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A Framework for Recognizing Industrial Actions via Joint Angles

Avinash Kumar Singh?1 Mohamed Adjel?1,2 Vincent Bonnet3 Robin Passama1 and Andrea Cherubini1

Abstract— This paper proposes a novel framework for rec-
ognizing industrial actions, in the perspective of human-robot
collaboration. Given a one second long measure of the hu-
man’s motion, the framework can determine his/her action.
The originality lies in the use of joint angles, instead of
Cartesian coordinates. This design choice makes the framework
sensor agnostic and invariant to affine transformations and to
anthropometric differences. On AnDy dataset, we outperform
the state of art classifier. Furthermore, we show that our
framework is effective with limited training data, that it is
subject independent, and that it is compatible with robotic real-
time constraints. In terms of methodology, the framework is an
original synergy of two antithetical schools of thought: model-
based and data-based algorithms. Indeed, it is the cascade of an
inverse kinematics estimator compliant with the International
Society of Biomechanics recommendations, followed by a deep
learning architecture based on Bidirectional Long Short Term
Memory. We believe our work may pave the way to successful
and fast action recognition with standard depth cameras,
embedded on moving collaborative robots.

I. INTRODUCTION

In recent years, industry is adopting more and more
collaborative robots (cobots). This opens the door to new
scenarios, where human and robot share the same workspace
[1]. For a robot to be effective in this context, there must be
a tight choreography between the two (human and robot).
Typically, for successful human-robot collaboration, it is
crucial that the robot understands human actions. This will be
helpful in numerous scenarios and tasks including perilous
environments, heavy object lifting, tool pick and place, etc.
Human-robot collaboration should not only increase produc-
tivity; it should also reduce musculoskeletal disorders [2]
induced by repetitive tasks performed in awkward postures.
Therefore, online recognition of the human actions will also
provide feedback on ergonomic risks [3].

Human action recognition has been an active research
domain since more than two decades [4], [5]. Some re-
searchers focus on recognizing human actions from RGB
and RGB-D videos [6][7], while others utilize the position
of the human joints (skeleton) [8][9], obtained from motion
capture systems [10][11]. There are many labeled datasets
online [4][5][9], to support or verify methodologies, partic-
ularly those based on machine learning. Yet, most of these
datasets are limited to daily life actions, such as making
coffee, reading the newspaper, using the telephone etc. Few
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3LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

vincent.bonnet@laas.fr

focus on tasks which take place in industrial scenarios, such
as pick/place a tool, screw, etc. As per our knowledge,
there are only two industry-oriented motion capture datasets:
InHard [12] and AnDY [13]. In InHard, humans perform all
actions while standing, although this is not always the case
in industrial setups. AnDY instead, covers a broader variety
of postures (e.g., walking, sitting). Therefore, we decided to
use AnDY dataset to test our approach.

In terms of methods, most recent works on human ac-
tion recognition rely on deep learning. Researchers have
used a variety of neural networks such as Convolutional
Neural Networks [14][15][16], Recurrent Neural Networks
[17][18][19], Graph Neural Networks [20][21] and combina-
tions of the above [22]. All the cited studies have addressed
the problem in the Cartesian space (XY Z coordinates of
the human joint centers). In our work, we also opt for deep
learning, but propose the use of joint angle space rather than
Cartesian space.

In the context of Human-Robot Collaboration, two im-
portant characteristics are the low quality of data (since the
sensor is often on-board the robot) and the need for fast
processing. Specifically:
• sensor data can be noisy, incomplete or blurred (due to

occlusions, limited field of view or robot motion),
• data must be processed and classified (e.g., actions must

be recognized) at a framerate that is high enough to
control a robot, at least at 5-10 Hz.

These issues make the action recognition problem much
more challenging in Robotics than it is in the field of Com-
puter Vision, where the papers [5][23][24] present solutions,
which do not account for low quality data nor for framerate
requisites. Besides, they do not easily generalize to:
• viewpoint (orientation and translation),
• subject-specific anthropometry,
• sensors other than cameras.

To address these aspects, one should train the classifier on
datasets covering many cases, at a huge cost in terms of
acquisition, labeling and training.

