. reference
osition ( αref and δref ), proper motion ( μα ≡ α̇ cos δ and μδ), and
arallax ( � ). In the Bayesian analysis alone, ηEFAC is also inferred
longside the astrometric parameters. At this stage, we neglect any
rbital reflex motion for binary pulsars – the effects of orbital
eflex motion are addressed in Section 4.3 . The proper motions
 https:// github.com/walterfb/ pmpar

https://github.com/dingswin/sterne
https://github.com/walterfb/pmpar
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M

Figure 2. The common parallax signature of PSR J1939 + 2134 revealed by 
the position measurements of both reference sources (see Table 1 ). In both 
panels, the best-fit proper motion has been subtracted. The magenta curve in 
each panel represents the best-inferred astrometric model. The fuzzy region 
around the curve consists of various Bayesian simulations, the scatter of which 
can visualize the uncertainty level of the underlying model parameters (see 
Section 4.1.2 ). As a result of the inverse referencing, the common parallax 
revealed here is actually the negative of the PSR J1939 + 2134 parallax 
presented in Table 3 . 
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nd parallaxes derived with single-reference-source astrometry and
isregarding orbital motion are summarized in Table 3 . The reference
ositions are presented in Section 4.4 . 

.1.2 Multisource astrometry inferences 

hen multiple sources share proper motion and/or parallax (while
ach source having its own reference position), a joint multisource
strometry inference can increase the degrees of freedom of inference
i.e. the number of measurements reduced by the number of param-
ters to infer), and tighten constraints on the astrometric parameters.
ultisource astrometry inference has been widely used in maser

strometry (where maser spots with different proper motions scatter
round a region of high-mass star formation, Reid et al. 2009 ),
ut has not yet been used for any pulsar, despite the availability
f several bright pulsars with multiple in-beam calibrators (e.g.
SR J0332 + 5434, PSR J1136 + 1551) in the PSR π project (Deller
t al. 2019 ). 

PSR J1939 + 2134 is the only source (in this work) that has
ultiple (i.e. two) reference sources, which provides a rare op-

ortunity to test multireference-source astrometry. We assumed
hat the position series of J194104 is uncorrelated with that of
VSS J194106 + 215304 (hereafter J194106), and utilized sterne 7 

o infer the common parallax and proper motion, alongside two
eference positions (one for each reference source). The acquired
roper motion and parallax are listed in Table 3 . As inverse phase
eferencing is applied for PSR J1939 + 2134, the parallax and proper
otion of PSR J1939 + 2134 are the inverse of the direct astrometric
easurements. For comparison, the proper motion and parallax

nferred solely with one reference source are also reported in Table 3 .
ue to the relative faintness of J194106 (see Table 1 ), the inclusion
f J194106 only marginally impro v es the astrometric results (e.g. � )
 v er those inferred with J194104 alone. 
The constraints on the parallax (as well as the proper motion)

re visualized in Fig. 2 . The best-inferred model (derived from the
NRAS 519, 4982–5007 (2023) 
194104 and J194106 positions) is illustrated with a bright magenta
urve, amidst two sets of Bayesian simulations – each set for a
eference source. Each simulated curve is a time series of simulated
ositions, with the best-inferred reference position ( αref, j and δref, j ,
here j refers to either J194104 or J194106) and proper-motion-

elated displacements (i.e. μα� t and μδ� t , where � t is the time
elay from the reference epoch) subtracted. As the simulated curve
epends on the underlying model parameters, the degree of scatter
f simulated curves would increase with larger uncertainties of
odel parameters. Though sharing simulated parallaxes and proper
otions with J194104, the simulated curves for J194106 exhibits

roader scatter (than the J194104 ones) owing to more uncertain
eference position (see Section 4.4 for αref, J194106 and δref, J194106 ). The
arge scatter implies that the J194106 position measurements impose
elatively limited constraints on the common model parameter (i.e.
arallax and proper motion), which is consistent with the findings
rom Table 3 . 

.1.3 Implications for 1D/2D interpolation 

n the three 1D-interpolation-capable MSPs, we compared astromet-
ic inference with both the 1D-interpolated and non-1D-interpolated
osition series (one at a time). For PSR J1939 + 2134, the ηEFAC 

f the three 1D-interpolated realizations are consistent with each
ther, but larger than the non-1D-interpolated counterpart. This
ost-1D-interpolation inflation of ηEFAC also occurs to the other
wo 1D-interpolation-capable pulsars (see Table 3 ), which suggests
he post-1D-interpolation fiducial systematic errors σS 

i might be
ystematically under-estimated. One obvious explanation for this
nder-estimation is that the higher-order terms of systematic errors
re non-negligible (as opposed to the assumption we started with
n Section 3.1 ): they might be actually comparable to the first-
rder residual systematic errors (that are related to � psr-VC ) at the
1.55 GHz observing frequencies. 
On the other hand, the astrometric results based on the

on-1D-interpolated J194104 positions inverse-referenced to
SR J1939 + 2134 are less precise than the 1D-interpolated coun-

erpart by ≈40 per cent, as is also the case for PSR J0621 + 1002
see Table 3 ). Moreo v er, the post-1D-interpolation parallax of
SR J1824 −2452A becomes relatively more accurate than the
e gativ e parallax obtained without applying 1D interpolation. All
f these demonstrate the utility of 1D/2D interpolation, even in
he scenario of in-beam astrometry that is already precise. In the
emainder of this paper, we only focus on the 1D-interpolated
strometric results for the three 1D-interpolation-capable MSPs. 

.2 Bayesian inference as the major method for MSPSR π

e now compare the three sets of astrometric parameters (in Table 3 )
btained with different inference methods, and seek to proceed with
nly one set in order to simplify the structure of this paper. Among
he three inference methods we use in this work, direct least-square
tting is the most time-efficient, but is also the least robust against

mproperly estimated positional uncertainties. Conversely, the other
wo methods (i.e. bootstrap and Bayesian methods) do not rely
olely on the input positional uncertainties, and can still estimate
he model parameters, and their uncertainties σ ( Y ) 

X ( X = μα , μδ or
 ; Y = ‘Bo’ or ‘Ba’) more robustly in the presence of incorrectly

stimated positional errors. 
Generally speaking, σ ( Y ) 

X inferred from a pulsar position series
re expected to change with the corresponding χ2 

ν -corrected direct-
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Figure 3. Bootstrap (denoted as ‘Bo’) and Bayesian (‘Ba’) errors (of three inferred parameters) divided by the corresponding χ2 
ν -corrected direct-fitting errors. 

Here, ˜ σ (DF) 
X ≡ σ

(DF) 
X · √ 

χ2 
ν represents the χ2 

ν -corrected errors of direct fitting, where X stands for one of the μα , μδ , and � groups. The dimensionless ˆ σ (DF) 
X is 

defined as an indi vidual ˜ σ (DF) 
X di vided by the standard deviation s (DF) 

X for all ˜ σ (DF) 
X of the group X . The grey and orange shaded regions sho w, respecti vely, the 

standard deviation of σ (Bo) 
X / ̃ σ

(DF) 
X and σ (Ba) 

X / ̃ σ
(DF) 
X across all of the three groups (i.e. μα , μδ , and � ) around the respective mean value outlined with the grey 

and orange dashed lines. Both bootstrap and Bayesian errors are generally slightly higher than the level of direct-fitting errors illustrated with the cyan dashed 
line, and are well consistent with each other as anticipated. Despite the consistency, bootstrap errors show larger scatter than Bayesian ones. 
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tting error ˜ σ (DF) 
X ≡ σ

(DF) 
X · √ 

χ2 
ν . In order to investigate the relation 

etween σ ( Y ) 
X and ˜ σ (DF) 

X , we divided σ ( Y ) 
X by ˜ σ (DF) 

X for each pulsar entry 
n the top block of Table 3 . The results are displayed in Fig. 3 . For
he convenience of illustration, we calculated the dimensionless ˜ σ (DF) 

X 

efined as ˜ σ (DF) 
X /s 

(DF) 
X (where s (DF) 

X represents the standard deviation 
f ˜ σ (DF) 

X o v er the group X ), which allows all the three sets (i.e. μα ,
δ , and � ) of dimensionless ˜ σ (DF) 

X to be horizontally more evenly 
lotted in Fig. 3 . 
Across the entire MSPSR π sample, we see that σ ( Y ) 

X scales with 
˜ (DF) 
X in a near-linear fashion. The mean scaling factors across all of

he three parameter groups (i.e. μα , μδ , and � ) are 
〈
σ

(Bo) 
X / ̃  σ

(DF) 
X 

〉 =
 . 67 ± 0 . 85 and 

〈
σ

(Ba) 
X / ̃  σ

(DF) 
X 

〉 = 1 . 49 ± 0 . 24 (see Fig. 3 ). The two
ean scaling factors show that parameter uncertainties inferred using 

ither a bootstrap or Bayesian approach will be slightly higher (and 
n average, consistent between the two approaches) than would be 
btained utilizing direct-fitting (illustrated with the cyan dashed line 
n Fig. 3 ). 

The more optimistic uncertainty predictions of ˜ σ (DF) 
X can be 

nderstood as resulting from two causes: first, it neglects both 
he finite width and the skewness of the χ2 distribution, and 
econd, to achieve the expected χ2 it scales the total uncertainty 
ontribution at each epoch, rather than the systematic uncertainty 
ontribution alone. When (as is typical for pulsar observations) the 
/N and hence statistical positional precision can vary substantially 
etween observing epochs, this simplified approach preserves the 
elative weighting between epochs, whereas increasing the estimated 
ystematic uncertainty contribution acts to equalise the weighting 
etween epochs (by reducing the position precision more for epochs, 
here the pulsar was bright and the statistical precision high than 

or epochs, where the pulsar was faint and the statistical precision is
lready low). 
While the consistency between 
〈
σ

(Bo) 
X / ̃  σ

(DF) 
X 

〉
and 

〈
σ

(Ba) 
X / ̃  σ

(DF) 
X 

〉
uggests that both approaches can o v ercome this shortcoming in
he direct fitting method, σ (Bo) 

X / ̃  σ
(DF) 
X shows a much larger scatter 

3.5 times) compared to σ (Ba) 
X / ̃  σ

(DF) 
X (see Fig. 3 ). To determine

hich approach best represents the true (and unknown) parameter 
ncertainties, it is instructive to consider the outliers in the bootstrap
istribution results. 
First, consider cases where the bootstrap results in a lower 

ncertainty than ˜ σ (DF) 
X . For the reasons noted above, we expect ˜ σ (DF) 

X 

o yield the most optimistic final parameter uncertainty estimates, and 
et the bootstrap returns a lower uncertainty than ˜ σ (DF) 

X in a number
f cases. Second, the cases with the highest values of σ (Bo) 

X / ̃  σ
(DF) 
X 

each � 3 on a number of occasions, which imply an extremely large
or very non-Gaussian) systematic uncertainty contribution, which 
ould lead (in those cases) to a surprisingly low-reduced χ2 for the
est-fitting model. Given the frequency with which these outliers 
rise, we regard it likely that bootstrap approach mis-estimates 
arameter uncertainties at least occasionally, likely due to the small 
umber of observations available. 
Therefore, we consider the Bayesian method described in this 

aper as the preferred inference method for the MSPSR π sample, and
onsistently use the Bayesian results in the following discussions. We 
ote that as continued VLBI observing campaigns add more results, 
he systematic uncertainty estimation scheme applied to Bayesian 
nference can be further refined in the future. 

