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PDE FOR THE JOINT LAW OF THE PAIR OF A CONTINUOUS

DIFFUSION AND ITS RUNNING MAXIMUM

LAURE COUTIN, MONIQUE PONTIER,∗ IMT

Abstract

Let X be a d-dimensional diffusion and M the running supremum of its first

component. In this paper, we show that for any t > 0, the density (with

respect to the d + 1-dimensional Lebesgue measure) of the pair (Mt, Xt) is a

weak solution of a Fokker-Planck partial differential equation on the closed set

{(m,x) ∈ Rd+1, m ≥ x1}, using an integral expansion of this density.
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1. Introduction

The goal of this paper is to study the law of the pair (Mt, Xt) where X is a d-

dimensional diffusion and M is the running maximum of the first component. In a

previous work [9], using Malliavin calculus and specifically Nualart’s seminal book [21],

we have proved that, for any t > 0 the law of Vt := (Mt, Xt) is absolutely continuous

with respect to the Lebesgue measure with density pV (.; t), and that the support of

this density is included in the set {(m,x) ∈ Rd+1, m ≥ x1}.
In the present work, we prove that the density pV is a weak solution of a partial

differential equation (PDE). Furthermore, we exhibit a boundary condition on the set

{(m,x) ∈ Rd+1, m = x1}. This work extends the results given in [8] and in Ngom’s
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thesis [20] obtained in the case where X is a Lévy process and where it is proved that

the density is a weak solution to an integro-differential equation.

In the literature, there exist many studies on the law of Vt. When the process X is

a Brownian motion, one can refer to [15, 17] where an explicit expression of pV is

given. When X is a one-dimensional linear diffusion, [11] provides an expression of

pV using the scale function, the speed measure and the density of the law of some

hitting times. See also [1, 4] for the particular case of Ornstein-Uhlenbeck process.

For some applications to the local score of a biologic sequence, the case of reflected

Brownian motion is presented in [19]. The law of the maximumMt is studied in [2] for

general Gaussian processes. The case of a Lévy process X is deeply investigated in the

literature, see for instance [12, 20]. Moreover Section 2.4 in Ngom’s thesis [20] provides

the existence and the regularity of the joint law density of the process (Mt, Xt) for a

Lévy process X. In the case where X is a martingale (see e.g. [22, 13] or [10, 16]),

the law of the running maximum is provided. Such studies concerning this running

maximum are useful in financial area which involve hitting times, for instance for the

pricing of barrier option. It is known that the law of hitting times is closely related to

the one of the running maximum, see [6, 7, 23]. As an application of our work, think

of a firm the activity of which is characterized by a set of processes (X1, · · · , Xd). But

one of them, e.g., X1 could be linked to an alarm, namely: when there exists s ≤ t

such that X1
s exceeds a threshold a, that is equivalent to Mt = sup0≤s≤tX

1
s ≥ a,

some action is important to operate. So, the firm needs to know the law of such pair

(Mt, Xt); more specifically the law of the stopping time τa = inf{u,X1
u ≥ a}, is linked

to the law of M as following: {τa ≤ t} = {Mt ≥ a}. To know the probability of such

an alert, the law of the pair (Mt, Xt) will be useful.

We provide an infinite expansion of the density of the law of the pair (Mt, Xt) which

can leads to numerical approximation.

Let (Ω,F ,P) be a probability space endowed with a d-dimensional Brownian. Let

X be the diffusion process with values in Rd solution of

dXt = B(Xt)dt+A(Xt)dWt, t > 0 (1)

where X0 is a random variable independent of the Brownian motion W , with law µ0,

and A (resp. B) is a map from Rd to the set of (d × d) matrices (resp. to Rd). Let
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us denote Cib(R
d,Rn) the set of functions on Rd, which are i times differentiable,

bounded, with bounded derivatives, taking their values in Rn. Let F = (Ft, t ≥ 0)

be the completed right-continuous filtration defined by Ft := σ{X0, Ws, s ≤ t} ∨ N
where N is the set of negligible sets of F .

Under classical assumptions on A and B (cf.(4) and (5) below), then according to

[9], for all t > 0, the law of Vt = (supu≤tX
1
t , Xt) has a density with respect to the

Lebesgue measure on Rd+1.

The main results and notations are given in Section 2: in the d-dimensional case,

under a quite natural assumption (meaning Hypothesis 2.1 below) on the regularity

of pV around the boundary of ∆, pV is a weak solution of a Fokker-Planck PDE on

the subset of Rd+1 defined by {(m,x), m ≥ x1}. When A = Id, this assumption is

satisfied, see Theorem 2.4. The main results are proved in Section 3 under Hypothesis

2.1. Section 4 is devoted to prove that Hypothesis 2.1 is satisfied when A = Id. The

main tool is an infinite expansion of pV given in Proposition 3.2. In Section 5, one-

dimensional case, a Lamperti transformation [18] allows to get the main result for any

A ∈ C2
b (R,R). Finally Appendix contains some technical tools useful for the proofs of

main results.

2. Main results and some notations

In this section, we give our main results, the proofs will be given later on, as it is

mentioned in the introduction.

2.1. Notations

Let ∆ be the open set of RD+1 given by ∆ := {(m,x),m ∈ R, x ∈ Rd,m > x1, x =

(x1, · · · , xd)}. From now on, we use Einstein’s convention. The infinitesimal generator

L of the diffusion X defined in (1) is the partial differential operator on the space

C2(Rd,R) given by:

L = Bi∂xi +
1

2
(AAt)ij∂2xi,xj

. (2)

where At denotes the transposed matrix.

Its adjoint operator is L∗f = 1
2Σ

ij∂2ijf − [Bi − ∂j(Σ
ij)]∂if − [∂iB

i − 1
2∂

2
ij(Σ

ij)]f where

Σ := AAt. In what follows, the operatorsL and L∗ are extended to the space C2(Rd+1,R),
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for Φ ∈ C2(Rd+1,R) as

L(Φ)(m,x) = Bi(x)∂xiΦ(m,x) +
1

2
Σij(x)∂2xi,xj

Φ(m,x),

and L∗(Φ)(m,x) =

1

2
Σij(x)∂2ijΦ(m,x)− [Bi − ∂j(Σ

ij)](x)∂xiΦ(m,x) + [
1

2
∂2xi,xj

Σij − ∂xiB
i](x)Φ(m,x).

It can be stressed that these operators are degenerated since no derivative with respect

to the variable m appears.

Let A1(x) be the d dimensional vector A1(x) = (A1
j (x), j = 1, ..., d) ∈ Rd corresponding

to the first column of A(x), similarly Aj(x) denotes its jth line.

Recall that M denotes the running maximum of the first component of X , meaning

Mt = sup0≤s≤t{X1
s} and V is the Rd+1-valued process defined by (Vt = (Mt, Xt), ∀t ≥

0). Finally, x̃ ∈ Rd−1 denotes the vector (x2, ..., xd).

In [9], under Assumptions (4) and (5) below, when the initial value is deterministic,

X0 = x0 ∈ Rd, the density of Vt exists and is denoted pV (.; t, x0). If µ0 is the

distribution of X0, the density of the law of Vt with respect to the Lebesgue measure

on Rd+1 is

pV (.; t, µ0) :=

∫

Rd

pV (.; t, x0)dµ0(x0) (3)

When there is no ambiguity, the dependency in µ0 is omitted.

SinceMt ≥ X1
t , the support of pV (.; t, µ0) is contained in ∆̄ :=

{

(m,x) ∈ Rd+1|m ≥ x1
}

.

2.2. Mains results

The aim of this article is to show that the density pV is a weak solution of a Fokker-

Planck PDE. The coefficients B and A are assumed to satisfy

B ∈ C1
b (R

d,Rd) and A ∈ C2
b (R

d,Rd×d), (4)

and that there exists a constant c > 0 such that the Euclidean norm of any vector v

satisfies

c‖v‖2 ≤ vtA(x)At(x)v, ∀v, x ∈ Rd. (5)
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Our first result will be established under the following hypothesis which is a quite

natural assumption on the regularity of pV in the neighbourhood of the boundary

of ∆ since the set of times where the process M increases is included in the set

{t, Mt = Xt} :

Hypothesis 2.1. The density of the law of Vt = (Mt, Xt), denoted by pV (3), satisfies

(i) the map (t,m, x̃) 7→ supu>0 pV (m,m− u, x̃; t) belongs to L1([0, T ]× Rd, dtdmdx̃).

(ii) for all t > 0 almost surely in (m, x̃) ∈ Rd, limu→0+ pV (m,m− u, x̃; t) exists and is

denoted by pV (m,m, x̃; t).

Theorem 2.2. Assume that A and B fulfil (4) and (5) and that (M,X) fulfils Hy-

pothesis 2.1. Then, for all initial law µ0 and F ∈ C2
b (R

d+1,R):

E [F (Mt, Xt)) = E
[

F (X1
0 , X0)

]

+

∫ t

0

E [L (F ) (Ms, Xs)] ds

+
1

2

∫ t

0

E

[

∂mF (X
1
s , Xs)‖A1(Xs)‖2

pV (X
1
s , Xs; s)

pX(Xs; s)

]

ds. (6)

Actually pX is the solution of the PDE ∂tp = L∗p, p(.; 0) = µ0, where

L∗f = 1
2Σ

ij∂2ijf − [Bi − ∂j(Σ
ij)]∂if − [∂iB

i − 1
2∂

2
ij(Σ

ij)]f . Let aij := Σij ,

ai := [Bi − ∂j(Σ
ij)]∂i, and a0 := ∂iB

i − 1
2∂

2
ij(Σ

ij). Under Assumptions (4) and (5),

the operator L∗ satisfies all the assumptions of Theorem 3.5 [14] (see (3.2) (3.3) 3.4)

page 177). As a consequence of Theorem 3.5 line 14 pX(x; s) > 0.

Remark 2.1. (i) When A is the identity matrix of Rd (denoted by Id) and B ∈
C1
b (R

d,Rd), Hypothesis 2.1 is fulfilled, see Theorem 2.4 below. When d = 1, using

a Lamperti transformation [18], one proves that Hypothesis 2.1 is always fulfilled, see

Section 5.

(ii) This result is similar to Theorem 2.1 in [8] where the process X is a Lévy

process. Proposition 4 in [8] gives a key of the last term in (6) with factor 1
2 . Firstly,

roughly speaking, the local behaviour of X1
t − X1

s conditionally to Fs is the one of

‖A1(Xs)‖(W 1
t −X1

s ). So, as in the Brownian case, the running maximum M of X1 is

increasing as soon as it is equal to X1 and both M and X1 are increasing; it is well

known that the Brownian processW 1 is increasing with probability 1
2 ,more specifically,

we have P{limt→s+
W 1

t −W 1
s

t−s = −∞} = P{limt→s+
W 1

t −W 1
s

t−s = +∞} = 1
2 .

The starting point of the proof of Theorem 2.2 is the Itô’s formula: let F belong
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to C2
b (R

d+1,R). The process M is increasing, hence V = (M,X) is a semi-martingale.

Applying Itô’s formula to F (V ) and taking expectation of both members,

E [F (Vt)] = E [F (V0)] +

∫ t

0

E [L(F )(Vs)] ds+ E

[∫ t

0

∂mF (Vs)dMs

]

.

The novelty comes from the third term of the right member of the previous equation.

The following theorem proved in Section 3 achieves the proof of Theorem 2.2.

Theorem 2.3. Assume that A and B fulfil (4) and (5) and that (M,X) fulfils Hy-

pothesis 2.1. For all Ψ ∈ C1
b (R

d+1,R), let Fψ be the map

Fψ : t 7→ E

[

∫ t

0 Ψ(Ms, Xs)dMs

]

. Then FΨ is absolutely continuous with respect to the

Lebesgue measure and its derivative is

ḞΨ(t) =
1

2

∫

Rd

Ψ(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃.

Remark that, as it is expressed in Theorem 2.2, this derivative can be written

1

2
E

[

Ψ(X1
t , Xt)‖A1(Xt)‖2

pV (X
1
t , Xt; t)

pX(Xt; t)

]

.

Remark 2.2. The above proposition provides an explicit formulation of the derivative

of the function FΨ. Note that the absolute continuity of Fψ could be established as

a direct consequence of the existence of the density of the law of the hitting time

τa = inf{s : X1
s ≥ a} when it exists, using the identity {τa ≤ t} = {Mt ≥ a}.

Conversely, it could be proved that the absolute continuity of FΨ yields the existence

of the density of the law of the hitting time τa, using a sequence of C2
b (R,R) functions

(Fn) approximating the indicator function 1[a,∞), namely this density satisfies fτa(t) =

1
2

∫

Rd−1 pV (a, a, x̃; t)dx̃.

Theorem 2.4. Assume that A = Id and B satisfies Assumption (4) then, for all t > 0

the distribution of the pair (Mt, Xt) fulfils Hypotheses 2.1. As a consequence, for all

F ∈ C2
b (R

d+1,R)

E [F (Mt, Xt)] = E
[

F (X1
0 , X0)

]

+

∫ t

0

E [L (F ) (Ms, Xs)] ds

+
1

2

∫ t

0

E

[

∂mF (X
1
s , Xs)

pV (X
1
s , Xs; s)

pX(Xs; s)

]

ds.

Proof. This theorem is a consequence of Theorem 2.2 and Proposition 4.1. �
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When d = 1 a Lamperti transformation leads to the following corollary:

Corollary 1. Assume that d = 1, A and B satisfies (4) and (5), the density pV

satisfies Hypothesis 2.1 so

E [F (Mt, Xt)] = E [F (X0, X0)] +

∫ t

0

E [L (F ) (Ms, Xs)] ds

+
1

2

∫ t

0

E

[

A2(Xs)∂mF (Xs, Xs)
pV (Xs, Xs; s)

pX(Xs; s)

]

ds.

