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Degradation analysis in a controlled flexible drive train subject to
torsional phenomena under different wind speed conditions

Mônica Spinola Félix1, John J. Martinez2, Christophe Bérenguer3, Khaoula Tidriri4

Abstract— The need for predictive maintenance of wind
turbines has increased. Prognostics and Health Management re-
search is working on estimating the Remaining Useful Life with
greater accuracy and to determine future operating conditions,
taking into account system constraints on safety and reliability
when power generation capacity is also an issue. Torsional
phenomena contribute to wind turbine life degradation, and the
rate of degradation depends on wind profiles. To meet health
management requirements, deterioration-aware control plays
a role in adjusting control responses to mitigate the resulting
stress depending on known wind parameters that characterize
different wind speed conditions. Therefore, a degradation anal-
ysis is proposed to analyze the degradation results for different
Ornstein-Uhlenbeck parameters that express the wind speed
and can be estimated with a standard Kalman Filter.

Index Terms— Wind turbine system, Degradation estimation,
Post-prognosis decision, Wind speed process, Kalman Filter

I. INTRODUCTION

Wind energy has become one of the most important
renewable energy sources, and its technologies, such as Wind
Turbines (WT), have now been significantly improved due
to its competitive cost and low environmental impact. More-
over, according to [1], the trend in this technology is toward
larger turbines and more offshore installations in deeper seas.
As a result, [2] predicts that Operation and Maintenance
(O&M) costs will inevitably increase. On the other hand,
[3] points out that reducing the unplanned maintenance rate
is a strategy to reduce O&M costs. Therefore, O&M has
improved toward predictive maintenance to avoid unexpected
failures and more accurately schedule maintenance using
prognostics to estimate Remaining Useful Life (RUL) and
post-prognostic to interfere with failure projections.

Prognostics is important in O&M because it aims to
forecast the health of the machine and predict the time
interval until a failure occurs, known as RUL. However,
there are many challenges in accurately calculating RUL
in WT systems, which face constant changes in operating
conditions, a lack of failure data, and significant variability
in failure modes [8]. As a result, many efforts are being
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made to improve prognostic prediction. These can be model-
based approaches, data-driven approaches, experience-based
approaches, or the ensemble methods known as hybrid
approaches [3].

An example of a model-based approach is proposed in
[11], using dissipated energy as an image of degradation.
On the other hand, special attention has been given to
hybrid approaches that combine physical knowledge about a
component or degradation with historical data to overcome
the usual challenges of prognostics. For example, physical
laws and constraints can be intrinsically embedded in the
Machine Learning (ML) studied in [7], and the simulation
results of the physical model can be used as input to the ML
model.

Another topic covered in O&M is support for post-
prognostic decisions, divided into two main categories in
[6]: Maintenance Decisions and Operations Decisions. Main-
tenance decisions focus on maintenance planning, while
operations decisions determine the future use of the system
based on prognostic projections. The strategy chosen in
operations decisions affects future degradation since the latter
is a consequence of future operating conditions. An example
of an Operation Decision is changing the control system re-
sponse to maximize energy production while meeting safety
and business requirements.

This topic was explored by [12], who analyzed degradation
driven by the WT control system and showed that different
wind speeds, e.g., laminar or turbulent, can produce more
or less torsional effects in the drive train. It also showed
the advantage of control configurations adapting to wind
profiles when they are known. However, this work did
not quantitatively investigate how the degree of turbulence
affects loads and degradation, and the influence of different
mean wind speeds was not considered.

This paper investigates how a wind speed profile can dam-
age a drive train shaft of WT, relating the wind characteristics
to the severity of the damage. The contribution of this work is
broaden the perspectives of a RUL control approach for WT
where this relationship can be used. First, it is assumed that
the wind speed profile is divided into a mean and fluctuations
[10], which can be expressed as an Ornstein-Uhlenbeck
(OU) process, where the model parameters are considered as
wind characteristics. Fluctuations, for example, are modeled
as wind turbulence. Next, these wind model parameters
are estimated for different wind speeds using a standard
Kalman Filter and then related to the associated dissipated
energy level for a final degradation analysis. A model of
WT that incorporates torsional phenomena is considered to



estimate the shaft degradation represented by the total energy
dissipated in the power generation process.

Accordingly, this paper is organized as follows: Section
II addresses the perspective of an adaptive controller that
accounts for degradation effects. Next, Section III deals with
the considered wind speed model and the WT model, which
physically represents the dynamics of WT, including the
torsional effects on a shaft at the rotor level. In addition,
this section describes the Kalman Filter used to estimate
the wind speed parameters. Finally, Section IV shows the
results of the parameter estimation, and Section V provides
an analysis of the total energy dissipated due to different
wind speed profiles in simulated and real wind cases.

II. DEGRADATION-AWARE CONTROL

Fig. 1: Degradation-aware control framework.

This paper is concerned with determining the relationship
between wind characteristics and the rate of deterioration.
However, this analysis is part of a broader discussion of a
framework for Degradation-Aware Control, a controller that
incorporates prognostic information into the control loop and
uses estimated wind parameters to adjust its configurations
to manage the trade-off between power generation and reli-
ability.

Degradation-Aware Control, also referred to as Health-
Aware control in [9], has been explored in some works that
provide indications of how the control loop can be used
to govern the RUL of a machine and to support decision
making in post-prognostics. For example, in [8], the authors
demonstrated the possibility of extending the life of a WT
by using prognostic to adjust control weights through load
mitigation control. Another work is presented in [11], which
proposes to control the RUL for a friction drive system
by using a dynamic system model to estimate the state
of deterioration and adjust the angular velocity reference,
making the control objectives more reliable.

More specifically, Deterioration-Aware control means that
the deterioration state of the machine is taken into account in
the control objectives. An example of this is adding a RUL
reference to the control objectives, such as power generation
and stability. Fig. 1 illustrates a framework for the control
approach. First, an estimate is made of how much stress is

allowable for power generation. This is calculated by a RUL
controller that takes into account the degradation accumu-
lated up to the time of the decision and the RUL target, given
by maintenance requirements. Once the stress limit is set, the
control law can adjust the control parameters to meet these
requirements and control deterioration response. However,
the loading responses depend also on the environmental
conditions to which the system is subjected. In the case
of wind turbines, this condition is related to wind speed,
e.g., intensity and fluctuations. Therefore, the control system
should be adjusted depending on the estimated parameters
expressing these wind characteristics.

An example of adaptive control in this framework could
be gain scheduling that considers estimated wind parameters.
For instance, determining the relationship between these
parameters and degradation allows the controller to adjust its
weights as a function of wind speed parameters to mitigate
the estimated degradation rate. Moreover, hybrid models
can estimate degradation or predict RUL if this relationship
between degradation data and wind profile is embedded in a
ML model. Finally, approaches that respond to other types
of decisions, such as maintenance actions, could also be
proposed with this framework.

III. SYSTEM MODEL

This section covers the model to represent the system
studied in this paper. First, it explores the wind speed model
and its characteristic parameters. Then, the WT simplified
model dynamics, including torsion of the drive train shaft
effects is presented. Finally, an approach based on Kalman
Filter is used to estimate the wind speed parameters.

A. Wind speed model

According to [4], the wind speed can be decomposed into
a mean term V̄ and fluctuations ṽ, as shown in (1). While
the mean term is the low-frequency term, the fluctuations are
the high-frequency turbulence term.

v(t) = V̄ + ṽ(t) (1)

[10] modeled the fluctuation part as an Ornstein-Ullenbeck
process (OU) with a stochastic differential equation (SDE)
as seen in (2) to represent the wind speed behavior.

dV (t) = α(V (t), t)(t)dt+ β(V (t), t)dW (2)

The OU process is stochastic, and the wind V (t) is a sta-
tionary autocorrelated diffusion. It contains a strictly negative
drift term α(V (t), t) and a diffusion term, β(V (t), t), which
determines the magnitude of dW , the Brownian motion.

This model can be used to represent 99% of the wind
speed profile, and [10] proposed a variant (3) to describe the
increment of the wind speed sequence.

v̇(t) = −α(v(t)− V̄ ) + βηv (3)

In this equation (3), α is the mean reversal dynamics and
the velocity of turbulence variance, V̄ is the average wind
speed, ηv is the Brownian motion that is weight by β.
The wind profile is a stochastic process and is considered



non-stationary here. Therefore, α and V̄ are parameters
that change with time, but can be estimated. Also, higher
turbulence is expected to be associated with higher values of
α.

[12] has shown that high turbulence in wind speed pro-
duces more loads than lower turbulence, but the intensity
of wind speed, or mean V̄ , also affects loads. In addition,
estimates can be made based on real wind speed, and
knowing the relationship with accumulated damage leads to a
way to mitigate the load based on these estimated parameters.

B. Wind turbine mechanical model

Energy is generated by a WT system due to its response to
wind flows that produce kinetic energy, and the wind power
can be expressed as follows:

Pwind =
1

2
ρπR2v3, (4)

where ρ (kg/m3) is the air density, R (m) is the rotor ratio
and v (m/s) is the wind speed.

This power Pwind is converted into rotational motion
in the rotor with an angular velocity ωr and a torque τr,
producing a power P that can be calculated as follows:

P = τrωr (5)

Wind energy is not completely extracted, and the energy
conversion efficiency, called Cp, depends on the blade’s
angle β and the ratio between the rotor angular velocity and
the available wind speed, called the tip- speed ratio λ.

Cp(β, λ) =
P

Pwind
(6)

Usually, the control law aims to maximize Cp and achieve
the best power generation performance by finding the best
arrangement of β and λ.

The modeling of these systems can be very complex, but
we neglect loads in the tower and in the blades to focus on
a simplified model to represent the forces and dynamics in
aerodynamics and in the flexible shaft drive train, proposed
in [5].

ω̇r(t) =
1

Jeq
τr(t)−

Kdt

Jeq
θ∆(t)−

Bdt

Jeq
(ωr(t)− ωg(t)) (7)

ω̇g(t) =
Kdt

Jeq
θ∆(t) +

Bdt

Jeq
(ωr(t)− ωg(t))−

1

Jeq
τg(t) (8)

ω̇r and ω̇g are the rotor and generator acceleration, respec-
tively. ω̇g is controlled by a torque at the generator level τg ,
while ω̇r is controlled by τr, the aerodynamic forces resulting
from (4)-(6).

τr =
KTCp(β, λ)v

3(t)

ωr(t)
, (9)

where KT = 1
2ρπR

2. [5] modeled the drive train subsystem
as two rigid bodies connected by a flexible shaft. The rigid
bodies correspond to all mechanical parts on both sides of
the effective shaft. Accordingly, the terms rotor moment of
inertia (Jeq), generator moment of inertia (Jeq), drive train

torsional stiffness (Kdt) and drive train torsional damping
coefficient (Bdt) denote physical parameters of the model.

The dynamics suffers from the influence of inertia Jeq and
a stiffness Kdt and damping factor Bdt of a torsion defined
as the difference θ∆ between the angular position of rotor
θr and generator θg .

θ∆(t) = θr(t)− θg(t) (10)

In this work, one considers a WT of 2 MW with the
parameters shown in Table I.

TABLE I: Wind turbine parameters

Symbol Description Unit Value
Jeq Equipment moment of inertia [kgm2] 1.1× 106

Kdt Torsional stiffness [kg/s] 1.0× 108

Bdt Damping coefficient [kg/s2] 7.5× 105

C. Dissipated energy model

Heat and vibration, commonly used for fault diagnosis, are
phenomena in which energy is dissipated. For this reason,
[11] has suggested using dissipated energy to estimate accu-
mulated deterioration. In this context, the dissipated energy
Ed is a sum of the dissipated power Pd expressed as follows:

Ed =

∫ t

0

Pddt (11)

Torsional effects lead not only to degradation of the
material but also to loss of energy in the motions, and the
dissipated power Pd can be calculated in as:

Pd = τd(ωr − ωg), (12)

where the damping force τd is a product of a damping
factor Bdt that depends on the material and the relative angle
velocity in the shaft:

τd = Bdt(ωr − ωg) (13)

D. Synthesis of a standard Kalman filter for wind parameters
estimation

The model in equation (3) is a continuous-time form of the
discrete-time AR (1) model and can be represented in a state-
space model. Let the system (3) be formatted as follows:

vk = vk−1 + αvk−1 + αV̄ + βηk (14)

Denoting
yk = vk − vk−1, (15)

we have
yk = Ckxk + ek, (16)

where Ck =
[
vk−1 1

]
, xk =

[
α αV̄

]T
and ek is the

residual error expressed as ek = βηk with η ∼ N (0, 1) .
One assumes wind speed is stochastic and the change in xk

is random and independent from last value, thus

xk+1 = Akxk + ϵk (17)



where Ak = I and ϵk, an innovation factor. So, the model
can be represented under a state-space form as follows:{

xk+1 = xk + ϵk
yk = Ckxk + ek

(18)

A standard Kalman Filter is proposed to estimate the param-
eters X ∈ R. This filter aims to estimate the values of x
with a filter gain that updates the values by learning with
innovations of the wind speed signal (15).

To this aim, the innovation covariance Sk is obtained as
follows:

Sk = CkPkC
T
k +R (19)

and the Kalman gain Kk as follows:

Kk = PkC
T
k S

−1
k (20)

The update of the state estimate is then:

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1) (21)

Finally, the a posteriori covariance matrix can be updated
with.

Pk|k = (I −KkCk)Pk|k−1 (22)

IV. ESTIMATION OF OU PARAMETERS WITH KF

This section shows the results of using a KF to estimate
the parameters of the OU process.

A. Wind speeds experimental data

In order to investigate the performance of using a KF to es-
timate the OU parameters, the wind speed is simulated using
the wind speed model proposed in [10]. With this model it
is possible to generate different wind classes of wind, where
the transition between the different winds follows a Markov
chain (MC) distribution. A first MC governs the transition
of the mean wind speed between several values, and another
governs the fluctuation part of the OU process. Fig. 2a shows
the resulted wind speed simulated for 12 hours using [10]
with a sampling rate of 1 Hz. Real wind speed measurements
are also used to test the performance of the estimator. It
corresponds to 1 h measurements with a sampling rate of 1
Hz, as shown in Fig. (2b).

Remark that the estimator must be able to identify the OU
parameters such as α̂ and ˆ̄V for all degrees of turbulence. We
consider the residual error e = y − Cx̂ and that σe = βσn

and σn = 1 when η ∼ N (0, 1). Thus, β factor is calculated
using variance σe.

B. Estimation for simulated case

The results for the simulated case in Fig. (3a) show that KF
estimates the parameter α̂ (black line) such that it converges
to the true value parameter (red line) and every transition of
α is registered. Note that α = 1 represents wind type 1 and
low α represents wind type 2. Changes on ˆ̄V and β̂ were
also identified and estimated, Figs. (3b) and (3c). Thus, the
standard KF was enough to estimate OU process parameters
for a simulation scenario.

C. Estimation for real case

For the real wind data, estimated values results is seen in
Fig. 4. Note that the actual parameters are unknown. But, α
converges to a constant of a wind type 2, whereas β varies
between 0.40 and 0.45. A significant change in the trend of
ˆ̄V is identified, from 8 m/s to 9 m/s at 35 min. It is also
possible to express the results in terms of their means and
variance, as shown in Table II.

TABLE II: Estimated parameters for real data

Parameters Mean σ
α̂ 0.0657 0.0245
β̂ 0.4363 0.0307
ˆ̄V 8.93 0.7535
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Fig. 2: Wind speeds used in the study case: (a) 12 hours of
generated wind data using [10] and (b) 1 hour of measured
wind speed.

V. NUMERICAL EXPERIMENTS: DISSIPATED ENERGY AS
DEGRADATION IMAGE FOR DIFFERENT WIND SPEEDS

As explored in [12], the wind turbine shaft deteriorates at
a rate that depends on the wind conditions. Therefore, the
observation of wind characteristics can be used by a control
strategy to mitigate the loads and more accurately control the
trade-off between performance and degradation. Remark that
the wind fluctuations have different degrees of turbulence and
can be represented by the α and β parameters. Also, the mean
wind speed, represented here by V̄ , affects the degradation
dynamics. Thus, to investigate how α, V̄ and β affect the
torsional phenomena, it is proposed to compare and quantify
the dissipated energy for different values of OU parameters
that generates different wind speed conditions.
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Fig. 3: Estimation of OU parameters (a) α̂ (b) ˆ̄V and (c) β̂
of generated wind data using [10].

A. Validation of wind simulated to degradation analysis

For each parameter, wind speeds are generated using [10]
to simulate different wind speed conditions used as input to
the WT model to calculate the dissipated energy. Initially,
it is proposed to validate whether the dissipated energy
corresponding to the simulated wind speed is comparable to
the dissipated energy caused by a real wind speed condition.
To this end, a first experiment tests whether a wind generated
using the average of the estimated parameters from Table II
produces a total dissipated energy equivalent to the real wind,
with varying and actual parameters, for the same amount of
time. The resulting wind from the averaged values is shown
in Fig 5.

The dissipated energies in Fig. 6 corresponds to 32308
Wh for 60 minutes of real wind speed and 32601 Wh for
60 minutes of simulated wind speed, indicating that the
generated wind from OU model can be used to represent
a similar degree of dissipated energy, corresponding here to
the total degradation.

B. Analysis of dissipated energy for different values of OU
parameters

Finally, experiments are proposed to evaluate the dissi-
pated energy as a function of different OU parameters that
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Fig. 4: Estimation of OU parameters (a) α̂ (b) ˆ̄V and (c) β̂
of real measured wind data.
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Fig. 5: Wind speed generated using mean values of Table II.

results in different wind speeds. The set of values proposed
to represent different degrees of turbulent winds was α =
{0.01− 1} and β = {0.01− 1} and V̂ = {6− 16}(m/s).

This experiment takes the wind generated from the average
values of Fig. (5) and changes one parameter each time
based on the set of values proposed. As a result, it is
possible to observe in Fig. 7 the energy dissipated, resulting
in each parameter value estimated with a KF. The red mark
corresponds to the dissipated energy and parameter of the
real wind speed.

It is considered turbulent winds when diffusion term β
and drift term α have high values, and it confirms that
more energy is dissipated as a function of higher values of



these terms. Furthermore, mean speed V̄ also increases the
degradation. In all cases, a nonlinear relationship can be ob-
served. Also, high values of β led to more fluctuating results,
concluding that the dissipated energy is more sensitive for
high values of diffusion term. For instance, the higher values
in Fig. (7c) present a higher variance, which can be explained
because high values of β can affect the system’s instability.
The results of real wind speed fit the resulting curves and
represent low energy dissipated for the three parameters.
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Fig. 6: Energy dissipated of simulated wind (black) with
mean values parameters and real wind with actual varying
parameters (red).

VI. CONCLUSION

This article aims to analyze the degradation caused by dif-
ferent wind speed profiles quantitatively. First, the concept of
degradation-aware control was explored, where this type of
analysis is helpful. Then, a standard KF was used to estimate
the parameters of an OU process that can distinguish two
wind classes, laminar and turbulent, and different degrees of
wind fluctuations. The results showed a link between wind
speed characteristics, represented by these parameters, and
the dissipated energy. Once the parameters are estimated,
they can be used to distinguish different wind conditions
by a gain-scheduling control or degradation-aware control
that accounts for the relationship between these parameters
and degradation explored in this work. Future work includes
enriching this analysis with other degradation models, such
as the fatigue model commonly used in RUL prediction,
and using this information to develop a degradation-aware
control. In addition, further real wind measurements of other
profiles can help create a data-driven or hybrid model to
represent the degradation rate as a function of the wind
parameters that can be estimated.
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”Degradation of a wind-turbine drive-train under turbulent conditions:
effect of the control law.” 2021 5th International Conference on
Control and Fault-Tolerant Systems (SysTol). IEEE, 2021.


