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Let X be a d-dimensional diffusion and M the running supremum of its first component. In this paper, we show that for any t > 0, the density (with respect to the d + 1-dimensional Lebesgue measure) of the pair (Mt, Xt) is a weak solution of a Fokker-Planck partial differential equation on the closed set {(m, x) ∈ R d+1 , m ≥ x 1 }, using an integral expansion of this density.

Introduction

The goal of this paper is to study the law of the pair (M t , X t ) where X is a ddimensional diffusion and M is the running maximum of the first component. In a previous work [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF], using Malliavin calculus and specifically Nualart's seminal book [START_REF] Nualart | The Malliavin calculus and related topics Second Edition[END_REF],

we have proved that, for any t > 0 the law of V t := (M t , X t ) is absolutely continuous with respect to the Lebesgue measure with density p V (.; t), and that the support of this density is included in the set {(m, x) ∈ R d+1 , m ≥ x 1 }.

In the present work, we prove that the density p V is a weak solution of a partial differential equation (PDE). Furthermore, we exhibit a boundary condition on the set {(m, x) ∈ R d+1 , m = x 1 }. This work extends the results given in [START_REF] Coutin | Joint distribution of a Lévy process and its running supremum[END_REF] and in Ngom's thesis [START_REF] Ngom | Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète[END_REF] obtained in the case where X is a Lévy process and where it is proved that the density is a weak solution to an integro-differential equation.

In the literature, there exist many studies on the law of V t . When the process X is a Brownian motion, one can refer to [START_REF] He | Double lookbacks[END_REF][START_REF] Jeanblanc | Mathematical Methods for Financial Markets[END_REF] where an explicit expression of p V is given. When X is a one-dimensional linear diffusion, [START_REF] Csàki | On the joint distribution of the maximum and its location for a linear diffusion[END_REF] provides an expression of p V using the scale function, the speed measure and the density of the law of some hitting times. See also [START_REF] Alili | Representations of the first hitting time density of an Ornstein-Uhlenbeck process[END_REF][START_REF] Blanchet-Scalliet | Joint Law of an Ornstein-Uhlenbeck Process and its Supremum[END_REF] for the particular case of Ornstein-Uhlenbeck process.

For some applications to the local score of a biologic sequence, the case of reflected Brownian motion is presented in [START_REF] Lagnoux | Probability that the maximum of the reflected Brownian motion over a finite interval [0, t] is achieved by its last zero before t[END_REF]. The law of the maximum M t is studied in [START_REF] Azaïs | On the regularity of the distribution of the maximum of one-parameter Gaussian processes[END_REF] for general Gaussian processes. The case of a Lévy process X is deeply investigated in the literature, see for instance [START_REF] Doney | Overshoots and undershoots of Lévy processes[END_REF][START_REF] Ngom | Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète[END_REF]. Moreover Section 2.4 in Ngom's thesis [START_REF] Ngom | Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète[END_REF] provides the existence and the regularity of the joint law density of the process (M t , X t ) for a Lévy process X. In the case where X is a martingale (see e.g. [START_REF] Rogers | The Joint Law of the Maximum and Terminal Value of a Martingale[END_REF][START_REF] Duembgen | The Joint Law of the Extrema, Final Value and Signature of a Stopped Random Walk, Chapter in 'Memoriam Marc Yor[END_REF] or [START_REF] Cox | Robust pricing and hedging of double touch barrier options[END_REF][START_REF] Henry-Labordère | The maximum maximum of a martingale with given n-marginals[END_REF]), the law of the running maximum is provided. Such studies concerning this running maximum are useful in financial area which involve hitting times, for instance for the pricing of barrier option. It is known that the law of hitting times is closely related to the one of the running maximum, see [START_REF] Brown | Robust hedging of barrier options[END_REF][START_REF] Coutin | First passage time law for some Lévy processes with compound Poisson: existence of a density[END_REF][START_REF] Roynette | Asymptotic behavior of the passage time, overshoot and undershoot for some Lévy processes[END_REF]. As an application of our work, think of a firm the activity of which is characterized by a set of processes (X 1 , • • • , X d ). But one of them, e.g., X 1 could be linked to an alarm, namely: when there exists s ≤ t such that X 1 s exceeds a threshold a, that is equivalent to M t = sup 0≤s≤t X 1 s ≥ a, some action is important to operate. So, the firm needs to know the law of such pair (M t , X t ); more specifically the law of the stopping time τ a = inf{u, X 1 u ≥ a}, is linked to the law of M as following: {τ a ≤ t} = {M t ≥ a}. To know the probability of such an alert, the law of the pair (M t , X t ) will be useful.

We provide an infinite expansion of the density of the law of the pair (M t , X t ) which can leads to numerical approximation.

Let (Ω, F , P) be a probability space endowed with a d-dimensional Brownian. Let X be the diffusion process with values in R d solution of dX t = B(X t )dt + A(X t )dW t , t > 0 [START_REF] Alili | Representations of the first hitting time density of an Ornstein-Uhlenbeck process[END_REF] where X 0 is a random variable independent of the Brownian motion W , with law µ 0 , and A (resp. B) is a map from R d to the set of (d × d) matrices (resp. to R d ). Let us denote C i b (R d , R n ) the set of functions on R d , which are i times differentiable, bounded, with bounded derivatives, taking their values in R n . Let F = (F t , t ≥ 0) be the completed right-continuous filtration defined by F t := σ{X 0 , W s , s ≤ t} ∨ N where N is the set of negligible sets of F .

Under classical assumptions on A and B (cf.( 4) and (5) below), then according to [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF], for all t > 0, the law of V t = (sup u≤t X 1 t , X t ) has a density with respect to the Lebesgue measure on R d+1 .

The main results and notations are given in Section 2: in the d-dimensional case, under a quite natural assumption (meaning Hypothesis 2.1 below) on the regularity of p V around the boundary of ∆, p V is a weak solution of a Fokker-Planck PDE on the subset of R d+1 defined by {(m, x), m ≥ x 1 }. When A = I d , this assumption is satisfied, see Theorem 2.4. The main results are proved in Section 3 under Hypothesis 2.1. Section 4 is devoted to prove that Hypothesis 2.1 is satisfied when A = I d . The main tool is an infinite expansion of p V given in Proposition 3.2. In Section 5, onedimensional case, a Lamperti transformation [START_REF] Lamperti | A simple construction of certain diffusion processes[END_REF] allows to get the main result for any

A ∈ C 2 b (R, R).
Finally Appendix contains some technical tools useful for the proofs of main results.

Main results and some notations

In this section, we give our main results, the proofs will be given later on, as it is mentioned in the introduction.

Notations

Let ∆ be the open set of R D+1 given by ∆ :

= {(m, x), m ∈ R, x ∈ R d , m > x 1 , x = (x 1 , • • • , x d )}.
From now on, we use Einstein's convention. The infinitesimal generator L of the diffusion X defined in [START_REF] Alili | Representations of the first hitting time density of an Ornstein-Uhlenbeck process[END_REF] is the partial differential operator on the space C 2 (R d , R) given by:

L = B i ∂ xi + 1 2 (AA t ) ij ∂ 2 xi,xj . (2) 
where A t denotes the transposed matrix.

Its adjoint operator is

L * f = 1 2 Σ ij ∂ 2 ij f -[B i -∂ j (Σ ij )]∂ i f -[∂ i B i -1 2 ∂ 2 ij (Σ ij )]f where Σ := AA t .
In what follows, the operators L and L * are extended to the space C 2 (R d+1 , R),

for Φ ∈ C 2 (R d+1 , R) as L(Φ)(m, x) = B i (x)∂ xi Φ(m, x) + 1 2 Σ ij (x)∂ 2 xi,xj Φ(m, x),
and

L * (Φ)(m, x) = 1 2 Σ ij (x)∂ 2 ij Φ(m, x) -[B i -∂ j (Σ ij )](x)∂ xi Φ(m, x) + [ 1 2 ∂ 2 xi,xj Σ ij -∂ xi B i ](x)Φ(m, x).
It can be stressed that these operators are degenerated since no derivative with respect to the variable m appears.

Let A 1 (x) be the d dimensional vector A 1 (x) = (A 1 j (x), j = 1, ..., d) ∈ R d corresponding to the first column of A(x), similarly A j (x) denotes its jth line.

Recall that M denotes the running maximum of the first component of X, meaning

M t = sup 0≤s≤t {X 1 s } and V is the R d+1 -valued process defined by (V t = (M t , X t ), ∀t ≥ 0). Finally, x ∈ R d-1 denotes the vector (x 2 , ..., x d ).
In [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF], under Assumptions (4) and ( 5) below, when the initial value is deterministic,

X 0 = x 0 ∈ R d ,
the density of V t exists and is denoted p V (.; t, x 0 ). If µ 0 is the distribution of X 0 , the density of the law of V t with respect to the Lebesgue measure on R d+1 is

p V (.; t, µ 0 ) := R d p V (.; t, x 0 )dµ 0 (x 0 ) ( 3 
)
When there is no ambiguity, the dependency in µ 0 is omitted.

Since M t ≥ X 1 t , the support of p V (.; t, µ 0 ) is contained in ∆ := (m, x) ∈ R d+1 |m ≥ x 1 .

Mains results

The aim of this article is to show that the density p V is a weak solution of a Fokker-Planck PDE. The coefficients B and A are assumed to satisfy

B ∈ C 1 b (R d , R d ) and A ∈ C 2 b (R d , R d×d ), (4) 
and that there exists a constant c > 0 such that the Euclidean norm of any vector v

satisfies c v 2 ≤ v t A(x)A t (x)v, ∀v, x ∈ R d . (5) 
Our first result will be established under the following hypothesis which is a quite natural assumption on the regularity of p V in the neighbourhood of the boundary of ∆ since the set of times where the process M increases is included in the set {t, M t = X t } :

Hypothesis 2.1. The density of the law of

V t = (M t , X t ), denoted by p V (3), satisfies (i) the map (t, m, x) → sup u>0 p V (m, m -u, x; t) belongs to L 1 ([0, T ] × R d , dtdmdx). (ii) for all t > 0 almost surely in (m, x) ∈ R d , lim u→0 + p V (m, m -u, x; t) exists and is denoted by p V (m, m, x; t).
Theorem 2.2. Assume that A and B fulfil (4) and (5) and that (M, X) fulfils Hypothesis 2.1. Then, for all initial law µ 0 and

F ∈ C 2 b (R d+1 , R): E [F (M t , X t )) = E F (X 1 0 , X 0 ) + t 0 E [L (F ) (M s , X s )] ds + 1 2 t 0 E ∂ m F (X 1 s , X s ) A 1 (X s ) 2 p V (X 1 s , X s ; s) p X (X s ; s) ds. (6) 
Actually p X is the solution of the PDE ∂ t p = L * p, p(.; 0) = µ 0 , where

L * f = 1 2 Σ ij ∂ 2 ij f -[B i -∂ j (Σ ij )]∂ i f -[∂ i B i -1 2 ∂ 2 ij (Σ ij )]f . Let a ij := Σ ij , a i := [B i -∂ j (Σ ij )]∂ i , and a 0 := ∂ i B i -1 2 ∂ 2 ij (Σ ij ).
Under Assumptions (4) and ( 5), the operator L * satisfies all the assumptions of Theorem 3.5 [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF] (see (3.2) (3.3) 3.4) page 177). As a consequence of Theorem 3.5 line 14 p X (x; s) > 0.

Remark 2.1. (i) When A is the identity matrix of R d (denoted by I d ) and B ∈ C 1 b (R d , R d ), Hypothesis 2.
1 is fulfilled, see Theorem 2.4 below. When d = 1, using a Lamperti transformation [START_REF] Lamperti | A simple construction of certain diffusion processes[END_REF], one proves that Hypothesis 2.1 is always fulfilled, see Section 5.