Remark 2.3. If pV is regular enough, and if the initial law of X0 satisfies µ0(dx) =

f0(x)dx, then Theorem 2.2 means that pV is a weak solution in the set ∆ of ∂tp = L∗p

where L∗f = 1
2Σ

ij∂2ijf−[Bi−∂j(Σij)]∂if−∂iBi− 1
2∂

2
ij(Σ

ij))f with boundary condition

B1(m, x̃)pV (m,m, x̃; s) = ∂xk
(Σ1,kpV )(m,m, x̃; s) +

1

2
∂m(‖A1‖2pV )(m,m, x̃; s). (7)

This result is proved in Appendix A.3

This boundary condition also appears in Proposition 4 Equation (11) of [4] (Ornstein

Uhlenbeck process). Finally, a similar PDE is studied in Chapter 1.2 of [14] where the

authors have established the existence of a unique strong solution of this PDE, but in

case of a non degenerate elliptic operator.

3. Proof of Theorem 2.3

We start this section with a road map of the proof of Theorem 2.3. Firstly we

compute the right derivative of the application FΨ : t 7→ E[
∫ t

0 Ψ(Ms, Xs)dMs], namely

limh→0+ Th,t with Th,t =
1
hEP[

∫ t+h

t
ψ(Vs)dMs]. A first step is the decomposition

Th,t =
1

h
EP[

∫ t+h

t

(ψ(Vs)− ψ(Vt))dMs] +
1

h
EP[ψ(Vt)(Mt+h −Mt)]. (8)

Since ψ ∈ C1
b (R

d+1,R) and the process M is increasing, the first term in (8), is

dominated by:

E

[

∫ t+h

t

(ψ(Vs)− ψ(Vt))dMs

]

≤ ‖∇ψ‖∞E

[

sup
t≤s≤t+h

‖Vs − Vt‖(Mt+h −Mt)

]

.

Lemma 3.1 states that supt≤s≤t+h ‖Xs −Xt‖p = O(
√
h) and Lemma 3.2 yields

‖Mt+h −Mt‖p = o(
√
h) so that that this first term is an o(h).
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Concerning the second term in (8), Mt+h−Mt can be written as sup0≤u≤h(X
1
t+h−

X1
t −Mt + X1

t )+. In order to use the independence of the increments of Brownian

motion we introduce a new process, independent of Ft, which is an approximation of

X1
t+u −X1

t :

X1
t,u := A1

k(Xt)Ŵ
k
u where Ŵ k

u :=W k
t+u −W k

t ; Mt,h := sup
0≤u≤h

X1
t,u. (9)

Lemma 3.4 (ii) will set E
[

|Mt+h −Mt − (Mt,h −Mt +X1
t )+|

]

= o(h), where (x)+ =

max(x, 0). Thus

1

h
E[ψ(Vt)(Mt+h −Mt)] = E[ψ(Vt)(Mt,h −Mt +X1

t )+] + o(h) (10)

Remark that the law ofMt,h given Ft is the law of ‖A1(Xt)‖ sup0≤u≤h Ŵ 1
u , then using

the function H (13), a Ft conditioning yields:

1

h
E[ψ(Vt)(Mt+h −Mt)] =

2√
h
E

[

Ψ(Vt)‖A1(Xt)‖H(
Mt −X1

t√
h‖A1(Xt)‖

)

]

+ o(h). (11)

Then Th,t =
2√
h
E

[

Ψ(Vt)‖A1(Xt)‖H(
Mt−X1

t√
h‖A1(Xt)‖

)
]

+ o(h) as it appears in Proposition

3.1 (ii).

In Proposition 3.2, under Hypothesis 2.1, we compute limh→0 Th;t.

Finally in Section 3.4 we prove Fψ : t 7→ E[
∫ t

0 ψ(Vs)dMs] is an absolutely continuous

function with respect to Lebesgue measure, integral of its right derivative. Actually we

prove that Fψ is a continuous function belonging to the Sobolev space W 1,1(I), I =

(0, T ). This achieves the proof of Theorem 2.3.

The main propositions to prove are

Proposition 3.1. Let B and A fulfil (4) and (5) and let Ψ ∈ C1
b (R

d+1,R). Recall

that A1 is the vector (A1
j , j = 1, ..., d), and ‖A1(x)‖2 =

∑d
j=1(A

1
j (x))

2.

(i) for all T > 0, there exists a constant C > 0, (depending on ‖A‖∞, ‖B‖∞, ‖∇A‖∞,
‖Ψ‖∞, ‖∇Ψ‖∞ and T ) such that ∀t ∈ [0, T ], h ∈ [0, 1],

∣

∣

∣

∣

∣

E

[

∫ t+h

t
Ψ(Vs)dMs − 2

√
h

(

Ψ(Vt)‖A1(Xt)‖H(
Mt −X1

t√
h‖A1(Xt)‖

)

)]∣

∣

∣

∣

∣

≤ Ch‖∇Ψ‖∞, (12)

(ii) for all t > 0, h ∈ [0, 1],

lim
h→0+

1

h

∣

∣

∣

∣

∣

E

[

∫ t+h

t

Ψ(Vs)dMs

]

− 2
√
hE

[

Ψ(Vt)‖A1(Xt)‖H(
Mt −X1

t√
h‖A1(Xt)‖

)

]

∣

∣

∣

∣

∣

= 0,

where, denoting by ΦG the standard Gaussian cumulative distribution function,

H(θ) :=

∫ ∞

θ

1√
2π

(y − θ)e−
y2

2 dy =
e−

θ2

2√
2π

− θΦG(−θ). (13)
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The following remark will be useful:

Remark 3.1. The definition of H in (13) implies that
∫∞
0 H(u)du = 1/4 Moreover,

H′(θ) = −ΦG(−θ) ≤ 0, in particular H is non increasing.

Proposition 3.2. Assume that A and B fulfil (4) and (5) and that (M,X) fulfils

Hypothesis 2.1, then for all Ψ ∈ C1
b (R

d+1,R), for all 0 < T and for all t ≥ 0 :

(i)t 7→ sup
h>0

2
√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H(
Mt −X1

t√
h‖A1(Xt)‖

)

]

∈ L1([0, T ],R),

(ii) lim
h→0+

2
√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H(
Mt −X1

t√
h‖A1(Xt)‖

)

]

=
1

2

∫

Rd

Ψ(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃

As a corollary, the function t → 1
2

∫

Rd Ψ(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃ be-

longs to L1([0, T ],R).

The proof of Proposition 3.1 will be obtained with the lemmas in the following section.

3.1. Tools for proving Proposition 3.1

Here we provide some estimations of the expectations of the increments of the

processes X and M . Assumptions (4) and (5) allow us to introduce a constant K

which denotes either max(‖A‖∞, ‖B‖∞) or max(‖A‖∞, ‖B‖∞, ‖∇A‖∞). Let Cp be

the constant in the Burkholder-Davis-Gundy inequality (cf. Theorem B.36 in [3]).

Lemma 3.1. Let A and B be bounded. Then, for all 0 < h ≤ 1, for all p ≥ 1 there

exists a constant Cp,K (depending only on p and K) such that:

sup
t>0

E

[

sup
0≤s≤h

‖Xt+s −Xt‖p
]

≤ Cp,Kh
p/2.

Proof. Using the fact that (a+ b)p ≤ 2p−1 [ap + bp] , a, b ≥ 0, one obtains:

0 ≤ sup
s≤h

‖Xt+s −Xt‖p ≤ 2p−1

[

sup
u≤h

(

‖
∫ t+u

t

B(Xs)ds‖
)p

+ sup
u≤h

(

‖
∫ t+u

t

Aj(Xs)dW
j
s ‖
)p
]

.

Taking expectation of both members, the Burkholder-Davis-Gundy inequality implies

E[sup
s≤h

‖Xt+s−Xt‖p] ≤ 2p−1(1+Cp)E





(

∫ t+h

t

‖B(Xs)‖ds
)p

+

(

∫ t+h

t

‖A(Xs)‖2ds
)p/2



 .
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Assumption (4) on B and A yields E[sups≤h ‖Xt+s −Xt‖p] ≤ 2p−1(1 + Cp)(h
pKp +

hp/2Kp). �

Lemma 3.2. Let B and A satisfy Assumptions (4) and (5). Then, for all 0 < h ≤ 1,

for all p ≥ 1 we get:

sup
t>0

E[|Mt+h −Mt|p] ≤ Cp,Kh
p/2 ; E[|Mt+h −Mt|p] = o(hp/2). (14)

Proof. Recall Mt+h −Mt =
(

sup0≤u≤h(X
1
t+u −X1

t ) +X1
t −Mt

)

+
recalling (x)+ =

max(x, 0). For any a ≥ 0, one has (x − a)+ ≤ |x|1{x>a}, thus

0 ≤Mt+h −Mt ≤ | sup
0≤u≤h

(X1
t+u −X1

t )|1{sup0≤u≤h(X
1
t+u−X1

t )>Mt−X1
t }.

Cauchy-Schwartz’s inequality yields:

0 ≤ E [(Mt+h −Mt)
p] ≤

√

E

[

| sup
0≤u≤h

(X1
t+u −X1

t )|2p
]

P({ sup
0≤u≤h

(X1
t+u −X1

t ) > Mt −X1
t }).

Replacing p by 2p in Lemma 3.1 leads to the inequality in (14) and the equality

limh→0 sup0≤u≤h(X
1
t+u −X1

t ) = 0 holds almost surely. According to Theorem 1.1 in

[9] extended to X0 with law µ0 on Rd, the pair (Mt, Xt) admits a density, thus

P{Mt−X1
t = 0} = 0 holds almost surely. Therefore E ([Mt+h −Mt]

p
) is bounded by

the product of hp/2 and a factor going to zero when h goes to 0, and this quantity is

an o(hp/2). �

For any fixed t we recall the process (Xt,u, u ∈ [0, h]) and the running maximum

of its first component as follows:

Xt,u :=
∑

j

Aj(Xt)Ŵ
j
u , Mt,h := sup

0≤u≤h
X1
t,u. (15)

Lemma 3.3. Under Assumptions (4) and (5), for all p ≥ 1 there exists a constant

Cp,K such that such that for all t ≤ T , for all h ∈ [0, 1]:

E

[

sup
s≤h

|X1
s+t −X1

t −X1
t,s|p

]

≤ Cp,Kh
p.

Proof. By definition, recalling Ŵu :=Wt+u −Wt, u ≥ 0, we obtain

X1
s+t −X1

t −X1
t,s =

∫ s

0

B1(Xu+t)du +

∫ s

0

[

A1(Xu+t)−A1(Xt)
]

dŴu.
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Using once again (a+ b)p ≤ 2p−1(ap + bp), a, b ≥ 0, we get

sup
0≤s≤h

|X1
s+t −X

1
t −X

1
t,s|

p ≤

2p−1

[(
∫ h

0

‖B1(Xu+t)‖du

)p

+ sup
0≤s≤h

∥

∥

∥

∥

∫ s

0

[

A
1(Xu+t)−A

1(Xt)
]

dŴu

∥

∥

∥

∥

p]

.

Taking expectation of both sides and applying the Burkholder-Davis-Gundy inequality

yield with Dp = 2p−1(1 + Cp):

E

[

sup
0≤s≤h

|X1
s+t −X1

t −X1
t,s|p

]

≤ Dp

(

E

[∫ h

0

‖B1(Xu+t)‖du
]p

+ E

∣

∣

∣

∣

∫ h

0

‖A1(Xu+t)− A1(Xt)‖2du
∣

∣

∣

∣

p/2
)

.

The first term above is bounded by Kphp since B is bounded. The assumption

that A belongs to C1
b (R

d,Rd×d) and Jensen’s inequality imply that the second term is

bounded by Kphp/2−1
∫ h

0
E‖Xu+t −Xt‖pdu thus

E

[

sup
0≤s≤h

|X1
s+t −X1

t −X1
t,s|p

]

≤ DpK
php/2−1

(

hp/2+1 +

∫ h

0

E‖Xu+t −Xt‖pdu
)

.

From Lemma 3.1 we obtain the uniform upper bound: E[‖Xu+t −Xt‖p] ≤ Cp,Ku
p/2

hence

E

[

sup
s≤h

|X1
s+t −X1

t −X1
t,s|p

]

≤ DpK
pCp,K

p
2 + 1

hp.

�

Lemma 3.4. Under Assumptions (4) and (5), one has

(i) ∃C > 0 sup
0≤t≤T ; 0≤h≤1

h−1E

[∣

∣

∣Mt+h −Mt −
(

Mt,h −Mt +X1
t

)

+

∣

∣

∣

]

≤ C <∞,

(ii) lim
h→0+

h−1E

[∣

∣

∣Mt+h −Mt −
(

Mt,h −Mt +X1
t

)

+

∣

∣

∣

]

= 0.

Proof. Fistly remark

∀a ∈ R,
∣

∣(x− a)+ − (y − a)+
∣

∣ ≤ |x− y|
[

1{x>a} + 1{y>a}
]

, (16)

and if f and g are functions on [0, T ], then

∀s ∈ [0, T ], f(s)− sup
0≤u≤T

g(u) ≤ f(s)− g(s) ≤ |f(s)− g(s)| ≤ sup
v≤T

|f(v)− g(v)|,

hence sups≤T f(s) − supu≤T g(u) ≤ supv≤T |f(v) − g(v)|. Here the role of f and g is

symmetrical so sups≤T g(s)− supu≤T f(u) ≤ supv≤T |f(v)− g(v)|, and
∣

∣

∣

∣

sup
s≤T

g(s)− sup
u≤T

f(u)

∣

∣

∣

∣

≤ sup
v≤T

|f(v)− g(v)|. (17)
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We now consider Mt+h −Mt =
(

sup0≤u≤h(X
1
u+t −X1

t )−Mt +X1
t

)

+
, using (16)

∣

∣

∣Mt+h −Mt −
(

Mt,h −Mt +X1
t

)

+

∣

∣

∣ ≤
∣

∣

∣

∣

sup
0≤u≤h

(X1
u+t −X1

t )−Mt,h

∣

∣

∣

∣

[

1{sup0≤u≤h(X
1
u+t−X1

t )>Mt−X1
t } + 1{Mt,h>Mt−X1

t }

]

.