Our solution consists in mapping the 3D Cartesian coor-
dinates of the human skeleton joint centers, which can be
derived from diverse sources (RGB-D camera, stereopho-
togrammetric device, inertial suits, ...) to his/her joint angles.
The joint angles representation has many advantages:
• it is sensor agnostic, i.e., one can apply it to any motion

capture device measuring the human joint Cartesian
coordinates; such device may be a dedicated motion
capture sensor (e.g., optical, inertial, etc) or the combi-
nation of a sensor and processing algorithm (e.g., RGB-



D image stream processed by openpose1),
• it is invariant to affine transformations (scaling, trans-

lations, rotations),
• it generalizes well across the anthropometry of different

subjects,
• it is less sensitive to outliers, which can be processed via

standard joint angle limits (from biomechanical tables).
These advantages are crucial in the perspective of machine
learning, since a joint-based classifier will require a drasti-
cally smaller amount of data than the state-of-art Cartesian-
based classifiers, to achieve comparable generality. In a
nutshell, the contributions of this paper are:
• on AnDY dataset, we show that the joint angle rep-

resentation yields higher accuracy than the Cartesian
representation and than the state of art classifier [3];

• because of the advantages cited just above, our joint
angles classifier is accurate across all AnDY actions,
effective with limited data and person independent;

• because of the lower dimension of the feature vector,
training is much faster with joint angles than it is with
Cartesian coordinates;

• the classifier computation time is compatible with real-
time constraints (even considering the addition of a
vision-based skeleton tracker).

Last but not least, our work is an original synergy of two
schools of thought which tend to compete in the field of
engineering, those of the model-based and data-based com-
munities. Indeed, by complementing biomechanics (Sec. II)
with deep learning (Sec. III), we outperform the state of
art [3] in the recognition of industrial actions (Sec. IV).

II. THE PIPELINE FOR JOINT ANGLE ESTIMATION

A motion capture system usually measures Cartesian poses
of the body segments. To estimate joint angles from these
measures, we developed a Capture System Software Library
(CSSL), composed of an offline and an online phase. The
offline phase consists in creating a biomechanical model of
each subject based on a Unified Robot Description Format
- URDF. At each new sample of time, the online phase
updates the joint angles of the model by calculating inverse
kinematics. Both phases are detailled below.

A. Biomechanical Model of the Human

The proposed 23 Degrees of freedom (DoF) biomechanical
model is based on the recommendations of the International
Society of Biomechanics [25]–[27]. This way, we can cope
with the differences between scientific and clinical commu-
nities, and use – in future work – the model in the field of
industrial ergonomics.

Figure 1 shows the model with the position of the Joint
Center Positions (JCP) and the type of corresponding me-
chanical joints. The model base is attached to the pelvis
segment. The pelvis is connected to each leg by a 3 DoF
ball hip joint and the knee is represented by a hinge joint.

1https://github.com/CMU-Perceptual-Computing-Lab/
openpose

Fig. 1: Representation of the 23 DoF human biomechanical
model and relevant JCP. Estimated centers of masses are
represented with red spheres.

The cardan lumbar joint connects the pelvis to the abdomen
that is then connected to the thorax by the 3 DoF ball thoracic
joint. Each clavicle is linked to the thorax by a hinge joint.
The arms are composed of a 3 DoF ball glenohumeral and
by a hinge elbow joint. Estimating these 23 joint angles
with the proposed model requires the measures of 16 JCP:
cervical, left/right glenohumeral, left/right elbow, left/right
wrist, thoracic, lumbar, pelvis, left/right hip, left/right knee
and left/right ankle.

The offline phase takes as input constant parameters the
subject’s gender, height, and mass and it estimates – using
anthropometric tables [28] – each segment’s geometric and
inertial parameters. With these, we generate the human
model, as a Unified Robot Description Format – URDF. We
do this with a C++ library (https://gite.lirmm.fr/
humar/humar-joints-estimator) with classes rep-
resenting each part of the biomechanical model (segments,
joints, limbs) and its parameters (mass, length, inertia and
center of mass)2.

B. Real-time Inverse Kinematics Estimation

Once the URDF has been generated, the pipeline’s online
phase uses at each iteration t the JCP, to estimate the
corresponding joint angles of the subject. More formally, our
inverse kinematics problem consists, at each iteration t, in
estimating the joint angle vector θt ∈ R23, corresponding to
the measured 3D Cartesian coordinates of the 16 JCP, χ̂t ∈
R48. The Forward Kinematics Model (FKM ), calculated
from the human URDF, maps one representation to the other:

χt = FKM (θt) . (1)

2Although in this work we focus on kinematics, the body segment
inertial parameters encode information about the dynamics, which could
be exploited in future work.