.3 Astr ometric infer ence accounting for orbital motion 

or some binary pulsars, VLBI astrometry can also refine parameters 
elated to the binary orbit on top of the canonical astrometric
arameters. The orbital inclination i and the orbital ascending 
MNRAS 519, 4982–5007 (2023) 
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Table 4. Prior constraints on i and �asc . 

PSR ȧ 1 ȧ 1 /a 1 i �asc 

(10 −15 lt-s s −1 ) (10 −15 s −1 ) (deg) 

J1518 + 4904 −11(3) a 1 −0.55(15) sin i ≤ 0.73 a 2 –
J1640 + 2224 12(1) b 0.22(2) sin i = 0.973(9) b –
J1643 −1224 −49.7(7) c −1.98(3) – –
J1853 + 1303 14(2) b 0.34(5) 85(14) ◦ d –

Notes. a a 1 Janssen et al. ( 2008 ); a 2 inferred from the non-detection of Shapiro 
delay effects. 
b Perera et al. ( 2019 ); c Reardon et al. ( 2021 ). 
d based on Shapiro delay measurements (Faisal Alam et al. 2021 ). 
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ode longitude �asc have been previously constrained for a few
earby pulsars, such as PSR J1022 + 1001, PSR J2145 −0750, and
SR J2222 −0137 (Deller et al. 2013 ; Deller et al. 2016 ; Guo et al.
021 ). To assess the feasibility of detecting orbital reflex motion with
LBI, we computed 

orb ≡ 2 a 1 
1 au 

· � 

σ� 

= 2 a 1 ·
(

1 au 

� 

)−1 

· 1 

σ� 

= 

2 a 1 
D 

· 1 

σ� 

, (3) 

here D and a 1 ≡ a sin i stands for, respectively, the distance (to the
ulsar) and the orbital semi-major axis projected onto the sightline.
n the other hand, ˜ θorb ≡ 2 a/D reflects the apparent angular size of
rbit. Provided the parallax uncertainty σ� 

, ˜ θorb /σ� 

quantifies the
etectability of orbital parameters using VLBI astrometry. Hence, 

˜ θorb 

σ� 

≡ 2 a 

D 

· 1 

σ� 

≥ ηorb . (4) 

ince i is usually unknown, the ηorb defined in equation ( 3 ) serves
s a lower limit for ˜ θorb /σ� 

, and is used in this work to find
ut pulsar systems with i and �asc potentially measurable with
LBI observations. In general, the orbital reflex motion should be
egligible when ηorb � 1, easily measurable when ηorb  1, and
ifficult to constrain (but non-negligible) when ηorb ∼ 1. By way of
omparison, Guo et al. ( 2021 ) were able to firmly constrain �asc and
 for PSR J2222 −0137 ( ηorb = 10.2), while Deller et al. ( 2016 ) could
lace weak constraints for PSR J1022 + 1001 and PSR J2145 −0750
 ηorb = 3.2 and 1.6, respectively) 

Accordingly, in this work, we fit for orbital reflex motion if all the
ollowing conditions are met: 

(i) a 1 is well determined with pulsar timing; 
(ii) ηorb > 1; 
(iii) the orbital period P b < 2 yr, where 2 yr is the nominal time

pan of an MSPSR π astrometric campaign. 

For the calculation of ηorb , we simply use the direct-fitting parallax
 

(DF) for � , and its χ2 
ν -corrected uncertainty σ (DF) 

� 

· √ 

χ2 
ν for σ� 

see T able 3 ). W e note that this choice of parallax and its uncertainty
ould generally lead to slightly larger ηorb compared to using � 

(Ba) 

nd σ (Ba) 
� 

, according to Fig. 3 and the discussion in Section 4.2 .
evertheless, the choice (1) enables the comparison with ηorb of the
istorically published pulsars (that do not have � 

(Ba) and σ (Ba) 
� 

), (2)
implifies the procedure of analysis, (3) facilitates the reproduction
f ηorb by other researchers, and (4) is more conserv ati ve in the
ense that more candidates with ηorb > 1 would be found. The
alculated ηorb as well as P b are summarized in Table 3 . Among
he 18 MSPSR π pulsars, PSR J1518 + 4904, PSR J1640 + 2224,
SR J1643 −1224, and PSR J1853 + 1303 meet our criteria (see
able 3 ), where PSR J1518 + 4904 is a DNS system, and the others
re pulsar-WD binaries. Hereafter, the four pulsars are referred to
s the ‘8P’ pulsars for the sake of brevity, as we would perform 8-
arameter (i.e. the five canonical astrometric parameters and ηEFAC 

lus i and �asc ) inference on them. 
For the 8-parameter inference, prior probability distributions of

he canonical parameters and ηEFAC are described in Section 4.0.1 .
oth i and �asc are defined in the TEMPO2 (Edwards, Hobbs &
anchester 2006 ) convention. The prior probability distribution of
asc follows U(0, 360 ◦). Sine distribution S(0, 180 ◦) is used for i

f the four 8P pulsars (i.e. the probability density p ( i ) ∝ sin i , i ∈
0, 180 ◦]). Where available, tighter constraints are applied to i in
ccordance with Table 4 (also see the descriptions in Section 8 ). 

Moreo v er, e xtra prior constraints can be applied to i and �asc based
n ȧ 1 , the time deri v ati ve of a 1 (e.g. Nice, Splaver & Stairs 2001 ;
NRAS 519, 4982–5007 (2023) 
eller et al. 2016 ; Reardon et al. 2021 ). As a 1 ≡ a sin i , 

ȧ 1 

a 1 
= 

ȧ 

a 
+ 

∂ i 

∂ t 
cot i ≈ ∂ i 

∂ t 
cot i. (5) 

ere, the ȧ /a term reflects the intrinsic variation of the semimajor
xis a due to GR effects (Peters 1964 ), which is ho we ver ∼8 and ∼5
rders smaller than ̇a 1 /a 1 for the 8P WD-pulsar systems and the DNS
ystem PSR J1518 + 4904, respectively (see Nice et al. 2001 for an
nalogy). Accordingly, the apparent ȧ 1 /a 1 is predominantly caused
y apparent i change as a result of the sightline shift (Kopeikin 1996 ).
hen proper motion contributes predominantly to the sky position

hift (as is the case for the 8P pulsars), 

∂ i 

∂ t 
= μ sin ( θμ − �asc ) , (6) 

here θμ refers to the position angle (east of north) of the proper
otion μ (Kopeikin 1996 ; Nice et al. 2001 ). We incorporated the

˙ 1 /a 1 measurements (with equations 5 and 6 ) on top of other
rior constraints, and inferred i , �asc , ηEFAC , and the canonical five
strometric parameters for the 8P pulsars with sterne 7 , following
imilar approaches taken by Deller et al. ( 2016 ), Guo et al. ( 2021 ). 

While we ultimately did not significantly constrain i or �asc for any
ulsar, including their non-negligible reflex motion in the inference
s still necessary for correctly inferring the uncertainties of the non-
rbital model parameters. The non-orbital inferred parameters are
rovided in Section 4.4 below, along with all the non-8P pulsars. As
e found minimal differences between the constraints obtained on
rbital parameters with or without the adoption of priors based on
ulsar timing, we defer the presentation of the posterior constraints
n orbital inclinations and ascending node longitudes (of the 8P
ulsars) to Section 5 in order to a v oid repetition. 

.4 The quasi-VLBI-only astrometric results 

o wrap up this section, we summarize in Table 5 the full (including
ref and δref ) final astrometric results obtained with no exterior prior
roper motion or parallax constraints, which we simply refer to as
uasi-VLBI-only astrometric results (we add ‘quasi’ because timing
onstraints on two orbital parameters, i.e. i and ȧ 1 , have already been
sed for the 8P pulsars). These quasi-VLBI-only results are mainly
eant for independent checks of timing results (which would enable

he frame connection mentioned in Section 1.2 ), or as priors for future
iming analyses. For the most precise possible pulsar parallaxes and
ence distances, we recommend the use of the ‘VLBI + timing’ results
resented in Section 5 . 
The reference positions αref and δref we provide in Table 5 are

recisely measured, but only with respect to the assumed location
f the in-beam calibrator source for each pulsar. In all cases, the
ncertainties on the in-beam source locations (also shown in Table 5 )
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ominate the total uncertainty in the pulsar’s reference position. A
uture work, incorporating additional multifrequency observations of
he in-beam calibrations, will enable significantly more precise pulsar
eference positions to be obtained, as is discussed in Section 1.3 . 

 VLBI  + TIMING  ASTROMETRIC  RESULTS  

n Bayesian inference, the output of a model parameter X j (where j
efers to various model parameters) hinges on its prior probability
istribution: generally speaking, tighter prior constraints (on X j ) that
re consistent with data (in the sense of Bayesian analysis) would
harpen the output X j . In cases where a strong correlation between X j 

nd another model parameter X k is present, tighter prior X j constraints
hat are consistent with the data would potentially sharpen both the
utput X j and the output X k . 
As noted in Section 1.2 , VLBI astrometry serves as the prime
ethod to measure parallaxes of Galactic pulsars. A VLBI astro-
etric campaign (on a Galactic pulsar) normally spans ∼2 yr, as
 substantial parallax can likely be achieved in this time span. On
he other hand, most MSPSR π pulsars have been timed routinely
or � 10 yr, which allows their proper motions to be precisely
etermined, as the precision on proper motion grows with t 3/2 (see,
.g. Section 4.4 of Ding, Deller & Miller-Jones 2021b ) for a regularly
bserved pulsar. In Table 6 , we collect one timing proper motion
denoted as μ(Ti) 

α and μ(Ti) 
δ ) and one timing parallax ( � 

(Ti) ) for each
SPSR π pulsar. Among the published timing results, we select the

iming proper motions measured o v er the longest time span, and the
 

(Ti) having the smallest uncertainties. According to Tables 5 and 6 ,
ost timing proper motions are more precise than the quasi-VLBI-

nly counterparts. On the other hand, timing parallaxes are mostly
ess precise than the quasi-VLBI-only counterparts. Nevertheless,
dopting appropriate timing parallaxes as priors can still ef fecti vely
ower parallax uncertainties. 