Then, for any t fixed, we apply inequality (17) to the maps g : u 7→ X1
u+t−Xt

1 and

f : u 7→ X1
t,u. Then

∣

∣

∣Mt+h −Mt −
(

Mt,h −Mt +X1
t

)

+

∣

∣

∣ ≤

sup
0≤u≤h

∣

∣X1
u+t −X1

t −X1
t,u

∣

∣

[

1{sup0≤u≤h(X
1
u+t−X1

t )>Mt−X1
t } + 1{Mt,h>Mt−X1

t }

]

.

From Cauchy-Schwartz’s inequality and the fact that (a+ b)2 ≤ 2(a2 + b2), we get

E

[∣

∣

∣Mt+h −Mt −
(

Mt,h −Mt +X1
t

)

+

∣

∣

∣

]

≤
√

2E

[

sup
u≤h

∣

∣X1
u+t −X1

t −X1
t,u

∣

∣

2
](

P{ sup
0≤u≤h

(X1
u+t −X1

t ) > Mt −X1
t }+ P{Mt,h > Mt −X1

t }
)

.

Lemma 3.3 with p = 2 insures that the map h 7→ h−1

√

2E
[

supu≤h
∣

∣X1
u+t −X1

t −X1
t,u

∣

∣

2
]

is uniformly bounded in t. Concerning the second factor,

• firstly the almost sure continuity with respect to h insures that the quantities

limh→0 sup0≤u≤h(X
1
u+t −X1

t ) and limh→0Mt,h are equal to 0;

• secondly the law of the pair (Mt, Xt) admits a density with respect to the Lebesgue

measure on ∆̄ according to Theorem 1.1 [9] so P({0 =Mt−X1
t }) = 0 and the limit of

the second factor is equal to 0.

This concludes the proof of the lemma. �

Recall Definition (15): Xt,h = Aj(Xt)[W
j
t+h −W j

t ], Mt,h = sup
0≤u≤h

X1
t,u, h ∈ [0, 1].

Lemma 3.5. Under Assumptions (4) and (5), with H defined in (13):

E
[

(Mt,h −Mt +X1
t )+|Ft

]

= 2‖A1(Xt)‖
√
hH

(

Mt −X1
t

‖A1(Xt)‖
√
h

)

.

Proof. For any t fixed, conditionally to Ft the process (X1
t,u, u ∈ [0, h]) (9) has

the same law as (
√
h‖A1(Xt)‖Ŵu, u ∈ [0, 1]) where Ŵ is a Brownian motion in-

dependent of Ft, and for any h, the random variable Mt,h has the same law as
√
h‖A1(Xt)‖ supu≤1 Ŵu.

Following [17] Section 3.1.3, the random variable supu≤1 Ŵu has the same law
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as |G| where G is a standard Gaussian variable (independent of Ft), with density

2√
2π
e−

z2

2 1[0,+∞[(z). Then using the function H introduced in (13)

E
[

(Mt,h − (Mt −X1
t ))+|Ft

]

=

∫ ∞

0

(

‖A1(Xt)‖
√
hz − (Mt −X1

t )
)

+

2√
2π
e−

z2

2 dz

= 2‖A1(Xt)‖
√
hH(

Mt −X1
t√

h‖A1(Xt)‖
).

�

3.2. Proof of Proposition 3.1

Let t > 0. The key of this proof is to write the quantity

E

[

∫ t+h

t

Ψ(Vs)dMs

]

− 2
√
hE

[

Ψ(Vt)‖A1(Xt)‖H(
Mt −X1

t√
h‖A1(Xt)‖

)

]

as the sum of three terms,

E

[

∫ t+h

t

(Ψ(Vs)−Ψ(Vt))dMs

]

+ E

[

Ψ(Vt)
(

(Mt+h −Mt)− E
[

Mt,h −Mt +X1
t )+|Ft

]

)]

(18)

+ E

[

Ψ(Vt)E
[

(Mt,h −Mt +X1
t )+ | Ft

]

− 2
√
hΨ(Vt)‖A1(Xt)‖H(

Mt −X1
t√

h‖A1(Xt)‖
)

]

.

We now prove that each terms in sum (18) are both o(h) and O(h) uniformly in time.

(a) Using Lemma 3.5 the third term is null.

(b) Concerning the second term, using the fact that Ψ is bounded and Lemma 3.4 (i)

for all t ∈ [0, T ]

∣

∣E
[

Ψ(Vt)[(Mt+h −Mt)− E[(Mt,h −Mt +X1
t )+ | Ft]

]∣

∣ ≤

‖Ψ‖∞
∣

∣E
[

Mt+h −Mt − E[(Mt,h −Mt +X1
t )+|Ft]

]∣

∣≤ Ch‖Ψ‖∞,

as it is required in (12). Moreover using Lemma 3.4 (ii)

lim
h→0

1

h

∣

∣E
[

Ψ(Vt)[(Mt+h −Mt)− E[(Mt,h −Mt +X1
t )+ | Ft]

]∣

∣ = 0.

(c) Since ∇Ψ is bounded and the process M is increasing, the first term is bounded:

E

[

∫ t+h

t

[Ψ(Vs)−Ψ(Vt)]dMs

]

≤ ‖∇Ψ‖∞E[ sup
t≤s≤t+h

‖Vs − Vt‖(Mt+h −Mt)].
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Using Cauchy-Schwarz’s inequality

E

[

sup
t≤s≤t+h

‖Vs − Vt‖(Mt+h −Mt)

]

≤
√

E[ sup
t≤s≤t+h

‖Vs − Vt‖2]E[(Mt+h −Mt)2].

Since ‖Vs − Vt‖2 = (Ms −Mt)
2 + ‖Xs −Xt‖2, we obtain

supt≤s≤t+h ‖Vs − Vt‖2 ≤ (Mt+h −Mt)
2 + supt≤s≤t+h ‖Xs −Xt‖2, hence

E[ sup
t≤s≤t+h

‖Vs−Vt‖(Mt+h−Mt)] ≤
√

E[(Mt+h −Mt)2] + E[ sup
t≤s≤t+h

‖Xs −Xt‖]2)
√

E[(Mt+h −Mt)2]

Lemmas 3.1 and 3.2 (p = 2) yield the fact that the first factor is an o(
√
h) and

the second is an O(
√
h) uniformly with respect to t ≥ 0. Then E[supt≤s≤t+h ‖Vs −

Vt‖(Mt+h −Mt)] is an o(h) and an O(h) uniformly with respect to t ≥ 0. �

3.3. Proof of Proposition 3.2

(i) Recall that A and B fulfil (4), (5) and (M,X) fulfils Hypothesis 2.1. Then, using

the density pV of the law of the pair (Mt, Xt) we have

E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

≤

‖Ψ‖∞‖A‖∞
∫

Rd+1

H
(

m− x1√
h‖A1(x1, x̃)‖

)

pV (m,x
1, x̃; t)dm dx1 dx̃.

The change of variable x1 = m− u
√
h yields

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

≤ (19)

‖Ψ‖∞‖A1‖∞
∫

Rd×[0,+∞[

H
(

u

‖A1(m−
√
hu, x̃)‖

)

pV (m,m−
√
hu, x̃; t)dm dx̃ du.

Since H is decreasing (Remark 3.1) and 0 ≤ h ≤ 1, H
(

u
‖A1(m−

√
hu,x̃)‖

)

≤ H( u
‖A1‖∞

) :

∣

∣

∣

∣

∣

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

∣

∣

∣

∣

∣

≤

‖Ψ‖∞‖A1‖∞
∫

Rd×[0,+∞[

H
(

u

‖A1‖∞

)

sup
r>0

pV (m,m− r, x̃; t)dm dx̃ du.

Applying Tonelli’s Theorem, computing the integral with respect to du in the right-

hand with
∫∞
0 H(v)dv = 1/4 (Remark 3.1), yield:

sup
h>0

∣

∣

∣

∣

∣

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]∣

∣

∣

∣

∣

≤ 1

4
‖Ψ‖∞‖A1‖2∞

∫

Rd
sup
r>0

pV (m,m− r, x̃; t)dm dx̃.
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Using Hypothesis 2.1 (i), we obtain that the map:

t 7→ sup
h>0

∣

∣

∣

∣

∣

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

∣

∣

∣

∣

∣

belongs to L1([0, T ],R). Point (i) of Proposition 3.2 is proved.

(ii) Concerning the proof of point (ii), firstly note that

E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

=

∫

Rd+1
Ψ(m, x)‖A1(x)‖H

(

m− x1

√
h‖A1(x)‖

)

pV (m, x; t)dm dx.

After the change of variable x1 = m− u
√
h, we obtain

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

= (20)

∫

Rd×R+
Ψ(m,m − u

√
h, x̃)‖A1(m− u

√
h, x̃)‖H

(

u

‖A1(m −
√
hu, x̃)‖

)

pV (m,m −
√
hu, x̃; t)dm dx̃ du.

Using Lebesgue’s dominated convergence Theorem, we let h go to 0 in (20) for t > 0,

and using the fact that Ψ, A and H are continuous and Hypothesis 2.1 (ii) we obtain

lim
h→0

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −Xt√
h‖A1(Xt)‖

)]

=

∫

Rd×[0,+∞[

Ψ(m,m, x̃)‖A1(m, x̃)‖H
(

u

‖A1(m, x̃)‖

)

pV (m,m, x̃; t)dm dx̃ du.

Using the change of variable z = u
‖A1(m,x̃)‖ , and Remark 3.1

∫∞
0

H(z)dz = 1/4, yields

lim
h→0

√
h

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)]

=
1

4

∫

Rd
Ψ(m,m, x̃)‖A1(m, x̃)‖2pV (m,m,x̃; t)dm dx̃.

�

3.4. End of proof of Theorem 2.3

We recall Theorem 8.2 page 204 in Brezis [5]: let f ∈ W 1,1(0, T ), then f is almost

surely equal to an absolutely continuous function. As a particular case, any f ∈
W 1,1(0, T ) ∩ C(0, T ) is absolutely continuous. Recall Fψ : t 7→ E

[

∫ t

0
Ψ(Vs)dMs

]

.

Lemma 3.6. Assume that A and B fulfil (4) and (5) and that Ψ is a continuous

bounded function. Then FΨ is a continuous function on R+.

Proof. Let 0 ≤ s ≤ t. Since Ψ is bounded and M is non decreasing

|FΨ(t)− FΨ(s)| =
∣

∣

∣

∣

E

[∫ t

s

Ψ(Vu)dMu

]∣

∣

∣

∣

≤ ‖Ψ‖∞E[Mt −Ms].

The map t 7→ E[Mt] being continuous, FΨ is a continuous function on R+. �
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Lemma 3.7. Assume that A and B fulfil (4) and (5), (M,X) fulfils Hypothesis 2.1

and Ψ ∈ C1
b . Then for all T > 0, the map Fψ belongs to the Sobolev space W 1,1(]0, T [)

and its weak derivative is

ḞΨ(t) :=
1

2

∫

Rd

Ψ(m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃

Proof. Let g : [0, T ] → R be C1 with compact support [α, β] ⊂ (0, T ). This means

both functions g and ġ are continuous so bounded and that moreover g(α) = g(β) = 0.

Note that ġ(t) = limh→0
g(t)−g(t−h)

h , ∀t ∈ (0, T ). Moreover,

supt∈[0,T ] suph∈[0,1] | g(t)−g(t−h)h | ≤ ‖ġ‖∞. Observe that, since M is non decreasing and

the coefficients A and B are bounded |Fψ(t)| ≤ ‖Ψ‖∞E[MT ] <∞.

Then, using Lebesgue’s dominated convergence Theorem
∫ T

0

ġ(s)Fψ(s)ds =

∫ T

0

lim
h→0

g(s)− g(s− h)

h
Fψ(s)ds = lim

h→0

∫ T

0

g(s)− g(s− h)

h
Fψ(s)ds.

Using the change of variable u = s− h in the last integral
∫ T

0

g(s)− g(s− h)

h
FΨ(s)ds = h−1

∫ T

0

g(s)FΨ(s)ds− h−1

∫ T−h

−h
g(u)FΨ(u + h)du

=

∫ T

0

g(s)
FΨ(s)− FΨ(s+ h)

h
ds−h−1

∫ 0

−h
g(s)FΨ(s+ h)ds+h−1

∫ T

T−h
g(s)FΨ(s+ h)ds.

Recalling supp(g) = [α, β] ⊂ (0, T ), gFΨ is bounded on [0, T ] extended by 0 on [α, β]c

so lims→0 g(s) = lims→T g(s) = 0 then h−1
∫ 0

−h g(s)FΨ(s+h)ds = h−1
∫ T

T−h g(s)Fψ(s+

h)ds = 0 as soon as 0 < h ≤ T − β thus limh→0

[

h−1
∫ 0

−h g(s)FΨ(s+ h)ds
]

=

limh→0

[

h−1
∫ T

T−h g(s)Fψ(s+ h)ds
]

= 0 Applying Lebesgue’s dominated convergence

Theorem yields, F admits a weak derivative:
∫ T

0

ġ(s)Fψ(s)ds = −
∫ T

0

g(s)ḞΨ(s)ds.

Using Proposition 3.1 (ii)

lim
h→0+

(

−FΨ(t)− FΨ(t+ h)

h
− 2√

h
E

[

Ψ(Vt)‖A1(Xt)‖H
(

Mt −X1
t√

h‖A1(Xt)‖

)])

= 0.