We can fit this model on the measures, by solving a con-
strained optimization problem, which consists in minimizing
the distance between the measured and modeled JCP, while
accounting for a regularization term:

θ∗t = argmin
θt∈R23

||FKM(θt)− χ̂t||22 + β||θt − θ∗t−1||22

subject to θ− ≤ θt ≤ θ+
(2)

where β = 1−3 is a weight allowing to avoid discontinuities,
and θ+ and θ− are the upper and lower joint limits,
respectively. We solve (2) efficiently using the C++ library
Ipopt [29] along with CppAD library [30].

III. ACTION RECOGNITION

A. Dataset Description

To validate our method, we used AnDY dataset [13],
[31]. Six industry-specific tasks (Screw High, Screw Middle,
Screw Low, Untie Knot, Carry a 5kg load and Carry a
10kg load) are combined in 6 alternative sequences. Thirteen
healthy adults (9 males and 4 females, of height 175.4 ±
7.9cm, weight 72.3 ± 14.4kg and age 25.7 ± 5.0years)
participated in the study. Each participant repeated 5 times
3 sequences selected randomly among the 6. The dataset
contains three types of human motion measurements: inertial
motion capture data (Xsens MVN Link system, 240Hz,
Xsens, Enschede, The Netherlands), stereophotogrammet-
ric data obtained with a motion capture system (Qualisys,
120Hz, Goteborg, Sweden), and videos recorded by two
RGB cameras [3]. Within the 13 × 5 × 3 = 195 sequences
of the dataset, the authors have labeled 8 actions: Reach,
Pick, Place, Release, Carry, Fine Manipulation, Screw, Idle,
defined in Table I.

Figure 2 shows the concatenation of actions over time,
for one sequence of 107 seconds. Actions are color-coded
and represented by circular sectors of radius proportional to
their duration (indicated in seconds). For instance, the largest
orange sector on the right indicates that the participant was
idle at the end of the sequence (from 80.7 s to 107 s). We can
see that some actions (Id, Fm, Re and Rl) are more frequent
and on average longer than others (Ca, Pl, Pi and Sc). This
is the case for all sequences, making the dataset distribution
skewed, i.e., some classes have more samples than others.

Action Definition
Reach (Re) Move an arm towards a target, no object

in hand.
Pick (Pi) Pick up an object: starts when touching

the object, ends when the arm stops
moving with respect to the body.

Place (Pl) Place an object: similar to Re, but with
an object in hand.

Release (Rl) Bring arm back after manipulation.
Carry (Ca) Carry an object: starts at the end of Pi,

ends at the beginning of Pl.
Fine manipulation (Fm) Manipulate an object with dexterity.
Screw (Sc) Rotate the hand with screwing motion

(particular case of Fm).
Idle (Id) Don’t move the hands.

TABLE I: Definition of the actions from the AnDY dataset.

Fig. 2: Concatenation of actions for one sequence in AnDY
(Participant 541 Setup A Seq 3 Trial 1, see [31]), starting
from the mid left (Id 0.0-7.04). Each action is represented
by a circular sector of radius proportional to its duration and
labeled with the start and end time (in seconds). The color
code is: orange (Idle), green (Reach), blue (Fine Manipu-
lation), purple (Pick), black (Carry), magenta (Place), red
(Screw), cyan (Release).

B. From inertial suit measures to joint angles

This section describes how we utilized the AnDY dataset
to build the training and testing subsets for our human action
classifier. To this end, we exploited the data recorded with
the inertial suit at 240Hz. At each iteration t, the inertial suit
estimates the Cartesian Coordinates of 23 joints of the human
body, denoted ψt ∈ R69 and listed in Table II. However, to
calculate the corresponding joint angles with the CSSL, we
require the 16 JCP indicated in Sec. II-B. To this end, we
map ψt to χt, as shown in Table II. The head motions were
not considered in our study, since they are prone to variations
reflecting the subject’s cognitive state. The so-called shoulder
joint provided by the inertial suit corresponds to the center of
the sterno-clavicular joints, and can be estimated only using
regression methods. Therefore, we only use the cervical joint
as center of rotation of the clavicules, as recommended in
biomechanics [27]. We do not consider the positions of
the toes, and thus the ankle joint angles, and the Cartesian
positions of vertebrae T12 and T3, since they displayed small
amplitude in the investigated tasks and are therefore error
prone. At each sample time, we set the model base at the
pelvis, with the transformation matrix calculated from the
upper legs, pelvis and L5 Joint Coordinates, measured by
the inertial suit [32]. Figure 3 shows the results of the CSSL
for four representative postures of the investigated tasks.

