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Abstract

Bone is a hard-soft biomaterial built through a self-assembly process under
genetic regulatory network (GRN) monitoring. This paper aims to capture
the behavior of the bone GRN part that controls mineralization by using
a mathematical model. Here, we provide an advanced review of empirical
evidence about interactions between gene coding (i) transcription factors and
(ii) bone proteins. These interactions are modeled with nonlinear differential
equations using Michaelis-Menten and Hill functions. Compared to empirical
evidence, the two best systems (among 12° = 2,985,984 possibilities) use
factors of inhibition from the start of the activation of each gene. It reveals
negative indirect interactions coming from either negative feedback loops or
the recently depicted micro-RNAs. The difference between the two systems
also lies in the BSP equation and two ways for activating and reducing its
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production. Thus, it highlights the critical role of BSP in the bone GRN
that acts on bone mineralization. Our study provides the first theoretical
evidence of a necessary genetic inhibition for bone mineralization with this
work.

Keywords: Bone, Genetic Network, Nonlinear Differential Equations, Hill
Functions

1. Introduction

Bone is a biomaterial made of a soft matrix of collagen (type 1), a
hard phase of mineral (carbonated Hydroxyapatite, cAp), and several non-
collagenous proteins with water [4, 9, 15, 26, 46]. For building bone structure,
bone cells initiate a self-assembly process monitored by the bone genetic reg-
ulatory network (GRN). Although evidence has already well described the
main GRN components, their behavior and the order they act on each other
for controlling mineralization remain unclear[23, 28, 62|. Thus, this lack of
knowledge is one of the major limitations for developing new treatment when
bone’s composition is altered by growth and aging (e.g. Osteoporosis), ge-
netics disorders (e.g. Osteogenesis Imperfecta), or orthopedics issues (e.g.
joint arthroplasty) [6, 7, 8, 14, 16, 48, 64, 68].

This paper aims to capture the behavior of the bone GRN portion that
controls mineralization. We hypothesized that the genetic control of bone
mineralization follows a system of nonlinear differential equations to regulate
the interactions between the genes of (i) transcription factors and (ii) bone
proteins. To do so, we first provided a review of empirical evidence coming
from in and ez-vivo experiments about bone composition and self-assembly
process, and in-vitro experiments about bone GRN and its canonical pathway
of activation. We depicted the direct interactions between the genes coding
for the transcription factors and those coding for the bone proteins (e.g. en-
hancers or inhibitors of mineralization). Second, we proposed a theoretical
behavior of the bone GRN using a system of nonlinear differential equations
modeling interactions through Michaelis-Menten and Hill functions. We in-
vestigated several mathematical regulation scenarios and compared our in
silico data to recent in-vitro data [57]. In section 4, we showed that only two
regulatory pathways are possible in theory. While we revealed the need for
negative indirect interactions coming from either negative feedback loops or
micro-RNAs, we also pointed out the missing experiments needed to com-



plete bone GRN description.

2. Empirical Behavior

2.1. Bone composition and self-assembly process

The soft bone phase is an assembly of crosslinked tropocollagen molecules
built through the expression of two central genes, Colla and LOX. While
Colla codes for tropocollagen molecules, LOX codes for Lysyl-Oxidase, the
enzyme facilitates their crosslinking for stiffening a soft matrix [7, 18, 51, 52].
The hard bone phase originates from the process of mineralization, which con-
sists of the precipitation of Calcium (Ca) and Phosphate (Pi) ions into cAp
crystals within the soft matrix of crosslinked tropocollagen [3, 8, 29, 34].This
process is regulated through the expression of genes coding for mineraliza-
tion enhancers (e.g. Bone Sialoproteine [BSP], Alkaline Phosphatase [ALP]),
and mineralization inhibitors (Osteocalcin [OC] and Osteopontin [OPN])
9, 46, 53].

2.2. Canonical pathway of activation of the bone GRN

The canonical pathway of bone formation is when bone matrix stiffness
activates the WNT-5 cathenin pathway (Wingless/Beta Catenin pathway)
to initiate bone mineralization [13, 38, 47, 50, 63|. For instance, the WNT-/
cathenin pathway activates transcription factors (i.e. sequence-specific DNA-
binding factors) having the ability to inhibit or activate RNA polymerase to
bind the promoter gene. Indeed, as they bind the DNA, transcription fac-
tors can be activators by calling the RNA polymerase to bind the promoter
and start transcription, or inhibitors by blocking the RNA polymerase to
bind the promoter and prevent transcription from starting. Like every gene-
regulatory network, regulatory components in the bone GRN are thought to
contain specific interaction sites for critical regulatory factors. Long-term
evidence [45, 36, 27, 42] depicted the following succession of gene activation:
Colla - ALP - OPN - OC with mineralization starting at OC secretion. More
recent evidence shows (i) upregulation of OPN and Colla at the prolifera-
tion stage [19], (ii) upregulation of Colla, ALP, and BSP at the extracellular
matrix maturation [2], and (iii) upregulation of OC and OPN at the extracel-
lular matrix mineralization [33]. About this, multiple lines of evidence show
that RUNX2 (runt-related transcription factor 2) is the earliest transcription
factor that is essential for bone formation [23].



Previous evidence has established links for gene activation regarding miner-
alization enhancers and inhibitors (e.g. Colla, LOX, BSP, ALP, OC, and
OPN) and the main bone GRN transcription factors (RUNX2; OSX, Osterix
also called Sp7; SATB2, special AT-rich binding component) [32, 54]. More
precisely, ALP, BSP, and Colla are early osteoblast differentiation markers,
while OC appears late, concomitantly with mineralization. In addition, OPN
peaks twice, during proliferation and then again in the later stages of dif-
ferentiation [1, 11, 20, 24, 25, 30, 31, 37, 40, 41, 53, 56, 57, 58, 59, 60]. We
integrated the information gathered in table 1 for the part before BSP and
in table 2 for the part after BSP. Our review shows that BSP acts directly
on OPN, OC, and ALP and triggers positive feedback on OSX and RUNX2.
Our review suggests that BSP has a central role in the mineralization path-
way. We propose a condensed, simple, and version of the bone GRN involved
in the mineralization of the bone matrix. Although our version includes the
most straightforward pathway without taking feedback loops and double ac-
tivation into account, we used these actions for discussing our results and
interpreting factors of degradation or inhibition (see 4).

We summarized the process as follows: canonical pathway (e.g. WNT-/3
catenin pathway activated by stiffness) triggers bone mineralization through
mechanotransduction. This means that bone cell mechanoreceptors stimu-
lation activates the first bone GRN transcription factor (RUNX2). RUNX2
turns then up the production of another transcription factor called OSX,
which activates SATB2. SATB2 starts the output of the first enhancers of
mineralization (BSP). It induces both the second enhancers (ALP) and the
two inhibitors (OC and OPN) of bone mineralization. Thus, our review
highlights the central role of BSP in the process presented in Fig. 1.