The precisely measured μ(Ti) 
α and μ(Ti) 

δ provide the opportunity
o significantly refine the quasi-VLBI-only proper motions. Further-
ore, as shown with the Pearson correlation coefficients (Pearson

895 ), ρμα,� 

and ρμδ,� 

, that we summarized in Table 5 , large
orrelation between parallax and proper motion is not rare for VLBI
strometry. Therefore, using the μ(Ti) 

α and μ(Ti) 
δ measurements as the

rior proper motion constraints in Bayesian inference can potentially
efine both proper motion and parallax determination. 

The astrometric results inferred with timing priors, hereafter
eferred to as VLBI + timing results, are reported in Table 6 .
o differentiate from the notation of quasi-VLBI-only astrometric
arameter Y , we denote a VLBI + timing model parameter in the
orm of Y 

′ . Comparing Tables 5 and 6 , we find almost all VLBI +
iming proper motions and parallaxes more precise than the quasi-
LBI-only counterparts; the most significant parallax precision

nhancement occurs to PSR J1918 −0642 (by 42 per cent), followed
y PSR J1939 + 2134 (by 36 per cent) and PSR J1537 + 1155 (by
3 per cent). Hence, we use the VLBI + timing results in the
emainder of this paper. 

In 7 cases (i.e. PSR J0610 −2100, PSR J1643 −1224,
SR J1730 −2304, PSR J1738 + 0333, PSR J1853 + 1303,
SR J1824 −2452A, PSR J1910 + 1256), one of μ(Ti) 

α , μ(Ti) 
δ , or � 

(Ti) 

s more than 2 σ discrepant from the quasi-VLBI-only counterpart.
sing such timing priors may widen the uncertainties of resultant
odel parameters, as ηEFAC would be lifted to counter-balance the

ncreased χ2 
ν . Without any indication that the discrepant timing values

re less reliable, we use them as priors regardless. Ho we ver, we
aution the use of these seven sets of VLBI + timing results, and
NRAS 519, 4982–5007 (2023) 
ould recommend the quasi-VLBI-only results to be considered if
ur adopted timing priors are pro v en inaccurate in future. 
We also now consider any possible effects that could, despite our

est efforts to characterise all sources of position noise, bias the fitted
LBI positions. F or an y giv en VLBI calibrator source, evolution in

he source structure can lead to a detectable position offset (e.g.
erger et al. 2018 ; Zhang, An & Frey 2020 ) that is then transferred

o the target pulsar. Due to the long time-scales of AGN structure
volution, o v er the ∼2-yr time-scale of the MSPSR π observations,
his error may be quasi-linear in time and be absorbed into the
ulsar proper motion (e.g. Deller et al. 2013 ). Redundant secondary
alibrators can be used to probe the astrometric effect of structure
 volution. Ho we ver, with small numbers of redundant calibrator
ources, such probes are hardly conclusive, as the structure evolution
f the redundant calibrators would also be involved. Among the seven
ulsars showing > 2 σ discrepancy between quasi-VLBI-only and
iming results (see Table 6 ), PSR J0030 + 0451, PSR J1643 −1224,
SR J1730 −2304, PSR J1738 + 0333, and PSR J1824 −2452A either
isplay no relative motion between the redundant secondary calibra-
ors, and the main secondary calibrators or do not have any redundant
alibrator (i.e. PSR J1643 −1224), although the suboptimal main sec-
ndary calibrators of PSR J1643 −1224 and PSR J1824 −2452A (see
ections 8.5 and 8.9 ) may likely affect the astrometric performance.
or PSR J1853 + 1303, the main secondary calibrator has a clear

et aligned roughly with the right ascension (RA) direction, and
hus source structure evolution is potentially significant. The two
edundant calibrators for PSR J1853 + 1303 do display a relative
roper motion of up to 0.2 mas yr −1 with respect to the main
econdary calibrator, so while the mean relative motion seen between
he two redundant secondary calibrators is small, calibrator structure
volution remains a possible explanation for the VLBI-timing dis-
repancy . Finally , the main secondary calibrator of PSR J1910 + 1256
lso exhibits a jet structure at a position angle of ∼45 ◦. When using
he only redundant calibrator of PSR J1910 + 1256 as the reference
ource, we obtained the VLBI-only result μα = 0.25 ± 0.06 mas yr −1 ,
δ = −7.3 ± 0.1 mas yr −1 , and � = 0.61 ± 0.05 mas with
ayesian inference, where μα becomes consistent with μ(Ti) 

α , but
δ and � are further away from the timing counterparts. The
α consistency between VLBI and timing indicates that structure

volution in our chosen calibrator is likely contributing to the VLBI-
iming discrepancy. Ho we ver, as the redundant calibrator is both
ainter and further away from PSR J1910 + 1256 (compared to the
ain secondary calibrator), we do not use this source as the final

eference source. 

.1 The posterior orbital inclinations and ascending node 
ongitudes 

or the four 8P pulsars, orbital inclinations i’ , and ascending node
ongitudes �′ 

asc are also inferred alongside the five canonical parame-
ers and η′ 

EFAC (see Section 4.3 ). The full 8D corner plots out of the 8-
arameter inferences are available online 5 . Prior constraints on i ′ and
′ 
asc have been provided in Section 4.0.1 . Owing to bi-modal features

f all 1D histograms of i ′ , no likelihood component is substantially
a v oured o v er the other. Hence, no tight posterior constraint on i ′ is
chiev ed for an y 8P pulsar. Likewise, all 1D histograms of �′ 

asc show
ultimodal features, which precludes stringent constraints on �′ 

asc . 

.2 Comparison with Gaia results 

rom the Gaia Data Release 2 (Gaia Collaboration et al. 2018 ),
aia counterparts for pulsars with optically bright companions
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Table 7. Gaia astrometric results. 

PSR Gaia DR3 μ
(G) 
α μ

(G) 
δ � 

(G) 
1 GoF. ∗

source ID (mas yr −1 ) (mas yr −1 ) (mas) 

J1012 + 5307 851610861391010944 2.7(3) ! -25.9(3) ! 1.7(3) −1.5 

J1024 −0719 3775277872387310208 −35.5(3) −48.35(36) 0.86(28) 0.4 

J1910 + 1256 4314046781982561920 ? !!!! −2.3(6) ! -6.1(6) −0.1(8) 1.9 

Notes. •Sources marked with ‘?’ are tentative Gaia counterpart candidates. 
•Values marked with N ‘!’s are N σ − ( N + 1) σ offset from the VLBI + timing counterparts 
∗Goodness of fitting, a parameter (of Gaia data releases) approximately following N (0 , 1) distribution. A GoF closer to 
zero indicates better fitting performance. 
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ave been identified and studied by Jennings et al. ( 2018 ), Min-
arelli et al. ( 2018 ), Antoniadis ( 2021 ). In the MSPSR π sample,
SR J1012 + 5307 and PSR J1024 −0719 have secure Gaia coun-

erparts, while PSR J1910 + 1256 has a proposed Gaia counterpart
andidate (Mingarelli et al. 2018 ). In Table 7 , we updated the Gaia
esults for these three Gaia sources to the Gaia Data Release 3 (DR3,
aia Collaboration et al. 2022 ). 
For PSR J1024 −0719, the Gaia proper motion { μ(G) 

α , μ(G) 
δ } and

arallax � 

(G) 
1 are highly consistent with the VLBI + timing ones,

hich further strengthens the proposal that PSR J1024 −0719 is
n an ultra-wide orbit with a companion star (Bassa et al. 2016 ;
aplan et al. 2016 , also see Sections 6.2 and 7.2 ). The Gaia proper
otion and parallax of PSR J1012 + 5307 is largely consistent with

he VLBI + timing counterparts. The > 1 σ discrepancy between
(G) 
δ and � 

(G) 
1 and the respective VLBI + timing counterparts

an be explained by non-optimal goodness of ( Gaia astrometric)
tting (GoF) (see Table 7 ). On the other hand, the Gaia counterpart
andidate for PSR J1910 + 1256 (proposed by Mingarelli et al. 2018 )
ossesses a μ(G) 

α 4 σ discrepant from the VLBI + timing one. Though
his discrepancy is discounted by the relatively bad GoF by roughly
 factor of 1.9 (see Table 7 ), the connection between the Gaia
ource and PSR J1910 + 1256 remains inconclusive. We note that the
arallax zero-points � 

(G) 
0 (Lindegren et al. 2021 ) of the three Gaia

ources are negligible and hence not considered, as � 

(G) 
0 is small

 | � 

(G) 
0 | � 0 . 02 mas, Ding et al. 2021b ) compared to the uncertainty

f � 

(G) 
1 (see Table 7 ). 

 DISTANCES  A N D  SPAC E  VELOCITIES  

n this section, we derive pulsar distances D from parallaxes � 

′ 

see Section 5 ), and compare them to the dispersion-measure-based
istances. Incorporating the proper motions { μ′ 

α, μ′ 
δ} (see Section 5 ),

e infer the transverse space velocity v ⊥ 

(i.e. the velocity with respect
o the stellar neighbourhood) for each pulsar in an effort to enrich the
ample of ∼40 MSPs with precise v ⊥ 

(Hobbs et al. 2005 ; Gonzalez
t al. 2011 ), and refine the v ⊥ 

distributions of MSP subgroups such
s binary MSPs and solitary MSPs. 

.1 Parallax-based distances 

nferring a source distance from a measured parallax requires
ssumptions about the source properties, for which a simple inversion
mplicitly makes unphysical assumptions (e.g. Bailer-Jones et al.
021 ). Various works (e.g. Lutz & Kelker 1973 ; Verbiest et al. 2012 ;
ailer -Jones 2015 ; Igoshev, Verb unt & Cator 2016 ) ha ve contrib uted

o developing and consolidating the mathematical formalism of
arallax-based distance inference, which we briefly recapitulate
s follows, in order to facilitate comprehension and ready the
athematical formalism for further discussion. 
NRAS 519, 4982–5007 (2023) 
A parallax-based distance D can be approached from the condi-
ional probability density function (PDF) 

p( D| � 

′ , l, b) ∝ p( � 

′ | D ) p( D , l, b) , (7) 

here l and b stands for Galactic longitude and latitude, respectively;
 

′ = � 

′ 
0 ± σ� 

′ . The first term on the right takes the form of 

p( � 

′ | D) ∝ exp 

[ 

−1 

2 

(
1 /D − � 

′ 
0 

σ� 

′ 

)2 
] 

, (8) 

ssuming � 

′ 
0 is Gaussian-distributed, or more specifically, � 

′ 
0 ∼

 

(
1 /D, σ 2 

� 

′ 
)
. The second term on the right side of equation ( 7 ) can

e approximated as p ( D , l , b ) ∝ D 

2 , when the parent population � 

f the target celestial body is uniformly distributed spatially (Lutz &
 elker 1973 ). Gi ven a postulated (Galactic) spatial distribution ρ( D ,

 , b ) of �, p ( D , l , b ) ∝ D 

2 ρ( D , l , b ). Hence, 

( D| � 

′ , l, b) ∝ D 

2 ρ( D, l, b) exp 

[ 

−1 

2 

(
1 /D − � 

′ 
0 

σ� 

′ 

)2 
] 

