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Introduction



Why we need algorithms that can handle irregular sampling in SITS

SITS are irregularly sampled
e Clouds for optical modality
o Number of orbits covering a location may vary
o Satellites may be temporarily unavailable

o We may want to mix series from different missions, each with its own sampling

Machine Learning often expect regular sampling and are not coordinates aware (being time or others)
e Because we keep data in arrays and tensors

e Many of the underlying math expect regular sampling (for ex. convolution) or are blind wrt. sampling

The usual workaround is re-sampling and smoothing
e Temporal re-sampling implies implicit priors about signal and space to store re-sampled data
e Smoothing can obliterate interesting features in signal

e Recent Neural Networks architecture (e.g. Transformers) mix positional encoding and self-attention
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Luckily for us, this problem is not limited to Satellite Time Series ...

[1] Shukla,'S. N., & Marlin, B. M. (2021).Multi-time attention networks for irregularly sampled time series.
arXiv preprint 2101.10318 (paper, code)

[2] Shukla, S. N., & Marlin, B. M. (2021). Heteroscedastic Temporal Variational Autoencoder For Irregularly
Sampled Time Series. arXiv preprint 2107.11350 (paper, code)

"This work is motivated by the analysis of physiological time series data in electronic health records, which are
sparse, irregularly sampled, and multivariate.”

"In this work, we introduce a new model for multivariate, sparse and irregularly sampled time series that we
refer to as Multi-Time Attention networks or mTANs. "

"The encoder takes the irregularly sampled time series as input and produces a fixed-length latent

representation over a set of reference points, while the decoder uses the latent representations to produce
reconstructions conditioned on the set of observed time points."
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https://github.com/reml-lab/mTAN
2107.11350
https://arxiv.org/abs/2107.11350
https://github.com/reml-lab/hetvae

Aim of this talk

Understand how mTAN and HET Variational AutoEncoders work and what they really do
e Papers not very easy to understand, code provided but hard to read

query, key = [1(x).view(x.size(0), -1, self.h, self.embed_time_k).transpose(i, 2) for 1, x in zip(self.linears, (query, key))]

e Discrepancies between code and papers

o = Code completely rewritten

lllustrate how those networks perform on real SITS data
e We harvested multi-modal (S1 + S2) time-series from the PASTIS-R dataset

e Demonstration of the proposed architectures for S1 guided interpolation of S2 NDVI Time Series

Assess usefulness and limitations
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mTAN and unTAN time encoder
modules explained



mTAN overview (figure from [1])

mTAND output at given
set of reference points

<~ r=r,...,Tx]

reference points

Irregularly sampled
multivariate time series

1. Compute observed times embeddings [L, E] and reference time [K, E]
2. Compute learnable attention scores matrix from reference to observed [L,K]

3. Interpolate input signal with learned kernels (rows of the attention matrix)
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Learnable time-embedding

Definition
e Learnable positional encoding embeds a time point into a d, dimensional space

e Each feature / has its own learned periodic function, w and 3 area learned parameters

wot + Bo ifi=0

o(t)[i] = sin(wit + ;) ifl < i< de

Code

self.periodic_time_layer = torch.nn.Linear(1, self.full_time_embedding_dim - 1)
self.linear_time_layer = torch.nn.Linear(i, 1)

linear_embedding = self.linear_time_layer(time_points) # i=0

periodic_embedding = torch.sin(self.periodic_time_layer(time_points)) # 1<i<d_e
return torch.cat([linear_embedding, periodic_embeddingl, -1)
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Time-driven attention scores

References dates

In the paper LI ¢
T T \ Query Key
K(r,t) = exp(¢(r)wv " o(t) " Vdk) S(RW VTo(T)T
' Zézlexp(¢(rva¢(t,-)T/\/dK)
Ty >< dy.
In the code p 7

self .W = torch.nn.L:'mear(sslf4full_time_embedd:'mg_dim, e (0(R)*“"*\/"¢(T)" )
self.full_time_embedding_dim, d)(R) W VTQ‘)(T)T) lmaz Vi
bias=False)

Softmax

self.V = torch.nn.Linear(selfAfull_time_embedding_dim,
self.full_time_embedding dim, across the line
bias=False)

query = self.W(time_embedding_query) T
key = self.V(time_embedding_key)
scores = torch.matmul(query, key.transpose(-2, -1)) \ Figure 1: Attention score between reference time grid R and the