Element 1 Element | Observations Model Ref]
2

Stiffness + | RUNX2 | 40 kPa stimulate RUNX2 in vitro cell culture | [1]

Stiffness + | RUNX2 | 62-68 kPa stimulate RUNX2, | in vitro cell culture | [57]
ALP, and OPN

RUNX2 + | OSX RUNX2 and OSX both in- | in vitro cell culture | [40]
creased from early to late stage
osteo-differentiation

RUNX2 + | OSX RUNX2 master regulator up- | in vitro cell culture | [37]
stream of OSX

OSX + | SATB2 | SATB2 expression is sup- | in vitro cell culture | [58]
pressed in the absence of OSX
and enhanced when OSX is
overexpressed

SATB2 + | BSP SATB2 binds to the BSP pro- | in vitro cell culture | [58]
moter and regulates BSP ex-
pression

SATB2 + | ALP overexpression of SATB2 in- | in vitro cell culture | [31]
creased ALP activity

SATB2 + | OC overexpression of SATB2 in- | in vitro cell culture | [31]
creased OC level

SATB2 + | RUNX2 | overexpression of SATB2 in- | ex wivo Knockout | [20]
creased RUNX2 activity Mice

downregulation | OC OC expression is reduced 43- | ez wvivo Knockout | [20]

SATB2 fold Mice

downregulatjon | BSP BSP expression is reduced 5- | ex wvivo Knockout | [20]

SATB2 fold Mice

Table 1: Empirical evidence regarding activation pathways of the bone GRN before min-

eralization stage



Element 1 Element | Observations Model Ref]
2

high BSP OPN high concentration did mod- | in vitro cell culture | [37]
este OPN upregulation

lack of BSP OPN downregulation BSP upregu- | ez wvivo Knockout | [11]
late OPN Mice

BSP oC Baseline expression of OC is | ex wivo Knockout | [10]
higher in BSP +/+ Mice

Low BSP ALP Low concentration of BSP | in vitro cell culture | [37]
downregulates ALP

High BSP oC OC levels were lower in serum | ex vivo Knockout | [60]
samples of transgenic Mice

High BSP oC Continuous addition of exoge- | in vitro cell culture | [25]
nous BSP was not sufficient to
increase OC

High BSP OSX Continuous addition of exoge- | in vitro cell culture | [25]
nous BSP was sufficient to in-
crease OSX

High BSP RUNX2 | Continuous addition of exoge- | in vitro cell culture | [25]
nous BSP was sufficient to in-
crease RUNX2

High BSP ALP ALP levels were lower in serum | ez wvivo Knockout | [60]
samples of transgenic Mice

Table 2: Empirical evidence regarding activation pathways of the bone GRN after miner-

alization stage

3. Theoretical behavior

3.1. Mathematical model: a multiple-choice approach

According to the condensed bone GRN depicted in section 2.2, a similar se-

quence is repeated following the same pattern. The aim of this section is to intro-
duce the general structure of each equation of our GRN model. To that purpose,
we use, only here, the generic following notations that will be adapted to each
chemical reaction of the model thereafter in the next section. Each equation of
the model will show the interaction of two substances x and y. We give an example
of a couple of substances at the end of this section. We base our construction in
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Figure 1: Condensed version of the bone genetic regulatory network (GRN) that directly
acts on mineralization (i.e. production of the bone proteins responsible for bone mineral-
ization). Here, matrix stiffness activates the WNT-3 cathenin pathway (mechanotransduc-
tion) for initiating the cascade of transcription factor production (RUNX2, OSX, SATB2)
that induces production and exocytosis of mineralization enhancers (ALP and BSP) and
inhibitors (OC and OPN).

the generic scheme represented in Fig 2. We insist on the fact that this general
process will then be apply specifically to all the key actors of the GRN process.
Following Fig 2, a substance y (in red in the left part of the figure (denoted A)
has been previously produced and will start interacting with a substance z (in
blue in the center of the figure (denoted P1). We will specify in the next section
that substance y needs to reach a certain level of production to trigger produc-
tion of substance x. This production can be controlled by two possible processes:
interaction with micro-RNA (green in the center of the figure (denoted P3) or
self-inhibition of substance x (blue dotted array denoted P2 in the figure). We will
explain in the next section also how this mechanisms can slow down production of
x. FEach equation of the model focuses on the production of x, assuming that sub-
stance y has been produced and described in the previous equation. To describe
every single equation, one of the most frequently used deterministic approaches
consists in ordinary differential equations (ODEs), which are based on the law of



mass action, that is the production rate of a substance x depends on its balance
between its production (gain) and its degradation (loss).

Micro-RNA

a8 o',
S o
N

Component x Component x degradation

O OO O .Oproduction 'O Q |

Component y Component x Q) (p
(p Component x

non canonical pathway

#» Micro-RNA
b ifi i Component
» verifiedr ! O P y ot inhibiting the reaction
"""" P plausible reaction O Component x O Component z
interacting with component x

Figure 2: Schematic representation of a component z production (general formulation).
Step 1 (A): through a plausible kinase cascade, component y activates component x pro-
duction. Step 2: This production can be component y dependent only (P1) with the
possible action of component z without action of micro-RNAs (P2) or with their action
(P3). Step 3 (N): component z may interact through a non canonical pathway with other
component (not studied here) and a plausible degradation. Interaction and degradation
are considered as loss terms for the ongoing x canonical interaction. One example in our
study is: OSX (transcription factor; component y) activates (process P1) the production
of SATB 2 (transcription factor; component x) that is used to activate BSP production.
One micro-RNA can act negatively on the production of BSP



In other words,
z' = gain - loss.

Here is how we detail it. We proposed then the following generic mathematical
model, which will be specified for every key actors of the GRN following a multiple-
choice approach that we set up as a decision tool with three objectives: (i) con-
firming the biological assumptions based on observed experiments, (ii) rejecting or
accepting possible interaction pathways for missing data, and (iii) forecasting the
regulation system based on a specific stiffness to eventually prevent early patho-
logical formations. To achieve these objectives, we structured the right-hand side
of each equation in two parts: a positive term, standing for a growing part due
to the component x production from the GRN and a negative term describing its
degradation or loss by the binding to one or several (still) unknown components.
The consequence of this loss was a decrease in the component concentration. To
model our assumptions for each equation of the system, we used the following
general form:

' = f(z) - g(x), (1)

where f is the positive part, involving an increase (but, to the best of our knowledge
saturating) in time of component x (production) and —g is the negative part
involving the decrease of = (degradation/binding) (see Fig. 2 for the schematic
representation of component = production mechanism). In the next section, = will
stand for : WNT-S cathenin , RUNX2, BSP, OC, OPN and ALP components
(described in the previous section), while f and g will change their name in each
equation depending on which substance is involved. For instance, if the equation
describes the production of RUN X2, then x will be replaced by RUN X2, the role
played by y will be replaced by the substance produced just before by the previous
reaction, in that case, WNT (see figure 1 for details). Furthermore, since f and
g related directly to RUN X2 in this example, they will be denoted frynyxe and
JrUNX?2 as long as no specific expression of f and g have been identified for this
particular equation, then replaced immediately by an explicit form as soon as the
best scenario has been selected (after analysis and numerical simulations) (see the
section 3.4.1 for the details of the scenario selection and validation).

