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3D Mixed Boundary Elements for Elastostatic
Deformation Fields Analysis

Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 34, 275-287, 1996.

V. Cayol, ! and F. H. Cornet 2

A 3D Boundary FElements Method (BEM) combining the Direct and Displacement Dis-
continuity (DD) methods is developed for the analysis of elastic deformation fields. It
can incorporate realistic surface topographies, pressurized reservoirs of any shape, tensile
cracks and shear fractures. For accurate representation of geometries, boundaries are dis-
cretized with triangular elements. The Direct method, based on the reciprocal theorem and
the solution to Kelvin’s problem, is the only BEM for which stresses do not become infinite
at corners and edges. Therefore, linear planar elements with nodes at apex shared between
adjoining elements have been used for accurate and fast modeling of surface topographies
and reservoirs. The DD method, based on the analytical solution to the problem of a single
DD, s suitable for modeling fractures. With this method, use of constant planar elements
is numerically less costly. A modified row-sum elimination method has been developed to
permitl discretization of surface topographies with linear elements using the Direct method.
The Mized BEM, herein proposed, is tested on a horizontal pressurized fracture of circu-
lar shape embedded in an elastic half-space. This example demonstrates the importance
of a proper discretization for improving solution time and accuracy. Finally, intersection
between elements of different types is discussed.

NOMENCLATURE

Influence coefficient matrix for the DD method.

Air;,  Influence coefficient of the j%* DD component on stress o;;.

B;;, Influence coefficient of the j'* DD component on displacement wu;.
¢, Matrix for the singularity when % is on the boundary T'.

DD vector.

Nodal influence coefficient matrix of tractions on tractions.

F, f' Known vectors for the Direct method.

g, Nodal influence coefficient matrix of tractions on displacements.

H, Influence coefficient matrix for the Direct method.

Pl, Nodal influence coefficient matrix of displacements and

of DDs on displacements.

Influence coefficient matrix for the Mixed BEM.
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n®,  Number of function nodes on element e.
N, Total number of elements.
Npr,  Number of elements on massive parts.
Np, Number of elements and function nodes on fractures.
N, Number of function nodes on massive parts.
Ny, Number of function nodes of the virtual complementary boundary
P,p, Traction vectors.
R, Known vector for the Mixed BEM.
R, ©, Z, Cylindrical coordinate system.
r, Distance from calculation point ¢ to field point ¢.
s, Nodal influence coefficient matrix of displacements
and DDs on tractions.
t, Field point.
U,u, displacement vectors.
X, Vector of all displacements on massive parts and of all
DDs on fractures.
x, y, z, Local Cartesian coordinate system.
xy, 3, x3, Global Cartesian coordinate system.
['; Boundary of the body.
['., Surface of element e.
'z, Boundary of fractures.
['ar, Boundary of massive parts.
I'y, Virtual complementary boundary.
I's, I's, Boundaries of small hemi-spherical surfaces.
I',, Far field boundary.
2, Volume of the body.
¥, Calculation point (load point for the Direct method).
o, Stress tensor.

Equations are written in Cartesian coordinates with axes (z;, 2, z3). The i coor-
dinate of a point ¢ is written ;(t), vectors and matrices are represented with bold letters,
and the 7'" component of a vector u is written as (u); = u;. u” represents the transposed
of u. I,; is the partial derivative of function I with respect to x;. Einstein convention of
summation is employed.

INTRODUCTION

Rock engineering problems have been faced in mining, civil or petroleum engineering
undertakings. Most of the times, solution to such problems requires, in its first step, an
elastic analysis of the stress and/or the displacement field. In many cases, even if the
rock mass is homogeneous, mechanical properties of a few major geological discontinuities
affecting the site require that these discontinuities be explicitly taken into account [1].
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Similar problems are encountered in vulcanology and seismotectonics. Presently,
there is a need to apply rock engineering principles to help appraise such environmental
hazards. One of the major tools for monitoring volcanic and seismotectonic activity
is to measure ground surface deformations. Mechanical models are used to determine
the characteristics of the sources of these deformations, and to understand movements of
magma [2] or stresses redistribution after earthquakes [3]. In this work, static deformations
are considered, as technics used for measuring surface deformations (geodesy, tiltmetry,
radar interferometry ...) usually provide discontinuous data. Also, effects of temperature
and poroelasticity are neglected.

In order to interpret measured surface deformation fields, several elastic models have
been proposed. Mogi [4] developed an analytical formulation for surface displacements
created by the inflation of a deep magma body of spherical shape in an elastic half-
space. This widely used model is based on the assumption that the size of the sphere
is small as compared to the depth of burial. Dieterich and Decker [5] made the first
finite element model in vulcanology for calculating ground displacements associated with
magma reservoirs of various shapes and dikes of various inclinations in an elastic half-
space. They used axisymmetric and plane strain models. 2D boundary elements were
used by Pollard and Holzhausen [6] for analyzing surface displacements due to a fluid-
filled crack interacting with the free surface. Okada [7] derived analytical expressions for
the surface deformation created by inclined shear and tensile faults in an elastic half-space
for both point and finite rectangular sources. Displacements are supposed constant on
the fault.