(ii) This result is similar to Theorem 2.1 in [START_REF] Coutin | Joint distribution of a Lévy process and its running supremum[END_REF] where the process X is a Lévy process. Proposition 4 in [START_REF] Coutin | Joint distribution of a Lévy process and its running supremum[END_REF] gives a key of the last term in (6) with factor 1 2 . Firstly, roughly speaking, the local behaviour of

X 1 t -X 1 s conditionally to F s is the one of A 1 (X s ) (W 1 t -X 1 s )
. So, as in the Brownian case, the running maximum M of X 1 is increasing as soon as it is equal to X 1 and both M and X 1 are increasing; it is well known that the Brownian process W 1 is increasing with probability 1 2 , more specifically, we have P{lim t→s+

W 1 t -W 1 s t-s = -∞} = P{lim t→s+ W 1 t -W 1 s t-s = +∞} = 1 2 .
The starting point of the proof of Theorem 2.2 is the Itô's formula: let

F belong to C 2 b (R d+1 , R).
The process M is increasing, hence V = (M, X) is a semi-martingale. Applying Itô's formula to F (V ) and taking expectation of both members,

E [F (V t )] = E [F (V 0 )] + t 0 E [L(F )(V s )] ds + E t 0 ∂ m F (V s )dM s .
The novelty comes from the third term of the right member of the previous equation.

The following theorem proved in Section 3 achieves the proof of Theorem 2.2.

Theorem 2.3. Assume that A and B fulfil (4) and [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] and that (M, X) fulfils Hy-

pothesis 2.1. For all Ψ ∈ C 1 b (R d+1 , R), let F ψ be the map F ψ : t → E t 0 Ψ(M s , X s )dM s .
Then F Ψ is absolutely continuous with respect to the Lebesgue measure and its derivative is

ḞΨ (t) = 1 2 R d Ψ(m, m, x) A 1 (m, x) 2 p V (m, m, x; t)dmdx.
Remark that, as it is expressed in Theorem 2.2, this derivative can be written

1 2 E Ψ(X 1 t , X t ) A 1 (X t ) 2 p V (X 1 t , X t ; t) p X (X t ; t) .
Remark 2.2. The above proposition provides an explicit formulation of the derivative of the function F Ψ . Note that the absolute continuity of F ψ could be established as a direct consequence of the existence of the density of the law of the hitting time τ a = inf{s : X 1 s ≥ a} when it exists, using the identity {τ a ≤ t} = {M t ≥ a}. Conversely, it could be proved that the absolute continuity of F Ψ yields the existence of the density of the law of the hitting time τ a , using a sequence of

C 2 b (R, R) functions (F n ) approximating the indicator function 1 [a,∞) , namely this density satisfies f τa (t) = 1 2 R d-1 p V (a, a, x; t)dx.
Theorem 2.4. Assume that A = I d and B satisfies Assumption (4) then, for all t > 0 the distribution of the pair (M t , X t ) fulfils Hypotheses 2.1. As a consequence, for all

F ∈ C 2 b (R d+1 , R) E [F (M t , X t )] = E F (X 1 0 , X 0 ) + t 0 E [L (F ) (M s , X s )] ds + 1 2 t 0 E ∂ m F (X 1 s , X s ) p V (X 1 s , X s ; s) p X (X s ; s) ds.
Proof. This theorem is a consequence of Theorem 2.2 and Proposition 4.1.

When d = 1 a Lamperti transformation leads to the following corollary:

Corollary 1. Assume that d = 1, A and B satisfies (4) and (5), the density p V satisfies Hypothesis 2.1 so

E [F (M t , X t )] = E [F (X 0 , X 0 )] + t 0 E [L (F ) (M s , X s )] ds + 1 2 t 0 E A 2 (X s )∂ m F (X s , X s ) p V (X s , X s ; s) p X (X s ; s) ds.
Remark 2.3. If p V is regular enough, and if the initial law of X 0 satisfies µ 0 (dx) = f 0 (x)dx, then Theorem 2.2 means that p V is a weak solution in the set ∆ of

∂ t p = L * p where L * f = 1 2 Σ ij ∂ 2 ij f -[B i -∂ j (Σ ij )]∂ i f -∂ i B i -1 2 ∂ 2 ij (Σ ij ))f with boundary condition B 1 (m, x)p V (m, m, x; s) = ∂ x k (Σ 1,k p V )(m, m, x; s) + 1 2 ∂ m ( A 1 2 p V )(m, m, x; s). ( 7 
)
This result is proved in Appendix A.3

This boundary condition also appears in Proposition 4 Equation ( 11) of [START_REF] Blanchet-Scalliet | Joint Law of an Ornstein-Uhlenbeck Process and its Supremum[END_REF] (Ornstein Uhlenbeck process). Finally, a similar PDE is studied in Chapter 1.2 of [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF] where the authors have established the existence of a unique strong solution of this PDE, but in case of a non degenerate elliptic operator.

Proof of Theorem 2.3

We start this section with a road map of the proof of Theorem 2.3. Firstly we compute the right derivative of the application

F Ψ : t → E[ t 0 Ψ(M s , X s )dM s ], namely lim h→0 + T h,t with T h,t = 1 h E P [ t+h t ψ(V s )dM s ]. A first step is the decomposition T h,t = 1 h E P [ t+h t (ψ(V s ) -ψ(V t ))dM s ] + 1 h E P [ψ(V t )(M t+h -M t )]. ( 8 
) Since ψ ∈ C 1 b (R d+1 , R)
and the process M is increasing, the first term in [START_REF] Coutin | Joint distribution of a Lévy process and its running supremum[END_REF], is dominated by:

E t+h t (ψ(V s ) -ψ(V t ))dM s ≤ ∇ψ ∞ E sup t≤s≤t+h V s -V t (M t+h -M t ) . Lemma 3.1 states that sup t≤s≤t+h X s -X t p = O( √ h) and Lemma 3.2 yields M t+h -M t p = o( √ h
) so that that this first term is an o(h).

Concerning the second term in [START_REF] Coutin | Joint distribution of a Lévy process and its running supremum[END_REF], M t+h -M t can be written as sup 0≤u≤h (X 1 t+h -X 1 t -M t + X 1 t ) + . In order to use the independence of the increments of Brownian motion we introduce a new process, independent of F t , which is an approximation of

X 1 t+u -X 1 t : X 1 t,u := A 1 k (X t ) Ŵ k u where Ŵ k u := W k t+u -W k t ; M t,h := sup 0≤u≤h X 1 t,u . (9) 
Lemma 3.4 (ii) will set

E |M t+h -M t -(M t,h -M t + X 1 t ) + | = o(h)
, where (x) + = max(x, 0). Thus

1 h E[ψ(V t )(M t+h -M t )] = E[ψ(V t )(M t,h -M t + X 1 t ) + ] + o(h) (10) 
Remark that the law of M t,h given F t is the law of A 1 (X t ) sup 0≤u≤h Ŵ 1 u , then using the function H (13), a F t conditioning yields:

1 h E[ψ(V t )(M t+h -M t )] = 2 √ h E Ψ(V t ) A 1 (X t ) H( M t -X 1 t √ h A 1 (X t ) ) + o(h). (11) 
Then

T h,t = 2 √ h E Ψ(V t ) A 1 (X t ) H( Mt-X 1 t √ h A 1 (Xt) ) + o(h) as it appears in Proposition 3.1 (ii).
In Proposition 3.2, under Hypothesis 2.1, we compute lim h→0 T h;t .

Finally in Section 3.4 we prove F ψ : t → E[ t 0 ψ(V s )dM s ] is an absolutely continuous function with respect to Lebesgue measure, integral of its right derivative. Actually we prove that F ψ is a continuous function belonging to the Sobolev space W 1,1 (I), I = (0, T ). This achieves the proof of Theorem 2.3.

The main propositions to prove are Proposition 3.1. Let B and A fulfil (4) and (5) and let Ψ ∈ C 1 b (R d+1 , R). Recall that A 1 is the vector (A 1 j , j = 1, ..., d), and

A 1 (x) 2 = d j=1 (A 1 j (x)) 2 . (i) for all T > 0, there exists a constant C > 0, (depending on A ∞ , B ∞ , ∇A ∞ , Ψ ∞ , ∇Ψ ∞ and T ) such that ∀t ∈ [0, T ], h ∈ [0, 1], E t+h t Ψ(Vs)dMs -2 √ h Ψ(Vt) A 1 (Xt) H( Mt -X 1 t √ h A 1 (Xt) ) ≤ Ch ∇Ψ ∞, (12) 
(ii) for all t > 0, h ∈ [0, 1],

lim h→0+ 1 h E t+h t Ψ(V s )dM s -2 √ hE Ψ(V t ) A 1 (X t ) H( M t -X 1 t √ h A 1 (X t ) ) = 0,
where, denoting by Φ G the standard Gaussian cumulative distribution function,

H(θ) := ∞ θ 1 √ 2π (y -θ)e -y 2 2 dy = e -θ 2 2 √ 2π -θΦ G (-θ). ( 13 
)
The following remark will be useful:

Remark 3.1. The definition of H in [START_REF] Duembgen | The Joint Law of the Extrema, Final Value and Signature of a Stopped Random Walk, Chapter in 'Memoriam Marc Yor[END_REF] implies that ∞ 0 H(u)du = 1/4 Moreover, H ′ (θ) = -Φ G (-θ) ≤ 0, in particular H is non increasing. Proposition 3.2. Assume that A and B fulfil (4) and [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] and that (M, X) fulfils Hypothesis 2.1, then for all Ψ ∈ C 1 b (R d+1 , R), for all 0 < T and for all t ≥ 0 :

(i)t → sup h>0 2 √ h h E Ψ(V t ) A 1 (X t ) H( M t -X 1 t √ h A 1 (X t ) ) ∈ L 1 ([0, T ], R), (ii) lim h→0 + 2 √ h h E Ψ(V t ) A 1 (X t ) H( M t -X 1 t √ h A 1 (X t ) ) = 1 2 R d Ψ(m, m, x) A 1 (m, x) 2 p V (m, m, x; t)dmdx As a corollary, the function t → 1 2 R d Ψ(m, m, x) A 1 (m, x) 2 p V (m, m, x; t)dmdx be- longs to L 1 ([0, T ], R).
The proof of Proposition 3.1 will be obtained with the lemmas in the following section.

Tools for proving Proposition 3.1

Here we provide some estimations of the expectations of the increments of the processes X and M . Assumptions (4) and (5) allow us to introduce a constant K which denotes either max( A ∞ , B ∞ ) or max( A ∞ , B ∞ , ∇A ∞ ). Let C p be the constant in the Burkholder-Davis-Gundy inequality (cf. Theorem B.36 in [START_REF] Bain | Fundamentals of Stochastic Filtering[END_REF]). Lemma 3.1. Let A and B be bounded. Then, for all 0 < h ≤ 1, for all p ≥ 1 there exists a constant C p,K (depending only on p and K) such that:

sup t>0 E sup 0≤s≤h X t+s -X t p ≤ C p,K h p/2 . Proof. Using the fact that (a + b) p ≤ 2 p-1 [a p + b p ] , a, b ≥ 0, one obtains: 0 ≤ sup s≤h X t+s -X t p ≤ 2 p-1 sup u≤h t+u t B(X s )ds p + sup u≤h t+u t A j (X s )dW j s p .
Taking expectation of both members, the Burkholder-Davis-Gundy inequality implies

E[sup s≤h X t+s -X t p ] ≤ 2 p-1 (1+C p )E   t+h t B(X s ) ds p + t+h t A(X s ) 2 ds p/2   . Assumption (4) on B and A yields E[sup s≤h X t+s -X t p ] ≤ 2 p-1 (1 + C p )(h p K p + h p/2 K p ).
Lemma 3.2. Let B and A satisfy Assumptions (4) and (5). Then, for all 0 < h ≤ 1, for all p ≥ 1 we get:

sup t>0 E[|M t+h -M t | p ] ≤ C p,K h p/2 ; E[|M t+h -M t | p ] = o(h p/2
). ( 14)

Proof. Recall M t+h -M t = sup 0≤u≤h (X 1 t+u -X 1 t ) + X 1 t -M t + recalling (x) + = max(x, 0). For any a ≥ 0, one has (x -a) + ≤ |x|1 {x>a} , thus 0 ≤ M t+h -M t ≤ | sup 0≤u≤h (X 1 t+u -X 1 t )|1 {sup 0≤u≤h (X 1 t+u -X 1 t )>Mt-X 1 t } .
Cauchy-Schwartz's inequality yields:

0 ≤ E [(M t+h -M t ) p ] ≤ E | sup 0≤u≤h (X 1 t+u -X 1 t )| 2p P({ sup 0≤u≤h (X 1 t+u -X 1 t ) > M t -X 1 t }).
Replacing p by 2p in Lemma 3.1 leads to the inequality in ( 14) and the equality lim h→0 sup 0≤u≤h (X 1 t+u -X 1 t ) = 0 holds almost surely. According to Theorem 1.1 in [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF] extended to X 0 with law µ 0 on R d , the pair (M t , X t ) admits a density, thus

P{M t -X 1 t = 0} = 0 holds almost surely. Therefore E ([M t+h -M t ] p
) is bounded by the product of h p/2 and a factor going to zero when h goes to 0, and this quantity is an o(h p/2 ).