3.2. Interpretation of the right-hand sides of generic equation (1)

3.2.1. Positive terms [ involving an increase in time of component x (pro-
duction)

Each positive term of the equations describing a concentration increase (steps 1

and 2 in Fig. 2 (see the legend for more details)) may be due to the interaction with

other components in presence - for instance, OSX would depend on the RUNX2



Figure 3: Hill like function z — fgy(z) =k where k =3, y=2,n=3and a =1

yn +axm’
(graph A), a = 10 (graph B). The influence of a is to slow the reaction down (slope is
steeper when « is larger).

concentration. Because, each production is saturated and may be triggered with
possible lag time, we decided to propose Hill-like functions f in three different
forms : (i) general denoted fr (H standing for Hill), (ii) not saturating denoted
(fns, NS standing for not saturating) , and (iii) with decreasing terms denoted
for (DT standing for decreasing terms).

(i) General form fr: Hill function with an extra slowdown term a

In literature, Hill functions are known to describe kinase cascades, or receptor-
activator interactions with a low decreasing slope at the early stage, that
could be considered as too low concentration (here denoted x as in Fig. 2,
steps P1 and P2) to trigger the reaction. Then, a sudden increase in con-
centration x occurs, ending eventually with a saturation part because f is
getting close to 0 when z is large (see Fig. 3). In our model, we add an extra
slowdown process enhancing the decelerating part by a specific interaction
with the components slowing down the natural process. This term may be
interpreted as the micro-RNAs interactions with the component z (see P3
of Fig. 2), leading to a slower production of this latter. In the equation,
it appears as a multiplicative constant a in the Hill function form as below
(see an example of the extra saturating process influence on the function in
Fig. 3). The standard form of this Hill-like function is

n

Y

k7
Ju(@) y" + az™’

(2)
where x is the concentration of the studied component, y is the concentration

of the component interacting with x. Parameters k and n are positive real
numbers describing respectively the saturation level and the sensitivity term.
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(i)

(iii)

Then at the early stage of the component x production, if the level of the
component y (see A and P1 of Fig. 2) about to interact with x is high enough
(i.e. y™ >> ax™), then y™ is almost equal to y" + az™ and fy(z) ~ k. This
gives at the starting point a constant production of component x. But, as
x increases, y" 4+ az™ becomes larger, and the value of k:yn_ykﬁ decreases,
which can be interpreted as a saturating growth of component x. And when
component y is degraded, y tends to zero, and thus ky“i% tends to zero
as = keeps being produced, which stops production of component x too.
Note that:

-ifn =1 and a = 1, function fg stands for the well known Michaelis-Menten
interaction,

- if a = 1, function fp is the classic Hill function, with no extra-saturating
term (see Fig. 3 for the influence on the function and step P1 in Fig. 2 for
a biological representation). Saturation still exists as it is a part of the Hill
function, but it is not weighted by the extra term a. Note at this point that
if n > 1, the larger n is, the larger the slope at the triggering time is (very

fast reaction when the concentration threshold is reached).

Non saturating form fyg:

a simpler function, called non saturating form, consists in the previous Hill-
like function in which, variable = has been replaced by a constant. In that
case, x components do not play a saturating role, and its production is y-
dependent only, following an exponential increasing pace (see step A in Fig.
2). This variation of the Hill-like function, denoted fys (u standing for
unsaturated), is as follows

n

y”y+ a 3)
Thus, when considering equation (1) with such a function and no negative
term, if component y concentration remains constant, production of compo-
nent x increases exponentially. On the other hand, if component y concen-
tration increases, production of component x reaches its maximal increasing
slope k.

Ins(z) =k

Decreasing term form fpp :

to describe a decreasing production rate in function of components y (step
3 in Fig. 2), we used a form with a decreasing term. We denote fpr, such a
function, with d standing for decreasing. This function is defined as follows,

1

=k—.
for(@) Yy + ax™

(4)

11



This form shows a much stronger impact on the self-decrease of component
x (it is also illustrated by step P3 in Fig. 2). Within this scope, we decide
also to investigate the x component independent decreasing function denoted
frpr (step P1 in Fig. 2), and defined by

1

=k .
frpr(z) ia

(®)

3.2.2. Negative terms —g involving the decrease of x (degradation / binding)

Each negative term of the equation describing a concentration decrease may be
due to physiological degradation or binding to other components (corresponding to
step N in Fig. 2). We tested three plausible biological assumption: (i) a constant
degradation means that the component’s continuous use - to either activate the
following component or build the bone matrix - is independent of the stiffness (i.e.
there is no positive or negative feedback loop in the time frame we studied), (ii)
stiffness-dependent loss (degradation or noncanonical pathway) means that the
component is more used - to either activate the following component or build the
bone matrix- as the matrix stiffness increase (i.e. there is a negative feedback
loop from the stiffness in the time frame we studied), and (iii) inverse-stiffness-
dependent loss means that the component is less used - to either activate the
following component or build the bone matrix- as the matrix stiffness increase. (i.e.
there is a positive feedback loop from the stiffness in the time frame we studied).
Thus, we propose three different forms of negative terms for equation (1): (i) basic
loss term denote gp; (BL standing for basic loss), (ii) negative dependence on
the source term gyp (VD standing for negative dependence), and (iii) inverse
dependence on the source term grp (ID standing for inverse dependence) that are
described as follow:

(i) basic loss term:
—9pL(z) = —p, (6)

where p is a positive real value, and x is the component concentration.
(ii) negative dependence on the source term (i.e. on matrix stiffness E,):
—gnp(x) = —pEy. (7)

This means that loss increases with the increasing stiffness. This could be
biologically explained by the fact that for larger stiffness, components x are
more degraded or recruited by other interactions not described in detail for
the mineralization process or other bone regulation.

12



(ili) inverse dependence on the source term (i.e. inverse matrix stiffness E,):

7
— T) =——2. 8
o) = 4 (%)
This assumption implies that the loss term decreases as the stiffness increases
meaning that loss by degradation or non pathological pathway is larger for
the early phase, when stiffness is low.

3.3. The full model

To summarize, if we denote the Wy for WNT, Ry for RUNX2, Bg for BSP, Op
for OPN, O¢ for OC and Ay, for ALP (which are the components defined in Fig.
1) we end up with the following generic system of ordinary differential equations
(note that the term generic is due to the fact that at this point, f and g are just
the general gain and loss functions of described in equation (1).

Wy = fWn) —g(Wn),

Ry = f(Ry) —g(Rv),
BfS' = f(BS) _g(BS)a (9)

» = f(Op) —g(Op),

Oy = f(Oc) —9(Oc),

[ AL = f(AL) —g(AL).