Using Proposition 3.2 (ii):

−ḞΨ(t+) := lim
h→0,h>0

FΨ(t)− FΨ(t+ h)

h
= −1

2

∫

Rd

Ψ(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃,

and the points (i) of Propositions 3.1 and 3.2:

sup
h>0

∣

∣

∣

∣

FΨ(t)− FΨ(t+ h)

h

∣

∣

∣

∣

∈ L1([0, T ], dt),
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so ḞΨ ∈ L1([0, T ],R).

According to [5] Chap 8 section 2 page 202, FΨ belongs to W 1,1(]0, T [,R). �

We now end the proof of Theorem 2.3: According to Theorem 8.2 page 204 of [5],

Fψ is equal almost surely to an absolutely continuous function. Since FΨ is continuous

(Lemma 3.6), the equality holds everywhere. Then FΨ is an absolutely continuous

function and its derivative is its right derivative. �

4. Case A = Id

In this rather technical section, we firstly prove that the density of the pair (Mt, Xt)

fulfils Hypothesis 2.1: pV (3) is continuous on the boundary of ∆̄ and is dominated by

an integrable function:

Proposition 4.1. Assume that B fulfils Assumption (4) and A = Id, then (M,X)

fulfils Hypothesis 2.1 meaning that for all probability measure µ0 on Rd

(i) ∀T > 0, sup
(h,u)∈[0,1]×R+

pV (b, b− hu, ã; t, µ0) ∈ L1([0, T ]× Rd, dtdbdã).

(ii) Almost surely in (m, x̃) ∈ Rd, ∀t > 0, lim
u→0,u>0

pV (m,m− u, x̃; t, µ0) = pV (m,m, x̃; t, µ0).

As a by product using Theorems 2.2 and 2.3 this proposition achieves the proof of The-

orem 2.4. The main tool for the proof of this proposition is an integral representation

of the density:

Proposition 4.2. For any probability measure µ0 on Rd, for all t > 0,

pV = p0 −
∑

k=m,1,··· ,d
(pk,α + pk,β) (21)

where the various p are defined by (∂k is the derivative with respect to k = m,x1, ..., xd

and Bm = B1):

p0(m,x; t) :=

∫

Rd

pW∗1,W (m− x10, x− x0; t)µ0(dx0),

pk,α(m,x; t) :=

∫ t

0

∫

Rd+1

1b<mB
k(a)∂kpW∗1,W

(

m− a1, x− a; t− s
)

pV (b, a; s)dbdads,

pk,β(m,x; t) :=

∫ t

0

∫

R(d+1)

1b<mB
k(a)∂kpW∗1,W (b− a1, x− a; t− s)pV (m, a; s)dbdads,
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where pW∗1,W (., .; t) is the density of the distribution of (sups≤tW
1
s ,Wt) for t ≥ 0, see

Appendix A.2

4.1. Integral representation of the density: proof of Proposition 4.2

Let t > 0 be fixed. Firstly, we assume that µ0 = δx0 , x0 being fixed in Rd.

According to Lemma 4.2 below and using the fact that B is bounded, ∀t ∈ [0, T ], the

functions pk,γ ∈∞ L
(

[0, T ], L1(Rd+1)
)

for γ = α, β .

Let F ∈ C1
b (R

d+1,R) with compact support. We will prove

EP[F (Mt, Xt)] =

∫

Rd+1

F (m,x)



p0 −
∑

k=m,x1,...,xd

(pk,α + pk,β)(m,x, t)



 dmdx. (22)

Using Malliavin calculus we obtain the following decomposition:

Lemma 4.1.

EP [F (Mt,Xt)] =

∫

Rd+1
F (x1

0 + b, x0 + a)pW∗1,W (b, a; t)dbda

+

∫ t

0

EP

[∫

Rd+1
∂mF

(

X1
s + b,Xs + a

)

1{Ms<X1
s+b}B

1(Xs)pW∗1,W (b, a; t− s)dbda

]

ds

+

∫ t

0

EP

[∫

Rd+1
∂kF

(

max
(

Ms,X
1
s + b

)

, Xs + a
)

Bk(Xs)pW∗1,W (b, a; t− s)dbda

]

ds.

Proof. Let Z be the exponential martingale solution of

Zt = 1 +

∫ t

0

ZsB
k(x0 +Ws)dW

k
s . (23)

As previously Einstein’s convention is used. Let Q = ZP, according to Girsanov’s

Theorem, using (23), WB :=
(

W k
t −

∫ t

0
Bk(x0 +Ws)ds; k = 1, ..., d

)

t≥0
is a Q contin-

uous martingale such that 〈WB〉t = t, ∀t ≥ 0. That means that under Q, WB is a

d-dimensional Brownian motion. Then the distribution of X (resp. (M,X)) under P

is the distribution of W + x0 (resp. (W 1∗ + x0,W + x0)) under Q and

EP [F (Mt, Xt)] = EQ

[

F (x10 +W 1∗
t , x0 +Wt)

]

= EP

[

F (x10 +W 1∗
t , x0 +Wt)Zt

]

. (24)

Let G := F (x10 +W 1∗
t , x0 +Wt) and u := ZB(x0 +W ), using (23):

EP[F (Mt, Xt)] = EP

[

F (x10 +W 1∗
t , x0 +Wt)

]

+ EP [Gδ(u)] (25)

As a first step we will apply (50) (Appendix) to the second term in (25). Thus

we have to check that the pair (G, u) ∈ D1,2 × L1,2: F being bounded and smooth,
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G ∈ D1,2; and according to Lemma A.1, the process u belongs to L1,2.

Using (53) (τ := inf{s,W 1∗
s =W 1∗

t }) the pair (W 1∗
t ,Wt) belongs to D

1,2 with Malliavin

gradient:

DsW
1∗
t =

(

1[0,τ ](s), 0, ....., 0
)

, DsW
k
t = (δj=k, j = 1, ..., d)1[0,t](s), k = 1, ..., d.

Using the chain rule:

〈DG, u〉H =

∫ t

0

∂mF (x
1
0 +W ∗1

t , x0 +Wt)1{W 1∗
s <W 1∗

t }B
1(x0 +Ws)Zsds

+

∫ t

0

∂kF (x
1
0 +W ∗1

t , x0 +Wt)B
k(x0 +Ws)Zsds.

We are now in position to apply (50) EP[Gδ(u)] = EP[〈DG, u〉H]:

EP[Gδ(u)] = EP

[∫ t

0

∂mF (x
1
0 +W 1∗

t , x0 +Wt)1{W 1∗
s <W 1∗

t }B
1(x0 +Ws)Zsds

]

+ EP

[∫ t

0

∂kF (x
1
0 +W 1∗

t , x0 +Wt)B
k(x0 +Ws)Zsds

]

. (26)

Plugging identity (26) into right hand of (25) and using Fubini Theorem to commute

the integrals in ds and dP, we obtain

EP [F (Mt, Xt)] = EP

[

F (x10 +W 1∗
t , x0 +Wt)

]

(27)

+

∫ t

0

EP

[

∂mF (x
1
0 +W 1∗

t , x0 +Wt)1{W 1∗
s <W 1∗

t }ZsB
1(x0 +Ws)

]

ds

+

∫ t

0

EP

[

∂kF (x
1
0 +W 1∗

t , x0 +Wt)ZsB
k(x0 +Ws)

]

ds.

As a second step we use the independence of the increments of the Brownian motion

in order to make appear the density of (W 1∗
t−s,Wt−s). Recall (9): Ŵt−s :=Wt−Ws and

(Ŵ 1)∗t−s = maxs≤u≤t
(

W 1
u −W 1

s

)

. ThenW 1∗
t = max

(

W 1∗
s ,W 1

s +maxs≤u≤t
(

W 1
u −W 1

s

))

=

max
(

W 1∗
s ,W 1

s + (Ŵ 1)∗t−s

)

so the expression (27) becomes

EP [F (Mt, Xt)] = EP

[

F (x10 +W 1∗
t x0+,Wt)

]

+
∫ t

0

EP

[

∂mF
(

x10 +W 1
s + (Ŵ 1)∗t−s, x0 +Ws + Ŵt−s

)

1{W 1∗
s <W 1

s +(Ŵ 1)∗t−s}
ZsB

1(x0 +Ws)
]

ds

+

∫ t

0

EP

[

∂kF
(

max
(

x10 +W 1∗
s , x10 +W 1

s + (Ŵ 1)∗t−s

)

, x0 +Ws + Ŵt−s
)

ZsB
k(x0 +Ws)

]

ds.

The random vector
(

(Ŵ 1)∗t−s, Ŵt−s
)

is independent of the σ−field Fs and has the

same distribution as the pair (W 1∗
t−s,Wt−s). Let pW∗1,W (., .; t− s) be the density of its
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law, and express the expectation with this density:

EP [F (Mt,Xt)] =

∫

Rd+1
F (x1

0 + b, x0 + a)pW∗1,W (b, a; t)dbda

+

∫ t

0

EP

[∫

Rd+1
∂mF

(

x1
0 +W 1

s + b, x0 +Ws + a
)

1{W1∗
s <W1

s +b}ZsB
1(x0 +Ws)pW∗1,W (b, a; t− s)dbda

]

ds

+

∫ t

0

EP

[∫

Rd+1
∂kF

(

x1
0 +max

(

W 1∗
s ,W 1

s + b
)

, x0 +Ws + a
)

ZsB
k(x0 +Ws)pW∗1,W (b, a; t − s)dbda

]

ds.

Using Girsanov’s Theorem for Z.P = Q, since the law of (M,X) under P is the law of

(x10 +W 1∗, x0 +W ), under Q, using the equality (24):

EP [F (Mt,Xt)] =

∫

Rd+1
F (x1

0 + b, x0 + a)pW∗1,W (b, a; t)dbda

+

∫ t

0

EP

[∫

Rd+1
∂mF

(

X1
s + b,Xs + a

)

1{Ms<X1
s+b}B

1(Xs)pW∗1,W (b, a; t− s)dbda

]

ds

+

∫ t

0

EP

[∫

Rd+1
∂kF

(

max
(

Ms,X
1
s + b

)

, Xs + a
)

Bk(Xs)pW∗1,W (b, a; t− s)dbda

]

ds.

�

We are now in position to achieve the proof of Proposition 4.2. Using some suitable

translations of the variables (a, b), EP [F (Mt, Xt)] =
∑d

k=0 Ik + Im. where

I0 =

∫

Rd+1

F (b, a)pW∗1,W (b − x10, a− x0; t)dbda, (28)

Im =

∫ t

0

EP

[∫

Rd+1

∂mF (b, a)1{Ms<b}B
1(Xs)pW∗1,W

(

b−X1
s , a−Xs; t− s

)

dbda

]

ds

and for k = 1, ..., d,

Ik =

∫ t

0

EP

[∫

Rd+1

∂kF (max (Ms, b) , a)B
k(Xs)pW∗1,W (b−X1

s , a−Xs; t− s)dbda

]

ds.

Since B, F and its derivatives are bounded, all these integrals are finite. Using (54) in

Appendix, the function pW∗1,W (., .; t) is C∞ on ∆̄ = {(b, a), b≥a1+, (a, b) ∈ Rd+1}.
The aim is now to identify the terms p0, pk,α, pk,β , k = m, 1, · · · , d, defined in

Proposition 4.2.

1. Firstly we identify p0(b, a; t) as the factor of F (b, a) in the integrand of I0 :

p0(b, a; t) = pW∗1,W (b − x10, a− x0; t).

2. We now deal with Ik, k = 2, · · · , d. Integrating by parts with respect to ak between
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−∞ and ∞ in Ik for k = 2, ..., d yields

Ik = −
∫ t

0

EP

[∫

Rd+1

F (max (Ms, b) , a)B
k(Xs)∂kpW∗1,W (b −X1

s , a−Xs; t− s)dbda

]

ds

= −
∫ t

0

EP

[∫

Rd+1

1{b>Ms}F (b, a)Bk(Xs)∂kpW∗1,W (b−X1
s , a−Xs; t− s)dbda

]

ds

−
∫ t

0

EP

[∫

Rd+1

1{b<Ms}F (Ms, a)B
k(Xs)∂kpW∗1,W (b−X1

s , a−Xs; t− s)dbda

]

ds

We identify −pk,α(b, a, t) inside the integral on the set (b > Ms). Concerning the

integral on the set (b < Ms), we introduce the density of (Ms, Xs) and identify

−pk,β(m, a; t) as factor of F (m, a).

3. Finally, we identify the pm,γ and p1,γ , γ = α, β which come from the sum of Im and

I1. Note that pW∗1,W

(

b−X1
s , a−Xs; t− s

)

= 0 on the set {b < a1}. Integrating by

parts with respect to b between max
(

a1,Ms

)

and ∞ in Im yields

Im = −
∫ t

0

EP

[∫

Rd

F
(

max
(

a1,Ms

)

, a
)

B1(Xs)pW∗1,W

(

max
(

a1,Ms

)

−X1
s , a−Xs; t− s

)

da

]

ds

−
∫ t

0

EP

[∫

Rd+1

1Ms<bF (b, a)B1(Xs)∂mpW∗1,W

(

b−X1
s , a−Xs; t− s

)

dbda

]

ds

(29)

Integrating by parts with respect to a1 between −∞ and b in I1 yields

I1 =

∫ t

0

EP

[∫

Rd

F (max (Ms, b) , b, ã)B
1(Xs)pW∗1,W (b −X1

s , b−X1
s , ã− X̃s; t− s)dbdã

]

ds

−
∫ t

0

EP

[∫

Rd+1

F (max (Ms, b) , a)B
1(Xs)∂1pW∗1,W (b−X1

s , a−Xs; t− s)dbda

]

ds.