For any fixed t we recall the process (X t,u , u ∈ [0, h]) and the running maximum of its first component as follows:

X t,u := j A j (X t ) Ŵ j u , M t,h := sup 0≤u≤h X 1 t,u . (15) 
Lemma 3.3. Under Assumptions (4) and ( 5), for all p ≥ 1 there exists a constant C p,K such that such that for all t ≤ T , for all h ∈ [0, 1]:

E sup s≤h |X 1 s+t -X 1 t -X 1 t,s | p ≤ C p,K h p .
Proof. By definition, recalling Ŵu := W t+u -W t , u ≥ 0, we obtain

X 1 s+t -X 1 t -X 1 t,s = s 0 B 1 (X u+t )du + s 0 A 1 (X u+t ) -A 1 (X t ) d Ŵu .
Using once again (a + b) p ≤ 2 p-1 (a p + b p ), a, b ≥ 0, we get

sup 0≤s≤h |X 1 s+t -X 1 t -X 1 t,s | p ≤ 2 p-1 h 0 B 1 (Xu+t) du p + sup 0≤s≤h s 0 A 1 (Xu+t) -A 1 (Xt) d Ŵu p .
Taking expectation of both sides and applying the Burkholder-Davis-Gundy inequality yield with

D p = 2 p-1 (1 + C p ): E sup 0≤s≤h |X 1 s+t -X 1 t -X 1 t,s | p ≤ Dp E h 0 B 1 (X u+t ) du p + E h 0 A 1 (X u+t ) -A 1 (Xt) 2 du p/2 .
The first term above is bounded by

K p h p since B is bounded. The assumption that A belongs to C 1 b (R d , R d×d
) and Jensen's inequality imply that the second term is bounded by

K p h p/2-1 h 0 E X u+t -X t p du thus E sup 0≤s≤h |X 1 s+t -X 1 t -X 1 t,s | p ≤ D p K p h p/2-1 h p/2+1 + h 0 E X u+t -X t p du .
From Lemma 3.1 we obtain the uniform upper bound:

E[ X u+t -X t p ] ≤ C p,K u p/2 hence E sup s≤h |X 1 s+t -X 1 t -X 1 t,s | p ≤ D p K p C p,K p 2 + 1 h p .
Lemma 3.4. Under Assumptions (4) and ( 5), one has

(i) ∃C > 0 sup 0≤t≤T ; 0≤h≤1 h -1 E M t+h -M t -M t,h -M t + X 1 t + ≤ C < ∞, (ii) lim h→0 + h -1 E M t+h -M t -M t,h -M t + X 1 t + = 0. Proof. Fistly remark ∀a ∈ R, (x -a) + -(y -a) + ≤ |x -y| 1 {x>a} + 1 {y>a} , (16) 
and if f and g are functions on [0, T ], then

∀s ∈ [0, T ], f (s) -sup 0≤u≤T g(u) ≤ f (s) -g(s) ≤ |f (s) -g(s)| ≤ sup v≤T |f (v) -g(v)|, hence sup s≤T f (s) -sup u≤T g(u) ≤ sup v≤T |f (v) -g(v)|.
Here the role of f and g is symmetrical so sup s≤T g(s) -

sup u≤T f (u) ≤ sup v≤T |f (v) -g(v)|, and 
sup s≤T g(s) -sup u≤T f (u) ≤ sup v≤T |f (v) -g(v)|. (17) 
We now consider

M t+h -M t = sup 0≤u≤h (X 1 u+t -X 1 t ) -M t + X 1 t + , using (16) 
M t+h -M t -M t,h -M t + X 1 t + ≤ sup 0≤u≤h (X 1 u+t -X 1 t ) -M t,h 1 {sup 0≤u≤h (X 1 u+t -X 1 t )>Mt-X 1 t } + 1 {M t,h >Mt-X 1 t } .
Then, for any t fixed, we apply inequality [START_REF] Jeanblanc | Mathematical Methods for Financial Markets[END_REF] to the maps g : u → X 1 u+t -X t 1 and

f : u → X 1 t,u . Then M t+h -M t -M t,h -M t + X 1 t + ≤ sup 0≤u≤h X 1 u+t -X 1 t -X 1 t,u 1 {sup 0≤u≤h (X 1 u+t -X 1 t )>Mt-X 1 t } + 1 {M t,h >Mt-X 1 t } .
From Cauchy-Schwartz's inequality and the fact that (a + b) 2 ≤ 2(a 2 + b 2 ), we get

E M t+h -M t -M t,h -M t + X 1 t + ≤ 2E sup u≤h X 1 u+t -X 1 t -X 1 t,u 2 P{ sup 0≤u≤h (X 1 u+t -X 1 t ) > M t -X 1 t } + P{M t,h > M t -X 1 t } . Lemma 3.3 with p = 2 insures that the map h → h -1 2E sup u≤h X 1 u+t -X 1 t -X 1 t,u 2 
is uniformly bounded in t. Concerning the second factor,

• firstly the almost sure continuity with respect to h insures that the quantities lim h→0 sup 0≤u≤h (X 1 u+t -X 1 t ) and lim h→0 M t,h are equal to 0; • secondly the law of the pair (M t , X t ) admits a density with respect to the Lebesgue measure on ∆ according to Theorem 1.1 [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF] so P({0 = M t -X 1 t }) = 0 and the limit of the second factor is equal to 0. This concludes the proof of the lemma.

Recall Definition (15):

X t,h = A j (X t )[W j t+h -W j t ], M t,h = sup 0≤u≤h X 1 t,u , h ∈ [0, 1].
Lemma 3.5. Under Assumptions (4) and ( 5), with H defined in (13):

E (M t,h -M t + X 1 t ) + |F t = 2 A 1 (X t ) √ hH M t -X 1 t A 1 (X t ) √ h .
Proof. For any t fixed, conditionally to F t the process (X 13)

E (M t,h -(M t -X 1 t )) + |F t = ∞ 0 A 1 (X t ) √ hz -(M t -X 1 t ) + 2 √ 2π e -z 2 2 dz = 2 A 1 (X t ) √ hH( M t -X 1 t √ h A 1 (X t ) ).

Proof of Proposition 3.1

Let t > 0. The key of this proof is to write the quantity

E t+h t Ψ(V s )dM s -2 √ hE Ψ(V t ) A 1 (X t ) H( M t -X 1 t √ h A 1 (X t ) )
as the sum of three terms,

E t+h t (Ψ(V s ) -Ψ(V t ))dM s + E Ψ(V t ) (M t+h -M t ) -E M t,h -M t + X 1 t ) + |F t (18) 
+ E Ψ(V t )E (M t,h -M t + X 1 t ) + | F t -2 √ hΨ(V t ) A 1 (X t ) H( M t -X 1 t √ h A 1 (X t ) ) .
We now prove that each terms in sum [START_REF] Lamperti | A simple construction of certain diffusion processes[END_REF] are both o(h) and O(h) uniformly in time.

(a) Using Lemma 3.5 the third term is null.

(b) Concerning the second term, using the fact that Ψ is bounded and Lemma 3.4 (i)

for all t ∈ [0, T ] E Ψ(V t )[(M t+h -M t ) -E[(M t,h -M t + X 1 t ) + | F t ] ≤ Ψ ∞ E M t+h -M t -E[(M t,h -M t + X 1 t ) + |F t ] ≤ Ch Ψ ∞ ,
as it is required in [START_REF] Doney | Overshoots and undershoots of Lévy processes[END_REF]. Moreover using Lemma 3.4 (ii)

lim h→0 1 h E Ψ(V t )[(M t+h -M t ) -E[(M t,h -M t + X 1 t ) + | F t ] = 0.
(c) Since ∇Ψ is bounded and the process M is increasing, the first term is bounded:

E t+h t [Ψ(V s ) -Ψ(V t )]dM s ≤ ∇Ψ ∞ E[ sup t≤s≤t+h V s -V t (M t+h -M t )].
Using Cauchy-Schwarz's inequality

E sup t≤s≤t+h V s -V t (M t+h -M t ) ≤ E[ sup t≤s≤t+h V s -V t 2 ]E[(M t+h -M t ) 2 ]. Since V s -V t 2 = (M s -M t ) 2 + X s -X t 2 , we obtain sup t≤s≤t+h V s -V t 2 ≤ (M t+h -M t ) 2 + sup t≤s≤t+h X s -X t 2 , hence E[ sup t≤s≤t+h Vs-Vt (M t+h -Mt)] ≤ E[(M t+h -Mt) 2 ] + E[ sup t≤s≤t+h Xs -Xt ] 2 ) E[(M t+h -Mt) 2 ]
Lemmas 3.1 and 3.2 (p = 2) yield the fact that the first factor is an o( √ h) and

the second is an O( √ h) uniformly with respect to t ≥ 0. Then E[sup t≤s≤t+h V s - V t (M t+h -M t )
] is an o(h) and an O(h) uniformly with respect to t ≥ 0.

Proof of Proposition 3.2

(i) Recall that A and B fulfil (4), ( 5) and (M, X) fulfils Hypothesis 2.1. Then, using the density p V of the law of the pair (M t , X t ) we have

E Ψ(V t ) A 1 (X t ) H M t -X 1 t √ h A 1 (X t ) ≤ Ψ ∞ A ∞ R d+1 H m -x 1 √ h A 1 (x 1 , x) p V (m, x 1 , x; t)dm dx 1 dx.
The change of variable

x 1 = m -u √ h yields √ h h E Ψ(V t ) A 1 (X t ) H M t -X 1 t √ h A 1 (X t ) ≤ (19) Ψ ∞ A 1 ∞ R d ×[0,+∞[ H u A 1 (m - √ hu, x) p V (m, m - √ hu, x; t)dm dx du.
Since H is decreasing (Remark 3.1) and 0

≤ h ≤ 1, H u A 1 (m- √ hu,x) ≤ H( u A 1 ∞ ) : √ h h E Ψ(V t ) A 1 (X t ) H M t -X 1 t √ h A 1 (X t ) ≤ Ψ ∞ A 1 ∞ R d ×[0,+∞[ H u A 1 ∞ sup r>0 p V (m, m -r, x; t)dm dx du.
Applying Tonelli's Theorem, computing the integral with respect to du in the righthand with ∞ 0 H(v)dv = 1/4 (Remark 3.1), yield:

sup h>0 √ h h E Ψ(Vt) A 1 (Xt) H Mt -X 1 t √ h A 1 (Xt) ≤ 1 4 Ψ ∞ A 1 2 ∞ R d sup r>0 p V (m, m -r, x; t)dm dx.
Using Hypothesis 2.1 (i), we obtain that the map:

t → sup h>0 √ h h E Ψ(V t ) A 1 (X t ) H M t -X 1 t √ h A 1 (X t ) belongs to L 1 ([0, T ], R). Point (i) of Proposition 3.2 is proved. (ii) Concerning the proof of point (ii), firstly note that E Ψ(Vt) A 1 (Xt) H Mt -X 1 t √ h A 1 (Xt) = R d+1 Ψ(m, x) A 1 (x) H m -x 1 √ h A 1 (x) p V (m, x; t)dm dx.
After the change of variable

x 1 = m -u √ h, we obtain √ h h E Ψ(Vt) A 1 (Xt) H Mt -X 1 t √ h A 1 (Xt) = ( 20 
)
R d ×R + Ψ(m, m -u √ h, x) A 1 (m -u √ h, x) H u A 1 (m - √ hu, x) p V (m, m - √ hu, x; t)dm dx du.
Using Lebesgue's dominated convergence Theorem, we let h go to 0 in [START_REF] Ngom | Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète[END_REF] for t > 0, and using the fact that Ψ, A and H are continuous and Hypothesis 2.1 (ii) we obtain

lim h→0 √ h h E Ψ(V t ) A 1 (X t ) H M t -X t √ h A 1 (X t ) = R d ×[0,+∞[ Ψ(m, m, x) A 1 (m, x) H u A 1 (m, x) p V (m, m, x; t)dm dx du.
Using the change of variable z = u A 1 (m,x) , and Remark 3.