. (9) 

e join Verbiest et al. ( 2012 ) and Jennings et al. ( 2018 ) to adopt the
( D , l , b ) (of the ‘Model C’) determined by Lorimer et al. ( 2006 ) for
alactic pulsars. While calculating the ρ( D , l , b ) with Equations 10

nd 11 of Lorimer et al. ( 2006 ), we follow Verbiest et al. ( 2012 ) and
ennings et al. ( 2018 ) to increase the scale height (i.e. the parameter
 E ’ of Lorimer et al. 2006 ) to 0.5 kpc to accommodate the MSP
opulation. In addition, the distance to the Galactic Centre (GC) in
quation 10 of Lorimer et al. 2006 is updated to d � = 8.12 ± 0.03 kpc

Gravity Collaboration et al. 2018 ). We do not follow Verbiest et al.
 2012 ), Igoshev et al. ( 2016 ) to use pulsar radio fluxes to constrain
ulsar distances, as pulsar luminosity is relatively poorly constrained.
Using the aforementioned mathematical formalism, we calcu-

ated p ( D | � 

′ , l , b ) for each MSPSR π pulsar, and integrated it
nto the cumulative distribution function (CDF) � ( D| � 

′ , l, b) =
 D 

0 p( D 

′ | � 

′ , l, b) d D 

′ . The p ( D | � 

′ , l , b ) and � ( D | � 

′ , l , b ) is plotted
or each pulsar and made available online 5 . An example of these plots
re presented in Fig. 4 . The median distances D median corresponding
o � ( D | � 

′ , l , b ) = 0.5 are taken as the pulsar distances, and
ummarized in Table 6 . The distances matching � ( D | � 

′ , l , b ) =
.16 and � ( D | � 

′ , l , b ) = 0.84 are respectively used as the lower and
pper bound of the 1 σ uncertainty interval. 

.1.1 Comparison with DM distances 

s mentioned in Section 1.2 , the precise DM measured from a pulsar
an be used to assess the pulsar distance, provided an n e ( � x ) model.
sing pygedm 9 , we compile into Table 6 the DM distances (i.e.
 

(NE) 
DM 

and d (YMW) 
DM 

) of each pulsar based on the two latest realizations
f n e ( � x ) model – the NE2001 model (Cordes & Lazio 2002 ) and
he YMW16 model (Yao et al. 2017 ). For all the DM distances, we
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Figure 4. An example posterior probability density function p ( D | � 

′ , l , 
b ) (of distance) and its cumulative distribution function � ( D| � 

′ , l, b) = ∫ D 

0 p( D 

′ | � 

′ , l, b) d D 

′ . The vertical dashed lines correspond to � ( D | � 

′ , l , 
b ) = 0.16 and � ( D | � 

′ , l , b ) = 0.84, which are, respectively, used as the 
lower and upper bound of the 1 σ uncertainty interval. The mode distance 
D mode and median distance D median are marked with dot–dashed blue line 
and dotted cyan line, respectively. Plots of this kind are also made for other 
MSPSR π pulsars, and made available online 5 . Staying in line with the norm 

(see Section 1.2 ) of this paper, we universally adopt D median as the distances 
(i.e. D in Table 6 ) for all MSPSR π pulsars in this paper. 
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dopt typical 20 per cent fractional uncertainties. We have obtained 
ignificant ( ≥3 σ ) parallax-based distances D for 15 out of 18

SPSR π pulsars. These distances enable an independent quality 
heck of both n e ( � x ) models. 

Among the 15 pulsars with parallax-based distance measure- 
ents, YMW16 is more accurate than NE2001 in three cases 

i.e. PSR J1012 + 5307, PSR J1643 −1224, and PSR J1939 + 2134),
ut turns out to be the other way around in four cases (i.e.
SR J0621 + 1002, PSR J1853 + 1303, PSR J1910 + 1256, and
SR J1918 −0642). In other eight cases, the D cannot discriminate 
etween the two models. The small sample of 15 D measurements 
hows that NE2001 and YMW16 remain comparable in terms 
f outliers. In two (out of the 15) cases (i.e. PSR J0610 −2100,
SR J1024 −0719), D is about 2 . 6 σ and 6 . 8 σ away from either DM
istance, which reveals the need to further refine the n e ( � x ) models.
uch a refinement can be achieved, with improved pulsar distances 

ncluding the ones determined in this work. 

.2 Transverse space velocities 

aving determined the parallax-based distances D and the proper 
otions { μ′ 

α, μ
′ 
δ} , we proceed to calculate transverse space velocities

 ⊥ 

for each pulsar, namely the transverse velocity with respect to the
eighbouring star field of the pulsar. In estimating the transverse 
elocity of a pulsar neighbourhood, we assume the neighbourhood 
bserves circular motion about the axis connecting the North and 
outh Galactic Poles, which is roughly valid given that all MSPSR π

ulsars with significant ( > 3 σ ) D share a median | z| = D sin | b | of
.3 kpc. Using the Galactic rotation curve from Reid et al. ( 2019 )
nd the full circular velocity of the Sun 247 ± 1 km s −1 , we derived
he apparent transverse velocity of the neighbourhood v ⊥ , N , thus 
btaining v ⊥ 

by subtracting the apparent transverse velocity of the 
ulsar by v ⊥ , N . Here, the full circular velocity (denoted as � 0 + V �
n Reid et al. 2019 ) is calculated with d � = 8.12 ± 0.03 kpc (Gravity
ollaboration et al. 2018 ) and the proper motion of Sgr A 

∗ from Reid
t al. ( 2019 ). 

To estimate the uncertainty of v ⊥ 

, we simulated a chain of 50 000
istances for each pulsar based on the p ( D | � 

′ , l , b ) that we have
btained in Section 6.1 . Besides, we also acquired chains of 50 000
′ 
α and μ′ 

δ given the VLBI + timing proper motions of Table 6 ,
ssuming μ′ 

α and μ′ 
δ follow Gaussian distributions. With these chains 

f D , μ′ 
α , and μ′ 

δ , we calculated 50 000 v ⊥ 

values, which form a PDF
f v ⊥ 

for each pulsar. The v ⊥ 

inferred from the PDFs are summarized
n Table 6 . 

In Fig. 5 , we illustrate the v ⊥ 

in relation to | z| for 16 pul-
ars with precise distance estimates. Among the 16 pulsars, only 
SR J1824 −2452A does not have a significant parallax-based 
istance. Nevertheless, its v ⊥ 

can be inferred by incorporating its 
roper motion with the astrometric information (i.e. distance and 
roper motion) of its host globular cluster (see Section 8.9 ). No clear
orrelation is revealed between v ⊥ 

and | z| , which reinforces our
ecision to treat all MSPSR π pulsars across the | z| � 1 kpc regime
qually. By concatenating the simulated v ⊥ 

chains, we acquired the 
DF for the 16 MSPs (see Fig. 5 ), which gives v (MSP) 

⊥ 

= 53 + 48 
−37 km s −1 .

Amongst the MSPSR π sources, PSR J1024 −0719 is an obvious 
utlier, with a velocity of ∼300 km s −1 that is 3 σ abo v e the mean.
s proposed by Bassa et al. ( 2016 ) and Kaplan et al. ( 2016 ),
SR J1024 −0719 is theorized to have been ejected from a dense
tellar region, thus possibly following a different v ⊥ 

distribution from 

ypical field MSPs (isolated along with their respective companions 
hroughout their lives). In this regard, we turn our attention to
he binary sample of pulsars with well determined orbital periods 
 b (see P b of Table 3 ), and obtain v (BI) 

⊥ 

= 50 + 49 
−34 km s −1 for field

inary MSPs. Based on this small sample, we do not find the v ⊥ 

of
he three solitary MSPs (i.e. PSR J0030 + 0451, PSR J1730 −2304,
nd PSR J1939 + 2134) to be inconsistent with v (BI) 

⊥ 

. Neither are
he two DNSs (i.e. PSR J1518 + 4904 and PSR J1537 + 1155). If
e exclude the two DNSs from the binary sample, we would

ome to v (WD) 
⊥ 

= 50 + 46 
−31 km s −1 for the MSPSR π pulsars with WD

ompanions, which is highly consistent with v (BI) 
⊥ 

and v (MSP) 
⊥ 

. 
Compared to 113 ± 17 km s −1 previously estimated for a sample

f ∼40 MSPs (Gonzalez et al. 2011 ), our v (MSP) 
⊥ 

is largely consistent
ut on the smaller side. Boodram & Heinke ( 2022 ) recently shows
hat MSP space velocities have to be near zero to explain the
alactic Centre γ -ray excess (e.g. Abazajian & Kaplinghat 2012 ). 

nterestingly, the v ⊥ 

PDF based on our small sample of 16 shows
 multimodal feature, with the lowest mode consistent with zero. 
pecifically, the seven MSPSR π pulsars with the smallest v ⊥ 

share an
qually weighted mean v ⊥ 

of only 25 km s −1 , which suggests MSPs
ith extremely low-space velocities are not uncommon. Accordingly, 
e suspect the MSP origin of the GC γ -ray excess can still not be

uled out based on our sample of v ⊥ 

. 

 R A D I A L  AC C E L E R AT I O N S  O F  PULSARS  

N D  ORBI TAL-DECAY  TESTS  O F  

R AV I TAT I O NA L  T H E O R I E S  

s described in Section 1.2 , VLBI astrometry of pulsars, in con-
unction with pulsar timing, can enhance the orbital-decay tests of 
ravitational theories. For binary systems involved in this work, the 
bserved orbital decay has three significant components: 

˙
 

obs 
b = Ṗ 

GW 

b + Ṗ 

Shk 
b + Ṗ 

Gal 
b , (10) 

here Ṗ 

GW 

b reflects the effect of gra vitational-wa ve damping intrinsic 
o a binary system, while Ṗ 

Shk 
b and Ṗ 

Gal 
b are both extrinsic contribu- 
MNRAS 519, 4982–5007 (2023) 
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M

Figure 5. Upper: The transverse space velocities v ⊥ versus the Galactic vertical heights | z| = D sin | b | of the 16 MSPSR π pulsars with significant ( > 3 σ ) 
distance measurements (including 15 parallax-based distances and a globular cluster distance). Lower: The probability density function (PDF) of v ⊥ for the 16 
MSPs. The median of the v ⊥ PDF is marked with the dashed line, while the 1 σ error interval is shown with the shaded region. 
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ions caused, respectively, by relative line-of-sight accelerations (of
ulsars) A Shk and A Gal . Specifically, Ṗ 

Shk 
b = A Shk /c · P b = μ2 D/c ·

 b (where μ2 = μ′ 
α

2 + μ′ 
δ

2 ) is the radial acceleration caused by
he tangential motion of pulsars (Shklovskii 1970 ), which becomes
ncreasingly crucial for pulsars with larger μ (e.g. PSR J1537 + 1155,
ing et al. 2021a ), as A Shk ∝ μ2 . On the other hand, 

Ṗ 

Gal 
b = 

A Gal 

c 
P b = 

[−∇ϕ ( � x ) 
] ∣∣� x target 

� x � · � e r 
c 

P b 
(11) 

s a consequence of the gravitational pull (or push) e x erted by the
alaxy. Here, ϕ( � x ) and � e r are, respectively, the Galactic gravitational
otential (as a function of Galactic position � x ) and the unit vector in
he Earth-to-pulsar direction. 