(30)

(i) The term pm,β(b, a, t) comes from the second term in Im (29) as the factor of F (b, a):

−
∫ t

0

EP

[∫

Rd+1

1Ms<bF (b, a)B1(Xs)∂mpW∗1,W

(

b−X1
s , a−Xs; t− s

)

dbda

]

ds

(ii) The terms −p1,α(b, a, t) and −p1,β(b, a; t) come from the second term in I1 (30):

−
∫ t

0

EP

[∫

Rd+1

F (max (b,Ms) , a)B
1(Xs)∂1pW∗1,W (b −X1

s , a−Xs; t− s)dbda

]

ds.

Inside the integral on the set (Ms < b) we identify −p1,α(b, a, t) and inside the integral

on the set (Ms > b) we identify −p1,β(b, a; t) as the factor of F (b, a), respectively as
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the factor of F (Ms, a).

(iii) The term −pm,α(b, a, t) comes from the sum of first terms in I1 (30) and Im (29).

Now we replace the variable b by a1, dbdã by da in the first terms of Im and I1:

I1m = −
∫ t

0

EP

[∫

Rd
F
(

max
(

a1,Ms
)

, a
)

B1(Xs)pW∗1,W

(

max
(

a1,Ms
)

−X1
s , a−Xs; t− s

)

da

]

ds

I11 =

∫ t

0

EP

[∫

Rd
F
(

max
(

Ms, a
1
)

, a
)

B1(Xs)pW∗1,W (a1 −X1
s , a−Xs; t− s)da

]

ds.

Note that

− pW∗1,W

(

max
(

a1,Ms

)

−X1
s , a−Xs; t− s

)

+ pW∗1,W (a1 −X1
s , a−Xs; t− s)

=
[

−pW∗1,W

(

Ms −X1
s , a−Xs; t− s

)

+ pW∗1,W

(

a1 −X1
s , a−Xs; t− s

)]

1Ms>a1

= −
∫ Ms

a1
∂mpW∗1,W

(

b−X1
s , a−Xs, t− s

)

db1Ms>a1 .

Then the sum of I1m and I11 is:

−
∫ t

0

EP

[
∫

Rd+1

F (Ms, a)B
1(Xs)∂mpW∗1,W

(

b−X1
s , a−Xs; t− s

)

1Ms>b>a1dadb

]

ds.

We introduce the density of the law of the pair (Ms, Xs) and we identify −pm,α(m, a; t)
as the factor of F (m, a).

These three steps achieve the proof of Proposition 4.2 when µ0 = δx0 .

Finally when µ0 is the law ofX0, we have pV (m,w; t, µ0) =
∫

Rd pV (m,x; t, δx0)µ0(dx0).

Then integrating with respect to µ0 the expression obtained in (21) for pV (m,x; t, δx0)

achieves the proof of Proposition 4.2 for any initial law µ0. �

4.2. Proof of Proposition 4.1

Using some idea’s used in Garroni section V.3.2 let us introduce the linear appli-

cations on L∞([0, T ], dt, L1(Rd+1, dmdx)), k = m, 1, · · · , d:

Ik,α[p](m,x; t) :=
∫ t

0

∫

Rd+1

1b<mB
k(a)∂kpW∗1,W

(

m− a1, x− a; t− s
)

p(b, a; s)dbdads,

(31)

Ik,β [p](m,x; t) :=
∫ t

0

∫

Rd+1

1b<mB
k(a)∂kpW∗1,W (b − a1, x− a; t− s)p(m, a; s)dbdads.

Let us introduce the functions, defined by induction:

p0(m,x; t, µ0) =

∫

Rd

pW 1∗,W (m− x10, x− x0; t)µ0(dx0), pn = −
∑

k=m,1,··· ,d

(

pk,αn + pk,βn
)

(32)
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and for k = m, 1, · · · , d, j = α, β and n ≥ 1, pk,jn+1(m,x; t) := Ik,j [pn](m,x; t). Let us
denote the operator

I := −
∑

j=α,β;k=m,1,...,d

Ik,j . (33)

Moreover one remarks that this means pn+1 = I(pn) and Proposition 4.2 leads to

pV = p0 + I(pV ). Let

Pn :=

n
∑

k=0

pk, n ≥ 0 (34)

Proposition 4.3. Assume the vector B is bounded, then for all T the sequence (Pn)n

converges in L∞([0, T ], L1(Rd+1, dxdm)) to pV . Moreover pV =
∑∞

n=0 pn.

The proof is a consequence of the two following lemmas.

Lemma 4.2. Let j = α, β, k = m, 1, · · · , d and T > 0 the linear applications Ik,j are

continuous on L∞([0, T ], dt, L1(Rd+1, dmdx)) : there exists a constant C such that for

all p ∈ L∞([0, T ], dt, L1(Rd+1, dmdx)) :

sup
s∈[0,t]

‖Ik,j [p](., .; s)‖L1(Rd+1,dmdx) ≤ C

∫ t

0

1√
t− s

sup
u∈[0,s]

‖p(., .;u)‖L1(Rd+1,dmdx)ds

(35)

As a consequence,

sup
s∈[0,t]

‖I[p](., .; s)‖L1(Rd+1,dmdx) ≤ 2(d+1)C

∫ t

0

1√
t− s

sup
u∈[0,s]

‖p(., .;u)‖L1(Rd+1,dmdx)ds.

(36)

Proof. Let T > 0, p ∈ L∞([0, T ]× L1(Rd+1, dmdx)) and t ∈ [0, T ] and let φd+1 be

the Gaussian law density restrained to the subset {b > a1+} (up to a constant)

φd+1(b, b− a1, ã; 2t) :=
1

√
2πt

d+1
1b>a1+e

− b2+(b−a1)2+‖ã‖2

4t . (37)

(i) Let j = α and k = m, 1, · · · , d, according to the definition of Ik,α and the

boundedness of B,

∣

∣Ik,α[p](m,x; t)
∣

∣ ≤ ‖B‖∞
∫ t

0

∫

Rd+1

1b<m|∂kpW∗1,W

(

m− a1, x− a; t− s
)

p(b, a; s)|dbdads.

Using Lemma A.2 there exists a constant D such that for k = m, 1, · · · , d:

|∂kpW∗1,W (b, a; t) | ≤ D√
t
φd+1(b, b− a1, ã; 2t). (38)
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So

∣

∣Ik,α[p](m,x; t)
∣

∣ ≤ ‖B‖∞
∫ t

0

∫

Rd+1

D√
t− s

φd+1(m− a1,m− x1, x̃− ã; t− s)|p(b, a; s)|dbdads.

We operate an integration with respect to (m,x) using Tonelli’s theorem and omitting

the indicator functions. Since φd+1 is the density of a Gaussian law, we get the

following bound,

∥

∥Ik,α[p](., .; t)
∥

∥

L1(Rd+1,dmdx)
≤D‖B‖∞

∫ t

0

∫

Rd+1

1√
t− s

|p(b, a; s)|dbdads

≤2(d+1)/2D‖B‖∞
∫ t

0

1√
t− s

sup
u≤s

‖p(., .;u)‖L1(Rd+1,dbda)ds,

meaning inequality (35) when j = α.

(ii) Let j = β and k = m, 1, · · · , d. According to the definition of Ik,β and the

boundedness of B,

∣

∣Ik,β [p](m,x; t)
∣

∣ ≤ ‖B‖∞
∫ t

0

∫

Rd+1

1b<m|∂kpW∗1,W

(

b− a1, x− a; t− s
)

p(m, a; s)|dbdads.

Using (38) yields:

∣

∣Ik,β [p](m,x; t)
∣

∣ ≤ ‖B‖∞
∫ t

0

∫

Rd+1

D√
t− s

φd+1(b−a1, b−x1, x̃−ã; 2(t−s))|p(m, a; s)|dbdads.

We operate an integration with respect to x then to b using Tonelli’s theorem and

omitting the indicator functions and using that φ is the density of a Gaussian law. So

the bound with respect to a multiplicative constant:

∥

∥Ik,β [p](., .; t)
∥

∥

L1(Rd+1,dmdx)
≤D‖B‖∞2(d+1)/2

∫ t

0

∫

Rd+1

1√
t− s

|p(m, a; s)|dmdads

≤D‖B‖∞2(d+1)/2

∫ t

0

1√
t− s

sup
u≤s

‖p(., .;u)‖L1(Rd+1,dmda)ds,

meaning inequality (35) for j = β.

Finally, estimation (36) is obtained by adding estimations (35) for j = α, β and

k = m, 1, ..., d. •

The following lemma is a consequence of (36) in Lemma 4.2:
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Lemma 4.3. For all n

sup
u≤t

‖pn(., .;u)‖L1(Rd+1,dmdx) ≤ (2(d+ 1)C)ntn/2
Γ(1/2)n

Γ(1 + n/2)
, (39)

sup
u≤t

‖(pV − Pn)(., .;u)‖L1(Rd+1,dmdx) ≤ (2(d+ 1)C)n+1t(n+1)/2 Γ(1/2)n+1

Γ((n+ 3)/2)
. (40)

Proof. (i) For all t > 0, p0(.; t) is a density of probability, so (39) is satisfied for

n = 0. We now assume that (39) is satisfied for n. Using pn+1 = I[pn], (36) and the

induction e assumption:

sup
u≤t

‖pn+1(., .;u)‖L1(Rd+1,dmdx) ≤ (2(d+ 1)C)n+1 Γ(1/2)n

Γ(1 + n/2)

∫ t

0

√
sn√
t− s

ds.

We operate the change of variable s = tu and use
∫ 1

0 u
a−1(1− u)b−1du = Γ(a)Γ(b)

Γ(a+b) :

sup
u≤t

‖pn+1(., .;u)‖L1(Rd+1,dmdx) ≤ (2(d+ 1)C)n+1t(n+1)/2 Γ(1/2)n

Γ(1 + n/2)

Γ(1/2)Γ(1 + n/2)

Γ((n+ 3)/2)

which proves (39) for all n.

(ii) Noting that P0 = p0 and pV − p0 = I[pV ] and applying (36) to pV yield

sup
u≤t

‖(pV − P0)(., .;u)‖L1(Rd+1,dmdx) ≤ 2(d+ 1)Ct1/2.

But Γ(1/2)/Γ(3/2) = 2 so (40) is satisfied for n = 0.

We now suppose that (40) is satisfied for n. Using pV − Pn+1 =

p0+I(pV )− (p0+I(Pn)) = I(pV −Pn), the bound (36) and the induction assumption:

sup
u≤t

‖[pV − Pn+1](., .;u)‖L1(Rd+1,dmdx) ≤ 2(d+ 1)C

∫ t

0

(2(d+ 1)C)n+1 Γ(1/2)n+1

Γ((3 + n)/2)

√
sn+1

√
t− s

ds.

We now operate the change of variable s = tu and
∫ 1

0 u
a−1(1 − u)b−1du = Γ(a)Γ(b)

Γ(a+b)

with a = (n+ 3)/2, b = 1
2 :

sup
u≤t

‖[pV − Pn+1](., .;u)‖L1(Rd+1,dmdx) ≤ (2(d+ 1)C)n+2t(n+2)/2 Γ(1/2)n+2

Γ((4 + n)/2)

which proves (40) for n+ 1 and thus for all n. �

The series
∑

n
xn

Γ(n/2+1) is convergent for any x, so Proposition 4.3 is a consequence

of lemmas 4.2 and 4.3.
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4.2.1. Upper Bound of pV meaning Hypothesis 2.1 (i).

For all T > 0, x0 ∈ Rd, p ∈ L∞([0, T ], L1(Rd+1, dmdx)) the support of which being

included in {(m,x), m > x10,m > x1} let us denote

N(p; t, x0) := sup
(m,x)∈Rd+1, m>x1,m>x1

0

|p(m,x; t)|
φd+1(m− x10,m− x1, x̃− x̃0; 2t)

. (41)

Proposition 4.4. For all T > 0 there exists a constant CT and for all n there exists

constants Cn =
[‖B‖∞D(2(d+1))2d/2Γ(1/2)]n

Γ(1+n/2) such that: for all x0 ∈ Rd, 0 < t ≤ T ,

(i) |pn(m,x; t, x0)| ≤ Cnt
n/2φd+1(m− x10,m− x1, x̃− x̃0, 2t)1m>max(x1,x1

0)

(ii) |pV (m,x; t, x0)| ≤ CTφd+1(m− x10,m− x1, x̃− x̃0, 2t)1m>max(x1,x1
0)

(iii) For all µ0 initial probability measure on Rd,

supu>0 pV (m,m− u, x̃, t;µ0) ∈ L1([0, T ]× Rd, dtdmdx̃).

Remark that, actually, this point (iii) is Hypothesis 2.1 (i).

Proof. Point (ii) is a consequence of point (i), since pV =
∑∞
n=0 pn, and the series

∑

n
1

Γ(1+n/2)x
n admits an infinite radius of convergence (Proposition 4.3).

We prove point (i) by induction on n using point (ii) in Lemma A.2: p0(m,x; t, x0) ≤

e−
(m−x1)2

4t − ‖x̃−x̃0‖2

4t − (m−x1
0)2

4t

√

(2π)d+1td+1
1m>max(x1,x1

0)
= φd+1(m− x1,m− x10, x̃− x̃0; 2t)1m>max(x1,x1

0)
,

so N(p0; t, x0) ≤ 1, which is (i) for n = 0, C0 = 1.

We assume point (i) is true for pn, meaning N(pn; t, x0) ≤ Cnt
n/2. By definition

pn+1 = I[pn], Lemma 4.4 proved below yields:

N(pn+1; t, x0) = N(I[pn]; t, x0) ≤ 2(d+ 1)2d/2‖B‖∞DCn
∫ t

0

sn/2
√

2π(t− s)
ds.

We operate the change of variable s = tu

N(pn+1; t, x0) ≤
2(d+ 1)2d/2‖B‖∞D√

2π
Cn(

√
t)n+1

∫ 1

0

un/2√
1− u

ds

Using
∫ 1

0
un/2
√
1−udu = Γ((n+2)/2)Γ(1/2)

Γ((n+3)/2) and Cn definition:

N(pn+1; t, x0) ≤ Cn+1(
√
t)n+1,
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this achieves the proof of point (i) in Proposition 4.4.