C. Architecture of the Action Classifier

In this section, we describe the architecture of the clas-
sifier, which we have designed to map a sequence X of T
consecutive feature vectors:

Xt = {xt−T , . . . ,xt−1}
xk = {ψk,θk} ∈ Rn (3)



Fig. 3: Representative postures showing the results of the
CSSL while: (a) standing in a neutral posture (Idle), (b)
bending to pick-up an object with both hands (Pick), (c)
walking while carrying an object with both hands (Carry),
(d) bending to place an object with one hand (Place).

to one of the 8 action classes in Table I. The size n of feature
vector can be either 69 – when using all the JCP provided by
the inertial suit, ψ – or 23 – when using the joint angles θ
estimated using the CSSL. At each iteration k, our classifier
assigns an action label to xk; after T iterations, the classifier
labels the sequence Xt with the class which has obtained
the majority of labels.

Our approach is inspired by [17], [19]. The authors used
stacked LSTM for action recognition, but in this work,
we tried [34], a bidirectional variant of LSTM (Bi-LSTM).
Bi-LSTM adds one more LSTM layer, which reverses the

Inertial suit joints ψ [33] CSSL Joints Center Positions χ
Head N/A
T8 Thoracic
T12 N/A
Left upper arm Left glenohumeral
Right upper arm Right glenohumeral
Left shoulder N/A
Right shoulder N/A
Left lower arm Left elbow
Right lower arm Right elbow
Left hand Left wrist
Right hand Right wrist
Neck Cervical
L5 Lumbar
T3 N/A
Pelvis Pelvis
Left upper leg Left hip
Right upper leg Right hip
Left lower leg Left knee
Right lower leg Right knee
Left foot Left ankle
Right foot Right ankle
Left toe N/A
Right toe N/A

TABLE II: Mapping from the 23 joints (ψ) measured by
the inertial suit to the 16 JCP (χ) needed by the CSSL for
inverse kinematics.

Fig. 4: Architecture of our action classifier. The input (blue)
is n-dimensional vector x = {ψ,θ}, with n = 23 or 69. This
is normalized, passed through 3 Bi-LSTM layers (orange),
followed by a fully connected layer (green) with softmax
activation to obtain the action class label (Y).

direction of information flow. With the help of this additional
input layer the input flows in backward direction. Further the
the output of both the layers are combined to better under-
stand the input sequences. This way the network considers
both forward and backward time directions for classification.
We believe Bi-LSTM is particularly useful when dealing
with action sequences, since the classifier can refer to future
actions to label the current one. Figure 4 illustrates our Bi-
LSTM architecture. We stacked three Bi-LSTM layers, to
make the network preserve the spatial relation between joints.
Each of the 3 hidden layers is composed of 32 cells (h =
32). Before training and validation, input xt is normalized
(shifting it by its mean, and then dividing by its standard
deviation). Then, the first layer applies to this normalized
input. The output of the LSTM layer is then passed to the
following layers. To avoid overfitting, we apply a dropout
of 0.5 to the third layer. The stacked layers are followed by
the final fully connected layer, with softmax activation to
map xt to one of the 8 classes. We used categorical cross
entropy as the loss function, Adam as optimizer, and we set
the learning rate to 0.001.

IV. VALIDATING THE ACTION CLASSIFIER

In this Section, we present the tests that we ran to validate
the classifier, developed with TensorFlow 2.7, on a computer
with Intel© Core i7-1165G7@2.80GHz, 16 GB RAM and
4 GB GPU. The python code implementing the classifier
can be found at https://gite.lirmm.fr/humar/
research-projects/humar_dnn. A video presenting
the results is attached to this paper and available at https:
//youtu.be/2GNWYsOfDYw.