In order to test any theoretical prediction of Ṗ 

GW 

b , it is necessary to
stimate A Shk and A Gal and remo v e their effect on Ṗ 

obs 
b . Besides this

mpact, the radial accelerations A Shk and A Gal would, more generally,
ffect the time derivative of all periodicities intrinsic to a pulsar
ystem, which include the pulsar spin period deri v ati ve Ṗ s . Similar
o Ṗ 

Shk 
b and Ṗ 

Gal 
b , Ṗ 

Shk 
s = A Shk /c · P s and Ṗ 

Gal 
s = A Gal /c · P s (where

 s stands for the spin period of a pulsar). As MSPs consist of nearly
alf of the γ -ray pulsar population, determining the extrinsic terms of
˙
 s and the intrinsic spin period deri v ati ve Ṗ 

int 
s = Ṗ 

obs 
s − Ṗ 

Shk 
s − Ṗ 

Gal 
s 

s essential for exploring the ‘death line’ (i.e. the lower limit) of
igh-energy emissions from pulsars (e.g. Guillemot et al. 2016 ). In
NRAS 519, 4982–5007 (2023) 
ections 7.1 and 7.2 , we e v aluate A Shk and A Gal one after another.
he e v aluation only co v ers pulsars with significant D , as both A Shk 

nd A Gal are distance-dependent. 

.1 Shklovkii effects 

e estimate the model-independent A Shk in a way similar to the
stimation of v ⊥ 

(see Section 6.2 ). Three chains of 50 000 μ′ 
α , μ′ 

δ ,
nd D were simulated from their respective PDFs. Using the relation
 Shk = 

(
μ′ 

α
2 + μ′ 

δ
2 )

D, 50 000 A Shk were calculated to assemble the
DF of A Shk for each pulsar with significant D . The A Shk inferred
rom the PDFs are compiled in Table 8 along with their resultant
˙
 

Shk 
s and Ṗ 

Shk 
b . 

.2 Relati v e radial accelerations due to Galactic gravitational 
ull 

e estimate A Gal in the same way as Ding et al. ( 2021a ), following
he pioneering work of Zhu et al. ( 2019 ). To briefly demonstrate
his method, we present, in Table 9 , the A Gal based on five different
( � x ) models for the 15 pulsars with significant D measurements.
he five ϕ( � x ) models are denoted as NT95 (Nice & Taylor 1995 ),
B98 (Dehnen & Binney 1998 ), BT08 (Binney & Tremaine 2011 ),
14 (Piffl et al. 2014 ), and M17 (McMillan 2017 ), in this paper. The
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Table 9. Radial accelerations due to Galactic gravitational pull based on different models of Galactic gravitational 
potential. 

PSR A 

(NT95) 
Gal A 

(DB98) 
Gal A 

(BT08) 
Gal A 

(P14) 
Gal A 

(M17) 
Gal A 

(GR) 
Gal 

∗
(pm s −2 ) (pm s −2 ) (pm s −2 ) (pm s −2 ) (pm s −2 ) (pm s −2 ) 

J0030 + 0451 −29(3) ! -37.0(2) ! -27.3(2) −35.3(2) −32.5(3) –

J0610 −2100 ! -12(1) −8 . 6 + 1 . 2 −0 . 8 
! −6 . 0 + 1 . 0 −0 . 5 −10 . 9 + 0 . 7 −0 . 3 −8 . 8 + 1 . 0 −0 . 4 –

J0621 + 1002 24(4) 23(5) 24(5) 24(5) 25(5) –

J1012 + 5307 !!! -32.0(6) −24.0(2) ! -19.44(9) −24.80(9) −25.80(6) 05(29) 

J1024 −0719 ! -45.1(9) −38.5(6) ! -35.6(9) −42(1) −43(1) –

J1518 + 4904 −47.5(5) −48.1(5) ! -44.8(7) −50.4(7) ! -51.9(7) –

J1537 + 1155 !!!! -29(1) −42(1) −39(2) −43(2) −45(2) 21 + 28 
−31 

J1640 + 2224 !!! -33(1) −46(3) −45(3) −50(3) −52(4) –

J1643 −1224 !! 10(3) ! −1 . 2 + 0 . 8 −0 . 6 
! 3 . 2 + 0 . 7 −0 . 5 0 . 6 + 0 . 7 −0 . 6 1 . 3 + 0 . 6 −0 . 4 –

J1730 −2304 13.2(8) 10.8(6) 12.1(6) 11.5(6) 12.5(7) –

J1738 + 0333 !!!!!! 10.1(1.8) −6 . 4 + 0 . 4 −0 . 6 −4 . 2 + 0 . 8 −1 . 1 −7 . 5 + 0 . 7 −1 . 0 −6 . 9 + 0 . 8 −1 . 2 9(35) 

J1853 + 1303 −13(3) −13 + 3 −4 −13 + 3 −5 −19 + 4 −5 −16 + 4 −5 –

J1910 + 1256 −35(13) −29 + 8 −16 −31 + 10 
−18 −42 + 12 

−21 −36 + 10 
−20 –

J1918 −0642 !! 14(2) 5.9(5) ! 8.7(5) ! 5.0(2) 7.4(3) –

J1939 + 2134 −64(8) −53(8) −56(8) −67(9) −63(9) –

Notes . •NT95, DB98, BT08, P14, and M17 refer to five different ϕ( � x ) models (see Section 7.2 for the references). 
•The ‘!’s indicate, in the same way as Table 6 , the significance of the offset between the A Gal in Table 8 and that of each 
ϕ( � x ) model. 
∗A 

(GR) 
Gal = 

(
Ṗ 

obs 
b − Ṗ 

GW 

b − Ṗ 

Shk 
b 

)
c/P b is based on the assumption that GR is correct. 
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esults obtained with NT95, which uses a simple analytical approach,
re frequently discrepant compared to the other four ϕ( � x ) models.
ccordingly, and following Ding et al. ( 2021a ), we exclude it and
se the remaining four models to derive the estimate for A Gal and its
ncertainty, which we present in Table 8 (along with Ṗ 

Gal 
b and Ṗ 

Gal 
s ).

Incorporating the Ṗ 

Shk 
s derived in Section 7.1 , we calculated

he intrinsic spin period deri v ati ve Ṗ 

int 
s = Ṗ 

obs 
s − Ṗ 

Shk 
s − Ṗ 

Gal 
s . We

ote that the ne gativ e Ṗ 

int 
s of PSR J1024 −0719 is probably the

onsequence of radial acceleration induced by a putative companion
n an extremely wide orbit with PSR J1024 −0719 (Bassa et al.
016 ; Kaplan et al. 2016 , also see Section 5.2 ). In addition to Ṗ 

int 
s ,

˙
 

int 
b = Ṗ 

obs 
b − Ṗ 

Shk 
b − Ṗ 

Gal 
b are estimated for four pulsar systems

ith reported Ṗ 

obs 
b . The impro v ed PSR J1738 + 0333 parallax as well

s the re-assessed PSR J1012 + 5307 parallax calls for an update to
he constraint on alternative theories of gravity (e.g. Freire et al.
012 ; Zhu et al. 2019 ; Ding et al. 2020b ), which is discussed in 
ection 7.3 . 
While performing the A Gal analysis, we found an error in the code

hat had been used to implement the calculation of equation ( 11 )
or the Ding et al. ( 2021a ) work (which, to be clear, is not an
rror in the GalPot 10 package that provides the ϕ( � x ) models).
herefore, we note that the Ṗ 

Gal 
b of PSR J1537 + 1155 in Table 8 is a

orrection to the Ding et al. ( 2021a ) counterpart. Further discussions
n PSR J1537 + 1155 can be found in Section 8.3 . 
Last but not the least, assuming GR is correct, the approach taken

bo v e can be inverted to infer A 

(GR) 
Gal = 

(
Ṗ 

obs 
b − Ṗ 

GW 

b − Ṗ 

Shk 
b 

)
c/P b ,

hich can be used to constrain Galactic parameters for the local
nvironment (of the Solar system) (Bovy 2020 ), or probe the Galactic
ark matter distribution in the long run (Phillips et al. 2021 ). The
 

(GR) 
Gal for the three viable pulsars are listed in Table 9 . 
NRAS 519, 4982–5007 (2023) 

0 https:// github.com/PaulMcMillan-Astro/ GalPot

u  

D  

i  
.3 New constraints on alternati v e theories of gravity 

n the GR framework, the excess orbital decay Ṗ 

ex 
b = Ṗ 

int 
b − Ṗ 

GW 

b 

s expected to agree with zero. Ho we ver, some alternati ve theories
f gravity expect otherwise due to their predictions of non-zero
ipole gravitational radiation and time-v arying Ne wton’s gravita-
ional constant G . Both phenomena are prohibited by GR. Namely,
n GR, the dipole gravitational radiation coupling constant κD =
, and Ġ /G = 0. The large asymmetry of gravitational binding
nergy of pulsar-WD systems makes them ideal testbeds for dipole
ravitational emissions (e.g. Eardley 1975 ). In an effort to test (and
ossibly eliminate) alternative theories of gravity, increasingly tight
onstraints on κD and Ġ /G have been placed using multiple pulsar-
D systems (Deller et al. 2008 ; Freire et al. 2012 ; Zhu et al. 2019 ;
ing et al. 2020b ). 
With the reassessed astrometric results of PSR J1012 + 5307, the

˙
 

ex 
b of PSR J1012 + 5307 changes from 10 . 6 ± 6 . 1 fs s −1 in Ding
t al. ( 2020b ) to 5 . 1 ± 5 . 1 fs s −1 . This change is mainly caused by
hree reasons: (1) priors are placed on the proper motion during
nference in this work (but not in Ding et al. 2020b ); (2) a Bayesian
ramework is applied in this work (while Ding et al. 2020b reported
ootstrap results); (3) this work adopts PDF medians as the estimates
while Ding et al. 2020b used PDF modes). Though barely affecting
his work (see Fig. 4 ), the choice between PDF mode and median
akes a difference to Ding et al. ( 2020b ) given that their parallax
DF is more skewed (see fig. 4 of Ding et al. 2020b ). After employing

he new VLBI + timing distance, the Ṗ 

ex 
b of PSR J1738 + 0333 has

hifted from 2 . 0 ± 3 . 7 (Freire et al. 2012 ) to 1 . 6 ± 3 . 5 fs s −1 . More
iscussions on PSR J1738 + 0333 can be found in Section 8.8 . 
With the new Ṗ 

ex 
b of PSR J1012 + 5307 and PSR J1738 + 0333, we

pdated the constraints on κD and Ġ /G in exactly the same way as
ing et al. ( 2020b ). The prerequisites of this inference are reproduced

n Table 10 , where the two underlined Ṗ 

ex are the only difference
b 

https://github.com/PaulMcMillan-Astro/GalPot
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Table 10. Excess orbital decay Ṗ 

ex 
b = Ṗ 

obs 
b − Ṗ 

Shk 
b − Ṗ 

Gal 
b and other pre- 

requisites for constraining Ġ /G and κD . 