(iii) Then for all x0 ∈ Rd and using x1 = m− u,

sup
u>0

pV (m,m− u, x̃; t) ≤ CTφd+1(m− x10, 0, x̃− x̃0; 2t) ∈ L1([0, T ]× Rd, dtdmdx̃).

Since pV (m,x; t, µ0) =
∫

Rd pV (m,x; t, x0)µ0(dx0) point (iii) is true. �

Lemma 4.4. Let T > 0, x0 ∈ Rd, p ∈ L∞([0, T ], dt, L1(Rd+1, dmdx)) such that the

support of p(., .; t) is included in {(m,x), m > x10,m > x1} and for all s ∈]0, T ]
N(p; s, x0) < ∞. Then for j = α, k = m, 1, . . . , d, the support of function Ij,k[p](.; t)
is included in {(m,x), m > x10,m > x1}. Moreover for all t ∈ [0, T ] we have :

N(I[p]; t, x0) ≤ 2(d+ 1)2d/2‖B‖∞D
∫ t

0

1
√

2π(t− s)
N(p; s, x0)ds, ∀t ∈ [0, T ].

Proof. Let T > 0, x0 ∈ Rd, p ∈ L∞([0, T ], dt, L1(Rd+1, dmdx)) such that for all

t > 0 the support of p(.; t) is included in {(m,x), m > x10,m > x1}.
(i) For j = α, k = m, 1, · · · , d, using the definition of Iα,k yields:

Ik,α[p](m,x; t) :=
∫ t

0

∫

Rd+1

Bk(a)∂kpW∗1,W

(

m− a1, x− a; t− s
)

1x1
0<b<m,m>x

1p(b, a; s)dbdads

So the support of Iα,k[p](.; t) is included in {(m,x) ∈ Rd+1, m > max(x10, x
1)}. For

now on, we only consider (m,x) such that m > max(x1, x10).

Let p be a function such that ∀s ∈]0, T ] N(p;x0, s) < ∞. The definition of Ik,α,
the boundedness of B, the fact that ∂kpW∗,W satisfies (38) and the definition (41) of

N(p; t, x0) imply

∣

∣Ik,α[p](m,x; t)
∣

∣ ≤ ‖B‖∞
∫ t

0

∫

Rd+1

N(p; s, x0)
D

√

(t− s)
1m>x11m>b>max(a1,x1

0)

φd+1(m− a1,m− x1, x̃− ã; t− s)φd+1(b − x10, b− a1, ã− x̃0; s)dbdads.

We integrate in ã using Lemme A.3 (ii) with u = x̃, v = ã, w = x̃0 and the fact that

φd+1 is a Gaussian density of probability:

∣

∣Iα,k[p](m,x; t)
∣

∣ ≤ 2(d−1)/2‖B‖∞D (42)

∫ t

0

∫

R2

N(p; s, x0)1m>b>max(a1,x1
0)

e−
‖x̃−x̃0‖2

4t

√

(2πt)d−1

e−
(m−a1)2

4(t−s)
− (m−x1)2

4(t−s)

√

(2π)2(t− s)3
e−

(b−x1
0)2

4s − (b−a1)2

4s

√

(2π)2s2
dbda1ds.
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Using point (i’) Lemma A.2 with u = m, v = a1, w = b, k = 1, we integrate in da1 up

to b:

∫ b

−∞

e−
(m−a1)2

4(t−s)

√

2π(t− s)

e−
(b−a1)2

4s

√

(2πs)
da1 =

e
−(m−b)2

4t√
2πt

ΦG

(
√

s

2t(t− s)
(b−m)

)

where ΦG(u) =
∫ u

−∞ e−z
2/2dz ≤ 1

2e
−u2/2 for u = b −m < 0 according to Lemma A.3

(iii). This yields the bound: e
−(m−b)2

4t√
2πt

e−
s(b−m)2

4t(t−s) and

2

∫ b

−∞

e−
(m−a1)2

4(t−s)

√

2π(t− s)

e−
(b−a1)2

4s

√

(2πs)
da1 ≤ e−

(m−b)2

4t√
2πt

e−
s(m−b)2

4t(t−s) =
e−

(m−b)2

4(t−s)

√
2πt

.

Plugging this inequality inside (42) yields with Cd,B = 2(d+1)/2‖B‖∞D
∣

∣Iα,k[p](m,x; t)
∣

∣

Cd,B
≤
∫ t

0

∫

R

N(p; s, x0)1m>b>x1
0

e−
‖x̃−x̃0‖2

4t

√

(2πt)d
e−

(m−b)2

4(t−s)
− (m−x1)2

4(t−s)

√

2π(t− s)2s
e−

(b−x1
0)2

4s dbds.

Omitting the indicator functions, Lemma A.3 (ii) with u = m, v = b, w = x10, k = 1

implies
∫

b<m

e−
(m−b)2

4(t−s) e−
(b−x1

0)2

4s

√

2π(t− s)2πs
db ≤

√

2

2πt
e−

(m−x1
0)2

4t .

Inserting this result, we obtain

∣

∣Iα,k[p](m,x; t)
∣

∣ ≤
√
2Cd,B

∫ t

0

N(p; s, x0)
e−

‖x̃−x̃0‖2

4t

√

(2πt)d+1

e−
(m−x1

0)2

4t − (m−x1)2

4(t−s)

√

2π(t− s)
ds.

For 0 < s < t, e−
(m−x1)2

4(t−s) ≤ e−
(m−x1)2

4t , so

∣

∣Iα,k[p](m,x; t)
∣

∣ ≤
√
2Cd,B

∫ t

0

N(p; s, x0)
e−

‖x̃−x̃0‖2

4t

√

(2πt)d+1

e−
(m−x1

0)2

4t − (m−x1)2

4t

√

2π(t− s)
ds.

Using the definition of φd+1 we identify

∣

∣Iα,k[p](m,x; t)
∣

∣ ≤
√
2Cd,B

∫ t

0

N(p; s, x0)
φd+1(m− x10,m− x1, x̃− x̃0; 2t)

√

2π(t− s)
ds

and with the definition of N, with respect to a multiplicative constant:

N(Iα,k[p], x0, t) ≤
√
2Cd,B

∫ t

0

N(p; s, x0)
1

√

2π(t− s)
ds.

(ii) For j = β, k = m, 1, · · · , d using the definition of Iβ,k and the fact that the support

of p is included in {(m,x), m > max(x10, x
1)} yields Iβ,k[p](m,x; t) =

∫ t

0

∫

Rd+1

1m>b>x1,m>x1
0,b>a

1Bk(a)∂kpW 1∗,W (b − a1, x− a, t− s)p(m, a, s)dadbds.



PDE for the joint law of the pair of a continuous diffusion and its running maximum 29

Thus the support of Iβ,k[p](.; t) is included in {(m,x), m > max(x1, x0)}. For now on

we only consider (m,x) satisfyingm > max(x1, x10).Definition of Iβ,k, the boundedness
of B, the inequality (38) satisfied by ∂kpW∗,W :

|∂kpW 1∗,W (b − a1, x− a, t− s)| ≤ D√
t−sφd+1(b− a1, b− x1, x̃− ã, 2(t− s))

and the definition of N(p; t, x0) yield:

∣

∣Iβ,k[p](m,x; t)
∣

∣ ≤ ‖B‖∞D
∫ t

0

∫

Rd+1

1m>b>x1,b>a1N(p; s, x0)

e−
(b−a1)2

4(t−s)
− (b−x1)2

4(t−s)
− ‖x̃−ã‖2

4(t−s)

√

(2π)d+1(t− s)d+2

e−
(m−x1

0)2

4s − (m−a1)2

4s − ‖x̃0−ã‖2

4s

√

(2π)d+1sd+1
dadbds.

We integrate in ã using Lemma A.3 (ii) with u = x̃, v = ã et w = x̃0:

∣

∣Iβ,k[p](m,x; t)
∣

∣ ≤ Cd,B. (43)

∫ t

0

∫

R2

1m>b>x1,b>a1
e−

‖x̃−x̃0‖2

4t

√

(2πt)d−1
N(p; s, x0).

e−
(b−a1)2

4(t−s)
− (b−x1)2

4(t−s)

√

(2π)2(t− s)3
e−

(m−x1
0)2

4s − (m−a1)2

4s

√

(2π)2s2
da1dbds.

Using Lemma A.3 (i’) for u = b, v = a1, w = m k = 1

∫ b

−∞

e−
(b−a1)2

4(t−s)

√

2π(t− s)

e−
(m−a1)2

4s√
2πs

da1 =
√
2
e−

(b−m)2

4t√
2πt

ΦG

(√

t

4s(t− s)
[b− (

s

t
b+

t− s

t
m)]

)

=
e−

(b−m)2

4t√
2πt

ΦG

(

√

t− s

4st
[b−m]

)

≤ e−
(b−m)2

4t√
2πt

e−
t−s
4st [b−m]2 =

e−
(b−m)2

4s√
2πt

the last bound coming from Lemma A.3 (iii) since b−m < 0.

We plugg this estimation in (43)

∣

∣Iβ,k[p](m,x; t)
∣

∣ ≤

Cd,B

∫ t

0

∫

R

1m>b>x1

e−
‖x̃−x̃0‖2

4t

√

(2πt)d
N(p; s, x0)

e−
(b−x1)2

4(t−s)

√

2π(t− s)2
e−

(m−x1
0)2

4s − (b−m)2

4s√
2πs

dbds.

We integrate with respect to b on R and we use Lemma A.3 (ii) with u = x1, v = b,

w = m, k = 1:

∣

∣Iβ,k[p](m,x; t)
∣

∣ ≤
√
2Cd,B

∫ t

0

e−
(m−x1)2

4t − ‖x̃−x̃0‖2

4t

√

(2πt)d+1
N(p; s, x0)

e−
(m−x1

0)2

4s

√

2π(t− s)
ds.

When 0 < s < t, e−
(m−x1

0)2

4s ≤ e−
(m−x1

0)2

4t so:

∣

∣Iβ,k[p](m,x; t)
∣

∣ ≤
√
2Cd,B

∫ t

0

e−
(m−x1)2

4t −‖x̃−x̃0‖2

4t − (m−x1
0)2

4t

√

(2πt)d+1
N(p; s, x0)

1
√

2π(t− s)
ds.
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Under the integral we identify the factor φd+1(m− x10,m− x1, x̃− x̃0; 2t) so

∣

∣Iβ,k[p](m,x; t)
∣

∣ ≤
√
2Cd,Bφd+1(m− x10,m− x1, x̃− x̃0; 2t)

∫ t

0

N(p; s, x0)
1

√

2π(t− s)
dbds.

Finally using the definition of N (41) we have proved

N(Iβ,k[p], x0, t) ≤
√
2Cd,B

∫ t

0

N(p; s, x0)
1

√

2π(t− s)
ds

which achieves the proof of Lemma 4.4. �

4.2.2. Proof of Hypothesis 2.1 (ii), case A = Id

Proposition 4.5. For any µ0 probability measure on Rd, for all (m, x̃, t) ∈ Rd×]0, T ],

u 7→ pV (m,m− u, x̃, t) admits a limit when u goes to 0, u > 0.

Proof. The proof is a consequence of the three following lemmas.

Lemma 4.5. Recall that p0(m,x; t) =
∫

Rd pW∗1,W (m− x10, x− x0; t)µ0(dx0).

lim
u→0,u>0

p0(b, b− u, ã; t) = p0(b, b, ã; t), ∀u > 0, (b, ã) ∈ Rd, ∀t > 0.

Proof. We have p0(b, b−u, x̃; t) =
∫

Rd2
b+u−x1

0√
(2π)dtd+1

e−
(b+u−x1

0)2

2t − ‖x̃−x̃0‖2

2t 1b≥x1
0, u≥0µ0(dx0).

Then, since the integrand is dominated by D√
(2π)dtd+1

and µ0 is a probability measure,

using Lebesgue’s dominated convergence Theorem yields:

lim
u→0,u>0

p0(b, b− u, x̃; t) = p0(b, b, x̃; t), ∀ (b, x̃) ∈ Rd, ∀t > 0.

�

Lemma 4.6. For k = m, 1, ..., d recall that

pk,α(m,x; t) =

∫ t

0

∫

Rd+1

1b<mB
k(a)∂kpW∗1,W (m− a1, x− a, t− s)pV (b, a; s)dbdads.

The map u 7→ pk,α(m,m− u, x̃; t) converges to pk,α(m,m, x̃; t) when u goes to 0+.

Proof. The proof wil be a consequence of Lebesgue dominated theorem. First, the

map u 7→ 1b<m∂kpW∗1,W (m − a1,m − u − a1, x̃ − ã; t − s)pV (b, a; s) converges to

1b<m∂kpW∗1,W (m− a1,ma1, x̃− ã; t− s)pV (b, a; s) when u goes to 0+.

Second it is dominated by qk,α(m, x̃, a, b; s, x0) :=

|Bk(a)|1b<m sup
u>0

∣

∣∂kpW∗1,W (m− a1,m− u− a1, x̃− ã; t− s)pV (b, a; s, x0)
∣

∣
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We seek to prove that

∫ T

0

∫

R2d+1

qk,α(m, x̃, a, b; s, x0)dsdbdaµ0(dx0) < +∞. (44)

According to estimation (38) of ∂kpW∗1,W and estimation (ii) of Proposition 4.4, we

obtain

qk,α(m, x̃, a, b; s, x0) ≤ ‖B‖∞1m>b>a1
D

√
t− s

√

2π(t− s)
d+1

exp[− (m− a1)2

4(t− s)
− ‖x̃− ã‖2

4(t− s)
]

CT√
2πs

d+1
exp[− (b− x10)

2

4s
− (b− a1)

4s
− ‖x̃0 − ã‖2

4s
].