/ np.sqrt (query.size(-1)) acquisition T date
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Time-driven attention score: masking attention sparse time series

Code
e (a) Replicate for all features

scores = scores.unsqueeze(-1).repeat_interleave(
self.input_dimension,dim=-1)

e (b) Mask

masked_attention_scores = attention_scores.masked_fill(
torch.logical_not (input_mask), -1e9)

e (c) Softmax feature or along acquisition dates

attention_scores_softmax = torch.nn.functional.softmax(
masked_attention_scores, dim=-2)

J. Michel, I. Dumeur

References dates Acquisition dates Lxd,
7 e z € R¥X4r,
T TK il coodfz, . . .
\ / an irregularly sampled time-serie

S(R) * W« VTo(T)T)

non acquired data

7. (a) Replicate attention
l scores

Xd,

(c) Softmax

(b) Mask attention scores

Figure 2: Masking the attention scores to handle sparse time series

DSQCB - Novermber 8th 2022



Input signal interpolation

R dates Acquisition dates z € RLxdr
I .ty an irregularly sampled time-serie

N/
S(R)* W+ VT(T)T) @

non acquircd data

In the paper

— (d) Multiplication of the
L
d attention scores with @
Xq(r,t) = L2y k(r, tig)xia
Xd,
In the code
(d) Multiplication with x + (e) concatenate (¢) Concatenate along

feature dimension di
val_h = torch.sum(attention_scores_softmax*input_values,-2) ,1,, [

Figure 3: Interpolation of the input signal to the reference grid
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The intensity term from unTAN

The intensity term measures the availability of dates required by attention with respect to dates in input signal

In the paper
We denote Ly the set of dates available for current signal (excluding masked dates) and L, the set of all

possible dates in the whole dataset

a(r,t) = exp(¢(r)wv T ¢(1) " /dk)

a(r,t) a(r,t)
kp  (r,t Zi,kLu rt)=——
a(r:1) e alr t) (r.1) Ther,a(r t)
k t pars ryt
int(r, t) = L,(r,t) _ tIELdO‘( i)

de(r, t) N Ztr.el_uoz(r, t,‘)

In the code

all_attention_scores = sslf.attention_dot_product(reference_tims_embedding, all_possible_input_times_embedding)
intensity = torch.logsumexp(masked_attention_scores, dim=-2)
intensity = intensity - torch.logsumexp(all_attsntion_scores,dim=—2)

intensity = torch.exp(intensity)
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mTAN and unTAN wrap-up

Inputs
e A tensor of reference time points of shape [K]
e A tensor of acquisition times of shape [B,L]
e A tensor of input signals of shape [B,L,R]

o A tensor of input masks of shape [B,L,R], determining which channel is available at each of L dates

OQutputs
A tensor of shape [B,H,K,(2x)R] containing for each attention head H:
e the R input signals re-sampled at the K reference time points

e the R intensity term denoting the availability of attention required time points in input signal (optional)

Learned
e The time-embedding linear layer
e V and W, the matrix that builds the softmax masked attention scores

e = learned kernels for temporal interpolation

10
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mTAN and unTAN Variational
Auto-encoders architectures



/“igto

mTAN VAE (figure from [1])
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time series
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HETVAE (figure from [2])
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(a) Uncertainty Aware Multi-Time Attention Networks (b) Heteroscedastic Temporal VAE
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Main differences between both architectures

mTanVAE HETVAE
Time encoding module mTAN unTAN = mTAN + Intensity
Output variance Fixed Estimated
Loss function on output  Gaussian Negative Log-Likelihood  Gaussian Negative Log-Likelihood (+ a bit of MSE)
Loss function on latent Normal Kullback-Liebler Normal Kullback-Liebler
Time-aware encoder Yes (Gated Recurrent Unit) No (Plain MLP applied to each latent step)
Deterministic path No Yes

Some innovations of HETVAE can also be applied to mTAN VAE
e Intensity

e Estimation of output variance

10
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Testing mTAN with SITS:
experimental set-up




Dataset sampling from Pastis-R

[3] Garnot, V. S. F., Landrieu, L., & Chehata, N. (2022). Multi-modal temporal attention models for crop
mapping from satellite time series. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 294-305.
(paper, code, data)

Input sample #6

S2 NDVI

S1 sigma_0 ASC W

S1 sigma_0 ASC VH
1.0 —— S1sigma_0 ASC VV/VH
S1 sigma_0 DESC W
S1 sigma_0 DESC VH