PSR P b Ṗ 

ex 
b m p m c q 

(d) (fs s −1 ) (M �) (M �) 

J0437 −4715 5.74 12(32) 1.44(7) 0.224(7) –

J1012 + 5307 0.60 5.1(5.1) – 0.174(11) 10.44(11) 

J1713 + 0747 67.83 30(150) 1.33(10) 0.290(11) –

J1738 + 0333 0.35 1.6(3.5) 1.46(6) – 8.1(2) 

Note. •m p , m c and q stand for, respectively, pulsar mass, companion mass 
and mass ratio (i.e. m p / m c ). See Ding et al. ( 2020b ) for their references. 
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rom the Table 6 of Ding et al. ( 2020b ). We obtained 

˙
 /G = −1 . 6 + 5 . 3 

−4 . 8 × 10 −13 yr −1 , (12) 

κD = −1 . 1 + 2 . 4 
−0 . 9 × 10 −4 . 

ompared to Ding et al. ( 2020b ), κD becomes more consistent with
ero, while the new uncertainties of κD and Ġ /G remain at the same
evel. 

 I N D I V I D UA L  PULSARS  

n this section, we discuss the impacts of the new astrometric 
easurements (particularly the new distances) on the scientific 

tudies around individual pulsars. Accordingly, special attention is 
aid to the cases where there is no published timing parallax � 

(Ti) .
n addition, we also look into the two pulsars (i.e. PSR J1721 −2457
nd PSR J1824 −2452A) that have � 

′ consistent with zero in an
ffort to understand the causes of parallax non-detection. 

.1 PSR J0610 −2100 

SR J0610 −2100 is the third black widow pulsar disco v ered (Burgay
t al. 2006 ), which is in a 7-hr orbit with an extremely low-mass
 ≈0.02 M �, Pallanca et al. 2012 ) star. Adopting a distance of around
.2 kpc, van der Wateren et al. ( 2022 ) obtained a γ -ray emission
fficiency ηγ ≡ 4 πF γ D 

2 / ̇E 

int in the range of 0.5–3.7, where Ė 

int 

nd F γ are, respectively, the intrinsic NS spin-down power and the 
-ray flux abo v e 100 MeV. 
In addition, van der Wateren et al. ( 2022 ) estimated a mass

unction 

 ( m p , q) = m p 
sin 3 i 

q( q + 1) 2 
= 

4 π2 a 3 1 

GP 

2 
b 

(13) 

f 5.2 × 10 −6 M � for the PSR J0610 −2100 system (where q ≡
 p / m c ). Besides, they determined the irradiation temperature (of the

ompanion) T irr = 2820 ± 190 K as well as the projected orbital semi-
ajor axis a 1 = 7.3 × 10 −3 lt-s. Combining these three estimates, 
e calculated the heating luminosity 

 irr ≡ 4 π

[
a 1 (1 + q) 

sin i 

]2 

σSB T 
4 

irr (14) 

≈ 4 πa 2 1 

[
m p 

f ( m p , q) 

]2 / 3 

σSB T 
4 

irr 

∼ 9 . 1 × 10 32 

(
m p 

1 . 4 M �

)2 / 3 

erg s −1 , 

here σ SB represents the Stefan–Boltzmann constant. 
Our new distance D = 1 . 5 + 0 . 3 

−0 . 2 kpc to PSR J0610 −2100 is less than
alf the DM-based distances (see Table 6 ), and significantly below 
hat assumed by van der Wateren et al. ( 2022 ). Assuming a NS
oment of inertia I NS = 10 45 g cm 

2 , the Ṗ 

int 
s of PSR J0610 −2100

see Table 8 ) corresponds to an intrinsic spin-down power 

˙
 

int ≡ 4 π2 I NS Ṗ 

int 
s /P 

3 
s (15) 

f (5 . 1 ± 0 . 5) × 10 33 erg s −1 , which is roughly twice as large as
he Ė 

int range calculated by van der Wateren et al. ( 2022 ). In
onjunction with a smaller γ -ray luminosity L γ = 4 πF γ D 

2 (due
o closer distance), the Ė 

int reduced ηγ to around 0.37 (from 0.5 
 ηγ < 3.7 estimated by van der Wateren et al. 2022 ), disfa v oring

nusually high- γ -ray beaming towards us. Moreo v er, the heating
fficiency εT drops to ∼0.17 (from 0.15 < εT < 0.77 e v aluated by
an der Wateren et al. 2022 ), disfa v oring the scenario where the NS
adiation is strongly beamed towards the companion. 

.1.1 On the DM discrepancy 

n Section 6.1.1 , we noted that our VLBI parallax-derived distance
nd the DM model-inferred distance to this pulsar differed sub- 
tantially . Specifically , PSR J0610 −2100 has a measured DM =
0.7 pc cm 

−3 while the NE2001 model predicts 27.5 pc cm 

−3 for a
ine of sight of length 1.5 kpc. We attribute this discrepancy to thermal
lasma or ‘free electrons’ along the line of sight that is not captured
ully by a ‘clump’ in the NE2001 model. The NE2001 model includes
his ‘clump’ to describe the effects due to the Mon R2 H II region,
entred at a Galactic longitude and latitude of (214 ◦, −12.6 ◦), located
t an approximate distance of ∼0.9 kpc (Herbst 1975 ). Ho we ver, the
HAM surv e y shows considerable H α in this direction, extending

 v er tens of degrees. Lines of sight close to the pulsar show changes
n the H α intensity by factors of two, but an approximate value
oward the pulsar is roughly 13 Rayleighs, equi v alent to an emission
easure EM = 29 pc cm 

−6 (for a temperature T = 8000 K). Using
tandard e xpressions, as pro vided in the NE2001 model, to convert
M to DM, there is sufficient H α intensity along the line of sight

o account for the excess DM that we infer from the difference
etween our parallax-derived distance and the NE2001 model 
istance. 

.2 PSR J1518 + 4904 

he 41-ms PSR J1518 + 4904, disco v ered by Sayer, Nice & Taylor
 1997 ), is one of the only two DNSs in the current sample. According
o Janssen et al. ( 2008 ), the non-detection of Shapiro delay effects
uggests sin i ≤ 0.73 at 99 per cent confidence level. Accordingly,
e adopted 0.73 as the upper limit of sin i , and carried out 8-
arameter Bayesian inference, which led to a bi-modal posterior 
DF on i ′ and a multimodal PDF on �′ 

asc (see the online corner
lot 5 ). The predominant constraints on both i ′ and �′ 

asc come 
rom the ȧ 1 measurement (Janssen et al. 2008 or see Table 4 ).
hough there are three major likelihood peaks for the �′ 

asc , two
f them gather around 171 ◦, making the PDF relatively more
oncentrated. When a much more precise ȧ 1 measurement is reached 
ith new timing observations, the existing VLBI data will likely 
lace useful constraints on i ′ and �′ 

asc . So will additional VLBI 
bservations. 
In addition to i ′ and �′ 

asc , the 8-parameter Bayesian inference 
lso renders a 40 σ parallax � 

′ , which becomes the most significant
arallax achieved for a DNS. In contrast, to detect a timing parallax
 

(Ti) for PSR J1518 + 4904 would take � 600 yr (Janssen et al. 2008 )
ue to its relatively high-ecliptic latitude of 63 ◦. 
MNRAS 519, 4982–5007 (2023) 
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.3 PSR J1537 + 1155 

SR J1537 + 1155, also known as PSR B1534 + 12, is the second dis-
o v ered DNS (Wolszczan 1991 ). The DNS displays an exceptionally
igh-proper motion amongst all Galactic DNSs (see Table 3 of Tauris
t al. 2017 ), leading to an unusually large Shklovskii contribution
o observed timing parameters. Therefore, precise astrometry of
he DNS plays an essential role in its orbital decay test of GR.
he most precise astrometric parameters of PSR J1537 + 1155 are
rovided by Ding et al. ( 2021a ) based on the same data set used in
his work, which result in Ṗ 

Shk 
b = 53 ± 4 fs s −1 . Subsequently, Ding

t al. ( 2021a ) estimated Ṗ 

Gal 
b = −1 . 9 ± 0 . 2 fs s −1 , and concluded

˙
 

int 
b / Ṗ 

GW 

b = 0 . 977 ± 0 . 020. 
In this work, we inferred ηEFAC on top of the canonical astrometric

arameters, which is the only difference from the Bayesian method of
ing et al. ( 2021a ). Despite this difference, our astrometric results of
SR J1537 + 1155 remain almost the same as Ding et al. ( 2021a ). So

s our re-derived Ṗ 

Shk 
b = 53 . 3 + 3 . 8 

−3 . 3 fs s 
−1 . However, as is mentioned in

ection 7.2 , the Ṗ 

Gal 
b estimated by Ding et al. ( 2020a ) is incorrect due

o a coding error. After correction, Ṗ 

Gal 
b drops to −5.1 ± 0.4 fs s −1 

see Table 8 ). Consequently, we obtained Ṗ 

int 
b / Ṗ 

GW 

b = 0 . 96 ± 0 . 02. 
As Ding et al. ( 2021a ) have pointed out, the limiting factor

f the GR orbital decay test using PSR J1537 + 1155 remains
he distance precision, which generally impro v es as t −1/2 with
dditional observations, but can be accelerated if more sensitive
nstrumentation can be deployed. On the other hand, the extremely
igh-braking index of 157 (two orders higher than the normal
evel) calculated from the rotational frequency νs ≡ 1/ P s , its
rst deri v ati ve ν̇s , and its second deri v ati v e ν̈s (F onseca et al.
014 ) indicate likely timing noise contributions that may affect
he observed orbital period deri v ati ve to some degree. This will
e clarified with continued timing observations and refined timing
nalysis. 

.4 PSR J1640 + 2224 

SR J1640 + 2224 is a 3.2-ms MSP (Foster et al. 1995 ) in a
ide ( P b = 175 d) orbit with a WD companion (Lundgren et al.
996 ). The MSPSR π results for PSR J1640 + 2224 have been
etermined using bootstrap and published in Vigeland et al. ( 2018 ),
hich are highly consistent with our re-assessed quasi-VLBI-only

esults (see Table 2 of Vigeland et al. 2018 and Table 5 ), and
lso agree with the VLBI + timing ones (see Table 6 ). Our 8-
arameter Bayesian inference renders a 1D histogram of �′ 

asc with
our likelihood components at 0 ◦, 140 ◦, 200 ◦, and 320 ◦, which
s predominantly shaped by the prior on ȧ 1 from pulsar timing 
see Table 4 ). 