These half-space models are widely used for volcanoes where surface topography
can be considered flat, like Kilauea in Hawaii, or Kraftla in Iceland. For these volcanoes,
effects of irregularities of the ground surface are thought to be too small to be distinguished
from errors associated with deformation data. However, for more prominent volcanoes like
Mount Etna in Sicilia, Piton de la Fournaise in Réunion Island or Merapi in Indonesia, the
general and local aspects of the ground surface critically affect the deformation field [8]. In
these cases, realistic topography must be incorporated in the model. Also, for tectonically
active regions, use of a half-space model may be justified in strike-slip regime associated
with a flat topography, for instance around San Andreas Fault. However, in dip-slip
faulted areas, topographic relief is usually significant, and quantitative interpretation of
deformations should take it into account. Note also that new surveying techniques like
radar interferometry provide global images of ground surface deformations. For prominent
topographies, proper interpretation requires a 3D tool.

For this purpose, a fully 3D BEM has been implemented for modeling elastic defor-
mations. With this numerical method,

e real surface topographies can be taken into account,

e the perturbation due to inflation or deflation of reservoirs of any shapes can be
modeled,

e tensile cracks as well a shear faults can be incorporated,

e gravitational loads are not dealt with, only the perturbation of the initial state of
stress is considered.
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For the problems addressed here, the prescribed boundary conditions are tractions.
They are null on surface topographies, and equal to the driving pressure on pressurized
structures. Shear forces can also be imposed on fractures. For a better approximation of
shapes, triangular elements are used. Throughout this paper, surface topographies and
pressurized reservoirs are referred to as massive structures. First, principles of the Direct
method [9, 10, 11, 12] and the DD method [13, 14, 15, 16] are recalled. Then, motivations
for combining the Direct method with linear elements and the DD method with constant
elements are discussed and the procedure used to combine these two BEM is explained.
This Mixed method is tested and the sensitivity of discretization discussed. Finally, the
case of a fracture intersecting a massive structure is presented.

WHY MIXED BOUNDARY ELEMENTS ?

The Direct method

Formulation of the Direct method [9] is derived from Betti’s theorem. For an elastic
body © with boundary I', it can be written

[ (@pie) = wdepl(n) are) = 0. (1)

where u; and p; represent j'* components of displacement and traction, and superscripts
1 and 2 stand for two different boundary problems. Boundary problem 1 corresponds to
the current problem and boundary problem 2 corresponds to Kelvin’s problem of a point
load in an infinite body. Displacement in direction j at field point ¢ of boundary I' due
to a unit point load acting along z; at load point ¥ inside an infinite body is given by

1 1

Uiglv,1) = 167G(1 —v)r

—HB = 4w)dij + iy}, (2)

where G and v are elastic constants, ¢ is the Kronecker’s delta function, r is the distance
from o to t. r,;, the partial derivative of r with respect to the field point ¢, is given by

i) = ()

ry =

Traction is determined from differentiation of (2) and Hooke’s law,

1 1 or
Pals0) = ==y {10 =200 430 ] 5= (1 =20 = g )

where
or
on
and n is the outward unit normal to the surface at t.

For a load point © on the surface I' of the body 2, a limiting form of Betti’s Theorem
(1), as ¥ goes to the boundary I' [9, 10], can be written

= (gradr)mn=r;n; ,

ci(us(¥) + [ P (0d0() = [ Uy, )pi(0dr@) . (=1.2,3) (1)



3D MIXED BEM 3

with

¢ij(¥) = lim [P0, )AL (1) ,
and I's 1s a small hemi-spherical surface centered at v, which supplements I'. If the surface
is smooth at ¢, ¢;; = %52-]-.

Numerical implementation of the problem [11, 12] is based on two kinds of approxi-
mations: First, geometry of the surface is approximated by N triangular planar elements.
Second, surface geometry, displacements and tractions are represented using shape func-
tions of their nodal values. For an arbitrary point ¢ on element e, coordinates are expressed
in terms of nodes defining the geometry of the element. Displacements and tractions are
expressed in terms of their values at function nodes of element e. They can be supposed
constant, or with linear or quadratic variations on the element surface, requiring respec-
tively n® = 1,3 or 6 function nodes on the element. Writing equation (4) in discretized
form for the unit point load successively applied to each of the Ny, function nodes of the
mesh, the following system is obtained [12] , for [ = 1,..., Ny,

N N
clu' + 3 (hy by ) U = (g g )P (5)

e=1 e=1

T T

where U® = {ul..u” } and P® = {pl..p” } are the displacement and traction vectors on
the n° function nodes of element e, and (hy )%, (gik)® are 3x3 influence coefficient matrices
consisting of integrals evaluated at function node k of element e. Despite singularities in
1/r and 1/r? in the fundamental solutions (2) and (3), influence coefficients do not become
unbounded when [ is on element e. For a constant element, the function node is placed at
the centroid, and, for a linear or quadratic element, function nodes are generally placed
on the edge of the element in order to reduce the number of unknowns in the boundary
value problem (Figure 1).

constant linear quadratic

Figure 1: Location of geometrical (o) and function (%) nodes for constant, linear and
quadratic Direct method elements

In the actual problem, tractions on elements P¢ are known boundary values. There-
fore, the right part of (5) can be calculated. Because the displacement vector at a function
node n is unique, the hy; term of the N, elements connected to this node can be summed

up,
Nn

by, =Y (hu)" (6)

r=1
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allowing to replace a sum over elements by a sum over function nodes. Thus, (5) becomes