Two important remarks need to be given at this point. First, every concentration
from Wy to Ar are time dependent functions, and for the seek of clarity of the
autonomous model we do not mention the variable t. Second, each equation had
to be mathematically and biologically investigated in order to choose among each
gain functions f (that is one function between fg,fns, fpr and frpr) and each
loss functions g (that is one function between gpr,, gnvp and grp). To do so, we had
to simulate different scenarios. This process is explained in the next subsection.

3.4. Investigating different model scenarios

Our model (9) consists in 6 equations, each of them being written as mentioned
in the previous subsection. We investigated several kinetic saturation scenarios
based on our review, recent experimental data [57], and the well-known chemical
interactions studies from Michaelis-Menten and Hill [21, 22, 44] - standard to
describe saturating process showing possible lag times - for proposing a model that
consists in six ordinary differential equations standing for regulation of WNT-g
cathenin, RUNX2, BSP, OC, OPN and ALP (see Fig.1).

To select the most appropriate model, the same set of parameters has to fit the
experimental data obtained with three stiffness E, values: 14.5, 50.5 and 65 Pa.

13



With six equations for the system, four possible positive terms and three possible
negative terms, there are 126 = 2,985,984 possible models. We separated thus
our models in two parts: (i) the WNT-3 cathenin and RUNX2 equations and (ii)
the BSP, OPN, OC, ALP equations and we used the least square method (see the
Supplementary Material file section 3 for details).

3.4.1. Selection and validation of scenarios for WNT-3 cathenin and RUNX2
For WNT-$ cathenin and RUNX2 equations, two selections of terms among
144 possibilities were suitable (see Fig. 4). Our results show that two distinct
subgroups fitted correctly the data. Their main differences rely on the influence
of the inhibition factor: first row of simulations is with ay and ag values about 1
for unsaturated and saturated models, while in the second row,ay and agr values
are respectively 69.6 and 122.7 for unsaturated and saturated models. In other
words, one subgroup (first row of simulations of Fig. 4)is simulated with ay and
ar (A) (micro-RNA influence) values about 1 while in the second row (B), ay and
ap (see systems (10) and (11) for the equations of the models) play an important
role with values respectively of 69.6 and 122.7. The other values are given in the
legend of figure Fig. 4) At this stage of simulation, it is thus impossible to claim
that the inhibition factor is crucial in the process and only new biological investi-
gations on their influence could allow us to differentiate one set of parameter from
another one. We had to test both to see if we reached saturation or not. Our
results presenting no differences between both conditions suggest that the bone
GRN is not saturated for that range of stiffness. However, we took the arbitrary
choice to pick up the saturated model for two reasons: 1- give the whole system the
homogeneous saturated form, and 2- to give a door open for future experimental
results that may need to add microRNA impact in these two equations.
This will be more investigated in our next objective: when we get the whole feed-
back loop with mineralization increasing continuously the stiffness. This closed
system will then be biologically investigated, and the role of microRNA even more
particularly. At this stage, we admit that this is arbitrary only but open enough
to give biologists freedom to include it or not (taking all the ay orar equal to
1 Consequently, since only one model (the model 2 of Fig. 4) was in agreement
with the biological inhibition hypothesis (a Hill function for the gain and no loss
function). We then used model 2 with saturated B assumption for running simu-
lations of the entire model and we described it in the next subsection.

14



MODEL SCENARIOS

FOR WNT AND RUNX2
MODEL 1 MODEL 2
unsaturated saturated
WIIV = fNS(WN) . WN WIIV = fH(WN) . WN
R,= JfusR).-R, R,= fuR).R,
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Figure 4: After a literature review, and experimental data fitting, we came up with a
selection of four possible models among 144 possible ones. Their main differences rely
on the influence of the inhibition factor: first row of simulations is with ay and ag
values about 1 for unsaturated and saturated A models, while in the second row, ay and
ar values are respectively 69.6 and 122.7 for unsaturated and saturated B. Values are
the following: unsaturated A (k; = 0.0059, a,, = 1.0006, ko = 0.0248, ag = 0.9981,
vy = 1.0078, vg = 0.9949), unsaturated B (k; = 0.0100, a,, = 69.6016, ks = 0.8392,
ar = 122.7328, v,, = 1.0477, vg = 1.0004), saturated A (k; = 0.0100, a,, = 0.9865,
ky = 0.0186, ar = 0.7748, v,, = 0.7000, vgp = 0.9964), saturated B (k; = 0.0430,
ayw = 270.5291, ko = 0.6448, agr = 100.0059, v,, = 1.0139, vg = 1.0002). Experimental
plots are taken at 24h, 72h and 168h.

3.4.2. Selection and validation of scenarios for BSP, OSX, OPN, OC

All the parameters of the model are non negative constants, and they are
described in Table 3.4.2. For BSP, OSX, OPN and OC equations, after tedious
investigations, two selections of terms (case 1b and case 3a (see Fig. 5)) among
12 = 20,736 possibilities appeared suitable for us. We describe them in the two
following scenarios:
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Variables Description

Wi WNT-f concentration

Ry RUNX2 concentration

Bg BSP concentration

Op OPN concentration

Oc OC concentration

Ap ALP concentration

Parameters Description

E, Stiffness

ki,i=1,..,6 Saturation levels for each concentration

IBgs HOp, HOes A, Degradation rate or interaction through a non
canonical pathway with other component

UW,UR,UBg, VOps VOu, VA, Sensitivity constants of Hill functions

aw,aRr,0Bg, COp, A0y, GA, Saturating weight due to micro-RNA

Table 3: Variables and parameters used in the models and their description. Note that all
variables Wy, Ry, Bs, Op, Oc and A, depend on the time ¢, and all the parameters are
non negative constants.

1. Scenario 1b:
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B¢
On = ks § Oc  —po.Oc,
c B;OC + ao,. Ogoc c
A, = kg ! A, By,
L BZAL + CLALAZAL E,

16



2. Scenario 3a:

(W k By
N = M E," + aUWW;\),w N
o=k W™ g
v PWNR +agRE
Ry "Bs KB
By = k3 Bs ——%Bg,
S RU’UBS +a’BsBZ'BS Ey
o' — 4 OP _,LL&OP (11)
F Bs"r + ap,05" By
B¢
On = ks § Oc  —po.Oc,
C Bgoc +GOCOZOC ) c
A = kg A, HAr g,
| F BG't +aa, A" By

MODEL SCENARIOS FOR BSP, OPN, OC and ALP
ASSUMPTION
WN and RUNX2: Hill function with saturation (type /)

Case 3:
Gain type fiy
type gjp

Case 1:
type fyy
type gpr,

e °F ~
Case 1a: Case 1b: Case 3a: Case 3b:
Gain type fr; | Gain type fpr Gain  type fi7 Gain  typefpp Gain  typefpy| Gain  type fz7
Loss type gpy ||Loss type g;p Loss typegg Loss typeg;p Loss  type gjp Loss  typegpy
... 0oc AP oC ALP
Case 1b: Case 1b: Case 3a: Case 3a:
Gain type fi Gain type fpr Gain type fi7 Gain type fpr
Loss type g1, Loss type gzp Loss type g1, Loss type g7p

Figure 5: Selecting the best fitted model among the 20,736 possibilities. Only two can-
didates were chosen: case 1b and case 3a. Other cases were tested but could not fit
data.