.5 PSR J1643 −1224 

SR J1643 −1224 is a 4.6-ms pulsar in a 147-d orbit with a WD
ompanion (Lorimer et al. 1995 ). As a result of multipath propagation
ue to inhomogeneities in the ionised interstellar medium (IISM), the
ulse profiles of PSR J1643 −1224 are temporally broadened (e.g.
entati et al. 2017 ). As the Earth-to-pulsar sightline mo v es through

nhomogeneous scattering ‘screen(s)’ (in the IISM), the temporal
roadening τ sc varies with time; at 1 GHz, τ sc fluctuates up and down
y � 5 μs on a yearly time-scale (Lentati et al. 2017 ). Meanwhile,
he moving scattering ‘screen(s)’ would also change the radio
rightness of the pulsar. This ef fect, as kno wn as pulsar scintillation,
s used to constrain the properties of both PSR J1643 −1224, and
NRAS 519, 4982–5007 (2023) 
he scattering screen(s) between the Earth and the pulsar (Mall
t al. 2022 ). The scintillation of PSR J1643 −1224 has previously
een modelled with both isotropic and anisotropic screens (Mall
t al. 2022 ). The isotropic model renders a pulsar distance D =
.0 ± 0.3 kpc and locates the main scattering screen at D sc =
.21 ± 0.02 kpc; in comparison, the anisotropic model yields a pulsar
istance D = 1.2 ± 0.3 kpc, and necessitates a secondary scattering
creen 0.34 ± 0.09 kpc away (from the Earth) in addition to a main
cattering screen at 0.13 ± 0.02 kpc distance (Mall et al. 2022 ). On
he other hand, the HII region Sh 2-27 in front of PSR J1643 −1224
s suspected to be associated with the main scattering screen of the
ulsar. This postulated association is strengthened by the agreement
etween the distance to the main scattering screen (based on the
wo-screen anisotropic model, Mall et al. 2022 ) and the distance
o the HII region (i.e. 112 ± 3 pc, Ocker, Cordes & Chatterjee
020 ). 

.5.1 Independent check on the postulated association between the 
 II region Sh 2-27 and the main scattering screen 

esides the pulse broadening effect, the scattering by the IISM
ould lead to apparent angular broadening of the pulsar, which
as been detected with VLBI at � 8 GHz (e.g. Bower et al. 2014 ).
y the method outlined in Appendix A of Ding et al. ( 2020a ), we
easured a semi-angular-broadened size θ sc = 3.65 ± 0.43 mas for
SR J1643 −1224, which is the only significant θ sc determination in

he MSPSR π catalogue. Likewise, the secondary in-beam calibrator
f PSR J1643 −1224 is also scatter-broadened, which may likely
ntroduce additional astrometric uncertainties (see more explanation
n Section 8.6 ). 

As both pulse broadening and angular broadening are caused by the
ISM deflection, θ sc , τ sc , the pulsar distance D , and the distance(s) D sc 

o the scattering screen(s) are geometrically related. Assuming there
s one dominant thin scattering screen, we make use of following
pproximate relation 

θ2 
sc 

2 cτsc 
= 

1 

D sc 
− 1 

D 

( when θsc � 1 ◦) , (16) 

here c stands for the speed of light in vacuum. 
To estimate the unknown τ sc at our observing frequency of
1.55 GHz, we used the data spanning MJD 54900–57500 from

he PPTA second data release (Kerr et al. 2020 ). We analysed
he dynamic spectra of observations centred around 3.1 GHz and
ecorded with the PDFB4 processor, using the scintools 11 package
Reardon et al. 2020 ). A model was fit to the auto-correlation function
f each dynamic spectrum, which has an exponential decay with
requency (Reardon et al. 2019 ). The characteristic scintillation
cale (in frequency) �νd is related to the scattering time-scale with
sc = 1/(2 π�νd ). We found the mean temporal broadening τ sc =
03 ± 25 ns at 3.1 GHz, with fluctuations of � 60 ns (see Fig. 6 ). To
onvert this τ sc to our observing frequency 1.55 GHz, we compare
he maximum degree (i.e. 60 ns) of fluctuations at 3.1 GHz to that
i.e. 5 μs, Lentati et al. 2017 ) at 1 GHz, and acquired an indicative
caling relation 

sc ∝ ν−3 . 9 , (17) 

here ν is the observing frequency. This relation reasonably agrees
ith the scaling relation τ sc ∝ ν−11/3 associated with the Kolmogorov

https://github.com/danielreardon/scintools
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Figure 6. Temporal broadening τ sc of PSR J1643 −1224 at 3.1 GHz. The 
solid red line and the dashed red line show the mean temporal broadening 
and a 68 per cent confidence interval, respectively. 
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urbulence (e.g. Armstrong, Rickett & Spangler 1995 ). With the 
ndicative scaling relation, we calculated τsc = 1 . 54 ± 0 . 37 μs. It
s timely to note that θ2 

sc /τsc (on the left side of equation 16 ) is
requency-independent. By combining equations ( 16 ) and ( 17 ), we
ome to another equi v alent indicati ve scaling relation 

sc ∝ ν−1 . 95 . (18) 

Substituting τsc = 1 . 54 ± 0 . 37 μs, θ sc = 3.65 ± 0.43 mas and D =
 . 95 + 0 . 15 

−0 . 11 kpc into equation ( 16 ), we obtained D sc = 86 + 30 
−24 pc, where

he uncertainty is derived with a Monte-Carlo simulation. This D sc 

s consistent with the distance to the HII region Sh 2-27 (Ocker et al.
020 ), hence independently supporting the association between the 
II region and the main scattering screen of PSR J1643 −1224. 

.5.2 Probing scintillation models 

part from the abo v e check on the connection between the HII
egion Sh 2-27 and the main scattering screen, the angular broadening 
f PSR J1643 −1224 also promises a test of the aforementioned 
sotropic scintillation model proposed by Mall et al. ( 2022 ). To do
o, we changed the pulsar distance to the one inferred with the model
i.e. 1.0 ± 0.3 kpc). With this change, we derive D sc = 86 + 30 

−24 pc,
hich disagrees with 0.21 ± 0.02 kpc based on the isotropic model. 
o investigate the impact of a different scaling relation τsc ∝ ν−αsc , 
e inferred τsc = 4 . 3 μs with both D and D sc based on the isotropic
odel (Mall et al. 2022 ), which corresponds to an unreasonably 

arge αsc = 5.4. Hence, we conclude that our θ sc and τ sc cannot 
asily reconcile with the one-screen isotropic model proposed by 
all et al. ( 2022 ). 
Fundamentally, the irreconcilability implies a one-screen model 
ight be incapable of describing both scintillation and angular 

roadening effects of PSR J1643 −1224. In principle, it is possible
o analyse a multiscreen model with a θ sc ( t ) series (at various time
 ), and its associated τ sc ( t ) instead of only using their mean values.
o we ver, this analysis is not feasible for this work, as τ sc and θ sc were
ot measured on the same days. None the less, we can still investigate
hether our observations of PSR J1643 −1224 can reconcile with the 

cintillation observations (Mall et al. 2022 ) in the context of a two-
creen model. 
In the scenario of two thin scattering screens, we derived the more
omplicated relation ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 cτsc = k 1 β
2 
sc + k 2 βsc θsc + k 3 θ

2 
sc ( θsc � 1 ◦ and βsc � 1 ◦) 

k 1 = 

( D − D sc2 )( D − D sc1 ) 

D sc2 − D sc1 

k 2 = −2 D sc1 ( D − D sc2 ) 

D sc2 − D sc1 

k 3 = 

D sc1 D sc2 

D sc2 − D sc1 
, 

(19) 

here D sc1 and D sc2 are the distance to the first and the second
cattering screen, respectively; βsc represents a half of the opening 
ngle of the second scattering screen (closer to the pulsar) as seen
rom the pulsar. As a side note, equation ( 16 ) can be considered
 special case (i.e. D = D sc2 ) of equation ( 19 ). In equation ( 19 ),
ll parameters except βsc are known, either determined with the 
nisotropic two-screen model or obtained in this work. Hence, it is
easible to constrain the geometric parameter βsc with the known 
arameters. 
Ho we ver, equation ( 19 ) can yield unphysical solutions (i.e. βsc >

). We applied the simple condition 

θ2 
sc 

2 cτsc 
≤ 1 

D sc1 
− 1 

D 

(20) 

o ensure equation ( 19 ) gives physical solutions of βsc . This equa-
ion is equi v alent to D sc1 ≤ D sc , where D sc corresponds to the
ne-screen solution of equation ( 16 ). This is because D sc1 > D sc 

 ould al w ays lead to longer routes, thus exceeding the τ sc budget.
t is important to note that equation ( 20 ) is valid for a model with
ny number of scattering screens. Hence, we recommend to use 
quation ( 20 ) in scintillation model inferences as a prior condition,
o cater for the constraints imposed by θ sc and τ sc (and thereby 
runcate the parameter space of a scintillation model). 

To test the anisotropic two-screen model (Mall et al. 2022 ) with
ur θ sc and τ sc , we calculated D sc = 89 + 33 

−26 pc with the pulsar distance
i.e. D = 1.2 ± 0.3 kpc) based on the anisotropic two-screen model.
his D sc is consistent with D sc1 = 129 ± 15 pc (Mall et al. 2022 )

therefore not ruling out D sc1 < D sc ). That is to say, our θ sc and τ sc 

easurements can loosely reconcile with the anisotropic two-screen 
odel (Mall et al. 2022 ). In comparison, we reiterate our finding

hat a one-screen model is difficult to describe both scintillation, and
ngular broadening effects of PSR J1643 −1224. 

.6 PSR J1721 −2457 

SR J1721 −2457 is a 3.5-ms solitary MSP disco v ered at intermedi-
te Galactic latitudes (Edwards & Bailes 2001 ). The main secondary
hase calibrator of PSR J1721 −2457 (and indeed, all the sources
ear it on the plane of the sky) is heavily resolved due to IISM
cattering, which leads to non-detections on the longest baselines 
nd a lack of calibration solutions for some antennas, reducing 
he spatial resolution of the VLBI observations. The non-uniform 

ISM distribution also leads to refractive image wander as the line-
f-sight to the pulsar changes (e.g. Kramer et al. 2021 ), which is
ost pronounced for hea vily scatter -broadened sources such as the

alibrator for PSR J1721 −2457. In conjunction with the lower spatial
esolutions, which reduces positional precision to begin with, this 
dditional noise term likely results in the parallax non-detection (see 
able 5 ). 
MNRAS 519, 4982–5007 (2023) 
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.7 PSR J1730 −2304 

SR J1730 −2304 is a solitary pulsar spinning at P s = 8.1 ms
Lorimer et al. 1995 ). Being so far the least-energetic (in terms
f Ė 

int ) γ -ray pulsar (Guillemot et al. 2016 ), the pulsar plays a
ey role in exploring the death line of NS high-energy radiation.
ubstituting Ṗ 

int 
s and P s of equation ( 15 ) with values listed in Table 8 ,

e substantially refined the Ė 

int death line (of all γ -ray-emitting
ulsars) to 

˙
 death ≤ Ė 

int 
J1730 = (1 . 15 ± 0 . 01) × 10 33 

(
I NS 

10 45 g cm 

2 

)
× erg s −1 , (21) 

hich is consistent with (but on the higher side of) the previous esti-
ate (8 . 4 ± 2 . 2) × 10 32 erg s −1 by Guillemot et al. ( 2016 ) (assuming

he same I NS ). On the other hand, we updated the γ -ray luminosity
abo v e 100 MeV) to L γ = 4 πD 

2 F γ = (3 . 1 ± 1 . 6) × 10 32 erg s −1 ,
here the precision is limited by the less precise F γ (Guillemot

t al. 2016 ). Accordingly, we obtained ηγ = 0.27 ± 0.14. 