Ny, .
c'u' + > (hy)u" =1 (7)

n=1

Finally, unknown boundary displacements are calculated by solving a system of the form
HU=F, (8)

where H is a non-symmetric fully populated influence coefficients matrix, U represents
the 3N unknown displacements and F is a known vector of size 3Ny. This system is
solved for U. Solutions at interior points are calculated from Somigliana’s identity, which
is a form of Betti’s theorem corresponding to a unit point load inside the body (2,

ui(¥) = = [ Pi ) uw(dr@) + [ Uy, 0)pi(0d0(@) (i =1,2,3).  (9)

This equation is differentiated and Hooke’s law is applied in order to get stresses,

oii (9 / S (10, ) up()dT () + / Diii (4, O pa(t)dT(2) . (10)
With the identity,
or or
= — 11
the third order tensor components S;;; and D;;; are written as,
G 1 or
Sijk(ﬁ),t) = mT—B {Sa—n [(1 — QV)(SZ']'T,]C + I/((SZ‘]J‘,]‘ —}- (SjkT'J') — 5r7,-r,jr,k]
+3v(nr vk +nrrg) + (1 —2v)(3ngrir (12)
—I—nj(sz‘k + ni(gjk) — (1 — 41/)nk5,-]-} s
and { {
Dijk(';b,t) = mﬁ{(l — 21/)((52%7'7]' + 5]-151“,2- — (SZ']'T'JC) + 3T,Z'T'7]‘T'7k} . (13)

Using the approximations previously described for equations (9) and (10), displacements
and stresses at interior points are calculated using all boundary values.

The Displacement Discontinuity method

Formulation for the DD method is based on the analytical solution to the problem
of a planar element over which material is oppositely displaced [13]. Defining a local
coordinate system (z, y, z) such that the z axis is normal to the element plane I,
located at z = 0, the elemental DD corresponds to the following boundary conditions,

D; =uf —u; .
{ L (1=2,y,2), (14)

iy = 04y
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where superscripts + and — indicate values on the positive and negative side of the
fracture.

Using harmonic functions, displacements and stresses are expressed as linear func-
tions of the DD components [13]. For constant DD components (D, D,, D,), the well
known expressions [15] for displacements and stresses at point v inside the body £ is
obtained:

1
ux(lvb) = _871'(1—1/) { [Zil)[vl‘l‘_Q(l_V)[az]Dl‘_l_[Zlb[axy]Dy
+ [Z¢[axz+(1_2y)]7$]D2} 5
1
uy(¢) = (1 —v) { leelioy] Do+ [2yd,yy —2(1 = v)1..] Dy (15)
+ [Zd»[ayz +(1 - QV)Iay] D, } )
1
u2(¢)_ _871'(1—1/) { [Zfl)[axz_(l_2’/)[793]D$+[Zib[ayz_(l_QV)[ay]Dy
+ [Zd»[az‘z _2(1_V)[a2]D2 } )
G
o-xx(lvb) = m { [2[axz _Zw[wxx] Dx + [QVIWZ _Zw[mzy]Dy
+ [[722 +(1 - 21/)[71/1/ _Z‘d)[al‘xz ]DZ} )
G
oy () = m { Rvle:—zplayy ] Do + 21, =24y, 1Dy
+ [[azz —I'(l - 2’/)[79393 _Z¢[7yy2]Dz} 5
G
022(@/)) = m { _[Zd»[asz]Dx - [Zd»]ayzz ]Dy + [[722 =2yl ]DZ} )
G
oy (V) = (1= 0) { (L =)y =2y lsaay | Do + [(1 = v) L0z =2y L ayy 1Dy
- [(1 - 2]/)[7961/ —I'Zw[wyZ]Dz} ) (16)
Oyz = — \V1i,z +z VTYZ z T 722+V yor — AL yyyz
y @D G I y wf y D I I wf vy Dy
(1l —v)
— [zgl - 1D
G
0. (V) = m { ety —zplow: | Do — [V oy 2410y, | D,
- [Z¢[7$22]D2} ;
where
1
I=I() =/ NOF (17)
r,r

r is the distance from point ¢ of I'. to ¥». The influence coefficients on stresses contain
integrals with singularities of orders 1/r* and 1/r®, making stresses at the edge of an
element unbounded.

Numerical implementation of the method, [14, 15], is based on the superposition
principle that result from linear elasticity. Solution on a fracture of any shape is found by
dividing it into N planar triangular elements over which elemental DDs are distributed.
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Expressing influences of individual DDs in the global coordinate system (x1, x5, x3) and
superposing them, displacements and stresses at ¢ € ) are written as a linear combination

of all DDs,

N
wi(y) =Y B DS, (18)
e=1
al Y
Uik(‘éb) = ZAU:]'D;' ) (19)
e=1

where B;?e and A;b,:] represent the influence coefficients at ¢ of DS, the 3t component of
the DD on element e. For traction boundary problems, a system of equations is formed
from (19) by expressing the boundary traction at the centroid of every fracture element
[. The following system is obtained, for [ = 1,..., N,

N
o= (Z Ai-sz;-) L (20)
e=1

where n! is k' component of the normal at the centroid of element /. Amplitudes of the
3N DDs are adjusted so that they match the prescribed boundary tractions by solving a
system of the form

P=AD. (21)

P represents 3NV prescribed tractions, A the influence coefficient matrix and D 3N DD
components. Finally, boundary displacements as well as displacements and stresses at
interior points can be calculated using the DDs amplitudes in equations (18) and (19).

constant linear quadratic

Figure 2: Location of geometrical (o) and function (%) nodes for constant, linear and
quadratic DD elements

Expressions have been derived for constant elements. However, if elements with
higher-order functional variations were used [16], singularity of stresses on edges of ele-
ments would force to place function nodes inside elements (see Figure 2).