The resulting simulations are given in figure 6 for scenario 1b and in figure 7
for scenario 3a.
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Figure 6: The selected model based scenario 1b: parameter values are ks = 0.4993,

aps = 0.0353, vpy = 2.8123, k4 = 0.0339, ap, = 0.0061, vo, = 0.6692, ks = 0.0557,
ao, = 0.5819, vo, = 0.5292, kg = 0.0668, a4, = 0.8857, va, = 2.5820, up, = 0.0922,
top = 0.3587, po, = 0.0480, pa, = 0.0641. Experimental plots are taken at 24h, 72h
and 168h.

18



E =145 E =50.5 E _=65.5
Y Y Y

4 40 80
3 % a0
=, 2 =, 20 =,
m [aa] m
20
1 10
0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
t (hours) t (hours) t (hours)
12 15 2
= 1 = 1 — 15
= = — =
0.8 / 0.5 1.
06 0 05
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
t (hours) t (hours) t (hours)
15 1 14
; 0.8 121 &
© ~ so6l Lo B
o ~—_4% |© o
05
04 08
0 02 06
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
t (hours) t (hours) t (hours)
3 3 4
2 P e 25 8 el
< / < T — <
1t 2 2
0 15 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
t (hours) t (hours) t (hours)
Figure 7: The selected model based scenario 3a: parameter values are k3 = 1.9994,

aps = 04244, vp, = 1.9053, ks = 0.0371, ap, = 0.0025, vo, = 0.5078, ks = 0.0924,
a0e = 299.9984, vo, = 0.9350, k¢ = 0.4847, aa, = 7.7552, va, = 2.7359, pup, = 0.7398,
top = 0.3000, po, = 0.0080, pa, = 0.0531. Experimental plots are taken at 24h, 72h
and 168h.

Remark: to give a comparison, we added simulations that do not fit in the
Supplementary Material section 2. Moreover, our source codes for simulations are
available on demand to the correspondent author.
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4. Discussion

Evidence has already proposed several theoretical approaches to bone min-
eralization and remodeling. However, none of them address the GRN behavior
[12, 35, 49]. Here, we detailed the role played by each production of transcription
factors, enhancers, and inhibitors of mineralization. We used the canonical path-
way of bone GRN activation (Wingless/Beta Catenin) and modeled transcription
factors and bone protein production through Michaelis-Menten and Hill function.
As a result, we proposed two nonlinear differential equations that fit well with the
experimental data. The two best systems used an inhibition factor in each equa-
tion modeling each element of the bone GRN, showing the theoretical evidence of
bone GRN inhibition during bone mineralization through stiffness matrix evolu-
tion. The difference between the two systems lies in the BSP equation and two
ways for activating and reducing its production. Thus, it highlights the critical
role of BSP in the bone GRN that acts on bone mineralization.

For instance, our predictions show that case 1b and case 3a were the only rele-
vant results (see Fig. 5) for BSP, OSX, OPN, and OC production (see models 10
and 11). In these models, the favorable terms of production, based on well-known
modeling of kinetic interaction through the Hill-like functions, provided results
that fit our experimental data only with Hill functions adding a slow down pa-
rameter - or a decreasing function with saturation. These results indicate that the
weighting coefficient a (amplification factor) of formula 2 plays a significant role
in fitting the data. Although further sensitivity analyses of saturation are neces-
sary to depict the range of acceptable values, our data support the existence of a
saturation level for the components’ production involved in bone mineralization.
In addition, in the two most accurate models, the negative terms of production
(degradation) provided results that fit our experimental data only with constant
degradation term gpy, or stiffness inversely dependence term grp. Constant degra-
dation gpy, is when the negative term p is independent of any other interaction (see
Fig. 6). On the other hand, g;p is used when the loss term decreases as stiffness
increases. The best fits to experimental data finally happened when inhibition
action on degradation is inversely proportional to the stiffness when the loss term
is function grp. In this paper, we had to compare our theoretical research to em-
pirical research that employed hydrogels with variable stiffnesses for modulating
the mechanical environment of cells. Thus, mechanotransduction (i.e., WNT-53
catenin regulation) had to be our primary source of bone GRN activation. This
constraint made our model-independent of other osteogenic signals (e.g., coming
from osteoclasts). Thus, by comparing our in silico results to in vitro results -
coming from cell culture of osteoblasts-, we depict for the first time an osteoblast
self-inhibition without the action of osteoclasts.

As mentioned in the material and method section, we tested three plausible biolog-

20



ical assumptions: (i) a constant degradation, (ii) stiffness-dependent loss (degrada-
tion or noncanonical pathway), and (iii) inverse-stiffness-dependent loss. The (ii)
stiffness-dependent loss (degradation or noncanonical pathway) hypothesis seemed
to be the most relevant because it induces a negative feedback loop from the stiff-
ness that could correspond to the initiation of the bone remodeling. However,
our simulations showed that the best scenario uses hypothesis (iii) that implies
an inverse-stiffness-dependent loss. It means that the component is less used - to
either activate the following component or build the bone matrix- as the matrix
stiffness increase. It means that we had a positive feedback loop from the stiffness
on the osteoblasts in the time frame we studied. Thus, we may investigate several
assumptions in the future: (i) degradation may play a secondary role as it may be
a slow process (as shown in the increasing experimental data between time 24h,
72h, and 168 hours) or (ii) stiffness influence is so low that it does not influence
degradation at this stage of the experiment. Although we could investigate more
low stiffness samples or degradation of the two starter terms (WNT and RUNX2),
our data support the lack of direct negative dependence on the source term (see
the simulations of WNT and RUNX2 with degradation in the Supplementary Ma-
terial section 1 and note that this does not change anything in comparison with
simulations shown in Figure 4 ).

Regarding limitations of the method used here, there is a wide choice of optimal,
statistical, and machine learning methods such as kriging or gradient descent that
can help to validate the best set of parameters. However, we need more time-
series data points for using them. Thus, our following goals are to (i) obtain BSP
data sets (missing in our work here) and (ii) describe a complete feedback loop
between transcription factors and matrix stiffness both with experimental obser-
vations and theoretical predictions. Although in physiological conditions, several
factors from the extracellular and ecological aspects of bone mineralization impact
the bone GRN (e.g., Transforming growth factor-beta, Oncostatin M, or Bone
morphogenetic proteins), our research disregards the role of bone-resorbing osteo-
clasts and the associated osteogenic signals. In future research, we will integrate
these parameters when seeking to model in vivo behavior and, more specifically,
bone remodeling.