1 ∞ 0 H(z)dz = 1/4, yields lim h→0 √ h h E Ψ(Vt) A 1 (Xt) H Mt -X 1 t √ h A 1 (Xt) = 1 4 R d Ψ(m, m, x) A 1 (m, x) 2 p V (m, m,x; t)dm dx.

End of proof of Theorem 2.3

We recall Theorem 8.2 page 204 in Brezis [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]: let f ∈ W 1,1 (0, T ), then f is almost surely equal to an absolutely continuous function. As a particular case, any f ∈

W 1,1 (0, T ) ∩ C(0, T ) is absolutely continuous. Recall F ψ : t → E t 0 Ψ(V s )dM s .
Lemma 3.6. Assume that A and B fulfil (4) and (5) and that Ψ is a continuous bounded function. Then F Ψ is a continuous function on R + .

Proof. Let 0 ≤ s ≤ t. Since Ψ is bounded and M is non decreasing

|F Ψ (t) -F Ψ (s)| = E t s Ψ(V u )dM u ≤ Ψ ∞ E[M t -M s ]. The map t → E[M t ] being continuous, F Ψ is a continuous function on R + .
Lemma 3.7. Assume that A and B fulfil (4) and ( 5), (M, X) fulfils Hypothesis 2.1

and

Ψ ∈ C 1 b .
Then for all T > 0, the map F ψ belongs to the Sobolev space W 1,1 (]0, T [) and its weak derivative is

ḞΨ (t) := 1 2 R d Ψ(m, x) A 1 (m, x) 2 p V (m, m, x; t)dmdx Proof. Let g : [0, T ] → R be C 1 with compact support [α, β] ⊂ (0, T ).
This means both functions g and ġ are continuous so bounded and that moreover g(α) = g(β) = 0.

Note that ġ(t) = lim h→0 g(t)-g(t-h) h

, ∀t ∈ (0, T ). Moreover,

sup t∈[0,T ] sup h∈[0,1] | g(t)-g(t-h) h | ≤ ġ ∞ .
Observe that, since M is non decreasing and the coefficients A and B are bounded

|F ψ (t)| ≤ Ψ ∞ E[M T ] < ∞.
Then, using Lebesgue's dominated convergence Theorem

T 0 ġ(s)F ψ (s)ds = T 0 lim h→0 g(s) -g(s -h) h F ψ (s)ds = lim h→0 T 0 g(s) -g(s -h) h F ψ (s)ds.
Using the change of variable u = sh in the last integral

T 0 g(s) -g(s -h) h F Ψ (s)ds = h -1 T 0 g(s)F Ψ (s)ds -h -1 T -h -h g(u)F Ψ (u + h)du = T 0 g(s) F Ψ (s) -F Ψ (s + h) h ds-h -1 0 -h g(s)F Ψ (s + h)ds+h -1 T T -h g(s)F Ψ (s + h)ds.
Recalling supp(g) = [α, β] ⊂ (0, T ), gF Ψ is bounded on [0, T ] extended by 0 on [α, β] c so lim s→0 g(s) = lim s→T g(s

) = 0 then h -1 0 -h g(s)F Ψ (s+h)ds = h -1 T T -h g(s)F ψ (s+ h)ds = 0 as soon as 0 < h ≤ T -β thus lim h→0 h -1 0 -h g(s)F Ψ (s + h)ds = lim h→0 h -1 T
T -h g(s)F ψ (s + h)ds = 0 Applying Lebesgue's dominated convergence Theorem yields, F admits a weak derivative:

T 0 ġ(s)F ψ (s)ds = - T 0 g(s) ḞΨ (s)ds. Using Proposition 3.1 (ii) lim h→0 + - F Ψ (t) -F Ψ (t + h) h - 2 √ h E Ψ(V t ) A 1 (X t ) H M t -X 1 t √ h A 1 (X t ) = 0.
Using Proposition 3.2 (ii):

-ḞΨ (t+) := lim h→0,h>0

F Ψ (t) -F Ψ (t + h) h = - 1 2 R d Ψ(m, m, x) A 1 (m, x) 2 p V (m, m, x; t)dmdx,
and the points (i) of Propositions 3.1 and 3.2:

sup h>0 F Ψ (t) -F Ψ (t + h) h ∈ L 1 ([0, T ], dt), so ḞΨ ∈ L 1 ([0, T ], R).
According to [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] Chap 8 section 2 page 202, F Ψ belongs to W 1,1 (]0, T [, R).

We now end the proof of Theorem 2.3: According to Theorem 8.2 page 204 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF],

F ψ is equal almost surely to an absolutely continuous function. Since F Ψ is continuous (Lemma 3.6), the equality holds everywhere. Then F Ψ is an absolutely continuous function and its derivative is its right derivative.

Case A = I d

In this rather technical section, we firstly prove that the density of the pair (M t , X t ) fulfils Hypothesis 2. 

(i) ∀T > 0, sup (h,u)∈[0,1]×R+ p V (b, b -hu, ã; t, µ 0 ) ∈ L 1 ([0, T ] × R d , dtdbdã). (ii) Almost surely in (m, x) ∈ R d , ∀t > 0, lim u→0,u>0 p V (m, m -u, x; t, µ 0 ) = p V (m, m, x; t, µ 0 ).
As a by product using Theorems 2.2 and 2.3 this proposition achieves the proof of Theorem 2.4. The main tool for the proof of this proposition is an integral representation of the density: Proposition 4.2. For any probability measure µ 0 on R d , for all t > 0,

p V = p 0 - k=m,1,••• ,d (p k,α + p k,β ) (21) 
where the various p are defined by (∂ k is the derivative with respect to k = m, x 1 , ..., x d and B m = B 1 ):

p 0 (m, x; t) := R d p W * 1 ,W (m -x 1 0 , x -x 0 ; t)µ 0 (dx 0 ), p k,α (m, x; t) := t 0 R d+1 1 b<m B k (a)∂ k p W * 1 ,W m -a 1 , x -a; t -s p V (b, a; s)dbdads, p k,β (m, x; t) := t 0 R (d+1) 1 b<m B k (a)∂ k p W * 1 ,W (b -a 1 , x -a; t -s)p V (m, a; s)dbdads,
where p W * 1 ,W (., .; t) is the density of the distribution of (sup s≤t W 1 s , W t ) for t ≥ 0, see Appendix A. Let t > 0 be fixed. Firstly, we assume that µ 0 = δ x0 , x 0 being fixed in R d .

According to Lemma 4.2 below and using the fact that B is bounded, ∀t ∈ [0, T ], the

functions p k,γ ∈ ∞ L [0, T ], L 1 (R d+1 ) for γ = α, β . Let F ∈ C 1 b (R d+1 , R
) with compact support. We will prove

E P [F (M t , X t )] = R d+1 F (m, x)   p 0 - k=m,x 1 ,...,x d (p k,α + p k,β )(m, x, t)   dmdx. ( 22 
)
Using Malliavin calculus we obtain the following decomposition:

Lemma 4.1.

E P [F (Mt, Xt)] = R d+1 F (x 1 0 + b, x 0 + a)p W * 1 ,W (b, a; t)dbda + t 0 E P R d+1 ∂mF X 1 s + b, Xs + a 1 {Ms<X 1 s +b} B 1 (Xs)p W * 1 ,W (b, a; t -s)dbda ds + t 0 E P R d+1 ∂ k F max Ms, X 1 s + b , Xs + a B k (Xs)p W * 1 ,W (b, a; t -s)dbda ds.
Proof. Let Z be the exponential martingale solution of

Z t = 1 + t 0 Z s B k (x 0 + W s )dW k s . (23) 
As previously Einstein's convention is used. Let Q = ZP, according to Girsanov's Theorem, using [START_REF] Roynette | Asymptotic behavior of the passage time, overshoot and undershoot for some Lévy processes[END_REF],

W B := W k t - t 0 B k (x 0 + W s )ds; k = 1, ..., d t≥0 is a Q contin- uous martingale such that W B t = t, ∀t ≥ 0. That means that under Q, W B is a d-dimensional Brownian motion. Then the distribution of X (resp. (M, X)) under P is the distribution of W + x 0 (resp. (W 1 * + x 0 , W + x 0 )) under Q and E P [F (M t , X t )] = E Q F (x 1 0 + W 1 * t , x 0 + W t ) = E P F (x 1 0 + W 1 * t , x 0 + W t )Z t . ( 24 
)
Let G := F (x 1 0 + W 1 * t , x 0 + W t ) and u := ZB(x 0 + W ), using ( 23):

E P [F (M t , X t )] = E P F (x 1 0 + W 1 * t , x 0 + W t ) + E P [Gδ(u)] (25) 
As a first step we will apply (50) (Appendix) to the second term in (25). Thus we have to check that the pair (G, u) ∈ D 1,2 × L 1,2 : F being bounded and smooth, G ∈ D 1,2 ; and according to Lemma A.1, the process u belongs to L 1,2 .

Using (53) (τ := inf{s, W 1 * s = W 1 * t }) the pair (W 1 * t , W t ) belongs to D 1,2 with Malliavin gradient:

D s W 1 * t = 1 [0,τ ] (s), 0, ....., 0 , D s W k t = (δ j=k , j = 1, ..., d)1 [0,t] (s), k = 1, ..., d.
Using the chain rule:

DG, u H = t 0 ∂ m F (x 1 0 + W * 1 t , x 0 + W t )1 {W 1 * s <W 1 * t } B 1 (x 0 + W s )Z s ds + t 0 ∂ k F (x 1 0 + W * 1 t , x 0 + W t )B k (x 0 + W s )Z s ds.
We are now in position to apply (50) E P [Gδ(u)] = E P [ DG, u H ]:

E P [Gδ(u)] = E P t 0 ∂ m F (x 1 0 + W 1 * t , x 0 + W t )1 {W 1 * s <W 1 * t } B 1 (x 0 + W s )Z s ds + E P t 0 ∂ k F (x 1 0 + W 1 * t , x 0 + W t )B k (x 0 + W s )Z s ds . (26) 
Plugging identity (26) into right hand of (25) and using Fubini Theorem to commute the integrals in ds and dP, we obtain

E P [F (M t , X t )] = E P F (x 1 0 + W 1 * t , x 0 + W t ) (27) + t 0 E P ∂ m F (x 1 0 + W 1 * t , x 0 + W t )1 {W 1 * s <W 1 * t } Z s B 1 (x 0 + W s ) ds + t 0 E P ∂ k F (x 1 0 + W 1 * t , x 0 + W t )Z s B k (x 0 + W s ) ds.
As a second step we use the independence of the increments of the Brownian motion in order to make appear the density of (W 1 * t-s , W t-s ). Recall (9): Ŵt-s :

= W t -W s and ( Ŵ 1 ) * t-s = max s≤u≤t W 1 u -W 1 s . Then W 1 * t = max W 1 * s , W 1 s + max s≤u≤t W 1 u -W 1 s = max W 1 * s , W 1 s + ( Ŵ 1 ) * t-s so the expression (27) becomes E P [F (M t , X t )] = E P F (x 1 0 + W 1 * t x 0 +, W t ) + t 0 E P ∂ m F x 1 0 + W 1 s + ( Ŵ 1 ) * t-s , x 0 + W s + Ŵt-s 1 {W 1 * s <W 1 s +( Ŵ 1 ) * t-s } Z s B 1 (x 0 + W s ) ds + t 0 E P ∂ k F max x 1 0 + W 1 * s , x 1 0 + W 1 s + ( Ŵ 1 ) * t-s , x 0 + W s + Ŵt-s Z s B k (x 0 + W s ) ds.
The random vector ( Ŵ 1 ) * t-s , Ŵt-s is independent of the σ-field F s and has the same distribution as the pair (W 1 * t-s , W t-s ). Let p W * 1 ,W (., .; ts) be the density of its law, and express the expectation with this density:

E P [F (Mt, Xt)] = R d+1 F (x 1 0 + b, x 0 + a)p W * 1 ,W (b, a; t)dbda + t 0 E P R d+1 ∂mF x 1 0 + W 1 s + b, x 0 + Ws + a 1 {W 1 * s <W 1
s +b} ZsB 1 (x 0 + Ws)p W * 1 ,W (b, a; ts)dbda ds