Reasons for combining the Direct and the DD methods

When choosing a BEM for modeling deformations, attention should be paid to the
following aspects: First, numerical cost of solutions should be minimized. In 3D, large
systems of equations are often met which require disk swapping for their resolution. As
transmission of data to and from the hard disk is at least 1000 times slower than from
the RAM, this process considerably slows down resolution, and solution of the linear
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constant elements | linear elements | quadratic elements

3Nm Ny 3NM+3NM
6 2 6 2

Direct method Ny = 2Ny

DD method NM SNM 6NM

Table 1: Number of function nodes required with the Direct and the DD methods for
constant, linear and quadratic elements. Geometrical nodes are shared between an average
of 6 elements. Njs 1s the number of elements used for massive boundaries.

system becomes the most time consuming operation. As the size of the linear system
is 3 X (number of function nodes), this number should be minimized. Second, accurate
calculation of solutions should be made possible almost anywhere in the elastic medium.

The Direct method as compared to the DD method never involves unbounded coef-
ficients. This has several advantages with regard to massive boundaries:

1. The Direct method is more exact than the DD method when dealing with structures
with sharp edges or corners as can be the case with real topographies. Indeed, with
the Direct method, boundary integral equations can be written in terms of actual
boundary values at function nodes located anywhere on boundaries. This cannot be
done with the DD method, where influence coefficients on stresses become infinite
at edges of elements.

2. The Direct method with linear or quadratic elements allows calculation of stresses
everywhere near and on the boundary. Indeed, with linear or quadratic elements,
displacements and stresses are defined everywhere on the elements.

3. For a given discretization of massive boundaries, use of linear elements with the Di-
rect method minimizes solution time. Suppose massive boundaries are discretized
with Njp; elements. Table 1 shows that, when apex of triangular elements are shared
between an average of 6 elements, the Direct method with linear elements requires
the least function nodes. Table 1 also shows that, with the DD method, constant
elements are the least expensive numerically. Now The Direct method using lin-
ear elements requires calculation of 9N3Z;/2 influence coefficients, whereas the DD
method with constant elements requires calculation of 9N3, influence coefficients.
Therefore, for massive boundaries the Direct method is half as costly as the DD
method.

However, when modeling fractures, the DD method is more appropriate than the Direct
method:

1. For fractures, the DD method with constant elements is numerically as costly as
the Direct method with linear elements. If the Direct method is used, boundary
elements are required on both sides of fractures. Suppose, fractures are discretized
with 2Np elements. If function nodes are shared between an average of 6 elements,
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assembly of the system (5) requires calculation of a total of 2 x 18( Nz /2)* = 9N
influence coefficients. On the contrary, with the DD method, a fracture is treated
as a single surface. For the same level of discretization as with the Direct method,
only N elements are required on fractures. Thus, only 9N coefficients have to be
calculated.

2. It is numerically stable whereas the Direct method will break down when function
nodes of two element coincide. In fact, this will lead to equal influence coefficients
and will result in an ill-conditioned system.

From the discussion above, it appears that the Direct and DD methods are com-
plementary: The Direct method with linear elements is particularly appropriate when
modeling ground surfaces or pressurized reservoirs, whereas the DD method with con-
stant elements is more suitable for fractures. For these reasons, both methods have been
combined.

COMBINATION OF THE DIRECT METHOD AND THE
DISPLACEMENT DISCONTINUITY METHOD

Description of the method

To combine the DD and Direct methods, the procedure outlined by Diering [17] is
generalized. Diering developed a Mixed BEM using constant rectangular elements for
analyzing mining excavation in fractured media. Combination of the two methods is
derived from the Direct method. Betti’s theorem is written for a boundary containing
massive parts I'ys and closed fractures such that the sides (+) and (—) of a fracture are
at the same location corresponding to I'r. Two cases must be distinguished depending
on the boundary where the unit point load % is applied:

If ¢ € T'ar, (4) gives:

cij(V)u;(v) = — Pij(;b,t)uj(t)dl“(t)—|—/FMUZ-]-(¢,t)pj(t)dF(t)

INYs

— [ (PH@. 0wt + P56, 005 (1) ) dU() (22)

F

+ Jp, (U508} + U5 (0,007 (1) ) dT(1)

If v» € T'p, the integral equation is derived by writing Betti’s theorem (1) with ¢ excluded
from the fracture by two half spheres (Figure 3) I's and I'j. Then, taking the limit of this
expression as  — 0, the following equation is obtained for ¥ on a planar surface:

SuF )+ () = - S Paleus(dr( + [ U, 0p()d0(e)
= o, (PE@Owf () + P05 (1) ) () (23)