In our results, we found that an extra saturation term is necessary. We suggest
that extra saturation could result from miRNA’s action. For instance, MiRNAs
are small non-coding RNA molecules that regulate the post-transcriptional gene
expression by inhibiting target mRNA translations or promoting transcript degra-
dation. Regarding bone, miRNAs are the core of complex circuits involving com-
ponents of multiple pathways for promoting or inhibiting osteogenesis. In addition,
evidence has shown that all pathways converge to RUNX2 and SATB2 expression
and activation [39], which are transcription factors that represent master regulators
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responsible for OB differentiation. Thus, miRNAs involved in their downregula-
tion determine osteogenesis inhibition. In addition, a recent review [5] published
an exhaustive overview of miRNAs involved in bone homeostasis and highlighted
their possible role in pathological development. Thus, the specific micro RNA of
the bone GRN — osteomirs — can fulfill the role of “inhibitor” saturation term a
because they modulate epigenetic states in given genomics loci of the bone GRN.
Here, instead of proposing one osteomir per genomics locus, we propose a clus-
ter of osteomirs inhibiting each transcription factors that directly modulate the
production of both enhancers and inhibitors of mineralization (see Fig. 4). We
selected only those whose inhibitory effect on transcription factors promoters was
shown in laboratory and clinical studies (linked to human individuals dealing with
bone pathologies). For instance, we propose a cluster of osteomirs that directly
inhibit RUNX 2 and are related to bone pathologies such as osteoporosis : miR-320
[65] , miR-133a [61], miR-218 [17] and miRNA-23a [67]. We also propose another
transcription factor called ATF-4 with its regulator mir-214 [43]. However, ATF-4
is also able to activate the WNT-/ cathenin pathway [66]. Although it has been
shown that osteoblast proliferation and differentiation are likely regulated by re-
ciprocal regulation rather than a cascade of the transcription factor, in this paper,
we addressed the regulation of the mineralization part as a linear chain.The manip-
ulation of key gene-regulatory elements, such as disease-associated loci and bone
regeneration-associated loci, may be an attractive new approach to gene therapy
for genetic disorders and regenerative medicine in skeletal tissues. Our next en-
deavor will be to integrate another key (positive or negative) feedback loop in our
model.

Finally, with the mineralization precursor processes outputs of our model, it might
be possible to deduce the number of crystals created according to the number of
BSP and ALP present in the extracellular matrix. Indeed, as the two main en-
hancers of crystal assembly are BSP and ALP, and the two main components of
crystals are calcium and phosphate, knowing the number of those four entities
should hopefully be able to allow us to forecast the number of crystals created.
The concentrations of Calcium and Phosphate necessary to obtain one crystal -
based on the ratio Ca/PO4 of 1,67 [55]- are two inputs for performing mineral-
ization prediction. Consequently, our future work will be to decipher the exact
relationship between enhancers of mineralization and molecule concentrations to
predict the number of crystals that one cell can produce.
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Figure 8: samples of micro-RNAs in the bone GRN pathway for controlling mineralization.

5. Conclusion

We provide the first theoretical evidence of a necessary osteoblast self-inhibition
after activation of the genetic regulatory network controlling mineralization. Com-
pared to empirical evidence, the two best systems used an inhibition factor in each
equation modeling each element of the bone GRN. It reveals negative indirect
interactions coming from either negative feedback loops or the recently depicted
micro-RNAs. The difference between the two systems lies in the BSP equation
and two ways for activating and reducing its production. Thus, it highlights the
critical role of BSP in the bone GRN that acts on bone mineralization.

References

[1] E. V. Alakpa, V. Jayawarna, A. Lampel, K. V. Burgess, C. C. West, S. C.J.
Bakker, S. Roy, N. Javid, S. Fleming, D. A. Lamprou, J. Yang, A. Miller,
A. J. Urquhart, P. W.J.M. Frederix, N. T. Hunt, B. Péault, R. V. Ulijn, and
M. J. Dalby. Tunable supramolecular hydrogels for selection of lineage-guiding
metabolites in stem cell cultures. Chem, 1(2):298-319, August 2016.

[2] D. S. Amarasekara, S. Kim, and J. Rho. Regulation of Osteoblast Differen-
tiation by Cytokine Networks. International Journal of Molecular Sciences,
22(6):2851, March 2021.

23



[3]

[4]

[10]

[11]

[12]

Y. Bala, D. Farlay, and G. Boivin. Bone mineralization: from tissue to crystal
in normal and pathological contexts. Osteoporosis international, 24(8):2153—
2166, August 2013.

Y. Bala and E. Seeman. Bone’s material constituents and their contribution
to bone strength in health, disease, and treatment. Calcified Tissue Interna-
tional, 97(3):308-326, September 2015.

D. Bellavia, A. De Luca, V. Carina, V. Costa, L. Raimondi, F. Salamanna,
R. Alessandro, M. Fini, and G. Giavaresi. Deregulated miRNAs in bone
health: Epigenetic roles in osteoporosis. Bone, 122:52-75, May 2019.

J.-P. Berteau. La biomécanique de I'os de ’enfant en croissance, une aide a
la prise en charge kinésithérapique. Kinésithérapie, la Revue, 13(143):16-21,
2013. Publisher: Elsevier Masson.

J. P. Berteau, E. Gineyts, M. Pithioux, C. Baron, G. Boivin, P. Lasaygues,
P. Chabrand, and H. Follet. Ratio between mature and immature enzymatic
cross-links correlates with post-yield cortical bone behavior: an insight into
greenstick fractures of the child fibula. Bone, 79:190-195, 2015.

G. Boivin and P. J. Meunier. The mineralization of bone tissue: a forgot-

ten dimension in osteoporosis research. Osteoporosis international, 14 Suppl
3:519-24, 2003.

A. L. Boskey. Noncollagenous matrix proteins and their role in mineralization.
Bone and Mineral, 6(2):111-123, May 1989.

W. Bouleftour, G. Bouet, R. N. Granito, M. Thomas, M. T. Linossier,
A. Vanden-Bossche, J. E. Aubin, M.H. Lafage-Proust, L. Vico, and
L. Malaval. Blocking the expression of both bone sialoprotein (bsp) and

osteopontin (opn) impairs the anabolic action of pth in mouse calvaria bone.
J. Cell Physiology, 230(3):568 — 577, 2015.

W. Bouleftour, L. Juignet, G. Bouet, R. N. Granito, A. Vanden-Bossche,
N. Laroche, J. E. Aubin, M.-H. Lafage-Proust, L. Vico, and L. Malaval. The
role of the sibling, bone sialoprotein in skeletal biology - contribution of mouse
experimental genetics. Matrix biology, 52-54:60—77, 2016.

P. R. Buenzli. Osteocytes as a record of bone formation dynamics: A mathe-
matical model of osteocyte generation in bone matrix. Journal of Theoretical
Biology, 364:418 — 427, 2015.

24



[13]

[18]

A. Chekroun, L. Pujo-Menjouet, and J. P. Berteau. A novel multiscale math-
ematical model for building bone substitute materials for children. Materials,
11(6), June 2018.