+ t 0 E P R d+1 ∂ k F x 1 0 + max W 1 * s , W 1 s + b , x 0 + Ws + a ZsB k (x 0 + Ws)p W * 1 ,W (b, a; t -s)dbda ds.
Using Girsanov's Theorem for Z.P = Q, since the law of (M, X) under P is the law of (x 1 0 + W 1 * , x 0 + W ), under Q, using the equality (24):

E P [F (Mt, Xt)] = R d+1 F (x 1 0 + b, x 0 + a)p W * 1 ,W (b, a; t)dbda + t 0 E P R d+1 ∂mF X 1 s + b, Xs + a 1 {Ms<X 1 s +b} B 1 (Xs)p W * 1 ,W (b, a; t -s)dbda ds + t 0 E P R d+1 ∂ k F max Ms, X 1 s + b , Xs + a B k (Xs)p W * 1 ,W (b, a; t -s)dbda ds.
We are now in position to achieve the proof of Proposition 4.2. Using some suitable translations of the variables (a, b),

E P [F (M t , X t )] = d k=0 I k + I m .
where

I 0 = R d+1 F (b, a)p W * 1 ,W (b -x 1 0 , a -x 0 ; t)dbda, (28) 
I m = t 0 E P R d+1 ∂ m F (b, a)1 {Ms<b} B 1 (X s )p W * 1 ,W b -X 1 s , a -X s ; t -s dbda ds
and for k = 1, ..., d,

I k = t 0 E P R d+1 ∂ k F (max (M s , b) , a) B k (X s )p W * 1 ,W (b -X 1 s , a -X s ; t -s)dbda ds.
Since B, F and its derivatives are bounded, all these integrals are finite. Using (54) in Appendix, the function

p W * 1 ,W (., .; t) is C ∞ on ∆ = {(b, a), b≥a 1 + , (a, b) ∈ R d+1 }. The aim is now to identify the terms p 0 , p k,α , p k,β , k = m, 1, • • • , d, defined in Proposition 4.2.
1. Firstly we identify p 0 (b, a; t) as the factor of F (b, a) in the integrand of I 0 :

p 0 (b, a; t) = p W * 1 ,W (b -x 1 0 , a -x 0 ; t).

We now deal with

I k , k = 2, • • • , d.
Integrating by parts with respect to a k between -∞ and ∞ in I k for k = 2, ..., d yields

I k = - t 0 E P R d+1 F (max (M s , b) , a) B k (X s )∂ k p W * 1 ,W (b -X 1 s , a -X s ; t -s)dbda ds = - t 0 E P R d+1 1 {b>Ms} F (b, a) B k (X s )∂ k p W * 1 ,W (b -X 1 s , a -X s ; t -s)dbda ds - t 0 E P R d+1 1 {b<Ms} F (M s , a) B k (X s )∂ k p W * 1 ,W (b -X 1 s , a -X s ; t -s)dbda ds
We identify -p k,α (b, a, t) inside the integral on the set (b > M s ). Concerning the integral on the set (b < M s ), we introduce the density of (M s , X s ) and identify -p k,β (m, a; t) as factor of F (m, a).

3. Finally, we identify the p m,γ and p 1,γ , γ = α, β which come from the sum of I m and

I 1 . Note that p W * 1 ,W b -X 1 s , a -X s ; t -s = 0 on the set {b < a 1 }.
Integrating by parts with respect to b between max a 1 , M s and ∞ in I m yields

I m = - t 0 E P R d F max a 1 , M s , a B 1 (X s )p W * 1 ,W max a 1 , M s -X 1 s , a -X s ; t -s da ds - t 0 E P R d+1 1 Ms<b F (b, a) B 1 (X s )∂ m p W * 1 ,W b -X 1 s , a -X s ; t -s dbda ds (29) 
Integrating by parts with respect to a 1 between -∞ and b in I 1 yields

I 1 = t 0 E P R d F (max (M s , b) , b, ã) B 1 (X s )p W * 1 ,W (b -X 1 s , b -X 1 s , ã -Xs ; t -s)dbdã ds - t 0 E P R d+1 F (max (M s , b) , a) B 1 (X s )∂ 1 p W * 1 ,W (b -X 1 s , a -X s ; t -s)dbda ds. (30) 
(i) The term p m,β (b, a, t) comes from the second term in I m (29) as the factor of F (b, a):

- t 0 E P R d+1 1 Ms<b F (b, a) B 1 (X s )∂ m p W * 1 ,W b -X 1 s , a -X s ; t -s dbda ds
(ii) The terms -p 1,α (b, a, t) and -p 1,β (b, a; t) come from the second term in I 1 (30):

- t 0 E P R d+1 F (max (b, M s ) , a) B 1 (X s )∂ 1 p W * 1 ,W (b -X 1 s , a -X s ; t -s)dbda ds.
Inside the integral on the set (M s < b) we identify -p 1,α (b, a, t) and inside the integral on the set (M s > b) we identify -p 1,β (b, a; t) as the factor of F (b, a), respectively as the factor of F (M s , a).

(iii) The term -p m,α (b, a, t) comes from the sum of first terms in I 1 (30) and I m (29). Now we replace the variable b by a 1 , dbdã by da in the first terms of I m and I 1 :

I 1 m = - t 0 E P R d F max a 1 , Ms , a B 1 (Xs)p W * 1 ,W max a 1 , Ms -X 1 s , a -Xs; t -s da ds I 1 1 = t 0 E P R d F max Ms, a 1 , a B 1 (Xs)p W * 1 ,W (a 1 -X 1 s , a -Xs; t -s)da ds.
Note that

-p W * 1 ,W max a 1 , M s -X 1 s , a -X s ; t -s + p W * 1 ,W (a 1 -X 1 s , a -X s ; t -s) = -p W * 1 ,W M s -X 1 s , a -X s ; t -s + p W * 1 ,W a 1 -X 1 s , a -X s ; t -s 1 Ms>a 1 = - Ms a 1 ∂ m p W * 1 ,W b -X 1 s , a -X s , t -s db1 Ms>a 1 .
Then the sum of I 1 m and I 1 1 is:

- t 0 E P R d+1 F (M s , a)B 1 (X s )∂ m p W * 1 ,W b -X 1 s , a -X s ; t -s 1 Ms>b>a 1 dadb ds.
We introduce the density of the law of the pair (M s , X s ) and we identify -p m,α (m, a; t)

as the factor of F (m, a).

These three steps achieve the proof of Proposition 4.2 when µ 0 = δ x0 .

Finally when µ 0 is the law of X 0 , we have p V (m, w; t, µ 0 ) = R d p V (m, x; t, δ x0 )µ 0 (dx 0 ).

Then integrating with respect to µ 0 the expression obtained in [START_REF] Nualart | The Malliavin calculus and related topics Second Edition[END_REF] for p V (m, x; t, δ x0 ) achieves the proof of Proposition 4.2 for any initial law µ 0 .

Proof of Proposition 4.1

Using some idea's used in Garroni section V.3.2 let us introduce the linear appli-

cations on L ∞ ([0, T ], dt, L 1 (R d+1 , dmdx)), k = m, 1, • • • , d: I k,α [p](m, x; t) := t 0 R d+1 1 b<m B k (a)∂ k p W * 1 ,W m -a 1 , x -a; t -s p(b, a; s)dbdads, (31) 
I k,β [p](m, x; t) := t 0 R d+1 1 b<m B k (a)∂ k p W * 1 ,W (b -a 1 , x -a; t -s)p(m, a; s)dbdads.
Let us introduce the functions, defined by induction: 

p 0 (m, x; t, µ 0 ) = R d p W 1 * ,W (m -x 1 0 , x -x 0 ; t)µ 0 (dx 0 ), p n = - k=m,1,••• ,d p k,α n + p k,β n (32 
(P n ) n converges in L ∞ ([0, T ], L 1 (R d+1 , dxdm)) to p V . Moreover p V = ∞ n=0 p n .
The proof is a consequence of the two following lemmas.

Lemma 4.2. Let j = α, β, k = m, 1, • • • , d and T > 0 the linear applications I k,j are continuous on L ∞ ([0, T ], dt, L 1 (R d+1 , dmdx)) : there exists a constant C such that for all p ∈ L ∞ ([0, T ], dt, L 1 (R d+1 , dmdx)) : sup s∈[0,t] I k,j [p](., .; s) L 1 (R d+1 ,dmdx) ≤ C t 0 1 √ t -s sup u∈[0,s] p(., .; u) L 1 (R d+1 ,dmdx) ds (35)
As a consequence,

sup s∈[0,t] I[p](., .; s) L 1 (R d+1 ,dmdx) ≤ 2(d+1)C t 0 1 √ t -s sup u∈[0,s]
p(., .; u) L 1 (R d+1 ,dmdx) ds.

(36)

Proof. Let T > 0, p ∈ L ∞ ([0, T ] × L 1 (R d+1 , dmdx
)) and t ∈ [0, T ] and let φ d+1 be the Gaussian law density restrained to the subset {b > a 1 + } (up to a constant) 

φ d+1 (b, b -a 1 , ã; 2t) := 1 √ 2πt d+1 1 b>a 1 + e -b 2 +(b-a 1 ) 2 + ã 2 4t . ( 37 
) (i) Let j = α and k = m, 1, • • • , d,
I k,α [p](m, x; t) ≤ B ∞ t 0 R d+1 1 b<m |∂ k p W * 1 ,W m -a 1 , x -a; t -s p(b, a; s)|dbdads.
Using Lemma A.2 there exists a constant D such that for k = m, 1, • • • , d:

|∂ k p W * 1 ,W (b, a; t) | ≤ D √ t φ d+1 (b, b -a 1 , ã; 2t). ( 38 
) So I k,α [p](m, x; t) ≤ B ∞ t 0 R d+1 D √ t -s φ d+1 (m -a 1 , m -x 1 , x -ã; t -s)|p(b, a; s)|dbdads.
We operate an integration with respect to (m, x) using Tonelli's theorem and omitting the indicator functions. Since φ d+1 is the density of a Gaussian law, we get the following bound, 

I k,α [p](., .; t) L 1 (R d+1 ,dmdx) ≤D B ∞ t 0 R d+1 1 √ t -s |p(b, a; s)|dbdads ≤2 (d+1)/2 D B ∞ t 0 1 √ t -s sup u≤s p(., .; u) L 1 (R d+1 ,
I k,β [p](m, x; t) ≤ B ∞ t 0 R d+1 1 b<m |∂ k p W * 1 ,W b -a 1 , x -a; t -s p(m, a; s)|dbdads.
Using (38) yields:

I k,β [p](m, x; t) ≤ B ∞ t 0 R d+1 D √ t -s φ d+1 (b-a 1 , b-x 1 , x-ã; 2(t-s))|p(m, a; s)|dbdads.
We operate an integration with respect to x then to b using Tonelli's theorem and omitting the indicator functions and using that φ is the density of a Gaussian law. So the bound with respect to a multiplicative constant:

I k,β [p](., .; t) L 1 (R d+1 ,dmdx) ≤D B ∞ 2 (d+1)/2 t 0 R d+1 1 √ t -s |p(m, a; s)|dmdads ≤D B ∞ 2 (d+1)/2 t 0 1 √ t -s sup u≤s p(., .; u) L 1 (R d+1 ,dmda) ds,
meaning inequality (35) for j = β.

Finally, estimation (36) is obtained by adding estimations (35) for j = α, β and k = m, 1, ..., d.

•

The following lemma is a consequence of (36) in Lemma 4.2:

Lemma 4.3. For all n sup u≤t p n (., .; u) L 1 (R d+1 ,dmdx) ≤ (2(d + 1)C) n t n/2 Γ(1/2) n Γ(1 + n/2) , ( 39 
) sup u≤t (p V -P n )(., .; u) L 1 (R d+1 ,dmdx) ≤ (2(d + 1)C) n+1 t (n+1)/2 Γ(1/2) n+1 Γ((n + 3)/2) . ( 40 
)
Proof. (i) For all t > 0, p 0 (.; t) is a density of probability, so (39) is satisfied for n = 0. We now assume that (39) is satisfied for n. Using p n+1 = I[p n ], (36) and the induction e assumption:

sup u≤t p n+1 (., .; u) L 1 (R d+1 ,dmdx) ≤ (2(d + 1)C) n+1 Γ(1/2) n Γ(1 + n/2) t 0 √ s n √ t -s ds.
We operate the change of variable s = tu and use

1 0 u a-1 (1 -u) b-1 du = Γ(a)Γ(b) Γ(a+b) : sup u≤t p n+1 (., .; u) L 1 (R d+1 ,dmdx) ≤ (2(d + 1)C) n+1 t (n+1)/2 Γ(1/2) n Γ(1 + n/2) Γ(1/2)Γ(1 + n/2) Γ((n + 3)/2)
which proves (39) for all n.