.8 PSR J1738 + 0333 

SR J1738 + 0333, disco v ered from a 1.4-GHz high-Galactic-latitude
urv e y with the 64-m Parkes radio telescope (Jacoby et al. 2009 ) is
 5.85-ms pulsar in a 8.5-hr orbit with a WD companion. Thanks to
he relatively short P b , the WD-pulsar system plays a leading role
n constraining alternative gravitational theories that predict dipole
ravitational radiation (Freire et al. 2012 ; Zhu et al. 2015 ). 
Our VLBI-only � is 2 . 3 σ away from the most precise � 

(Ti) (see
able 5 and 6 ). After adopting timing priors, � 

′ = 0.589 ± 0.046 mas
ecomes closer to � 

(Ti) = 0.68 ± 0.05 mas (Freire et al. 2012 ),
eaning that Ṗ 

Shk 
b is only 1.2 times larger than the previous estimate.

n the other hand, our re-assessed Ṗ 

Gal 
b , based on more realistic

( � x ) models, is smaller than that estimated with the NT95 ϕ( � x )
odel (Freire et al. 2012 ). Combining the unchanged Ṗ 

obs 
b = −17 ±

 fs s −1 the re-derived Ṗ 

Int 
b = −26 . 1 ± 3 . 1 fs s −1 is almost the same

s the previous estimate, as the change of Ṗ 

Gal 
b happens to nearly

ancels out that of Ṗ 

Shk 
b . 

Future pulsar timing or VLBI investigation into the discrepancy
etween � 

(Ti) (Freire et al. 2012 ) and � is merited by the importance
f the pulsar system. Specifically, if the true parallax turns out to be
round 0.5 mas, it would not only mean that Ṗ 

Shk 
b is 1.4 times higher

han the estimate by Freire et al. ( 2012 ), but also suggest the WD
adius R WD to be 1.4 larger (as R WD ∝ D according to Equation 1 of
ntoniadis et al. 2012 ). A higher R WD would lead to lighter WD and
S (as the mass ratio is well determined), thus smaller Ṗ 

GW . 

.9 PSR J1824 −2452A 

SR J1824 −2452A is a 3-ms solitary pulsar disco v ered in the
lobular cluster M28 (NGC 6626) (Lyne et al. 1987 ). The calibration

onfiguration for this pulsar was suboptimal as the best in-beam
hase calibrator for PSR J1824 −2452A was both resolved and faint
3.3 mJy, see Table 1 ), leading to noisy solutions, especially on the
ongest baselines. This is likely responsible for the parallax non-
etection (see Table 5 ), and indicates that higher sensitivity to enable
mpro v ed calibration solutions would be advantageous in any future
LBI campaign. 
The proper motion of M28 is estimated to be μM28 

α = −0 . 28 ±
 . 03 mas yr −1 and μM28 

δ = −8 . 92 ± 0 . 03 mas yr −1 (Vasiliev &
aumgardt 2021 ) with Gaia Early Data Release 3 (EDR3). Hence,

he relative proper motion of PSR J1824 −2452A with respect to
NRAS 519, 4982–5007 (2023) 
28 is �μα = 0.03 ± 0.05 mas yr −1 and �μδ = 1.1 ± 0.8 mas yr −1 .
ombining the M28 distance D = 5.4 ± 0.1 kpc estimated by
aumgardt & Vasiliev ( 2021 ), we obtained the transverse space
elocity v ⊥ 

= 28 ± 20 km s −1 for PSR J1824 −2452A, which is
maller than the typical escape velocity ( ≈50 km s −1 ) of a globular
luster. Therefore, the pulsar is probably (as expected) bound to M28.

 SUMMARY  A N D  FUTURE  PROSPECTS  

n this MSPSR π release paper, we have presented VLBI astrometric
esults for 18 MSPs, including a re-analysis of three previously
ublished sources. From the 18 sources, we detect significant
arallaxes for all but three. For each MSPSR π pulsar, at least one self-
alibratable in-beam calibrator was identified to serve as the reference
ource of relative astrometry. In three cases, 1D interpolation, a
ore complex observing and data reduction strategy, is adopted

o further suppress propagation-related systematic errors. Among
he three pulsars, PSR J1939 + 2134 is the brightest MSP in the
orthern hemisphere. Hence, we took one step further to perform
nverse-referenced 1D interpolation using PSR J1939 + 2134 as the
n-beam calibrator. Compared to the pioneering Multi-View study
f Rioja et al. ( 2017 ) at 1.6 GHz, the larger number of observa-
ions and targets here provides more opportunities to characterize
he interpolation performance, which is crucial for ultra-precise
strometric calibration schemes proposed for future VLBI arrays
ncorporating the Square Kilometre Array (SKA). Based on a small
ample of three, we found that ηEFAC has consistently inflated after
pplying 1D interpolation (see Section 4.1.3 ). This inflation implies
hat the higher-order terms of in the phase screen approximation
ay not be negligible, and could become the limiting factor of the

ltra-precise SKA-based astrometry using the Multi-View strategy.
urther investigations of the same nature, especially using temporally
imultaneous (in-beam) calibrators, at low-observing frequencies are
erited and encouraged. 
In this paper, we present two sets of astrometric results – the quasi-

LBI-only results (see Section 4 ) and the VLBI + timing results
see Section 5 ). Both sets of astrometric results are inferred with the
strometry inference package sterne 7 . The former set of results is
argely independent of any input based on pulsar timing, making use
nly of orbital parameters as priors in the inference of orbital reflex
otion, which affects only four pulsars from our sample and is near-

e gligible in an y case. The latter, ho we ver, additionally adopts the lat-
st available timing parallaxes and proper motions as priors of infer-
nce where ver possible, af fecting all pulsars in our sample. While the
atter approach typically gives more precise results, we note that this
s dependent on the accuracy of the timing priors, and identify seven
ulsars (PSR J0610 −2100, PSR J1643 −1224, PSR J1730 −2304,
SR J1738 + 0333, PSR J1824 −2452A, PSR J1853 + 1303, and
SR J1910 + 1256) for which disagreement between the quasi-VLBI-
nly and the timing priors mean that the VLBI + timing results
hould be treated with caution. From the VLBI perspective, we
ooked into possible causes of additional astrometric uncertainties,
ncluding non-optimal calibrator quality (see Sections 8.6 and 8.9 )
nd calibrator structure evolution (see Section 5 ). In future, proper
otion uncertainties (including any unaccounted systematic error

ue to calibrator structure evolution) can be greatly reduced with
nly � 2 extra observations per pulsar. F or e xample, a 10-yr time
aseline can impro v e the current VLBI-only proper motion precision
y roughly a factor of 8. 
From the VLBI + timing parallaxes � 

′ , we derived distances D
sing equation ( 9 ). Incorporating the PDFs of D and proper motions
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 μ′ 
α , μ′ 

δ} , we estimated the transverse space velocities v ⊥ 

for 16
ulsars with significant distance determination, and found their v ⊥ 

o be generally on the smaller side of the previous estimates (Hobbs
t al. 2005 ; Gonzalez et al. 2011 ). Boodram & Heinke ( 2022 ) propose
hat MSPs must have near-zero space velocities in order to explain the 
ermi Galactic Centre excess. Our relatively small space velocities 

nferred for 16 MSPs suggest that MSPs may not be ruled out as the
ource of the Galactic γ -ray Centre excess. If the multimodal feature 
f the v ⊥ 

is confirmed with a sample of ∼50 MSPs, it may serve
s a kinematic evidence for alternative formation channels of MSPs 
Bailyn & Grindlay 1990 ; Gautam et al. 2022 , also see Ding et al.
022 as an analogy). 
In addition, we estimated the radial accelerations of pulsars with 

heir distances and proper motions (see Section 7 ), which allows us
o constrain the intrinsic spin period deri v ati ve Ṗ 

int 
s and the intrinsic

rbital decay Ṗ 

int 
b (see Table 8 ). We used the impro v ed Ṗ 

int 
s of

SR J1730 −2304 to place a refined upper limit to the death line
f γ -ray pulsars (see Section 8.7 ), and the Ṗ 

int 
b (of PSR J1012 + 5307

nd PSR J1738 + 0333) to constrain alternative theories of gravity 
see Section 7.3 ). As already noted by Ding et al. ( 2020b ), the
rbital decay tests (of gravitational theories) with the three viable 
SPSR π systems (i.e. PSR J1012 + 5307, PSR J1537 + 1155, and

SR J1738 + 0333) will be limited by the distance uncertainties, as
arallax precision impro v es much slower than the Ṗ 

obs 
b precision 

Bell & Bailes 1996 ). 
Moreo v er, we detected significant angular broadening of 

SR J1643 −1224, which we used to (1) provide an independent 
heck of the postulated connection between the HII region Sh 2-27 
nd the main scattering screen of PSR J1643 −1224, and (2) test
he scintillation models proposed by Mall et al. ( 2022 ). In future
cintillation model inferences, angular broadening and temporal 
roadening measurements, where available, are suggested to be used 
s priors using equation ( 20 ), in order to achieve more reliable (and
otentially more precise) scintillation model parameters. Such an 
nference would also complete the geometric information of the 
eflection routes (using equation ( 19 ), for example, in the two-screen
ase). 

ATA  A N D  C O D E  AVAILABILITY  

(i) The VLBA data can be downloaded from the NRAO Archive 
nterface at https://data.nrao.edu with the project codes in Table 1 . 

(ii) Image models of phase calibrators are provided at https://gith 
b.com/dingswin/calibrator models for astrometry . 
(iii) Supplementary materials supporting this paper can be found 

t https:// github.com/dingswin/ publication related materials . 
(iv) The data reduction pipeline psrvlbireduce is available 

t https:// github.com/dingswin/ psrvlbireduce (version ID: b8ddafd). 
(v) The astrometry inference package sterne can be accessed 

t https:// github.com/dingswin/ sterne . 
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