As in [3], we use a time window of 1 second with 50%
overlapping, to define each sample of an action. Since data
is measured at 240 Hz, this corresponds to T = 240 in (3).
At this stage, some classes have many more samples than
others, due to their frequency and execution length (Sec. III-
A). Hence, to balance the data, we randomly discard some
samples from the most represented classes (Id, Fm, Re, Rl).

In a first experiment, we randomly split the dataset into
70% training and 30% validation subsets, and validate it with
the action classifier presented in Sec. III-C. We use the same
architecture and hyperparameters for both representations of
the input data, ψ ∈ R69 and θ ∈ R23. Table III compares
the F1 scores of our classifier with the two inputs ψ and θ,
with the state of art Hidden Markov Model from [3]. Both
the figure and table show that the joint angle representation
(θ) slightly prevails over the Cartesian one (ψ). Despite the
small difference in accuracy, it should be noted that training
is much faster with θ than it is with ψ. On average, a training
epoch takes 130.13 s with θ and 230.38 s with ψ. This is
because of their different dimensions (23 vs 69). In terms of
accuracy, both θ and ψ outperform [3], where the F1 score
was 86.63% (see Table III). We believe that the reason is
that Recurrent Neural Networks can handle long term data
dependencies better than Hidden Markov Models, where the
state at time t is related only to the state at t − 1. Another
advantage of our approach over [3], is that it requires solely
the joint positions, which can be measured with a variety
of human motion capture devices. Instead, classifier [3]
needs 11 features, including higher-order kinematic variables
(e.g., angular velocities and accelerations), which cannot be
measured by most devices (e.g., depth cameras).

Input n F1 Score
23 JCP measured by inertial suit, ψ. 69 98.99%
Joint Angles derived via inverse kinematcis, θ. 23 99.42%
Various kinematic features [3]. 11 83.36%

TABLE III: F1 scores and input dimensions (n) of: our Bi-
LSTM with input ψ, our Bi-LSTM with input θ and the
state of art Hidden Markov Model [3].

Figure 5 is the confusion matrix of our Bi-LSTM with
joint angles θ as input. For each action the values on the
diagonal are the percentage of true positives, while the others
are the percentage of misclassifications (false negatives or
false positives). The very high values on the diagonal confirm
the quality of our classifier across all eight actions.

To verify the performance across different subjects, we
tried leave-one-out cross validation for joint angles input
θ. We excluded all 15 trials of one participant from the
training set, leaving data of the other participants. Then,
we validated only with the excluded participant. We show
the results for each action in Fig. 6, with the excluded
participants in abscissa, and the F1 score in ordinate. For
example, the first column indicates the F1 score of participant
p5124 with the classifier trained on the rest of the population.
Validation accuracy is similar (and high) across all actions
for all participants, except p3327 (column 9). The reason

Fig. 5: Confusion Matrix of our Bi-LSTM with input θ.

could be that participant p3327 is left handed, while most
participants (11 out of 13) are right handed. Ideally, the
dataset should be equally distributed among left and right
handed participants. Table IV shows the F1 scores when
validating with all participants, the classifier was trained with
and without participant p3327. For all actions, the F1 score is
greater than 89.8%, and when excluding p3327 its decreases
by 2.0% (average across the 8 actions). These results show
the robustness of our classifier, with regards to new data.

Training set Id Re Fm Pi Ca Pl Sc Rl
With p3327 98.3 91.6 98.0 96.9 91.5 95.9 96.2 94.9
Without p3327 97.5 90.6 97.3 92.7 89.8 94.0 92.7 92.6

TABLE IV: F1 scores (in %) of the θ classifier across all
participants, trained with/without participant p3327.

In a more challenging experiment, we excluded almost half
(6/13) of the population and we trained the classifier with the
rest. We excluded all samples of 4 male participants (p909,

Fig. 6: Leave-one-out F1 score of our Bi-LSTM with input
θ. Abscissa: excluded participants, ordinate: F1 score with
that participant.



p3327, p5124 and p9266) and 2 female participants (p8524
and p5535) from the training, while we used only these 6
participants for validation. We repeated the experiment with
both inputs: raw inertial suit JCP ψ and joint angles θ.
We report the F1 scores for all eight actions in Table V.
Obviously, with less examples for training, all values have
decreased with regards to Tables III. Yet, there is a clear gain
in using joint angles θ compared to ψ. The average F1 scores
were 85.48% and 68.19% for θ and for ψ, respectively. This
shows that joint angles classification is robust to the use of
limited data, and that it is subject independent. It also means
that when using a biomechanical model and calculating joint
angles, we make the data agnostic to the subject’s biometrics.