05 e ==S _@W —— 51 sigma_0 DESC W/VH
0.0

12 14 16 18

8 10
Months (since 2019.08.01)

e Sample 24 330 Sentinel-2 and Sentinel-1 (asc and desc) time-series from Pastis-R patches
e Up to 10 samples per patches from all classes but background, averaged on 3x3 neighborhood

e MAJA-like cloud filtering rule (no cloud mask provided) for Sentinel-2, temporal averaging for Sentinel-1

! ) e NDVI 4 random masking: random start, random length for each series
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Experimental set-up (1/2)

Auto-encoding tasks
Monomodal task masked NDVI (1 input channel) = unmasked NDVI
Multimodal task masked NDVI + full Sentinel-1 (7 input channels) = unmasked NDVI

Models
Task Architecture  Use Intensity = Target variance  # params
mono_mtanvae_woi_wovar Mono mTAN VAE No 0.01 45 351
mono_mtanvae_woi_wvar mTAN VAE No Estimated 45 402
mono_mtanvae_wi_wvar mTAN VAE  Yes Estimated 45 498
mono_hetvae_wi_wvar HET VAE Yes Estimated 44 020
multi_mtanvae_wi_wvar Multi mTAN VAE Yes Estimated 46 650
multi_hetvae_wi_wvar HET VAE Yes Estimated 46,420

Latent space dimension 8
Time embedding per head 64
Number heads 2 for encoder, 1 for decoder

erence time points 1 point every 5 days over the dataset date range

J. Michel, I. Dumeur DSQCB - Novermber 8th 2022
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Experimental set-up (2/2)

Dataset splits
e Separate test set of 4 886 series never seen during training (except for mean and std estimation ...)

e Among the 19 464 remaining series : randomly keep 2 433 (10% of total) for validation and the rest for
training

Training
e Standard Adam Optimizer with learning rate 0.01, batch size 200, and 50 epochs
e Learning rate warm-up for 10 epochs and gentle decrease from 10 to 50 epochs

e All training occurs with standardized input / output data. Metrics are computed on unstandardized output

Learning rate

0.010 — Ir-Adam
0.008
0.006
0.004

0.002

0.000

0 200 400 600 800 1000 1200 1400 1600
step
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mono_mtanvae_wovar_woint loss

200

Evolution of training and validation losses during training

mono_mtanvae_wvar_wint loss

—— training 200 —— training
validation validation
a \
§ 0
—200
500 1000 1500 0 500 1000 1500
step step
mono_mtanvae_wvar_woint loss mono_htevae_wvar_wint loss
—— training —— training
validation 200 validation
%]
a
S
Voroain] S
500 1000 1500 0 500 1000 1500
step step
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Anatomy of mTAN Variational
Auto-Encoder for SITS




Anatomy of multi_mtanvae_wi_wvar: predictions

=== input sample #9
0.8 —— predicted
predicted var
0.6 1
5 0.4+
=)
z
0.2 1
0.0 4

8
Months (since 2019.08.01)
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Anatomy of multi_mtanvae_wi_wvar: mTAN encoder attention
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Anatomy of

multi_mtanvae_wi_wvar: mTAN encoder attention
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Anatomy of multi_mtanvae_wi_wvar: mTAN encoder output
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Anatomy of multi_mtanvae_wi_wvar: latent space features

Latent space mean for sample #9

Latent space variance for132.149.16.119 sample 49

1 7 3 7

T 3
Months since 2019.08,01)

Mnth tsince 2019.08.01)

Latent space features with abs mean std > 0.1, sample #9

Latent space features

-3
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Performance analysis




Quantitative analysis on separate testing set

All target dates (masked and unmasked input dates)

MSE MAE MAPE (%) CIBR1 o (%) MCIW
mono_mtanvae_wovar_woint  0.0990707 0.0624423 33.6582 82.4121 0.1
mono_mtanvae_wvar_woint 0.103249 0.0607378 38.1664 80.2746  0.0878534
mono_mtanvae_wvar_wint 0.0888043  0.0504897 53.1954 75.5675 0.0652271
mono_htevae_wvar_wint 0.101161 0.0616576 36.0062 78.3032  0.0902833
multi_mtanvae_wvar_wint 0.0890551  0.0515513 31.9344 70.9145 0.0576495
multi_htevae_wvar_wint 0.0955975  0.0575327 48.7533 78.9364 0.083374
Only masked input dates
MSE  MAE (%) MAPE CIBR o (%) MCIW
mono_mtanvae_wovar_woint  0.163771 0.114091 53.8516 60.2789 0.1
mono_mtanvae_wvar_woint 0.171507 0.117842 69.6694 55.4546  0.0965285
mono_mtanvae_wvar_wint 0.159295 0.116477  55.4961 67.5348 0.133646
mono_htevae_wvar_wint 0.162305 0.114302 52.4242 74.4151 0.150324
multi_mtanvae_wvar_wint 0.149947 0.10647 46.771 50.0518 0.0850109
multi_htevae_wvar_wint 0.159601 0.111383  49.8329 73.7114 0.142638
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Intensity term helps predicting meaningful variance