J. D. Currey. Changes in the impact energy absorption of bone with age.
Journal of biomechanics, 12(6):459-469, 1979.

J. D. Currey. Bones structure and mechanics. Princeton University Press,
Princeton, NJ, 2013. OCLC: 872359669.

J. D. Currey and G. Butler. The mechanical properties of bone tissue in chil-
dren. The Journal of Bone and Joint Surgery. American Volume, 57(6):810—
814, September 1975.

L. De-Ugarte, G. Yoskovitz, S. Balcells, R. Giierri-Fernandez, S. Martinez-
Diaz, L. Mellibovsky, R. Urreizti, X. Nogués, D. Grinberg, N. Garcia-Giralt,
and A. Diez-Pérez. Mirna profiling of whole trabecular bone: identification
of osteoporosis-related changes in mirnas in human hip bones. BMC Medical
Genomics, 8(1):75, January 2016.

B. Depalle, A. G. Duarte, I. A. K. Fiedler, L. Pujo-Menjouet, M. J. Buehler,
and J.-P. Berteau. The different distribution of enzymatic collagen cross-links
found in adult and children bone result in different mechanical behavior of
collagen. Bone, 110:107-114, May 2018.

B. Depalle, C. M. McGilvery, S. Nobakhti, N. Aldegaither, S. J. Shefelbine,
and A. E. Porter. Osteopontin regulates type I collagen fibril formation in
bone tissue. Acta Biomaterialia, 120:194-202, January 2021.

G. Dobreva, M. Chahrour, M. Dautzenberg, L. Chirivella, B. Kanzler,
I. Farinas, G. Karsenty, and R. Grosschedl. Satb2 is a multifunctional

determinant of craniofacial patterning and osteoblast differentiation. Cell,
125(5):971-986, June 2006.

J.E. Ferrell. Tripping the switch fantastic: how a protein kinase cascade
can convert graded inputs into switch-like outputs. Trends Biochem. Sci.,
21(12):460-466, September 1996.

J.E. Ferrell. How responses get more switch-like as you move down a protein
kinase cascade. Trends Biochem. Sci., 22(8):288-289, September 1997.

S. Fisher and T. Franz-Odendaal. Evolution of the bone gene regulatory net-
work. Current Opinion in Genetics and Development, 22(4):390-397, August
2012.

25



[24]

[25]

J. A. R. Gordon, C. E. Tye, A. V. Sampaio, T. M. Underhill, G. K. Hunter,
and H. A. Goldberg. Bone sialoprotein expression enhances osteoblast differ-
entiation and matrix mineralization in vitro. Bone, 41(3):462—473, Septem-
ber 2007.

J. A.R. Gordon, C. E. Tye, A. V. Sampaio, T. M. Underhill, G. K. Hunter,
and H. A. Goldberg. Bone sialoprotein expression enhances osteoblast differ-
entiation and matrix mineralization in vitro. Bone, 41(3):462-473, September
2007.

M. Granke, M. D. Does, and J. S. Nyman. The role of water compartments
in the material properties of cortical bone. Calcified Tissue International,
97(3):292-307, September 2015.

C. Hartmann. Transcriptional networks controlling skeletal development.
Current Opinion in Genetics & Development, 19(5):437-443, October 2009.

H. Hojo, A. P. McMahon, and S. Ohba. An emerging regulatory landscape for
skeletal development. Trends in Genetics, 32(12):774-787, December 2016.

S. Hosseini, H. Naderi-Manesh, H. Vali, M. Baghaban Eslaminejad,
F. Azam Sayahpour, S. Sheibani, and S. Faghihi. Contribution of osteocalcin-
mimetic peptide enhances osteogenic activity and extracellular matrix miner-
alization of human osteoblast-like cells. Colloids and Surfaces. B, Biointer-
faces, 173:662—-671, January 2019.

N. Hu, C. Feng, Y. Jiang, Q. Miao, and H. Liu. Regulative effect of mir-205 on
osteogenic differentiation of bone mesenchymal stem cells (bmscs): Possible
role of SATB2/Runx2 and ERK/MAPK pathway. International journal of
molecular sciences, 16(5):10491—10506, 2015.

N. Hu, C. Feng, Y. Jiang, Q. Miao, and H. Liu. Regulative effect of mir-205 on
osteogenic differentiation of bone mesenchymal stem cells BMSCs: possible
role of SATB2/Runx2 and ERK/MAPK pathway. International Journal of
Molecular Sciences, 16(12):10491-10506, May 2015.

W. Huang, S. Yang, J. Shao, and Y.-P. Li. Signaling and transcriptional regu-
lation in osteoblast commitment and differentiation. Frontiers in Bioscience:
A Journal and Virtual Library, 12:3068-3092, May 2007.

M. Ikegame, S. Ejiri, and H. Okamura. Expression of Non-collagenous Bone
Matrix Proteins in Osteoblasts Stimulated by Mechanical Stretching in the

26



[34]

[41]

[42]

[43]

Cranial Suture of Neonatal Mice. Journal of Histochemistry € Cytochemistry,
67(2):107-116, February 2019.

T. Iline-Vul, R. Nanda, B. Mateos, S. Hazan, 1. Matlahov, I. Perelshtein,
K. Keinan-Adamsky, G. Althoff-Ospelt, R. Konrat, and G. Goobes. Os-
teopontin regulates biomimetic calcium phosphate crystallization from dis-

ordered mineral layers covering apatite crystallites. Scientific Reports,
10(1):15722, September 2020.

H. Isaksson, C. van Donkelaar, R. Huiskes, and K. Ito. A mechano-regulatory
bone-healing model incorporating cell-phenotype specific activity. Journal of
Theoretical Biology, 252(2):230 — 246, 2008.

G. Karsenty. Transcriptional control of skeletogenesis. Annual Review of
Genomics and Human Genetics, 9:183-196, 2008.

A. Klein, A. Baranowski, U. Ritz, H. G6tz, S. Heinemann, S. Mattyasovszky,
P. M. Rommens, and A. Hofmann. Effect of bone sialoprotein coated
three-dimensional printed calcium phosphate scaffolds on primary human os-
teoblasts. Journal of biomedical materials research. Part B, Applied bioma-

terials, 106(7):2565—2575, October 2018.

T. Komori. Signaling networks in runx2-dependent bone development. Jour-
nal of cellular biochemistry, 3:750-5, 2011.

T. Komori. Signaling networks in RUNX2-dependent bone development.
Journal of Cellular Biochemistry, 112(3):750-755, March 2011.

C. Li, K. Sunderic, S. B. Nicoll, and S. Wang. Downregulation of heat shock
protein 70 impairs osteogenic and chondrogenic differentiation in human mes-
enchymal stem cells. Scientific reports, 8(1):553, January 2018.

C. Li, K. Sunderic, S. B. Nicoll, and S. Wang. Downregulation of heat shock
protein 70 impairs osteogenic and chondrogenic differentiation in human mes-
enchymal stem cells. Scientific Reports, 8(1):553, December 2018.