(ii) Noting that P 0 = p 0 and p Vp 0 = I[p V ] and applying (36

) to p V yield sup u≤t (p V -P 0 )(., .; u) L 1 (R d+1 ,dmdx) ≤ 2(d + 1)Ct 1/2 .
But Γ(1/2)/Γ(3/2) = 2 so (40) is satisfied for n = 0.

We now suppose that (40) is satisfied for n. Using p V -P n+1 = p 0 + I(p V ) -(p 0 + I(P n )) = I(p V -P n ), the bound (36) and the induction assumption:

sup u≤t [p V -P n+1 ](., .; u) L 1 (R d+1 ,dmdx) ≤ 2(d + 1)C t 0 (2(d + 1)C) n+1 Γ(1/2) n+1 Γ((3 + n)/2) √ s n+1 √ t -s ds.
We now operate the change of variable s = tu and

1 0 u a-1 (1 -u) b-1 du = Γ(a)Γ(b) Γ(a+b) with a = (n + 3)/2, b = 1 2 : sup u≤t [p V -P n+1 ](., .; u) L 1 (R d+1 ,dmdx) ≤ (2(d + 1)C) n+2 t (n+2)/2 Γ(1/2) n+2 Γ((4 + n)/2)
which proves (40) for n + 1 and thus for all n.

The series n

x n Γ(n/2+1) is convergent for any x, so Proposition 4.3 is a consequence of lemmas 4.2 and 4.3. 4.2.1. Upper Bound of p V meaning Hypothesis 2.1 (i).

For all T > 0,

x 0 ∈ R d , p ∈ L ∞ ([0, T ], L 1 (R d+1 , dmdx)) the support of which being included in {(m, x), m > x 1 0 , m > x 1 } let us denote N (p; t, x 0 ) := sup (m,x)∈R d+1 , m>x 1 ,m>x 1 0 |p(m, x; t)| φ d+1 (m -x 1 0 , m -x 1 , x -x0 ; 2t) . ( 41 
)
Proposition 4.4. For all T > 0 there exists a constant C T and for all n there exists constants

C n = [ B ∞ D(2(d+1))2 d/2 Γ(1/2)] n Γ(1+n/2)
such that: for all

x 0 ∈ R d , 0 < t ≤ T , (i) |p n (m, x; t, x 0 )| ≤ C n t n/2 φ d+1 (m -x 1 0 , m -x 1 , x -x0 , 2t)1 m>max(x 1 ,x 1 0 ) (ii) |p V (m, x; t, x 0 )| ≤ C T φ d+1 (m -x 1 0 , m -x 1 , x -x0 , 2t)1 m>max(x 1 ,x 1 0 ) 
(iii) For all µ 0 initial probability measure on R d ,

sup u>0 p V (m, m -u, x, t; µ 0 ) ∈ L 1 ([0, T ] × R d , dtdmdx).
Remark that, actually, this point (iii) is Hypothesis 2.1 (i).

Proof. Point (ii) is a consequence of point (i), since p V = ∞ n=0 p n , and the series

n 1 Γ(1+n/2)
x n admits an infinite radius of convergence (Proposition 4.3). We prove point (i) by induction on n using point (ii) in Lemma A.2:

p 0 (m, x; t, x 0 ) ≤ e -(m-x 1 ) 2 4t - x-x 0 2 4t - (m-x 1 0 ) 2 4t (2π) d+1 t d+1 1 m>max(x 1 ,x 1 0 ) = φ d+1 (m -x 1 , m -x 1 0 , x -x0 ; 2t)1 m>max(x 1 ,x 1 0 ) , so N (p 0 ; t, x 0 ) ≤ 1, which is (i) for n = 0, C 0 = 1.
We assume point (i) is true for p n , meaning N (p n ; t, x 0 ) ≤ C n t n/2 . By definition p n+1 = I[p n ], Lemma 4.4 proved below yields:

N (p n+1 ; t, x 0 ) = N (I[p n ]; t, x 0 ) ≤ 2(d + 1)2 d/2 B ∞ DC n t 0 s n/2 2π(t -s) ds.
We operate the change of variable s = tu

N (p n+1 ; t, x 0 ) ≤ 2(d + 1)2 d/2 B ∞ D √ 2π C n ( √ t) n+1 1 0 u n/2 √ 1 -u ds Using 1 0 u n/2 √ 1-u du = Γ((n+2)/2)Γ(1/2) Γ((n+3)/2)
and C n definition:

N (p n+1 ; t, x 0 ) ≤ C n+1 ( √ t) n+1 ,
this achieves the proof of point (i) in Proposition 4.4.

(iii) Then for all x 0 ∈ R d and using

x 1 = m -u, sup u>0 p V (m, m -u, x; t) ≤ C T φ d+1 (m -x 1 0 , 0, x -x0 ; 2t) ∈ L 1 ([0, T ] × R d , dtdmdx). Since p V (m, x; t, µ 0 ) = R d p V (m, x; t, x 0 )µ 0 (dx 0 ) point (iii) is true. Lemma 4.4. Let T > 0, x 0 ∈ R d , p ∈ L ∞ ([0, T ], dt, L 1 (R d+1 , dmdx)) such that the support of p(., .; t) is included in {(m, x), m > x 1 0 , m > x 1 } and for all s ∈]0, T ] N (p; s, x 0 ) < ∞. Then for j = α, k = m, 1, . . . , d, the support of function I j,k [p](.; t) is included in {(m, x), m > x 1 0 , m > x 1 }.
Moreover for all t ∈ [0, T ] we have :

N (I[p]; t, x 0 ) ≤ 2(d + 1)2 d/2 B ∞ D t 0 1 2π(t -s) N (p; s, x 0 )ds, ∀t ∈ [0, T ]. Proof. Let T > 0, x 0 ∈ R d , p ∈ L ∞ ([0, T ], dt, L 1 (R d+1 , dmdx)) such that for all t > 0 the support of p(.; t) is included in {(m, x), m > x 1 0 , m > x 1 }. (i) For j = α, k = m, 1, • • • , d, using the definition of I α,k yields: I k,α [p](m, x; t) := t 0 R d+1 B k (a)∂ k p W * 1 ,W m -a 1 , x -a; t -s 1 x 1 0 <b<m,m>x 1 p(b, a; s)dbdads So the support of I α,k [p](.; t) is included in {(m, x) ∈ R d+1
, m > max(x 1 0 , x 1 )}. For now on, we only consider (m, x) such that m > max(x 1 , x 1 0 ). Let p be a function such that ∀s ∈]0, T ] N (p; x 0 , s) < ∞. The definition of I k,α , the boundedness of B, the fact that ∂ k p W * ,W satisfies (38) and the definition (41) of N (p; t, x 0 ) imply

I k,α [p](m, x; t) ≤ B ∞ t 0 R d+1 N (p; s, x 0 ) D (t -s) 1 m>x1 1 m>b>max(a 1 ,x 1 0 ) φ d+1 (m -a 1 , m -x 1 , x -ã; t -s)φ d+1 (b -x 1 0 , b -a 1 , ã -x0 ; s)dbdads.
We integrate in ã using Lemme A.3 (ii) with u = x, v = ã, w = x0 and the fact that φ d+1 is a Gaussian density of probability: (2πs)

I α,k [p](m, x; t) ≤ 2 (d-1)/2 B ∞ D (42) t 0 R 2 N (p; s, x 0 )1 m>b>max(a 1 ,x 1 0 ) e -x-x0 2 4t (2πt) d-1 e -(m-a 1 ) 2 4(t-s) -(m-x 1 ) 2 4(t-s) (2π) 2 (t -s) 3 e -(b-x 1 0 ) 2 4s -(b-a 1 ) 2 4s (2π) 2 s 2 dbda 1 ds. Using point (i') Lemma A.2 with u = m, v = a 1 , w = b, k = 1, we integrate in da 1 up to b: b -∞ e -(m-a 1 ) 2 4(t-s) 2π(t -s) e -(b-a 1 ) 2 4s (2πs) da 1 = e -(m-b) 2 4t √ 2πt Φ G s 2t(t -s) (b -m) where Φ G (u) = u -∞ e -z 2 /2 dz ≤ 1 2 e -
da 1 ≤ e -(m-b) 2 4t √ 2πt e -s(m-b) 2 4t(t-s) = e -(m-b) 2 4(t-s) √ 2πt .
Plugging this inequality inside (42) yields with

C d,B = 2 (d+1)/2 B ∞ D I α,k [p](m, x; t) C d,B ≤ t 0 R N (p; s, x 0 )1 m>b>x 1 0 e -x-x0 2 4t (2πt) d e -(m-b) 2 4(t-s) -(m-x 1 ) 2 4(t-s) 2π(t -s) 2 s e -(b-x 1 0 ) 2 4s
dbds.

Omitting the indicator functions

, Lemma A.3 (ii) with u = m, v = b, w = x 1 0 , k = 1 implies b<m e -(m-b) 2 4(t-s) e -(b-x 1 0 ) 2 4s 2π(t -s)2πs db ≤ 2 2πt e -(m-x 1 0 ) 2 4t
.

Inserting this result, we obtain , so

I α,k [p](m, x; t) ≤ √ 2C d,B t 0 N (p; s, x 0 ) e -x-x0 2 4t (2πt) d+1 e -(m-x 1 0 ) 2 4t -(m-x 1 ) 2 4t 2π(t -s) ds.
Using the definition of φ d+1 we identify

I α,k [p](m, x; t) ≤ √ 2C d,B t 0 N (p; s, x 0 ) φ d+1 (m -x 1 0 , m -x 1 , x -x0 ; 2t) 2π(t -s) ds
and with the definition of N, with respect to a multiplicative constant:

N (I α,k [p], x 0 , t) ≤ √ 2C d,B t 0 N (p; s, x 0 ) 1 2π(t -s)
ds.

(ii) For j = β, k = m, 1, • • • , d using the definition of I β,k and the fact that the support of p is included in {(m, x), m > max(x 1 0 , x 1 )} yields

I β,k [p](m, x; t) = t 0 R d+1 1 m>b>x 1 ,m>x 1 0 ,b>a 1 B k (a)∂ k p W 1 * ,W (b -a 1 , x -a, t -s)p(m, a, s)dadbds.
Thus the support of I β,k [p](.; t) is included in {(m, x), m > max(x 1 , x 0 )}. For now on we only consider (m, x) satisfying m > max(x 1 , x 1 0 ). Definition of I β,k , the boundedness of B, the inequality (38) satisfied by ∂ k p W * ,W :

|∂ k p W 1 * ,W (b -a 1 , x -a, t -s)| ≤ D √ t-s φ d+1 (b -a 1 , b -x 1 , x -ã, 2(t -s))
and the definition of N (p; t, x 0 ) yield:

I β,k [p](m, x; t) ≤ B ∞ D t 0 R d+1 1 m>b>x 1 ,b>a 1 N (p; s, x 0 ) e -(b-a 1 ) 2 4(t-s) -(b-x 1 ) 2 4(t-s) -x-ã 2 4(t-s) (2π) d+1 (t -s) d+2 e -(m-x 1 0 ) 2 4s -(m-a 1 ) 2 4s -x0 -ã 2 4s (2π) d+1 s d+1
dadbds.