0.8 -=- input sample #9
mono_mtanvae_wvar_woint
—— mono_mtanvae_wvar_wint
0.6 1
_ 0.4+
=
=)
z
0.2 1
0.0 4
0 2 4 6 8 10 12 14
Months (since 2019.08.01)
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mTAN VAE with intensity and estimated variance outperforms HETVAE

—==- input sample #9
multi_mtanvae_wvar_wint
0.7 —— multi_htevae_wvar_wint

NDVI

8
Months (since 2019.08.01)
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Multi-modal VAE seems to predict narrower variance

0.8 -==- input sample #9
mono_mtanvae_wvar_wint
—— multi_mtanvae_wvar_wint
0.6 1
_ 044
=
=)
z
0.2 1
0.0 4

8
Months (since 2019.08.01)
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Behaviour of multi-modal mTAN VAE wrt. gradually larger optical cloud gaps

=== input sample #5
—— predicted
predicted var

8
Months (since 2019.08.01)
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Behaviour of multi-modal mTAN VAE wrt. gradually larger optical cloud gaps

=== input sample #5
—— predicted
predicted var

8
Months (since 2019.08.01)
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Behaviour of multi-modal mTAN VAE wrt. gradually larger optical cloud gaps

=== input sample #5
—— predicted
predicted var

8
Months (since 2019.08.01)

DSQ@CB - Novermber 8th 2022 29



Behaviour of multi-modal mTAN VAE wrt. gradually larger optical cloud gaps

=== input sample #5
—— predicted
predicted var

8
Months (since 2019.08.01)
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Behaviour of multi-modal mTAN VAE wrt. gradually larger optical cloud gaps

=== input sample #5
—— predicted
predicted var

0.7 1

8
Months (since 2019.08.01)
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Conclusions




Conclusions

mTAN and unTAN
e mTAN [1] re-sample the input signals on a set of reference dates with learnable kernels
e It can handle irregular sampling and different sampling for multi-modal signals

e Intensity term from unTAN [2] measures the availability of dates required by attention mechanism in input
signal

Variational Auto-Encoders based on mTAN and unTAN
e mTAN [1] and unTAN (mTAN + intensity) [2] can be used in Variational Auto-Encoders architectures

e Main innovations from [2] (intensity and estimation of output variance) can be added to mTAN VAE,
which then outperforms HETVAE proposed in [2] (but the latter has less params)

e Intensity term helps predicting meaningful output variance, related to missing data

Application to multi-modal estimation of gap-free NDVI time-series
e A proof of concept, for the sake of the demonstration! Many things missing for a valid assessment
e Shows that mTAN derived VAEs provide interesting results for SITS with interpretable by-products

o Interest of VAEs is latent variational space, not output! Needs to be assessed on other tasks (for instance
{p classification)
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Perspectives

Those papers helped us revisit our comprehension of attention
e Transformers mix self attention and positional encoding, which makes it hard to see but ...
e Attention is fundamentally a learnable kernel smoothing mechanism!

Tsai, Y. H., Bai, S., Yamada, M., Morency, L., & Salakhutdinov, R. (2019). Transformer dissection: a unified
understanding of transformer’s attention via the lens of kernel. CoRR (paper found by Jordi)

mTAN and unTAN are useful pieces for any regression/classification problem implying SITS
o Alternative to gap-filling and re-sampling that can be trained end-to-end and is still fairly interpretable
o Need to be combined with other modules for a full scheme:

e Self attention for input signal driven interest, for instance using a down-stream transformer
e CNN-based architecture for spatial context encoding (for instance using an up-stream U-Net-like)

Open questions and limitations

e Static reference time points

&?w
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Code and Licence

Code available on https://gitlab.cesbio.omp.eu/activites-ia/torchmuntan

(requires CESBIO gitlab account)

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.
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