+ [ (US e, 0pf (6) + Ui (6, Op7 (1) ) (1) -

Ip
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Figure 3: Exclusion of point ¢ by 2 half spheres

As seen previously, a DD is such that, across fractures, displacements are discontin-
uous and stresses are continuous. Since outward normals for the sides (4) and (—) are
equal in magnitudes but opposite in signs, (14) yields

pi(t)=—p; (1) . (24)
Also, the sides (+) and (—) are at identical location. From (2) and (3), this implies

Substituting (24), (25) in (22), (23), and using (14) gives, for ¢ € I'y,

cij(P)ui() = — Pz‘j(%/},t)uj(t)dp(t)+/FMUij(‘l/)7t)Pj(t)dF(t) (26)

INYs

- Ty PZ-JI-(I?/),t)D](wdF(t) 3

and, for ¢» € I'p,
wt@) = = [ Pal us(0dr(0 + [ U Opi()dr(?) 27)
_/FF (Pz?(?bvt) — 0y At - zb)) D;(t)dT(t) .

where A is the Dirac delta function.

Equation (27) does not involve boundary tractions on fractures. Therefore, it can-
not be used to solve boundary traction problems, and a new equation is required for the
expression of tractions on fractures. Stress components at ¥ € I'p are derived by differ-
entiating (27) and applying Hooke’s law. Multiplying the stress tensor by the normal at
Y leads to the following expression for tractions on fractures:

P = =ns0) | [ S uar(t) = [ Dyl pu(t)ar()
—n;(¥) [ SE(wOD(B)r() (28)
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It can be shown [17] that, for constant DDs, the influence coefficients of the DDs obtained
in (26) and (28) are the same as those found in (15) and (16) using harmonic functions.

Suppose massive parts are discretized with Ny linear elements having Ny function
nodes, and fractures are discretized with Ng constant elements having Np function nodes.
Using the approximations defined previously with the Direct method, (26) and (28) lead
to the following system of equations, for [ = 1,..., N,

NL . NF NM
cdu' + > hu 4+ > hy, D™ = (gn..gie) P, (29)
e=1 m=1 e=1
and, for { = Np +1,..., Np + Np,
NL NF NM
Zéleue + Z SlmDm:| nl = |:Z(d11..dlne)epe nl — pl 5 (30)
e=1 m=1 e=1

After calculating the right hand side of these equations, the system constituted by (29)
and (30) is expressed as

LX=R, (31)

T
where, L is the influence coefficients matrix, X = {ul..uNLDl..DNF} represents 3( Ny, +

Ng) unknowns of the boundary value problem, and R is a 3( Ny + Ng) known vector.
Once this system is solved, displacements inside the domain can be calculated using

Somigliana’s identity (9) written for the boundary with both massive parts and fractures.

Considering equalities (24), (25), and the usual approximations, displacements at ¢» € Q

are N, ) Np Ny
u’=—3 hyu = > hy D™+ (gu1-Gone )P (32)
e=1 m=1 e=1

Differentiating this equation and using Hooke’s law give stresses,

N, Np N
O'd) = — st,eu - Z Sd)mDm + Z(ddﬂ ddme) Pe (33)
e=1 m=1 e=1

Numerical implementation

The Mixed BEM has been implemented from a preexisting program COMPUTE??
[18, 19, 20] developed by Curran, Corkum and Shah. COMPUTE?®” uses the Direct
method with triangular planar elements on which solutions may be constant, or have
linear or quadratic variations. It was designed for mining, therefore only null boundary
values could initially be imposed. Different integrations schemes are combined to cal-
culate influence coefficients of the Direct method. Regular integrals are evaluated with
a Gauss-Hammer numerical integration of different orders [22], quasi-singular integrals
(corresponding to the case where the function node is located near the elements of inte-
gration) are evaluated analytically [23, 24], and singular integrals (the function node is
located on the element of integration) are evaluated with a combination of regularizing
transformation and row-sum elimination method [12]. Solution of the system of equations
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is performed using a General Minimum Residual method [25] as it appears [19] to be the

most reliable and numerically efficient way of solving boundary element problems.
Combination of the DD and Direct methods, for the analysis of structures containing

fractures, pressurized reservoirs and a ground surface, requires some modifications of

COMPUTE?”:

1. New singular influence coefficients s;; (30), corresponding to the influence of a frac-
ture element on itself, need to be calculated. It is performed analytically from the
calculation of T and its derivatives involved in (16) for z = 0 (see Appendix).

2. For linear elements of T'y;, singular influence coefficients of 3 x 3 matrices ¢ + BH
(29), have to be evaluated with a row-sum elimination method [21] modified in order
to account for fractures and the ground surface. The row-sum elimination method
allows evaluation of singular influence coefficients in ¢ + hy; without performing
integration of singular terms. This is particularly useful at corners, where evaluation
of ¢’ can be critical in 3D. Note that, if constant elements were used instead of linear
elements on massive parts, ¢’ + hy could be calculated analytically. The row-sum
elimination method is ordinarily derived from the limiting form of Betti’s theorem
given in equation (4). Considering the fact that influence coefficients in ¢ + hy
only depend on the geometry of the problem, these coefficients are the same if
a rigid body movement with null tractions is imposed to the boundaries instead
of the actual boundary values. Now, for a boundary containing a ground surface
(i.e. a non-closed surface), conditions of equilibrium are violated. Therefore, Betti’s
theorem is no longer valid. This difficulty is overcome by implementing the row-sum
elimination for the ground surface supplemented by a virtual surface 'y (Figure 4).
Equilibrium is now respected. Suppose a rigid body displacement w;(¢) = 1, with