We integrate in ã using Lemma A.3 (ii) with u = x, v = ã et w = x0 :

I β,k [p](m, x; t) ≤ C d,B . ( 43 
) t 0 R 2 1 m>b>x 1 ,b>a 1 e -x-x 0 2 4t (2πt) d-1 N (p; s, x 0 ). e -(b-a 1 ) 2 4(t-s) -(b-x 1 ) 2 4(t-s) (2π) 2 (t -s) 3 e -(m-x 1 0 ) 2 4s -(m-a 1 ) 2 4s (2π) 2 s 2 da 1 dbds. Using Lemma A.3 (i') for u = b, v = a 1 , w = m k = 1 b -∞ e -(b-a 1 ) 2 4(t-s) 2π(t -s) e -(m-a 1 ) 2 4s √ 2πs da 1 = √ 2 e -(b-m) 2 4t √ 2πt Φ G t 4s(t -s) [b -( s t b + t -s t m)] = e -(b-m) 2 4t √ 2πt Φ G t -s 4st [b -m] ≤ e -(b-m) 2 4t √ 2πt e -t-s 4st [b-m] 2 = e -(b-m) 2 4s √ 2πt
the last bound coming from Lemma A.3 (iii) since bm < 0.

We plugg this estimation in (43)

I β,k [p](m, x; t) ≤ C d,B t 0 R 1 m>b>x 1 e -x-x 0 2 4t (2πt) d N (p; s, x 0 ) e -(b-x 1 ) 2 4(t-s) 2π(t -s) 2 e -(m-x 1 0 ) 2 4s - (b-m) 2 4s √ 2πs dbds.
We integrate with respect to b on R and we use Lemma A.3 (ii) with u = x 1 , v = b, w = m, k = 1:

I β,k [p](m, x; t) ≤ √ 2C d,B t 0 e -(m-x 1 ) 2 4t - x-x 0 2 4t (2πt) d+1 N (p; s, x 0 ) e -(m-x 1 0 ) 2 4s 2π(t -s) ds. When 0 < s < t, e -(m-x 1 0 ) 2 4s
≤ e -(m-x 1 0 ) 2 4t so:

I β,k [p](m, x; t) ≤ √ 2C d,B t 0 e -(m-x 1 ) 2 4t - x-x 0 2 4t - (m-x 1 0 ) 2 4t (2πt) d+1 N (p; s, x 0 ) 1 2π(t -s)
ds.

We seek to prove that

T 0 R 2d+1 q k,α (m, x, a, b; s, x 0 )dsdbdaµ 0 (dx 0 ) < +∞. ( 44 
)
According to estimation (38) of ∂ k p W * 1 ,W and estimation (ii) of Proposition 4.4, we obtain

q k,α (m, x, a, b; s, x 0 ) ≤ B ∞ 1 m>b>a 1 D √ t -s 2π(t -s) d+1 exp[- (m -a 1 ) 2 4(t -s) - x -ã 2 4(t -s) ] C T √ 2πs d+1 exp[- (b -x 1 0 ) 2 4s - (b -a 1 ) 4s - x0 -ã 2 4s ].
We integrate with respect to ã using Lemma A.3 (ii) for k = d + 1, u = x, v = ã and w = x0 :

R d-1 q k,α (m, x, a 1 , b; s, x 1 0 )dã ≤ 1 m>b>a 1 B ∞ C T D2 (d-1)/2 √ t -s 2π(t -s) 2 √ 2πs 2 e -|x-x 0 2 4t √ 2πt d-1 exp[- (m -a 1 ) 2 4(t -s) - (b -x 1 0 ) 2 4s - (b -a 1 ) 2 4s ].
We integrate with respect to a 1 between -∞ and b using Lemma A.3 (i') for u = m, v = a 1 and w = b

R d 1 a 1 <b q k,α (m, x, b, a; s; x 0 )da ≤ 1 b<m B ∞ C T D2 d/2 √ t -s 2π(t -s) √ 2πs e -|x-x 0 2 4t -(b-m) 2 4t √ 2πt d exp[- (b -x 1 0 ) 2 4s ]Φ G t 2s(t -s) (b -[ s t m + (t -s) t b]) . Note that t 2s(t-s) (b -[ s t m + (t-s) t b]) = s 2t(t-s) (b -m) and using Lemma A.3 (iii) R d q k,α (m, x, b, a; s, x 0 )da ≤ 1 b<m B ∞ C T D2 d/2 √ t -s 2π(t -s) √ 2πs e -|x-x 0 2 4t -(b-m) 2 4t √ 2πt d exp[- (b -x 1 0 ) 2 4s ] exp[- s t(t -s) (b -m) 2 4 
].

We observe that

1 t + s t(t-s) = 1 t-s so that exp[-(b-m) 2 4t ] exp[-s t(t-s) (b-m) 2 4 ] = exp[-(b-m) 2 4(t-s)
]. We integrate with respect to b (neglecting the indicator function) using Lemma A.3 (ii) for u = m, v = b and w = x 1 0 and exp[-

(m-x 1 0 ) 2 4t
] ≤ 1:

R d+1 q k,α (m, x, b, a; s, x 0 )dadb ≤ 1 m>x 1 0 B ∞ C T D2 (d+1)/2 √ t -s e -|x-x 0 2 4t √ t d+1 .
Since µ 0 is a probability measure then t 0 R 2d+1 q k,α (m, x, b, a; s, x 0 )dadbµ 0 (dx 0 )ds < +∞. This is (44) and achieves the proof of Lemma 4.6 Lemma 4.7. For k = m, 1, ..., d recall that

p k,β (m, x; t) = t 0 R d+1 1 b<m B k (a)∂ k p W * 1 ,W (b -a 1 , x -a, t -s)p V (m, a; s)dbdads.
The map u → p k,β (m, mu, x; t) converges to 0 when u goes to 0 + .

Proof. Using estimation (38) of ∂ k p W * 1 ,W and estimation (ii) of Proposition 4.4

concerning p V , we dominate the integrand which defines p k,β (m, mu, x; t) by :

q k,β (m, u, x, a, b, x 0 , s) := 1 m-u<b<m,a 1 <b e -(b-a 1 ) 2 4(t-s) -(b-m+u) 2 4(t-s) -x-ã 2 4(t-s) - (m-x 1 0 ) 2 4s -(m-a 1 ) 4s -x0 -ã 2 4s √ t -s 2π(t -s) d+1 √ 2πs d+1 up to a multiplicative constant. Meaning that p k,β (m, m -u, x; t) ≤ B ∞ t 0 R 2d+1
q k,β (m, u, x, a, b, x 0 , s)dbdadsµ 0 (dx 0 ). ( 45)

We integrate with respect to ã using Lemma A.3 (ii) with u = x, v = ã and w = x0

R d-1 q k,β (m, u, x, a, b, x 0 , s)dã ≤ √ 2 d-1 e -x-x 0 2 4t √ 2πt d-1 e -(b-a 1 ) 2 4(t-s) -(b-m+u) 2 4(t-s) - (m-x 1 0 ) 2 4s -(m-a 1 ) 4s √ t -s 2π(t -s) 2 √ 2πs 2 
We integrate with respect to a 1 between -∞ and b using Lemma A.3 (i') for u = b, v = a 1 and w = m :

R d 1 b>a 1 q k,β (m, u, x, a, b, x 0 , s)da ≤ e -x-x 0 2 4t √ 2πt d e -(b-m) 2 4t -(b-m+u) 2 4(t-s) - (m-x 1 0 ) 2 4s √ t -s 2π(t -s) √ 2πs Φ G t s(t -s)2 (b - s t b - t -s t m) = e -x-x 0 2 4t √ 2πt d e -(b-m) 2 4t -(b-m+u) 2 4(t-s) - (m-x 1 0 ) 2 4s √ t -s 2π(t -s) √ 2πs Φ G t -s 2st (b -m) . Since b -m < 0, using Lemma A.3 (iii) R d 1 b>a 1 q k,β (m, u, x, a, b, x 0 , s)da ≤ e -x-x 0 2 4t √ 2πt d e -(b-m) 2 4t -(b-m+u) 2 4(t-s) - (m-x 1 0 ) 2 4s √ t -s 2π(t -s) √ 2πs e -t-s 4st (b-m) 2 . Note that e -(b-m) 2 4t e -t-s 4st (b-m) 2 ) = e -(b-m) 2 ) 4s
. We integrate this last bound with respect to b between mu and m using Lemma A.3 (i') for the triplet (mu, b, m) and the fact that s t (mu)

+ t-s t m = s(m-u)+m(t-s) t R d+1 1 m-u<b<m,b<a 1 q k,β (m, u, x, a, b, x 0 , s)dadb ≤ e -x-x 0 2 4t √ 2πt d+1 e - (m-x 1 0 ) 2 4s √ t-s . Φ G t 2s(t-s) (m -s(m-u)+m(t-s) t ) -Φ G t 2s(t-s) (m -u -s(m-u)+m(t-s) t
) .

Then,

R d+1 q k,β (m, u, x, a, b, x 0 , s)dadb ≤ e -x-x 0 2 4t √ 2πt d+1 e -(m-x 1 0 ) 2 4s √ t -s Φ G s 2t(t -s) u -Φ G - t -s 2t(t -s) u . Note that lim u→0 Φ G s 2t(t-s) u -Φ G - t-s 2t(t-s) u = 0 and Φ G s 2t(t-s) u -Φ G - t-s 2t(t-s) u ≤ 1.
Since µ is a probability measure, using Lebesgue dominated theorem lim

u→0 + t 0 R 2d+1
1 m-u<b<m,b<a 1 q k,β (m, u, x, a, b, x 0 , s)dadbµ 0 (dx 0 )ds = 0.

Finally estimation (45) yields lim u→0 + p k,β (m, mu, x; t) = 0.

Cas d = 1

Proposition 5.1. Let the real diffusion X given by dX t = B(X t )dt+A(X t )dW t where A, B fulfil (4) and (5). Then the density of probability p V satisfies Hypothesis 2.1, so for any initial law µ 0 and

F ∈ C 2 b (R 2 , R), E [F (M t , X t )) = E [F (X 0 , X 0 )] + t 0 E [L (F ) (M s , X s )] ds + 1 2 t 0 E ∂ m F (X s , X s ) A(X s ) 2 p V (X s , X s ; s) p X (X s ; s) ds. (46) 
Proof. We operate a Lamperti transformation [START_REF] Lamperti | A simple construction of certain diffusion processes[END_REF]. Whithout loss of generality, A can be choosen positive. In case d 1 Assumption (5): "∃c > 0 such that for any

x ∈ R, A 2 (x) ≥ c" could be expressed:

∃c > 0 such that for any x ∈ R, A(x) ≥ c. (47) 
Let ϕ such that ϕ ′ = 1 A and ϕ(0) = 0, so that ϕ ′ is uniformly bounded and ϕ ∈ C 2 (R), as is the function A. Moreover ϕ ′ being strictly positive, ϕ is strictly increasing hence invertible and we denote by ϕ -1 its inverse function. Under the initial condition ϕ(0) = 0, using Itô formula Y = ϕ(X) satisfies

dY t = B A • ϕ -1 (Y t ) - 1 2 A ′ • ϕ -1 (Y t ) dt + dW t , Y 0 = ϕ(X 0 ). ( 48 
) Let A ϕ = 1 and B ϕ := B A • ϕ -1 -1 2 A ′ • ϕ -1 which belongs to C 1 b (R) as a consequence of B ∈ C 1 b , A ∈ C 2 b . Obviously, ϕ ′ > 0 implies that ϕ is increasing, Y * t = ϕ(X * t ) = ϕ(M t ).
Theorem 1.1 in [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF] can be easily extended to the case where X admits an initial law µ 0 , thus the law of the pair (Y * t , Y t ) admits a density with respect to the Lebesgue measure. Moreover, Lemma 2.2 in [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF] 

sets out p V (b, a; t) = p Y * ,Y (ϕ(b),ϕ(a);t) A(b)A(a)
. Now applying Theorem 2.4 to the pair (B ϕ , 1) the density p Y * ,Y satisfies Hypothesis 2.1.

Since functions A and ϕ are continuous

lim u→0 + p V (b, b -u; t) = p Y * ,Y (ϕ(b), ϕ(b); t) A 2 (b)
that means p V satisfies Hypothesis 2.1 (ii).

Using now (47)

sup u>0 p V (b, b -u; t) ≤ 1 c 2 sup u>0 p Y * ,Y (ϕ(b), ϕ(b -u); t) and since ϕ is increasing, if u > 0, ϕ(b -u) < ϕ(b) and denoting v = ϕ(b) -ϕ(b -u)
it gets v > 0, and

sup u>0 p V (b, b -u; t) ≤ 1 c 2 sup v>0 p Y * ,Y (ϕ(b), ϕ(b) -v; t).