We integrate with respect to ã using Lemma A.3 (ii) for k = d + 1, u = x̃, v = ã and

w = x̃0 :

∫

Rd−1

qk,α(m, x̃, a1, b; s, x10)dã ≤ 1m>b>a1
‖B‖∞CTD2(d−1)/2

√
t− s

√

2π(t− s)
2√

2πs
2

e−
|x̃−x̃0‖2

4t

√
2πt

d−1

exp[− (m− a1)2

4(t− s)
− (b− x10)

2

4s
− (b− a1)2

4s
].

We integrate with respect to a1 between −∞ and b using Lemma A.3 (i’) for u = m,

v = a1 and w = b

∫

Rd

1a1<bq
k,α(m, x̃, b, a; s;x0)da ≤ 1b<m

‖B‖∞CTD2d/2√
t− s

√

2π(t− s)
√
2πs

e−
|x̃−x̃0‖2

4t − (b−m)2

4t√
2πt

d

exp[− (b− x10)
2

4s
]ΦG

(√

t

2s(t− s)
(b− [

s

t
m+

(t− s)

t
b])

)

.

Note that
√

t
2s(t−s) (b− [ stm+ (t−s)

t b]) =
√

s
2t(t−s) (b−m) and using Lemma A.3 (iii)

∫

Rd

qk,α(m, x̃, b, a; s, x0)da ≤ 1b<m
‖B‖∞CTD2d/2√

t− s
√

2π(t− s)
√
2πs

e−
|x̃−x̃0‖2

4t − (b−m)2

4t

√
2πt

d

exp[− (b− x10)
2

4s
] exp[− s

t(t− s)

(b −m)2

4
].

We observe that 1
t+

s
t(t−s) = 1

t−s so that exp[−
(b−m)2

4t ] exp[− s
t(t−s)

(b−m)2

4 ] = exp[− (b−m)2

4(t−s) ].

We integrate with respect to b (neglecting the indicator function) using Lemma A.3

(ii) for u = m, v = b and w = x10 and exp[− (m−x1
0)

2

4t ] ≤ 1:

∫

Rd+1

qk,α(m, x̃, b, a; s, x0)dadb ≤ 1m>x1
0

‖B‖∞CTD2(d+1)/2

√
t− s

e−
|x̃−x̃0‖2

4t

√
t
d+1

.
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Since µ0 is a probability measure then
∫ t

0

∫

R2d+1 q
k,α(m, x̃, b, a; s, x0)dadbµ0(dx0)ds <

+∞.

This is (44) and achieves the proof of Lemma 4.6 �

Lemma 4.7. For k = m, 1, ..., d recall that

pk,β(m,x; t) =

∫ t

0

∫

Rd+1

1b<mB
k(a)∂kpW∗1,W (b− a1, x− a, t− s)pV (m, a; s)dbdads.

The map u 7→ pk,β(m,m− u, x̃; t) converges to 0 when u goes to 0+.

Proof. Using estimation (38) of ∂kpW∗1,W and estimation (ii) of Proposition 4.4

concerning pV , we dominate the integrand which defines pk,β(m,m − u, x̃; t) by :

qk,β(m,u, x̃, a, b, x0, s) :=

1m−u<b<m,a1<b
e−

(b−a1)2

4(t−s)
− (b−m+u)2

4(t−s)
− ‖x̃−ã‖2

4(t−s)
− (m−x1

0)2

4s − (m−a1)
4s − ‖x̃0−ã‖2

4s

√
t− s

√

2π(t− s)
d+1√

2πs
d+1

up to a multiplicative constant. Meaning that

∣

∣pk,β(m,m− u, x̃; t)
∣

∣ ≤ ‖B‖∞
∫ t

0

∫

R2d+1

qk,β(m,u, x̃, a, b, x0, s)dbdadsµ0(dx0). (45)

We integrate with respect to ã using Lemma A.3 (ii) with u = x̃, v = ã and w = x̃0

∫

Rd−1

qk,β(m,u, x̃, a, b, x0, s)dã ≤
√
2
d−1 e−

‖x̃−x̃0‖2

4t

√
2πt

d−1

e−
(b−a1)2

4(t−s)
− (b−m+u)2

4(t−s)
− (m−x1

0)2

4s − (m−a1)
4s

√
t− s

√

2π(t− s)
2√

2πs
2

We integrate with respect to a1 between −∞ and b using Lemma A.3 (i’) for u = b,

v = a1 and w = m :

∫

Rd

1b>a1q
k,β(m,u, x̃, a, b, x0, s)da ≤

e−
‖x̃−x̃0‖2

4t

√
2πt

d

e−
(b−m)2

4t − (b−m+u)2

4(t−s)
− (m−x1

0)2

4s

√
t− s

√

2π(t− s)
√
2πs

ΦG

(√

t

s(t− s)2
(b− s

t
b− t− s

t
m)

)

=
e−

‖x̃−x̃0‖2

4t

√
2πt

d

e−
(b−m)2

4t − (b−m+u)2

4(t−s)
− (m−x1

0)2

4s

√
t− s

√

2π(t− s)
√
2πs

ΦG

(

√

t− s

2st
(b −m)

)

.

Since b−m < 0, using Lemma A.3 (iii)

∫

Rd

1b>a1q
k,β(m,u, x̃, a, b, x0, s)da ≤ e−

‖x̃−x̃0‖2

4t

√
2πt

d

e−
(b−m)2

4t − (b−m+u)2

4(t−s)
− (m−x1

0)2

4s

√
t− s

√

2π(t− s)
√
2πs

e−
t−s
4st (b−m)2 .
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Note that e−
(b−m)2

4t e−
t−s
4st (b−m)2) = e−

(b−m)2)
4s .We integrate this last bound with respect

to b between m− u and m using Lemma A.3 (i’) for the triplet (m− u, b,m) and the

fact that s
t (m− u) + t−s

t m = s(m−u)+m(t−s)
t

∫

Rd+1 1m−u<b<m,b<a1q
k,β(m,u, x̃, a, b, x0, s)dadb ≤ e−

‖x̃−x̃0‖2

4t√
2πt

d+1
e−

(m−x1
0)2

4s√
t−s .

[

ΦG

(√

t
2s(t−s) (m− s(m−u)+m(t−s)

t )
)

− ΦG

(√

t
2s(t−s) (m− u− s(m−u)+m(t−s)

t )
)]

.

Then,

∫

Rd+1

qk,β(m,u, x̃, a, b, x0, s)dadb ≤

e−
‖x̃−x̃0‖2

4t

√
2πt

d+1

e−
(m−x1

0)2

4s√
t− s

[

ΦG

(
√

s

2t(t− s)
u

)

− ΦG

(

−
√

t− s

2t(t− s)
u

)]

.

Note that limu→0 ΦG

(

√

s
2t(t−s)u

)

− ΦG

(

−
√

t−s
2t(t−s)u

)

= 0 and
∣

∣

∣

∣

ΦG

(

√

s
2t(t−s)u

)

− ΦG

(

−
√

t−s
2t(t−s)u

)

∣

∣

∣

∣

≤ 1. Since µ is a probability measure, using

Lebesgue dominated theorem

lim
u→0+

∫ t

0

∫

R2d+1

1m−u<b<m,b<a1q
k,β(m,u, x̃, a, b, x0, s)dadbµ0(dx0)ds = 0.

Finally estimation (45) yields limu→0+ p
k,β(m,m− u, x̃; t) = 0. �

5. Cas d = 1

Proposition 5.1. Let the real diffusion X given by dXt = B(Xt)dt+A(Xt)dWt where

A,B fulfil (4) and (5). Then the density of probability pV satisfies Hypothesis 2.1, so

for any initial law µ0 and F ∈ C2
b (R

2,R),

E [F (Mt, Xt)) = E [F (X0, X0)] +

∫ t

0

E [L (F ) (Ms, Xs)] ds

+
1

2

∫ t

0

E

[

∂mF (Xs, Xs)‖A(Xs)‖2
pV (Xs, Xs; s)

pX(Xs; s)

]

ds. (46)

Proof. We operate a Lamperti transformation [18]. Whithout loss of generality, A

can be choosen positive. In case d = 1 Assumption (5): “∃c > 0 such that for any

x ∈ R, A2(x) ≥ c” could be expressed:

∃c > 0 such that for any x ∈ R, A(x) ≥ c. (47)
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Let ϕ such that ϕ′ = 1
A and ϕ(0) = 0, so that ϕ′ is uniformly bounded and ϕ ∈ C2(R),

as is the function A. Moreover ϕ′ being strictly positive, ϕ is strictly increasing hence

invertible and we denote by ϕ−1 its inverse function. Under the initial condition

ϕ(0) = 0, using Itô formula Y = ϕ(X) satisfies

dYt =

[

B

A
◦ ϕ−1(Yt)−

1

2
A′ ◦ ϕ−1(Yt)

]

dt+ dWt, Y0 = ϕ(X0). (48)

Let Aϕ = 1 and Bϕ := B
A ◦ϕ−1− 1

2A
′◦ϕ−1 which belongs to C1

b (R) as a consequence

of B ∈ C1
b , A ∈ C2

b . Obviously, ϕ′ > 0 implies that ϕ is increasing, Y ∗
t = ϕ(X∗

t ) =

ϕ(Mt).

Theorem 1.1 in [9] can be easily extended to the case where X admits an initial law

µ0, thus the law of the pair (Y ∗
t , Yt) admits a density with respect to the Lebesgue

measure. Moreover, Lemma 2.2 in [9] sets out pV (b, a; t) =
pY ∗,Y (ϕ(b),ϕ(a);t)

A(b)A(a) . Now

applying Theorem 2.4 to the pair (Bϕ, 1) the density pY ∗,Y satisfies Hypothesis 2.1.

Since functions A and ϕ are continuous

lim
u→0+

pV (b, b− u; t) =
pY ∗,Y (ϕ(b), ϕ(b); t)

A2(b)

that means pV satisfies Hypothesis 2.1 (ii).

Using now (47)

sup
u>0

pV (b, b− u; t) ≤ 1

c2
sup
u>0

pY ∗,Y (ϕ(b), ϕ(b − u); t)

and since ϕ is increasing, if u > 0, ϕ(b − u) < ϕ(b) and denoting v = ϕ(b) − ϕ(b − u)

it gets v > 0, and

sup
u>0

pV (b, b− u; t) ≤ 1

c2
sup
v>0

pY ∗,Y (ϕ(b), ϕ(b) − v; t).

After the change of variable m = ϕ(b) so db = A(b)dm,

∫ T

0

∫

R

sup
u>0

pY ∗,Y (ϕ(b), ϕ(b)−u; t)dbdt =
∫ T

0

∫

R

A(ϕ−1(m)) sup
u>0

pY ∗,Y (m,m−u; t)dmdt.

Since A is bounded and pY ∗,Y satisfies Hypothesis 2.1 (i),
∫ T

0

∫

R
A(ϕ−1(m)) supu>0 pY ∗,Y (m,m− u; t)dmdt <∞ and pV satisfies Hypothesis 2.1

(i) and (ii). �
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6. Conclusion

This paper establishes a PDE of which the density of the pair [Mt, Xt] running

maximum-diffusion process is a weak solution, under a quite natural assumption on

the regularity of pV around the boundary of ∆. This assumption is fulfilled when the

matrix coefficient of diffusion A is the identity matrix or when the dimension d = 1.

This PDE is degenerated then the classical results on uniqueness cannot be applied

here. The case of non constant matrix A is an open problem. Such generalization

could be useful in case of practical applications, as the management of barrier options,

in models including stochastic volatility.

Appendix A. Tools

A.1. Malliavin calculus tools

The material of this subsection is taken from section 1.2 in [21].

Let H = L2([0, T ],Rd) endowed with the usual scalar product 〈., .〉H and the associated

norm ‖.‖H. For all h ∈ H, W (h) :=
∫ T

0 h(t)dWt is a center Gaussian variable with

variance equal to ‖h‖2H. If (h1, h2) ∈ H2, and 〈h1, h2〉H = 0, then, the random variables

W (hi), i = 1, 2, are independent.

Let S denote the class of smooth random variables F defined by:

F = f(W (h1), ...,W (hn)), n ∈ N, h1, ..., hn ∈ H, f ∈ Cb(R
n). (49)

Definition 1. The derivative of the smooth variable F defined in (49) is the H valued

random variable given by DF :=
∑n
i=1 ∂if(W (h1), ...,W (hn))hi.

We denote the domain of the operator D in L2(Ω) by D1,2 meaning that D1,2 is the

closure of the class of smooth random variables S with respect to the norm

‖F‖1,2 =
{

E[|F |2] + E[‖DF‖2H]
}1/2

.

Definition 2. L1,2 is the set of processes (us, s ∈ [0, T ]) which satisfy

u ∈ L2(Ω× [0, T ],Rd) and for all s ∈ [0, T ], us belongs to D1,2 and

‖u‖2
L1,2 = ‖u‖2L2([0,T ]×Ω) + ‖Du‖2L2([0,T ]2×Ω) <∞.

Definition 3. Let u ∈ L1,2, then the divergence δ(u) is the unique random variable

of L2(Ω) such that E [Fδ(u)] = E [〈DF, u〉H] , ∀F ∈ S smooth random variable.
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We apply Definition 1.3.1 in [21] with u ∈ L1,2 and G ∈ D1,2:

E [Gδ(u)] = E [〈DG, u〉H] . (50)

Let x0 ∈ Rd. We introduce the exponential martingale

Zx0
t := exp

[

d
∑

k=1

(∫ t

0

Bk(x0+Ws)dW
k
s − 1

2

∫ t

0

(Bk(x0+Ws))
2ds

)

]

. (51)

When there is no ambiguity, we will omit the exponent x0.