Input Id Re Fm Pi Ca Pl Sc Rl
Inertial suit JCP, ψ 76.2 34.8 70.7 18.8 82.0 58.0 67.2 47.8
Joint angles, θ 90.3 68.3 88.4 65.6 85.3 74.5 78.9 70.1

TABLE V: F1 scores (in %) of the classifier, trained with 7
of the 13 participants, with inputs ψ and θ.

Performances ψ@240Hz θ@240Hz ψ@10Hz θ@10Hz
F1 score 98.99 99.42 95.44 96.38
Classification time 1.70 1.44 0.18 0.17
IKE time N.A. 5.25 N.A. 5.25

TABLE VI: F1 scores (in %) and average times (ms) needed
for Classification and Inverse Kinematics Estimation (IKE),
with four versions of the classifier.

Let us conclude on the possibility of using our classifier
for real time robot control in the context of human-robot
interaction. This paper introduces the foundations of our
future work, which aims at fast action recognition with low
cost sensors embedded on a – possibly moving – robot.
Ultimately, we believe these will be RGB-D cameras with the
inclusion, in the perception pipeline, of a skeleton tracking
algorithm such as Openpose. Such algorithms nowadays
require long computing time (e.g. 60 to 80ms from our expe-
rience) even with the GPU embedded on our robot (NVIDIA
GeForce GTX 1080). This will substantially reduce the data
frame rate, from the current 240Hz, to approximately 10Hz.
To verify the feasibility at such framerate, we subsampled
the inertial suit data from the original 240Hz to the targeted
10Hz. This corresponds to taking a measure every 24 and
setting T = 10 in (3). Under such conditions, we train
and validate the classifier with both ψ and θ, to obtain
the F1 scores shown in Table VI, along with the ones
at 240Hz (copied from Table III). The results are very
encouraging, with a loss of only 3% when subsampling
the joint angles θ. Along with the accuracy, one should
verify the feasibility in terms of computation time. Fulfilling
the 10Hz constraint in the worse case scenario – camera
acquisition and skeleton tracking taking 80ms – leaves 20ms
for the other operations. These are: classification (i.e., the
time required by the Bi-LSTM to label a sequence) and
(when using joint angles θ) inverse kinematics estimation,
described in Sec. II-B. Table VI shows the computation times

of these two operations for the four versions of the classifier.
These are averages measured on the mentioned computer, for
one subject. The results show that even with the addition of
inverse kinematics, the pipeline should not violate the 100ms
constraint.

V. CONCLUSIONS

We have introduced and validated a framework for recog-
nizing industrial actions from human motion data. We argue
that relying on joint angles rather than on the Cartesian
coordinates – commonly used in the literature – enhances
the classification performance at many levels. The classifier
is less sensitive to subject variance, faster to train, and
compatible with robotic real-time constraints. Our claim is
confirmed by the results obtained on inertial suit measures
from AnDy dataset, to classify 8 different actions.

In the future, we will apply the classifier to data from
low-cost depth cameras, combined with a visual skeleton
tracker (e.g., openpose). Currently, to generate the biome-
chanic model of each subject, we must know his/her gender,
height and weight. We will try to avoid this, by relying
solely on sensor data. We also believe that the joint angles
representation will help address challenges present in vision
systems, such as occlusions and undetected joints.
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[31] P. Maurice, A. Malaisé, S. Ivaldi, O. Rochel, C. Amiot,
N. Paris, G.-J. Richard, and L. Fritzsche, “Andydata-
lab-oneperson,” Zenodo, 2019.

[32] A. Cappozzo, F. Catani, U. D. Croce, and A. Leardini,
“Position and orientation in space of bones during
movement: Anatomical frame definition and determi-
nation.,” Clinical biomechanics, pp. 171–178, 1995.

[33] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens mvn:
Full 6dof human motion tracking using miniature
inertial sensors,” Xsens Motion Technol. BV Tech.
Rep., 2009.

[34] M. Schuster and K. Paliwal, “Bidirectional recurrent
neural networks,” IEEE Tran. on Signal Processing,
pp. 2673–2681, 1997.