C. Licini, C. Vitale-Brovarone, and M. Mattioli-Belmonte. Collagen and non-
collagenous proteins molecular crosstalk in the pathophysiology of osteoporo-
sis. Cytokine & Growth Factor Reviews, 49:59-69, October 2019.

T. Matsuguchi, N. Chiba, K. Bandow, K. Kakimoto, A. Masuda, and
T. Ohnishi. JNK Activity Is Essential for Atf/ Expression and Late-Stage
Osteoblast Differentiation. Journal of Bone and Mineral Research, 24(3):398—
410, March 2009.

27



[44]

[45]

[46]

[47]

L. Michaelis and M. L. Menten. The kinetics of the inversion effect. Bio-
chemische Zeitung, 49:333-369, 1913.

J. Mollentze, C. Durandt, and M. S. Pepper. An In Vitro and In Vivo Com-
parison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem
Cells. Stem Cells International, 2021:1-23, September 2021.

S. Morgan, A. A. Poundarik, and D. Vashishth. Do non-collagenous pro-
teins affect skeletal mechanical properties? Calcified Tissue International,
97(3):281-291, September 2015.

C.A. Mullen, M.G Haugh, M.B. Schaffler, R.J. Majeska, and .M. McNamara.
Osteocyte differentiation is regulated by extracellular matrix stiffness and
intercellular separation. Journal of the Mechanical Behavior of Biomedical
Materials, 28:183-194, 2013.

G. Osterhoff, E. F. Morgan, S. J. Shefelbine, L. Karim, L. M. McNamara, and
P. Augat. Bone mechanical properties and changes with osteoporosis. Injury,
47:11-20, june 2016.

R. Rieger, R. Hambli, and R. Jennane. Modeling of biological doses and
mechanical effects on bone transduction. Journal of Theoretical Biology,
274(1):36 — 42, 2011.

A .-G. Robling and C.-H. Turner. Mechanical signaling for bone modeling and
remodeling. Crit Rev Eukaryot Gene Expr, 19(4):319-338, 2009.

T. Rosell-Garcia, A. Paradela, G. Bravo, L. Dupont, M. Bekhouche, A. Colige,
and F. Rodriguez-Pascual. Differential cleavage of lysyl oxidase by the metal-
loproteinases BMP1 and ADAMTS2/14 regulates collagen binding through a
tyrosine sulfate domain. The Journal of Biological Chemistry, 294(29):11087—
11100, July 2019.

T. Rosell-Garcia and F. Rodriguez-Pascual. Boosting collagen deposition
with a lysyl oxidase/bone morphogenetic protein-1 cocktail. Methods in Cell
Biology, 156:259-270, 2020.

N. Schweighofer, A. Aigelsreiter, O. Trummer, M. Graf-Rechberger,
N. Hacker, D. Kniepeiss, D. Wagner, P. Stiegler, C. Trummer, T. Pieber,
B. Obermayer-Pietsch, and H. Miiller. Direct comparison of regulators of cal-
cification between bone and vessels in humans. Bone, 88:31—38, July 2016.

28



[54]

[55]

[56]

[61]

V. Sharma, A. Srinivasan, F. Nikolajeff, and S. Kumar. Biomineralization
process in hard tissues: The interaction complexity within protein and inor-
ganic counterparts. Acta Biomaterialia, 120:20-37, January 2021.

S. Siswanto, D. Hikmawati, N. Benecdita, and S. Nurmala. Synthesis of
hydroxyapatite based on nano coral using precipitation method for bone sub-
stitution. Journal of Physics: Conference Series, 1445:012015, January 2020.

N. A. Stepicheva and J. L. Song. Function and regulation of microRNA-31
in development and disease: miR-31 in development and disease. Molecular
Reproduction and Development, 83(8):654-674, August 2016.

M. Sun, G. Chi, P. Li, S. Lv, J. Xu, Z. Xu, Y. Xia, Y. Tan, J. Xu, L. Li,
and Y. Li. Effects of matrix stiffness on the morphology, adhesion, prolifera-
tion and osteogenic differentiation of mesenchymal stem cells. International
journal of medical sciences, 15(3):257—268, 2018.

W. Tang, Y. Li, L. Osimiri, and C. Zhang. Osteoblast-specific transcription
factor osterix (osx) is an upstream regulator of satb2 during bone formation.
The Journal of biological chemistry, 286(38):32995—33002, September 2011.

Q. Tu, J. Zhang, J. Paz, K. Wade, P. Yang, and J. Chen. Haploinsufficiency of
Runx2 results in bone formation decrease and different bsp expression pattern
changes in two transgenic mouse models. Journal of Cellular Physiology,
217(1):40-47, October 2008.

P. Valverde, J. Zhang, A. Fix, J. Zhu, W. Ma, Q. Tu, and J. Chen. Overexpres-
sion of bone sialoprotein leads to an uncoupling of bone formation and bone
resorption in mice. Journal of bone and mineral research, 23(11):1775—1788,
November 2008.

Y. Wang, L. Li, B. T. Moore, X.-H. Peng, X. Fang, J. M. Lappe, R. R. Recker,
and P. Xiao. Mir-133a in human circulating monocytes: a potential biomarker
associated with ostmenopausal osteoporosis. PLoS ONE, 7(4):e34641, April
2012.

F. Xu, W. Li, X. Yang, L. Na, L. Chen, and G. Liu. The roles of epigenet-
ics regulation in bone metabolism and osteoporosis. Frontiers in Cell and
Developmental Biology, 8:619301, January 2021.

M. P. Yavropoulou and J. G. Yovos. Mechanical signaling for bone model-
ing and remodeling. Journal of musculoskeletal and neuronal interactions,
19(4):221-236, 2016.

29



[64]

R. Younsi, F. Launay, Y. Glard, J.-P. Berteau, P. Chabrand, and G. Bollini.
Fracture apres allongement des membres inférieurs chez ’enfant: étude d’une

série de 96 patients. Revue de Chirurgie Orthopédique et Traumatologique,
97(7):S280, 2011. Publisher: Elsevier Masson.

F. Yu, Y. Cui, X. Zhou, X. Zhang, and J. Han. Osteogenic differentiation of
human ligament fibroblasts induced by conditioned medium of osteoclast-like
cells. Bioscience Trends, 5(2):46-51, 2011.

S. Yu, K. Zhu, Y. Lai, Z. Zhao, J. Fan, H.-J. Im, D. Chen, and G. Xiao. ATF4
Promotes g-Catenin Expression and Osteoblastic Differentiation of Bone Mar-

row Mesenchymal Stem Cells. International Journal of Biological Sciences,
9(3):256-266, 2013.

X. Zhao, D. Xu, Y. Li, J. Zhang, T. Liu, Y. Ji, J. Wang, G. Zhou, and
X. Xje. Micrornas regulate bone metabolism. Journal of Bone and Mineral
Metabolism, 32(3):221-231, May 2014.

P. Zioupos and J.D. Currey. Changes in the stiffness, strength, and toughness
of human cortical bone with age. Bone, 22(1):57-66, January 1998.

30