Lemma A.1. Let B ∈ C1
b (R

d,R), then for all x0 ∈ Rd the process

(B(x0 +Ws)Z
x0
s , s ∈ [0, T ]) belongs to L1,2.

Proof. Let x0 be fixed. In this proof we omit the exponent x0. Note that Z2
t =

exp

(

2

d
∑

k=1

∫ t

0

Bk(x0 +Ws)dW
k
s − 4

2

∫ t

0

‖B(x0 +Ws)‖2ds+
4− 2

2

∫ t

0

‖B(x0 +Ws)‖2ds
)

≤ eT‖B‖2
∞ exp

(

2

d
∑

k=1

∫ t

0

Bk(x0 +Ws)dW
k
s − 4

2

∫ t

0

‖B(x0 +Ws)‖2ds
)

.

Then, Zt belongs to L
2(Ω) for all t ∈ [0, T ] since

sup
t∈[0,T ]

E(Z2
t ) ≤ eT‖B‖2

∞ . (52)

Note that Zt = 1 +
∑d

k=1

∫ t

0
Bk(x0 + Ws)ZsdW

k
s , t ∈ [0, T ]. Using Lemma 2.2.1,

Theorem 2.2.1 of [21], and the definition of L1,2, applied to the Rd+1-valued process

Y = (W,Z) with a null drift coefficient, the matrix Σ, (d+ 1, d), defined by:

[σj,k(y), 1 ≤ j, k ≤ d] = Id, σ
d+1,k(y) = Bk(x10 + y1, ..., xd0 + yd)kz, k = 1, ..., d,

we obtain that Z belongs to L1,2. Since B is continuously differentiable with bounded

derivatives, the process (B(Ws + x0)Zs, s ∈ [0, T ]) belongs to L1,2. �

The following remark will be often used: using line -15 page 135 of [9] or Exercise

1.2.11 p. 36 in [21]

D1
sW

1∗
t = 1[0,τ ](s) where τ := inf{s,W 1∗

s =W 1∗
t }. (53)

A.2. Brownian motion case estimations

Let us recall the density of distribution of the pair (W ∗,1
t ,W 1

t ), where W
1 is a one-

dimensional Brownian motion and W ∗,1 its running maximum (see e.g., Section 3.2 in
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[17] or [15]):

pW 1∗,W 1(b, a; t) = 2
2b− a√
2πt3

exp− (2b− a)2

2t
1b>sup(a,0).

Thus, using the independence of the components of the process W, the law of

(W 1∗
t ,Wt) has a density with respect to the Lebesgue measure on Rd+1 denoted by

pW 1∗,W (.; t) :

pW 1∗,W (b, a; t) = 2
(2b− a1)
√

(2π)dtd+2
e−

(2b−a1)2

2t −
∑d

k=2 |ak|2

2t 1b≥0,b≥a1 , b ∈ R, a = (a1, ..., ad) ∈ Rd.

(54)

Lemma A.2. (i) For all t> 0, pW∗1,W (.; t) is the restriction to ∆̄ of a C∞(Rd+1)

function and there exists a universal constant D such that for x = b, a1, a2, ...ad,

∣

∣∂xpW∗1,W (b, a; t)
∣

∣ ≤ D
√

(4π)dtd+2
e−

b2+(b−a1)2

4t −
∑d

k=2
(ak)2

4t 1b>max(a1,0). (55)

As a consequence
∑

x=b,a1,...,ad

∣

∣∂xpW∗1,W (b, a; t− s)
∣

∣ ∈ L1([0, t]× Rd+1, dbdads).

(ii) p0(m,x; t, x0) ≤
e−

(m−x1)2

4t − ‖x̃−x̃0‖2

4t − (m−x1
0)2

4t

√

(2π)d+1td+1
1m>max(x1,x1

0)

= 2(d+1)/2φd+1(m− x1,m− x10, x̃− x̃0; 2t)1m>max(x1,x1
0)
,

Proof. (i) Let pW be the density of a d dimensional Brownian motion, and the

density of law of Wt ∀t > 0 : pW (.; t) ∈ C∞(Rd):

pW (x; t) =
1√

2dπdtd
e−

∑d
k=1

(xk)2

2t , t > 0, x = (x1, ..., xd) ∈ Rd.

Its derivative with respect to x1 is

∂x1pW (x; t) = − x1√
2dπdtd+2

e−
∑d

k=1
(xk)2

2t , t > 0, x = (x1, ..., xd) ∈ Rd.

Its second derivatives are

∂2x1xkpW (x; t) =
x1xk√
2dπdtd+4

e−
∑d

k=1
(xk)2

2t , t > 0, x = (x1, ..., xd) ∈ Rd, k = 2, ..., d.

∂2x1x1pW (x; t) =
(x1)2 − t√
2dπdtd+4

e−
∑d

k=1
(xk)2

2t , t > 0, x = (x1, ..., xd) ∈ Rd.

Using (2.1) page 106 of [14] we obtain the analogous of (2.2) page 107 of [14]: there

exists a constant C such that

|∂2x1x1pW (x; t)| + |∂2x1xk
pW (x; t)| ≤ C

t
pW (x; 2t), k = 1, ..., d, t > 0, x ∈ Rd. (56)
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Recall (54)

pW∗1,W (b, a; t) = 2
2b− a1

√

(2π)dtd+2
e−

(2b−a1)2

2t −∑d
k=2

(ak)2

2t 1b≥a1+ , ∀(b, a) ∈ Rd+1, t > 0.

We observe

pW∗1,W (b, a; t) = −2∂x1pW (2b− a1, a2, ..., ad; t)1b≥a1+ . (57)

Then pW∗1,W (., .; t) is the restriction to ∆ of a C∞ function.

Moreover, using the chain rule, x being (b, a1, · · · , ad) :

|∂xpW∗1,W (b, a; t)| ≤ 4C

t
pW (2b− a1, a2, ..., ad; 2t)1b≥a1+ . (58)

On the set {(b, a), b>max(0, a1)} we have

(2b− a1)2 = (b+ b− a1)2 ≥ (b)2 + (b − a1)2. (59)

Plugging estimation (59) into (58) yields (55) with D = 23C.

(ii) Recalling the definition

p0(m,x; t, x0) = pW 1∗,W (m−x10, x−x0; t) = 2
m− x1 +m− x10
√

(2π)dtd+2
e−

(m−x1+m−x1
0)2

2t − |x̃−x̃0‖2

2t 1m≥x1∨x1
0

we deduce the standard bound which uses xe−x
2 ≤ e−x

2/2 and (m− x1 +m− x10)
2 ≥

(m− x1)2 + (m− x10)
2:

p0(m,x; t, x0) ≤
e−

(m−x1)2

4t − ‖x̃−x̃0‖2

4t − (m−x1
0)2

4t

√

(2π)d+1td+1
1m>x1∨x1

0

= 2(d+1)/2φd+1(m− x1,m− x10, x̃− x̃0; 2t)1m>x1∨x1
0
,

�

Lemma A.3. For all 0 < s < t, k ≥ 1 and all u, v, w ∈ Rk

(i)
‖u− v‖2
t− s

+
‖v − w‖2

s
=

t

s(t− s)

∥

∥

∥

∥

v −
(

s

t
u+

t− s

t
w

)∥

∥

∥

∥

2

+
‖u− w‖2

t
;

(i′) k = 1,

∫ b

−∞

e−
(u−v)2

4(t−s)

√

2π(t− s)

e−
(w−v)2

4s√
2πs

dv =
√
2
e−

(u−w)2

4t

√

2πt)
ΦG

(√

t

s(t− s)
[b− (

s

t
u+

t− s

t
w)]

)

(ii)

∫

Rk

e−
‖u−v‖2

4(t−s)

√

(2π(t− s))k
e−

‖w−v‖2

4s

√

(2πs)k
dv = 2k/2

e−
‖u−w‖2

4t

√

(2πt)k

(iii) For u > 0, 1− ΦG(u) :=

∫ +∞

u

e−
z2

2√
2π

dz = ΦG(−u) ≤
e−

u2

2

2
.
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Proof. Point (i) is proved by a development of both hands then an identification of

the coefficients of the squared norms and scalar products: ‖u‖2, ‖v‖2, ‖w‖2, u.v, u.w, v.w.
So we deduce (i’) as the integral of

e−
t

4s(t−s) (v−( s
tu+

t−s
t w))2− (u−w)2

4t

√

2π(t− s)
√
2πs

with respect to v up to b.

(ii) is a consequence of point (i) then an integration on Rk of the Gaussian density

with respect to dv.

(iii) The function u 7→ ΦG(u) − e−
u2

2

2 is null at 0, has a null limit when u goes to

−∞ and its derivative is u 7→ − e−
u2

2√
2π

+ u e
−u2

2

2 . Its derivative vanishes at
√

2/π and is

negative for u ≤
√

2/π and positive after. Then, u 7→ ΦG(u) − e−
u2

2

2 is negative for

u ≤ 0.

�

A.3. Proof of Remark 2.3, boundary conditions of the PDE

Here we assume that pV is regular enough. Let µ0(dx) = f0(x)dx. Using Theorem

2.2, (6) means that: for all F ∈ C2
b (R

d+1,Rd)
∫

∆̄

F (m, x)pV (m, x; t)dmdx =

∫

Rd
F (m,m, x̃)f0(m, x̃)dmdx̃ + (60)

∫ t

0

∫

∆̄

LF (m,x)pV (m, x; s)dmdxds+
1

2

∫ t

0

∫

Rd
‖A1(m, x̃)‖2∂mF (m,m, x̃)pV (m,m, x̃; s)dmdx̃ds

recalling L = Bi∂xi +
1
2Σ

ij∂2xi,xj
where Σ = AAt.

(i) Integrating by parts with respect to a convenient dxk in
∫ t

0

∫

∆̄
LF (m,x)pV (m,x; s)dmdxds and noting that the support of pV (., .; s) is ∆̄, the

boundary terms uniquely concern the component x1:

∫ t

0

∫

∆̄

LF (m,x)pV (m,x; s)dmdxds = −
∫ t

0

∫

∆̄

F (m,x)∂xk(BkpV )(m,x; s)dmdxds

− 1

2

∫ t

0

∫

∆̄

∂xlF (m,x)∂xk [Σk,l(m,x)pV (m,x; s)]dmdxds

+

∫ t

0

∫

Rd

(

F (m,m, x̃)B1(m, x̃) +
1

2
∂xkF (m,m, x̃)Σ1,k(m, x̃)

)

pV (m,m, x̃; s)dmdx̃ds.

We again operate an integration by parts on the second term above on the right hand:

− 1

2

∫ t

0

∫

∆̄

∂xlF (m,x)∂xkΣ
k,l(m, x)pV (m, x; s)]dmdxds =

1

2

∫ t

0

∫

∆̄

F (m, x)∂2

xk,xl [Σ
k,lpV ](m, x; s)dmdxds−1

2

∫ t

0

∫

Rd
F (m,m, x̃)∂xk

[

Σ1,kpV

]

(m,m, x̃; s)dmdx̃ds.
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Gathering these equalities yields

∫ t

0

∫

∆̄

LF (m,x)pV (m,x; s)dmdxds =
∫ t

0

∫

∆̄

F (m,x)L∗pV (m,x; s)dmdxds

−1

2

∫ t

0

∫

Rd

F (m,m, x̃)∂xk

[

Σ1,kpV
]

(m,m, x̃; s)dmdx̃ds (61)

+

∫ t

0

∫

Rd

(

F (m,m, x̃)B1(m, x̃)pV (m,m, x̃; s) +
1

2
[∂xkFΣ1,kpV ](m,m, x̃; s)

)

dmdx̃ds.

(ii) Using F ∈ C2
b (R

d+1,R) with compact support in ∆ (so F (m,m, x̃) = 0) we

deduce the equality in ∆ :

∂tpV (m,x; s) = L∗pV (m,x; s), ∀s > 0, (m,x) ∈ ∆. (62)

We use (60), (61) and (62) applied to F ∈ C2
b (R

d+1,R) with compact support in ∆̄:

0 =

∫

Rd

F (m,m, x̃)f0(m, x̃)dmdx̃−
1

2

∫ t

0

∫

Rd

F (m,m, x̃)∂xk

[

Σ1,kpV
]

(m,m, x̃; s)dmdx̃ds

+

∫ t

0

∫

Rd

(

F (m,m, x̃)B1(m, x̃)pV (m,m, x̃; s) +
1

2
[∂xkFΣ1,kpV ](m,m, x̃; s)

)

dmdx̃ds

+
1

2

∫ t

0

∫

Rd

‖A1(m, x̃)‖2∂mF (m,m, x̃)p(m,m, x̃; s)dmdx̃ds. (63)

We now operate integration by parts on the last two terms:
∫ t

0

∫

Rd

(

[∂xkF.Σ
1,k.pV ](m,m, x̃; s) + ‖A1(m, x̃)‖2∂mF (m,m, x̃)pV (m,m, x̃; s)

)

dmdx̃ds =

−
∫ t

0

∫

Rd

(

[F.∂xk(Σ
1,kpV )](m,m, x̃; s) + ∂m(‖A1‖2pV )(m,m, x̃; s)

)

dmdx̃ds (64)

Plugging (64) into (63) yields the boundary condition, namely a PDE of which pV is

a solution in the weak sense:

B1(m, x̃)pV (m,m, x̃; s) =
1
2

∑

k≥1 ∂xk(Σ1,kpV )(m,m, x̃; s)+

1
2

∑

k≥1∂xk(Σ1,kpV )(m,m, x̃; s) +
1
2∂m(‖A1‖2pV )(m,m, x̃; s)

simplified as

B1(m, x̃)pV (m,m, x̃; s) =
∑

k≥1

∂xk(Σ1,kpV )(m,m, x̃; s) +
1

2
∂m(‖A1‖2pV )(m,m, x̃; s)

with the initial condition pV (m,m, x̃; 0) = f0(m, x̃). �
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