Figure 4: Schematic 2D representation of the boundaries, with a far boundary I', and the
ground surface completed by a virtual surface I'y.

null tractions p;(t) = 0, is imposed to the body. The modified row-sum elimination
method is derived from the limiting form of Betti’s theorem (26) written for ¢ on
massive parts 'y of the boundary,

es() + [Pyl )dl(t) + [ Py(e.0d0(t)
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li P(0,t)dl(t) =0 . 34

+lim f P, 0)dl() =0 (34)

The fracture boundary I'r does not appear in this equation as amplitudes of DDs,

D; = u;r — u; , are null for a rigid body movement. Moreover, since tractions F;;
over I', are due to a unit point load, equilibrium of the domain implies

lim [ Py(,1)dD(t) = —6;; . (35)

0—»00 FQ

Thus, when the virtual surface is discretized with Ny function nodes, using the
approximations previously defined, (34) and (35) give:

. NL R NV n
c! +h;=1- Z h;, — Z hlq . (36)
m=1,m#l 9=1

In order to calculate these singular terms at a reduced numerical cost, the virtual
surface is composed of large elements. To improve accuracy, integrals on I'y are
calculated analytically.

Note also that the supplementary contour I'y only appears in the row-sum. It is not
taken into account when calculating R in (31) and no unknown of X is associated
to it.

3. The Mixed BEM is modified to permit prescribing fluid pressures. These can be
constant, or linearly varying to account for the variation of pressure with depth. This
variation may become considerable for a high magma reservoir or a high vertical

dyke.

4. In order to handle intersections of massive boundaries with fractures, constant el-
ements are used for parts of massive boundaries adjoining fractures. Actually, if
conforming linear elements were used everywhere on massive boundaries, the Mixed
BEM would break down as, with the DD method, stresses are singular on elements
edges. Therefore, the influence coefficients of nodes shared between a massive struc-
tures and a fracture, on stresses of the adjoining DD elements, would be infinite.

VALIDATION OF THE MIXED BEM

Procedure for the validation with a known analytical solution

Validation is performed on a problem with a known analytical solution [26] which
is the problem of a pressurized circular horizontal fracture embedded in an elastic half-
space (i.e. a flat topography). Characteristics of the model are detailed in Figure 5.
Elastic properties are taken as 50 000 Mpa for Young’s Modulus and 0.21 for Poisson’s
ratio. These correspond to average values given by Touloukian et al. [27] for basalt.
Displacements calculated analytically are compared to numerical results found using the
DD method for the fracture and the Direct method for the ground surface. Accuracy of
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Ground surface Z¢ R
40 m
1 Mpa
Fracture @7
20m

Figure 5: Characteristics of the model used to validate the Mixed BEM

numerical results is estimated by the mean relative error on vertical displacement for the
Ny function nodes of the ground surface located within 20 m from origin,

1 u%nalytical _ u%umerical
Err ‘UZ(%) = a7 Z uanalytical : (37)

Nao R<20 VA

First, combination of the DD and Direct methods is validated for constant elements on
which singular influence coeflicients ¢! + hy; are calculated analytically. Then, accuracy
of the modified row-sum elimination method is verified for massive parts I'y; discretized
with constant elements. This is done by comparing results obtained when singular in-
fluence coefficients ¢! + hy, are evaluated both analytically and by the modified row-sum
elimination method. Finally, the modified row-sum elimination method is verified for I"y;
discretized with linear elements, by comparing results with those obtained for I'j; dis-
cretized with constant elements.

Validation of the combination of the Direct and DD methods

Results are compared for three different ground surfaces. Two of them are 200
m x 200 m square surfaces regularly divided respectively in 800 and 1800 triangular
elements (Figure 6a and 6b) of equal sizes (respectively 50 m? and 22.2 m?). The third
one is a circular surface (Figure 6¢) of radius 100 m composed of 820 elements of size
gradually increasing from 2 m? near the origin to 120 m? towards the surface rim. The
circular fracture has been modeled respectively with 226 and 638 elements with average
sizes respectively of 2.8 m? and 1 m?. For the ground surfaces, it has been verified (by
comparing with results from larger surfaces with the same discretizations) that the outer
boundary is far enough not to influence results by more than 0.5 % for R < 50.

Figure 7 shows that, for the 638 elements fracture and the circular ground surface,
numerically calculated displacements slightly overestimate the closed-form solution. In
fact, such an overestimation is found for every discretization of the fracture and of the
ground surface. Table 2 shows that, for a given discretization of the fracture, the mean
relative error (i.e. overestimation) increases when discretization of the square surface is
increased. This result is opposite to what is expected. However, when discretization of
the fracture is increased, errors diminish. Indeed, when the ground surface is discretized
with finer elements, it becomes more “compliant”. Thus, it is more sensitive to the per-
turbation imposed on the fracture. Now, if tractions and displacements are overestimated
on the fracture, a more discretized ground surface will reflect these overestimations more
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Figure 6: Discretizations for the ground surface. (a) Regular mesh, 800 elements. (b)
Regular mesh, 1800 elements. (c) Graded mesh, 820 elements.

3
25+ .
R uZ Numerical O
E 2r Anaytical — 7
L0
o
g 15 1
—
X
D 1r uR 7
05+ |
0 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100
R (m)

Figure 7: Comparison of displacements for a 638 elements fracture and a circular ground

surface

Square ground surface

800 elements

Square surface
1800 elements

Circular surface

820 elements

Fracture 226 elements

3.5

4.9

6.1

Fracture 638 elements

0.4

1.8

2.7

Table 2: Mean relative errors (%) on ground surface vertical displacements for different
discretizations of the fracture and the ground surface. Elements of the ground surface are

constant
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Figure 8: Comparisons of vertical displacements on the fracture. (a) discretization with
226 elements. (b) discretization with 638 elements.

accurately. This hypothesis is verified by comparing vertical displacements found nu-
merically and analytically [28] for a fracture embedded in an infinite medium. For this
purpose, the mean relative error on vertical displacement is calculated on the fracture

surface,
lytical seal
1 uana — g umerica
, _ Z Z .
Err uZ(%) - N . analytical ' (38)
Forp Uz

Figure 8 shows that vertical displacements are overestimated for both discretizations of
the fracture, and that overestimation decreases when fracture discretization is increased.
Therefore, the overestimation of displacements on the ground surface results from an
overestimation of displacements on the fracture. With the circular ground surface, Table
2 shows that, for a given discretization of the fracture, overestimation of vertical displace-
ments is greater than with the square surfaces. In fact, values of overestimations on the
circular ground surface are the closest to those on the fracture. This means that the
circular graded mesh provides the best match to the displacements on the fracture.

For the next steps of the validation, the 638 element fracture and the circular ground
surface will be chosen as they provide the best discretizations.

Validation of the modified row-sum with constant elements

In order to validate the modified row-sum elimination method, results are compared
with those found when singular influence coefficients ¢’ + hy are calculated analytically.
This comparison is performed for constant elements as analytic evaluation of the ¢ 4 hy
is fairly simple. Accuracy of the method is evaluated through the mean relative difference
between displacements on I'p + I'y; calculated both ways. For the 638 elements fracture
and the circular ground surface, error on uyz is

1 uanalytic integration row—sum

Aug=—" 3 |22 — "z = 0.013% . (39)

_analytic integration
NF + NL Tr+Tas Uz

This proves that the modified row-sum elimination is a very accurate way of estimating
singular influence coefficients. Table 3 shows that the row-sum elimination takes only
slightly longer time than analytic integration for the calculation of singular influence
coefficients.
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Analytic integration | row-sum elimination
Assembly time (sec) 938 1018

Table 3: Comparison of time required for the evaluation of singular coefficients ¢’ + hy,
on constant elements. Computation is performed on a Sun SPARC Station 20

Row-sum Row-sum

constant elements | linear elements

Total solution time (sec) 4804 773
Number of function nodes 1448 1064
Err uz (%) 2.7 4

Table 4: Comparisons between solution times and mean relative errors for constant and
linear elements

Validation of the modified row-sum with linear elements

As shown in Table 4, total solution time is considerable with constant elements, while
the use of linear elements reduces solution time by 84 %. In fact, in this case, the number
of function nodes required with linear elements is small enough to avoid disk swapping.
Note also that vertical ground displacements found with linear elements overestimate
analytical displacements by 4% instead of 2.7% with constant elements. Recalling that
displacements on the fracture surface are overestimated by 4.8%, it can be concluded that
linear elements better model the fracture. Although paradoxal, this result shows again
the importance of a proper discretization of the pressurized boundary.

Intersection of fractures with massive boundaries

In order to investigate the behaviour of the 3D Mixed BEM for the case of a fracture
intersecting a massive boundary, comparison is done with results calculated with a 2D
BEM by D. D. Pollard et al. [29]. Using this 2D BEM, they calculated vertical surface
displacements created by a pressurized crack with a dip of 75 ° that breach the ground
surface of an elastic half-space. Using the 3D Mixed BEM, the fracture is modeled with
the DD method and constant elements, and the ground surface is modeled with the direct
method and linear elements except where it intersects fracture. In this case, constant
elements are used for the ground surface. For a valid comparison with two dimensional
results, the length L of the fracture is chosen large compared to the height a: L/a = 12
(Figure 9) and displacements are calculated on profile A-A’ that intersects the fracture
in its middle where plane strain can be hypothesized.

Figure 10, shows that plane strain is verified over a distance of approximately 5a
along the fracture. Figure 11 compares normalized vertical surface displacements versus
normalized horizontal distances. Origin of horizontal distances is taken at the intersec-
tion between the fracture and the ground surface. Coefficient £ used for normalization of
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@ (b)

(c) Ground surface

5% [a

Fracture

Figure 9: Portion of the mesh used for modeling the intersection of a fracture with a
massive boundary. (a) Top view (b) Right cross-section (c¢) Cross section A-A’

2G
AP a (1 —v) sin(75°)’
ficient d used to normalize horizontal distances is the depth of the middle of the fracture
below ground surface, a sin(75°) / 2.

Vertical displacements calculated with the 3D Mixed BEM are less that those cal-
culated with a 2D BEM. This can be attributed to the coarse discretization: the height
a of the fracture is only divided into 6 segments, and discretization of the ground surface
is the same as that of the fracture near the fracture, progressively decreasing when going
away from it.

vertical displacements is where AP is the driving pressure. Coef-

CONCLUSIONS

A 3D Boundary Element Method (BEM), which combines the Displacement Discon-
tinuity and the Direct methods has been developed for the analysis of elastic deformation
fields of bodies with fractures and surface topographies, as well as pressurized reservoirs.
A modified row-sum elimination method has been developed for the calculation of singu-
lar influence coefficients when linear elements are used on ground surfaces. It allows fast
and reliable computation of solutions.

This Mixed BEM has been tested on the problem of a pressurized circular fracture in
an elastic half-space. Good agreement has been found between analytical and numerical
results. For this particular problem, the leading importance of a proper discretization of
the pressurized boundary (i.e. the fracture), has been outlined. Also, results are more
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Figure 10: Normalized vertical surface displacements created by an inclined pressurized
fracture of dip 75 °.

accurate when the ground surface is represented with a graded mesh, with fine elements
in the most perturbed area and coarser elements further, than with a regular mesh. The
graded mesh also requires fewer elements. Thus, it is computationally less expensive.

Finally, the Mixed BEM has shown to be valid when two types of elements (DD
and Direct method) intersect, provided constant elements are used for parts of massive
boundaries adjoining fractures.

APPENDIX

Calculation of singular influence coefficients of DDs in (31) is performed from eval-
uation of I (17) in the local coordinate system (z, y, z) such that the z axis is normal
to the element plane. Calculation of I [23, 24] on a triangular element with vertices
Mi(z1, y1, 0), My(x2, y2, 0) and Ms(z3, y3, 0) is performed using the divergence theo-
rem. It gives at ¥ (z, y, z) € Q,

3
= 1(0) = I(e,5,2) = Y T+ 1o (40)
k=1
where
_ My
=T
and 0 < 6y < 2m, depending on the location of the projection of ¥ on the triangular

Iy (g — hi) + 2 (arctan(szk) — arctan(zSak)) ,

element. Terms appearing in [ are

M, = (yk - yk+1)37 + ($k+1 - «fk)y + TrYr41 — YrThe
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(D. D Pollard et al.)
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Figure 11: Normalized vertical surface displacements for a pressurized fracture intersecting
the ground surface. Dip is 75 °.

Ly = \/(~17k+1 —2)* + (Yh+1 — Yk)*
gk = In (B + 7%11)

hi =1In(Ag +75)

?

gpt = Drle
Mirgyr

Sa* = AL
M]J‘k ’

with,
By = [(zrx — zr1)z + (Y — Yar1)Y + (2o — 2x)Trg1 + (Yrer — Yr)Yria] [ Lr
Ak = [(2r — zps1) + (Ys — Yrt1)Y + (The1 — 28) @k + (Yrs1 — Yr)Yr] /L
rier = (@1 — 2)2 4 (Yoar — y)2 + 27,
re= (e — 2)2 + (g — )2 + 22

To calculate singular influence coefficients, partial derivatives of I are expressed in the
limiting case where the origin of the local coordinate system is at the centroid of the
triangular element and ¢ — (0,0,0),

Loy (0’07 0) = ki: Lik {QZz (gai _h’];> + My (g?];x _h7ix)} )
=1

3
]ayy (ana 0) = Z Li _2li (975 _ha];) + My, (g,sy _h7§y)} s
k=1 "k
3 Mk 3
[722(07070) = Z— 9752 —h,52}+22(5bk—5ak) ;
k=1 Lk k=1
3
]al‘y (ana 0) = Z Lik —lf (gaf: _hai) + Mk (gaiy _h’];'y> + Zz (975 _halgj)} 5
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with,

xr
lk =Tk — Tk41

lk =Y — Yk+1 -

Partial derivatives of ¢* and h* with respect to v give, for v» — (0,0,0),

o (Bk + Tk+1) Tes1 )

bt = —’f —
'z Ak + Tk L Tk ’
g.F = ( _ yk+1>
v Bk + Tgt1) Tes1)
pE o= L (ko
Y (Ap + 71) Lk re)
gk = 1 (l_ﬁ_ ¢171c+1)2Jr U ()’
e (Br +re+1)? \ L 7r1 (Br + 7e41) (1rg1)?
Lk _;(l_z_ﬁ): L ()
e (Ap+7re)? \ Ly 7% (Ap +15) (r)3
g koo 1 ( l?é ‘yk+1)2 4 1 ($k+1)2
vy (Bk +7e41)? \ Lk Te1 (B + rt1) (T541)%
R 7 S B CY
w (Ap+7re)2 \ Ly 7% (Ar +ri) (rg)3 7
1 1
(Br + Tka1) Trs1
B L L
2z (Ak + Tk) Tk
g koo 1 (l_k _ yk+1) (l_k _ l”k+1) _ 1 Yk+1TE+1
e (Br 4+ re41)? \ Lt me41) \ Lk Tht1 (Bp 4 mh41) (rhg1)®
Lk _;(ﬁ_y_fv) (l_k_fﬂ_k) R N 5
i (Ag+re)2 \ Ly e/ \Lr 7% (Ap +75) (re)?
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