After the change of variable

m = ϕ(b) so db = A(b)dm, T 0 R sup u>0 p Y * ,Y (ϕ(b), ϕ(b)-u; t)dbdt = T 0 R A(ϕ -1 (m)) sup u>0 p Y * ,Y (m, m-u; t)dmdt.
Since A is bounded and p Y * ,Y satisfies Hypothesis 2.1 (i),

T 0 R A(ϕ -1 (m)) sup u>0 p Y * ,Y ( 
m, mu; t)dmdt < ∞ and p V satisfies Hypothesis 2.1 (i) and (ii).

Conclusion

This paper establishes a PDE of which the density of the pair [M t , X t ] running maximum-diffusion process is a weak solution, under a quite natural assumption on the regularity of p V around the boundary of ∆. This assumption is fulfilled when the matrix coefficient of diffusion A is the identity matrix or when the dimension d = 1. This PDE is degenerated then the classical results on uniqueness cannot be applied here. The case of non constant matrix A is an open problem. Such generalization could be useful in case of practical applications, as the management of barrier options, in models including stochastic volatility.

Appendix A. Tools

A.1. Malliavin calculus tools

The material of this subsection is taken from section 1.2 in [START_REF] Nualart | The Malliavin calculus and related topics Second Edition[END_REF].

Let H = L 2 ([0, T ], R d ) endowed with the usual scalar product ., . H and the associated norm . H . For all h ∈ H, W (h) := T 0 h(t)dW t is a center Gaussian variable with variance equal to h 2 H . If (h 1 , h 2 ) ∈ H 2 , and h 1 , h 2 H = 0, then, the random variables W (h i ), i = 1, 2, are independent.

Let S denote the class of smooth random variables F defined by: F = f (W (h 1 ), ..., W (h n )), n ∈ N, h 1 , ..., h n ∈ H, f ∈ C b (R n ).

(49) Definition 1. The derivative of the smooth variable F defined in (49) is the H valued random variable given by DF := n i=1 ∂ i f (W (h 1 ), ..., W (h n ))h i .

We denote the domain of the operator D in L 2 (Ω) by D 1,2 meaning that D 1,2 is the closure of the class of smooth random variables S with respect to the norm [17] or [START_REF] He | Double lookbacks[END_REF]):

F 1,2 = E[|F | 2 ] + E[ DF 2 H ] 1/2 .
p W 1 * ,W 1 (b, a; t) = 2 2b -a √ 2πt 3 exp - (2b -a) 2 2t
1 b>sup(a,0) .

Thus, using the independence of the components of the process W, the law of (W 1 * t , W t ) has a density with respect to the Lebesgue measure on R d+1 denoted by p W 1 * ,W (.; t) : , t > 0, x = (x 1 , ..., x d ) ∈ R d .

Its derivative with respect to x 1 is

∂ x 1 p W (x; t) = - x 1 √ 2 d π d t d+2 e -d k=1 (x k ) 2
2t , t > 0, x = (x 1 , ..., x d ) ∈ R d .

Its second derivatives are

∂ 2 x 1 x k p W (x; t) = x 1 x k √ 2 d π d t d+4 e -d k=1 (x k ) 2 2t
, t > 0, x = (x 1 , ..., x d ) ∈ R d , k = 2, ..., d.

∂ 2 x 1 x 1 p W (x; t) = (x 1 ) 2 -t √ 2 d π d t d+4 e -d k=1 (x k ) 2 2t
, t > 0, x = (x 1 , ..., x d ) ∈ R d .

Using (2.1) page 106 of [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF] we obtain the analogous of (2.2) page 107 of [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF]: there exists a constant C such that (2π) d+1 t d+1

1 m>x 1 ∨x 1 0 = 2 (d+1)/2 φ d+1 (mx 1 , mx 1 0 , x -x0 ; 2t)1 m>x 1 ∨x 1 0 , Lemma A.3. For all 0 < s < t, k ≥ 1 and all u, v, w ∈ R k 

(i) u -v 2 t -s + v -w 2 s = t s(t -s) v - s t u + t -s t w 2 + u -w 2 t ; (i ′ ) k = 1, b -∞ e -(u-v) 2

Proposition 4 . 1 .

 41 1: p V (3) is continuous on the boundary of ∆ and is dominated by an integrable function: Assume that B fulfils Assumption (4) and A = I d , then (M, X) fulfils Hypothesis 2.1 meaning that for all probability measure µ 0 on R d

2

 2 

4. 1 .

 1 Integral representation of the density: proof of Proposition 4.2

Proposition 4 . 3 .

 43 ) and for k = m, 1, • • • , d, j = α, β and n ≥ 1, p k,j n+1 (m, x; t) := I k,j [p n ](m, x; t). Let us denote the operator I := -j=α,β;k=m,1,...,d I k,j . (33) Moreover one remarks that this means p n+1 = I(p n ) and Proposition 4.2 leads to p V = p 0 + I(p V ). Let P Assume the vector B is bounded, then for all T the sequence

  according to the definition of I k,α and the boundedness of B,

  dbda) ds, meaning inequality (35) when j = α. (ii) Let j = β and k = m, 1, • • • , d. According to the definition of I k,β and the boundedness of B,

u 2 / 2 -

 22 for u = bm < 0 according to Lemma A.3 (iii). This yields the bound: e

IFor 0

 0 α,k [p](m, x; t) < s < t, e -(m-x 1 ) 2 4(t-s) ≤ e -(m-x 1 ) 2 4t

Definition 2 . 2 L 1 , 2 = u 2 L 2 (Definition 3 .

 2212223 L 1,2 is the set of processes (u s , s ∈ [0, T ]) which satisfy u ∈ L 2 (Ω × [0, T ], R d ) and for all s ∈ [0, T ], u s belongs to D 1,2 and u [0,T ]×Ω) + Du 2 L 2 ([0,T ] 2 ×Ω) < ∞. Let u ∈ L 1,2 , then the divergence δ(u) is the unique random variable of L 2 (Ω) such that E [F δ(u)] = E [ DF, u H ] ,∀F ∈ S smooth random variable.

p W 1 *1(a k ) 2 4t 1

 121 ,W (b, a; t) = 2 (2ba 1 ) (2π) d t d+2 e -b≥0,b≥a 1 , b ∈ R, a = (a 1 , ..., a d ) ∈ R d . (54) Lemma A.2. (i) For all t> 0, p W * 1 ,W (.; t) is the restriction to ∆ of a C ∞ (R d+1 )function and there exists a universal constant D such that for x = b, a 1 , a 2 , ...a d ,∂ x p W * 1 ,W (b, a; t) ≤ D (4π) d t d+2 e -b 2 +(b-a 1 b>max(a 1 ,0) .(55)As a consequence x=b,a 1 ,...,a d ∂ x p W * 1 ,W (b, a; ts) ∈ L 1 ([0, t] × R d+1 , dbdads). (ii) p 0 (m, x; t, x 0 ) ≤ e -)/2 φ d+1 (mx 1 , mx 1 0 , x -x0 ; 2t)1 m>max(x 1 ,x10 ) , Proof. (i) Let p W be the density of a d dimensional Brownian motion, and the density of law of W t ∀t > 0 : p W (.; t) ∈ C ∞ (R d ): p W (x; t) = 1 √ 2 d π d t d e -d k=1 (x k ) 2 2t

|∂ 2 x 1 -a 1 ((a k ) 2 2t 1 b≥a 1 + 1 0(1 m≥x 1 ∨x 1 0

 112111 x 1 p W (x; t)| + |∂ 2 x 1 x k p W (x; t)| ≤ C t p W (x; 2t), k = 1, ..., d, t > 0, x ∈ R d . (56)Recall (54)p W * 1 ,W (b, a; t) = 2 2b 2π) d t d+2 e -, ∀(b, a) ∈ R d+1 , t > 0.We observep W * 1 ,W (b, a; t) = -2∂ x 1 p W (2ba 1 , a 2 , ..., a d ; t)1 b≥a 1 + . (57)Then p W * 1 ,W (., .; t) is the restriction to ∆ of a C ∞ function.Moreover, using the chain rule, x being (b, a 1 , • • • , a d ) :|∂ x p W * 1 ,W (b, a; t)| ≤ 4C t p W (2ba 1 , a 2 , ..., a d ; 2t)1 b≥a 1 + . (58)On the set {(b, a), b> max(0, a 1 )} we have(2ba 1 ) 2 = (b + ba 1 ) 2 ≥ (b) 2 + (ba 1 ) 2 . (59)Plugging estimation (59) into (58) yields (55) with D = 2 3 C.(ii) Recalling the definitionp 0 (m, x; t, x 0 ) = p W 1 * ,W (m-x 1 0 , x-x 0 ; t) = 2 mx 1 + mxwe deduce the standard bound which uses xe -x 2 ≤ e -x 2 /2 and (mx 1 + mx 1 0 ) 2 ≥ (mx 1 ) 2 + (mx 1 0 ) 2 : p 0 (m, x; t, x 0 ) ≤ e -

e -z 2 2 √

 2 k dv = 2 k/2 e -u-w 2 4t (2πt) k (iii) For u > 0, 1 -Φ G (u) := +∞ u 2π dz = Φ G (-u) ≤ e -
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AUTHOR NAMES

Under the integral we identify the factor φ d+1 (mx 1 0 , mx 1 , x -x0 ; 2t) so

Finally using the definition of N (41) we have proved u → p V (m, mu, x, t) admits a limit when u goes to 0, u > 0.

Proof. The proof is a consequence of the three following lemmas.

Proof. We have

1 b≥x 1 0 , u≥0 µ 0 (dx 0 ). Then, since the integrand is dominated by D √ (2π) d t d+1 and µ 0 is a probability measure, using Lebesgue's dominated convergence Theorem yields:

The map u → p k,α (m, mu, x; t) converges to p k,α (m, m, x; t) when u goes to 0 + .

Proof. The proof wil be a consequence of Lebesgue dominated theorem. First, the

Second it is dominated by q k,α (m, x, a, b; s, x 0 ) :=

We apply Definition 1.3.1 in [START_REF] Nualart | The Malliavin calculus and related topics Second Edition[END_REF] with u ∈ L 1,2 and G ∈ D 1,2 :

Let x 0 ∈ R d . We introduce the exponential martingale

When there is no ambiguity, we will omit the exponent x 0 .

Proof. Let x 0 be fixed. In this proof we omit the exponent x 0 . Note that

Then, Z t belongs to L 2 (Ω) for all t ∈ [0, T ] since

Note that [START_REF] Nualart | The Malliavin calculus and related topics Second Edition[END_REF], and the definition of L 1,2 , applied to the R d+1 -valued process Y = (W, Z) with a null drift coefficient, the matrix Σ, (d + 1, d), defined by:

The following remark will be often used: using line -15 page 135 of [START_REF] Coutin | Existence and regularity of law density of a diffusion and the running maximum of the first component[END_REF] 

A.2. Brownian motion case estimations

Let us recall the density of distribution of the pair (W * ,1 t , W 1 t ), where W 1 is a onedimensional Brownian motion and W * ,1 its running maximum (see e.g., Section 3.2 in Proof. Point (i) is proved by a development of both hands then an identification of the coefficients of the squared norms and scalar products: u 2 , v 2 , w 2 , u.v, u.w, v.w.

So we deduce (i') as the integral of

with respect to v up to b.

(ii) is a consequence of point (i) then an integration on R k of the Gaussian density with respect to dv.

is null at 0, has a null limit when u goes to

2 . Its derivative vanishes at 2/π and is negative for u ≤ 2/π and positive after. Then,

is negative for u ≤ 0.

A.3. Proof of Remark 2.3, boundary conditions of the PDE

Here we assume that p V is regular enough. Let µ 0 (dx) = f 0 (x)dx. Using Theorem 2.2, (6) means that: for all

where Σ = AA t . (i) Integrating by parts with respect to a convenient dx k in t 0 ∆LF (m, x)p V (m, x; s)dmdxds and noting that the support of p V (., .; s) is ∆, the boundary terms uniquely concern the component x 1 :

We again operate an integration by parts on the second term above on the right hand:

AUTHOR NAMES

Gathering these equalities yields

) with compact support in ∆ (so F (m, m, x) = 0) we deduce the equality in ∆ :

We use (60), ( 61) and (62) applied to

We now operate integration by parts on the last two terms: