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The gated cascade diffusion model: An integrated theory of

decision-making, motor preparation, and motor execution

Abstract

This article introduces an integrated and biologically-inspired theory of decision-making,

motor preparation, and motor execution. The theory is formalized as an extension of the

diffusion model, in which diffusive accumulated evidence from the decision-making process

is continuously conveyed to motor areas of the brain that prepare the response, where it is

smoothed by a mechanism that approximates a Kalman-Bucy filter. The resulting motor

preparation variable is gated prior to reaching agonist muscles until it exceeds a particular

level of activation. We tested this gated cascade diffusion model by continuously probing

the electrical activity of the response agonists through electromyography in four choice

tasks that span a variety of domains in cognitive sciences, namely motion perception,

numerical cognition, recognition memory, and lexical knowledge. The model provided a

good quantitative account of behavioral and electromyographic data, and systematically

outperformed previous models. This work represents an advance in the integration of

processes involved in simple decisions, and sheds new light into the interplay between

decision and motor systems.

Keywords:

Decision-making | Motor preparation | Motor execution | Diffusion model | Kalman-Bucy

filter | Electromyography
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Introduction

Many of our internal choices are communicated to the world, and this communi-

cation requires an interplay between decision and motor systems. For instance, the choice

to vote for a candidate in an election eventually results in the deposit of a ballot in a box

(or pushing a button on a voting machine). Deciding who to have friendships and rela-

tionships with results in concrete approach/avoidance behaviors. Choices about where to

spend our money determine our consumer behavior. Decision and motor systems are also

jointly engaged in many experimental cognitive tasks. For instance, recognition mem-

ory tasks, lexical decision tasks, perceptual decision tasks, numerosity judgment tasks,

and conflict tasks all involve a decision between two or more options (e.g., old/new,

greater/less than a quantity), each option being mapped to a specific motor plan (e.g.,

manual button press, saccade towards a target, vocal response). Decision and motor

systems have each benefited from extensive research (for reviews, see Cisek and Kalaska,

2010; Ebbesen and Brecht, 2017; Forstmann et al., 2016; Freedman and Assad, 2016; Gold

and Shadlen, 2007; Lemon, 2008; O’Connell and Kelly, 2021; Ratcliff and Smith, 2004;

Ratcliff et al., 2016; Robinson, 1973; Schall, 2019; Schall and Paré, 2021; Summerfield

and Parpart, 2022), and recent modeling efforts have sought to specify the relationship

between them (Servant et al., 2015, 2021; Verdonck et al., 2020). However, as will become

obvious in the next sections, current models fail to capture important aspects of empir-

ical data, either at the motor preparation or at the motor execution processing levels.

The present work aims to adress these shortcomings by introducing an integrated theory

of decision-making, motor preparation, and motor execution. The theory builds upon a

gated cascade evidence accumulation architecture and incorporates a filtering mechanism

at the motor preparation level, for which we provide a computational foundation.

The manuscript is structured as follows. We will first review traditional the-

oretical conceptions regarding the relationship between decision and motor stages, and

recent neurophysiological data that challenge them. We will then highlight shortcomings

of current modeling approaches, and introduce the integrated theory.
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Deciding and acting: traditional views and challenges

A traditional view in psychology is that the motor system is engaged when the

decision-maker has committed to an internal choice (Donders, 1969; Logan and Cowan,

1984; Sternberg, 1969). The decision process produces a discrete result, indicating which

response to prepare and execute. This view still persists in contemporary decision-making

models, according to which noisy evidence from our senses and memory is accumulated

until a threshold quantity of cumulative evidence is attained (e.g., Bogacz et al., 2006;

Evans and Wagenmakers, 2020; Laming, 1968; Ratcliff and Smith, 2004; Tillman et al.,

2020). Each accumulator is associated to a specific choice, and the accumulator that first

reaches the threshold determines the choice and the duration of decision formation. The

choice is then passed on to the motor system, and does not carry any information about

the strength of the evidence.

A growing body of neurophysiological evidence challenges this traditional view

however. Electroencephalographic (EEG) studies have identified two electrical signals

that exhibit key signatures of the theoretical accumulation-to-threshold decision variable

(for reviews, see O’Connell and Kelly, 2021; O’Connell et al., 2018). The first signal,

termed centro-parietal positivity (CPP), reflects accumulated sensory evidence, and cul-

minates to a threshold voltage around the time of the response. The CPP appears

whenever an individual has to make a decision between two options, and shows the same

temporal dynamics and spatial topography regardless of sensory and response modali-

ties. Importantly, the CPP appears even when participants are instructed to make the

decision mentally (i.e., without communicating the outcome through the motor system;

O’Connell et al., 2012), or when the stimulus-response mapping is not yet known during

stimulus presentation (Twomey et al., 2016). Although the precise functional interpre-

tation of the CPP requires additional investigations (O’Connell and Kelly, 2021), these

empirical findings suggest that it may reflect a decision about alternative categories of a

stimulus, with a neural generator in the parietal cortex.

The second signal corresponds to effector-selective motor preparation EEG ac-

tivities (de Jong et al., 1988; Gratton et al., 1988; Pfurtscheller and Lopes da Silva,
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1999), such as the lateralized readiness potential or the decrease in spectral activity in

the mu/beta band over the motor cortex (in case of left/right manual responses). Similar

to the CPP, effector-selective EEG signals appear to reflect the theoretical accumulation-

to-threshold decision variable. Although ramping electrical activities of the two classes

of signals overlap in time and reach their voltage peak around the time of the response,

the onset latency of effector-selective signals occurs after the onset latency of the CPP

(Kelly and O’Connell, 2013). In addition, effector-selective EEG signals are absent when

participants are instructed to make the decision mentally, or when the stimulus-response

mapping is not yet known during stimulus presentation (O’Connell et al., 2012; Twomey

et al., 2015). These results suggest that when decisions are mapped onto actions, the deci-

sion variable is represented in motor areas of the brain that prepare the response. Similar

findings have been observed using magnetoencephalography (de Lange et al., 2013; Don-

ner et al., 2009), functional resonance imaging (Filimon et al., 2013; Tosoni et al., 2008),

transcranial magnetic stimulation (Klein-Flügge and Bestmann, 2012), and single-unit

recordings in awake monkeys (Gold and Shadlen, 2000, 2007; Gold and Shadlen, 2003;

Purcell et al., 2010; Ratcliff et al., 2003; Schall, 2019).

Another source of neurophysiological evidence that speaks against strict serial

discrete processing between decision and motor stages comes from surface electromyo-

graphic (EMG) studies. EMG is a non-invasive technique that measures the electrical

activity of muscles through electrodes placed on the skin surface. Recording the EMG

activity of agonist muscles in a reaction time (RT) task (e.g., the flexor pollicis brevis

for a button press with the thumb) allows researchers to partition each RT into two la-

tencies: a premotor time (PMT, from stimulus onset to the EMG onset of the response;

see Figure 1) and a motor time (MT, from EMG onset to the response; Botwinick and

Thompson, 1966; Weiss, 1965). Recent studies have shown that both mean PMT and

mean MT increase as the perceptual discriminability of the stimulus decreases (Servant

et al., 2021; Weindel et al., 2021; see also Selen et al., 2012, for similar findings obtained

with a different EMG methodology based on reflex gains). These results demonstrate

that EMG activity reflects a quantity that scales with sensory evidence, and suggest a



DECIDING AND ACTING 7

flow of the decision variable down to agonist muscles. The flow is not purely continuous,

because EMG bursts have a discrete onset (that occurs ∼150-180 ms on average before

the response for a button press with the thumb, with ∼900 gram-force required; see Ser-

vant et al., 2021).

Modeling the interplay between decision and motor systems

Servant et al. (2021, 2015) proposed a dual-threshold diffusion model to ac-

count for the aforementioned neurophysiological findings, with a particular focus on EMG

findings. The theory concerns two-choice decisions that are mapped onto actions, and

assumes that the decision variable is continuously transmitted to motor areas of the

brain that prepare the response (such as premotor and primary motor cortices for body

movements). Through continuous flow, some of the work usually done in forming motor

commands can be done during decision formation, providing an advantage in terms of

processing time (Eriksen and Schultz, 1979; McClelland, 1979; Shadlen and Kiani, 2013).

In addition, this architecture offers substantial flexibility to motor control by allowing

for real-time modulations and revisions of evolving motor commands based on incoming

evidence (Nakayama et al., 2023; Resulaj et al., 2009; Stone et al., 2022). This flexibility

appears particularly important in real-life settings, as individuals are constantly dealing

with a changing environment. For instance, the affordance competition hypothesis states

that the brain continuously processes sensory information to determine an ensemble of

possible actions, while simultaneously gathering information to select among these ac-

tions (Cisek, 2007).

The theory further assumes that the transmission of information from motor

preparation to agonist muscles is continuous, but regulated by a gate. The gate de-

termines the minimum level of accumulated evidence required to pass on the decision

variable to muscle fibers, and is presumably mediated by the basal ganglia system (hy-

pothesized to act as a gate-keeping mechanism for the execution of motor plans; e.g.,

Frank, 2011; Hikosaka, 2007; Mink, 1996). The gate might serve two main purposes.

First, it prevents low levels of accumulated evidence from exciting muscle fibers. Low

levels of accumulated evidence are associated with a low likelihood that the decision is
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correct, so gating these activations prevents unnecessary muscular activity. Second, the

gate offers a shield against unwanted behaviors. These purposes are consistent with the

gating function of the basal ganglia system: Patients with basal ganglia disorders often

encounter difficulties initiating purposeful movements and exhibit involuntary movements

such as tremors and chorea (Hikosaka, 2007; Mink, 1996).

Formally, the decision variable follows a diffusion process (Ratcliff, 1978):

dx(t) = vdt + σdW (t), x(0) = x0, (1)

where x(t), v, σ, and W (t) respectively correspond to the accumulated evidence at time t,

the drift rate, the diffusion coefficient, and a Brownian motion. Parameter x0 represents

the starting point of the process. If there is no bias for a particular response, x0 = 0.

The gate was originally formalized as a threshold (termed ’EMG threshold’)

superimposed on x(t). Here we propose a different interpretation (though mathematically

equivalent) of the gate as a constant inhibition. This interpretation is consistent with

the tonic inhibitory control of the basal ganglia over motor areas (Hikosaka, 2007; Mink,

1996), and allows for a clearer description of inputs to muscle fibers. Specifically, in the

context of a choice task involving left vs. right manual responses, inputs to left and right

muscle fibers (variables zL(t) and zR(t) respectively), are defined as follows:


zL(t) = max(−x(t) − g, 0)

zR(t) = max(x(t) − g, 0),
(2)

where parameter g corresponds to gating inhibition. Variables zL(t) and zR(t) are clas-

sically referred to as neural drive. The electrical excitation of muscle fibers, measured

by EMG, starts when the neural drive becomes positive. The full-wave rectified EMG

signal1 can be intepreted as a noisy approximation of the neural drive to the area of

muscle over which the electrodes are placed (Dideriksen and Farina, 2019; Farina et al.,

1 Full-wave rectification consists in taking the absolute value of voltages across time points (so all

negative voltages become positive). This transformation requires the EMG signals to be centered

around zero.
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2010; Vigotsky et al., 2018). For this reason, we will represent full-wave rectified EMG

signals (instead of raw signals) in the present work.

Researchers in biomechanics have evidenced a strong association between the

neural drive, the resulting electrical excitation of muscle fibers, and force production

(for a review, see Vigotsky et al., 2018)2. Consequently, the model assumes that the

response (e.g., a button press) is issued when a particular level of neural drive has been

produced, which is modeled by applying a threshold (parameter r) on zL(t) and zR(t). A

left response is issued if variable zL(t) first reaches r whereas a right response is issued

if variable zR(t) first reaches r. We refer to r as response threshold. This parameter

depends on the force required to give the response, properties of agonist muscles, and

muscular variables specific to each individual (e.g., strength and endurance).

This processing architecture makes EMG predictions (such as distributions of

PMT and MT) that are strictly identical to the dual-threshold diffusion model proposed

by Servant et al. (2021, 2015). The only difference concerns the interpretation of the gate

as a constant inhibition (instead of a threshold), which translates into a minor parametric

change3 and prompts a renaming of the model. We refer to it as gated cascade diffusion

model (GC) to emphasize the main processing components (diffusion decision variable,

continuous flow, and gate).

In each trial, the predicted PMT corresponds to the latency between the onset

of evidence accumulation and the time at which zL(t) or zR(t) becomes positive. Note,

however, that the latter event can occur more than one time during a trial, due to noisy

fluctuations of the accumulated evidence variable x(t) around the gate. This phenomenon

allows the model to predict a well-established EMG phenomenon termed partial EMG

burst (Coles et al., 1985; Servant et al., 2015). A partial EMG burst corresponds to a

2 Technically, the neural drive refers to the electrical activity of α-motoneurons that innervate muscle

fibers. This activity triggers an excitation-contraction coupling at the level of muscle fibers, leading to

force production (Calderón et al., 2014). EMG measures the electrical excitation of muscle fibers,

which is a precursor to force generation.

3 Parameters g and r respectively correspond to parameters m and r − m in the dual-threshold

diffusion model.
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small burst of muscular excitation that sometimes occurs during PMT, and that does not

generate sufficient force to issue the response (for empirical illustrations, see Figure A1 in

Appendix A). The predicted PMT thus corresponds to the latency between accumulation

onset and the time tg at which zL(t) or zR(t) becomes positive for the last time before

reaching the response threshold, consistent with the empirical definition (Figure 1). The

predicted MT corresponds to the latency at which zL(t) or zR(t) hits the response thresh-

old minus tg. In addition, predicted PMT and MT each incorporate residual processing

components with mean duration Te and Tr respectively. At minimum, Te includes stim-

ulus encoding processes and Tr includes the electromechanical delay (time lag between

muscle excitation and a measurable change in force output). This delay involves both

electrochemical and mechanical processes (e.g., propagation of action potentials, force

transmission along the active and passive parts of the series elastic component; e.g., Ca-

vanagh and Komi, 1979). In its raw form (without between-trial variability in any of the

model components and with an unbiased starting point of evidence accumulation x0 = 0),

GC has five free parameters: drift rate v, gating inhibition g, response threshold r, mean

residual latencies Te and Tr.

Because muscular excitation is determined by x(t), modulations of drift rate im-

pact both predicted PMT and MT. Consequently, GC predicts an increase in mean PMT

and mean MT as the perceptual discriminability of the stimulus decreases, explaining em-

pirical EMG findings reported in the previous section. Servant et al. (2021) derived other

predictions from the model. First, for any given drift rate, distributions of PMT and MT

should exhibit a similar right-skewed shape, which should translate into an approximately

linear PMT quantile-MT quantile plot. Second and as mentionned before, GC sometimes

predicts partial EMG bursts during PMT. The proportion of trials containing at least

one partial burst and the latency of the first partial burst should increase as drift rate

decreases. Third, for any given drift rate, the between-trial correlation between PMT

and MT should be null, due to the Markov property of the diffusion process (given the

present, the future does not depend on the past).

To test these predictions, Servant et al. (2021) recorded the EMG activity of
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muscles associated with left/right manual responses in a random dot motion task. In

each trial, participants had to determine the global direction (left versus right) of moving

dots, and press the corresponding response button with their left or right thumb. The

proportion p of dots moving coherently in the left or right signal direction, termed motion

coherence, was manipulated across six levels (p = 0, .05, .08, .12, .2, .4), in order to

modulate the perceptual difficulty of the decision. The EMG data provided evidence

for each prediction4. In addition, fits of GC to the joint distributions of PMT and MT

in correct and incorrect trials and to accuracy data were good, providing quantitative

evidence for the model.

However, Servant et al. (2021) did not attempt to fit the proportion and latency

of partial EMG bursts, nor did they examine the predictive accuracy of the model with

respect to these variables. Figure 2A shows the observed versus predicted proportion of

correct trials containing at least one partial EMG burst during PMT (upper plot) and

the mean latency of the first partial EMG burst (lower plot) averaged across subjects

for each motion coherence condition. Model predictions are computed using best-fitting

parameters from Servant et al. (2021), and 100,000 simulated trials per condition. GC

strongly overestimates the proportion of correct trials containing at least one partial burst

during PMT, and underestimates the average latency of the first partial burst, especially

for low coherence levels. Similar results were obtained when considering both correct and

incorrect trials, and by taking the median latency of the first partial burst. These results

demonstrate that the amount of within-trial noise predicted by GC is too large, causing

too many oscillations around the gate. To solve this problem, one may be tempted to

decrease the diffusion coefficient (parameter σ in Equation 1) that regulates the amplitude

of within-trial noise. However, the diffusion coefficient is fixed at an arbitrary value to

satisfy a scaling property within the model (Ratcliff, 1978). This means that adjusting

4 The only apparent discrepancy concerned the between-trial correlation between PMT and MT. This

correlation was slightly positive on average in the data, and there was some variability between

participants, presumably due to the impact of noise on EMG onset detection. Additional simulations of

GC showed that the model could predict a small positive correlation between PMT and MT for a given

drift rate level when between-trial variability in drift rate is incorporated.
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the value of σ –either to a different fixed value, or as a free parameter– has no impact on

model predictions, as any modulation will be counteracted by a proportional modulation

of the other model parameters to produce identical predictions. This analysis suggests

that a processing step is missing in GC.

As reviewed in the previous section, EEG studies have identified two electrical

signals that exhibit key signatures of the theoretical accumulation-to-threshold decision

variable, with important functional differences. The first signal (the CPP) appears to

perform a decision about alternative categories of a stimulus, and is fully supramodal.

We refer to this processing stage as decision-making. The second signal corresponds to

effector-selective motor preparation activities. Decision-making and motor preparation

EEG signals also exhibit a different sensitivity to strategic influences, as manipulations

of response bias and speed-accuracy modulate motor preparation signals but not the

CPP (Kelly et al., 2021; Steinemann et al., 2018). GC approximates decision-making

and motor preparation by a single evidence accumulation diffusion process, but this

assumption does not capture the lag between the two corresponding EEG signals, nor

does it capture their anatomical and functional differences. The same criticism applies

to the diffusion model (Ratcliff, 1978), or to other evidence accumulation models such

as the leaky competing accumulator (Usher and McClelland, 2001), the linear ballistic

accumulator (Brown and Heathcote, 2008), racing diffusion models (Ratcliff et al., 2003;

Tillman et al., 2020), and Poisson counter models (Ratcliff and Smith, 2004; Vickers,

1970).

Verdonck et al. (2020) recently hypothesized that the evidence accumulation

decision variable is continuously transmitted to motor areas of the brain that prepare

the response, similar to Servant et al. (2021, 2015). They further assumed that the deci-

sion variable is filtered during motor preparation. Formally, the evidence accumulation

variable x(t) follows a diffusion process identical to Equation 1. The motor preparation

variable y(t) takes x(t) as a continuous input, and performs a leaky accumulation of x(t)

according to the following differential equation:

dy(t) = λ(x(t) − y(t))dt, y(0) = x0, (3)
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where λ > 0 corresponds to the leak parameter. The response is executed when y(t)

reaches one of two thresholds. As can be seen by solving Equation 3, the motor prepara-

tion variable is obtained by applying a smoothing filter to x(t):

y(t) = λ
∫ t

−∞
dt′x(t′)eλ(t′−t). (4)

The value of the decision variable at t − t′ seconds before the current time t contributes

x(t′)eλ(t′−t) to the value of the motor preparation variable at time t. The motor prepa-

ration variable y(t) thus corresponds to the weighted sum of past states x(t′) of the

decision-making variable, with weights exponentially decreasing at rate λ (the leak pa-

rameter). When λ approaches infinity (high leak), all weights on past states tend to zero,

and the model reduces to the diffusion model (Ratcliff, 1978). Conversely, as λ decreases

(low leak), the number of past states of the decision-making variable contributing to the

motor preparation variable increases. This results in a reduction of random noise. The

amount of smoothing at the motor preparation level thus increases as λ decreases. Ver-

donck et al. (2020) further showed that for large values of t, the mean of y(t) is delayed by

λ−1 relative to the mean of x(t), corresponding to the filter-related delay. A modulation

of λ thus produces a modulation of the speed and accuracy of the decision.

This cascade evidence accumulation architecture for decision-making and motor

preparation, termed leaky integrated threshold model (LIT) by the authors, provides a

straightforward explanation to the partial temporal overlap between corresponding neu-

rophysiological activities, their rise-to-threshold morphology, and the modulation of their

respective accumulation rate by stimulus difficulty. It also allows for specific strategic

influences at each processing stage. Although Verdonck et al. (2020) did not test LIT

against neurophysiological data, they showed that it provides a better account of behav-

ioral data than the diffusion decision model in three datasets (a face/car discrimination

task, a lexical decision task, and a random dot motion task). Two of these datasets

included a speed-accuracy manipulation, which was better explained by a variation of

leakage than the variation of decision thresholds commonly assumed in the literature.

There are two theoretical issues with the LIT framework. First, the rationale for

the model is not clear. The diffusion model is known to implement an optimal strategy,
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in the sense that it minimizes the expected decision time for a given expected accuracy

level (Bogacz et al., 2006). Consequently, it is not clear why the motor preparation pro-

cess would average past accumulated evidence (containing less information) with current

accumulated evidence (containing more information). The second issue concerns motor

execution. If the threshold operates at the motor preparation level, as in the original

model definition, the choice is categorically communicated to the muscles for execution,

and the model cannot account for the modulation of mean MT by stimulus discriminabil-

ity and partial EMG bursts. Alternatively, one may assume that the threshold operates

at the motor execution level and corresponds to the response. This hypothesis, however,

would lead to a continuous activation of response-relevant muscles, at odds with EMG

bursts. The integrated theory of decision-making, motor preparation, and motor execu-

tion introduced in the next section provides a solution to both problems. We further

illustrate how the theory can capture partial EMG burst statistics.

An integrated theory of decision-making, motor preparation, and motor exe-

cution

We first propose a computational foundation (Marr, 1982) for the motor prepara-

tion process. The brain is a noisy information processing system (Shadlen and Newsome,

1994), and the decision variable is likely corrupted by noise during its continuous trans-

mission to motor preparation areas. Therefore, an important goal of motor preparation

might be to recover the original decision variable from noise. Formally, the corrupted

decision variable x̃ received by the motor preparation process can be defined as:

x̃(t) = x(t) + ξU(t), x̃(0) = x0, (5)

where ξU(t) corresponds to white Gaussian noise with standard deviation ξ added during

the transmission process. It is well known that the Kalman-Bucy filter provides the

optimal solution to this problem, in the sense that the Kalman-Bucy filtered process ỹ

minimizes the mean squared prediction error E [(x(t) − ỹ(t))2] (Kalman and Bucy, 1961;

Øksendal, 2003). ỹ statisfies the following differential equation (see Appendix B for the



DECIDING AND ACTING 15

mathematical derivation):

dỹ(t) = σ

ξ
tanh

(
σ

ξ
t

)
(x̃(t) − ỹ(t))dt + vdt, ỹ(0) = x0. (6)

The term σ
ξ

tanh
(

σ
ξ
t
)

corresponds to the so-called Kalman gain, and determines the

amount of smoothing of x̃(t) needed to optimally recover x(t) from noise.

Equation 6 poses an important challenge for the motor preparation system:

it requires knowledge of the ratio between σ (diffusion coefficient) and ξ (amplitude of

transmission noise) as well as the drift rate v, which is implausible. After all, if the motor

preparation system had knowledge of the drift rate, no decision-making mechanism would

be necessary. Consequently, these parameters may be replaced by priors under strategic

control. Let parameter λ’ denotes the prior on the ratio between σ and ξ, and parameter

v′ the prior on the drift rate. If there is no bias towards a particular stimulus/response,

a reasonable prior for v′ is v′ = 0. Equation 6 thus becomes:

dỹ(t) = λ′ tanh (λ′t) (x̃(t) − ỹ(t))dt, ỹ(0) = x0, (7)

Equation 7 can be viewed as the best estimate of the decision variable x(t) that the

motor preparation system can plausibly provide, given available information5. It turns

out the motor preparation process y(t) from LIT is very similar to ỹ(t). Note that the

gain λ′ tanh (λ′t) quickly increases to its asymptotic value λ′, and therefore:

dỹ(t) ≈ λ′(x̃(t) − ỹ(t))dt, ỹ(0) = x0. (8)

Comparing Equations 3 and 8, the main difference between ỹ(t) and y(t) concerns the

input to motor preparation: ỹ(t) takes the corrupted decision variable x̃(t) as input, in-

stead of the decision variable x(t) (see Appendix B for additional mathematical details).

The prior λ′ corresponds to the leak parameter λ, and can be interpreted in a similar

way. To summarize, the filter at the motor preparation level can be viewed as an attempt

5 Equation 7 is still optimal in the sense that it minimizes the mean squared prediction error

E
[
(x(t) − ỹ(t))2], but optimality here must be understood under the assumption that parameters v, σ,

and ξ are replaced by priors v′ and λ′. It can be contrasted with the optimal filter applied by an ideal

observer – who would use the actual values of v, σ and ξ (see Appendix C).
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to recover the original decision variable from noise. This mechanism has an important

consequence that will become clear in the next section: it prevents unnecessary muscular

activity triggered by random noise in the accumulated evidence, and thus appears com-

plementary to the action of the gate in stabilizing motor control.

The above analysis suggests that a complete theory of decision-making, motor

preparation, and motor execution may require a combination of GC and LIT models. We

refer to this new processing architecture as GCF, with the letter ’F’ indicating that the

decision variable is filtered at the motor preparation level. An illustration of the model

is provided in Figure 1. Decision-making and motor preparation are modeled by x(t)

(Equation 1) and y(t) (Equation 3) respectively. We chose y(t) instead of ỹ(t) to save

one free parameter (the amplitude of transmission noise ξ) and reduce the risk of tradeoffs

between parameters. This choice does not have any impact on our main conclusions, since

model variants incorporating y(t) vs. ỹ(t) provide a comparable fit performance to data

(see Appendix C), consistent with the above analysis. Gating inhibition now operates on

y(t), so inputs to left and right muscle fibers (variables zL(t) and zR(t) respectively) are

defined as follows: 
zL(t) = max(−y(t) − g, 0)

zR(t) = max(y(t) − g, 0).
(9)

The response (left vs. right) is determined by the variable that first hits the response

threshold r, similar to GC.

Model simulations

Within GCF, the smoothing mechanism at the motor preparation level should

reduce the predicted proportion of partial EMG bursts, and increase their mean latency

(due to the filter-related delay). Figure 2B shows simulations of the model with varying

levels of leak λ and drift rate v. Similar to GC, the model predicts an increase in

the proportion of correct trials containing at least one partial EMG burst during PMT

(upper plot) and an increase in the averaged latency of the first partial burst as drift

rate decreases (lower plot). Importantly and as predicted, the former decreases and the

latter increases as λ decreases. Additional analyses of simulated data showed that GCF
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Figure 1

Architecture of GCF

Note. In this trial, the model predicts a right response and a partial EMG burst in the right
EMG channel. See text for details.

predicts an increase in mean PMT and mean MT as drift rate decreases for each level

of leak, and an approximately linear PMT quantile-MT quantile plot. Interestingly, low

leak levels produce a small positive between-trial correlation between PMT and MT,

especially for high drift rates (Figure D1 in Appendix D). This complex pattern results

from two opposite forces: the Markov property of the diffusion process on the one hand

(that predicts a null correlation between PMT and MT) and the filtering process on the

other hand (that reduces random fluctuations and positively increases the correlation).

Because processing components are likely variable from trial to trial (e.g., Laming, 1968;

Ratcliff and Rouder, 1998), we explored the effect of between-trial variability in GCF
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parameters. The only noticeable difference in model predictions was caused by between-

trial variability in drift rate (normally distributed with mean v and standard deviation

sv). This source of variability produces a positive between-trial correlation between PMT

and MT, especially for low leak and high drift rate levels (Figure D2 in Appendix D). It

also predicts a slightly curvilinear PMT quantile-MT quantile plot (the departure from

linearity increases as sv increases).

Figure 2

Partial EMG bursts statistics in a random dot motion task with varying levels of motion

coherence and model predictions.

Note. A: Proportion of correct trials containing at least one partial EMG burst during PMT
(upper plot) and mean latency of the first partial burst (lower plot) averaged across subjects
as a function of motion coherence. Observed data are shown as black dots, and GC predictions
are shown as red crosses. B: GCF simulations, with varying levels of leak λ and drift rate v.
Apart from the leak parameter, simulations used best-fitting GC parameters averaged across
subjects reported by Servant et al. (2021) and 100,000 simulated trials per condition.

Given the complexity of GCF, it is difficult to guarantee that these predictions

are robust across the whole (plausible) parameter space. In our opinion, a complete test

of the model requires three key ingredients: (i) a quantitative fit to both behavioral and

electrophysiological data (EEG and EMG); (ii) a comparison with GC as a benchmark
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using model selection techniques; (iii) an evaluation of the fit quality of the model to both

electrophysiological and behavioral data from a range of choice RT tasks that tap into

different cognitive domains. The latter is important, because it will offer an assessment

of the generality of the model and delineate potential boundary conditions of application.

We aimed to incorporate the three ingredients in the present work, in order to provide the

first attempt to jointly model decision-making, motor preparation, and motor execution

processing stages. However, we restricted our analyses to behavioral and EMG data from

choice tasks that tap into four different cognitive domains (motion perception, numerical

cognition, recognition memory, and lexical knowledge) in order to maintain a manageable

amount of electrophysiological and modeling work. Although EEG data could supplement

our assessment of decision-making and motor preparation processes, the poor signal-to-

noise ratio of EEG forces researchers to apply a low-pass filter to smooth the signal,

obscuring the degree to which the brain may perform such filtering.

Experiment 1: Motion perception

As a first step, we fit GCF to the joint distributions of PMT and MT in correct

and incorrect trials and to accuracy data from the left/right random dot motion task of

Servant et al. (2021). Following Palmer et al. (2005), we assumed a linear relationship

between motion coherence and drift rate. We predicted a better performance (balance

between fit quality and parsimony) of GCF compared to GC, especially with regards

to partial EMG burst statistics. Arguably, there are several ways to incorporate partial

burst statistics into the loss function quantifying the discrepancy between data and model

predictions. We chose the following scheme for its simplicity. Accuracy data were divided

into six trial types: (i) pureC (correct response, no partial EMG burst during PMT); (ii)

CC (correct response, at least one partial EMG burst during PMT, first partial burst

located in the correct EMG channel); (iii) IC (correct response, at least one partial EMG

burst during PMT, first partial burst located in the incorrect EMG channel); and so forth

for incorrect responses (pureI, II, CI ). The proportion of each of these six trial types was

incorporated into the loss function. Comparisons between GC and GCF were performed

with and without between-trial variability in processing components, in order to examine
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the robustness of findings.

Method

Critical details of the experiment are presented below, but readers are directed to

Servant et al. (2021) for full details. Eighteen healthy and right-handed participants (two

men; age range: 18-32; mean age: 21.1) from the University of Franche-Comté performed

a random dot motion task with six levels of coherence (0, .05, .08, .12, .2, .4). In each

trial, participants had to determine the global direction (leftward versus rightward) of

dots, and press the corresponding response button with their left or right thumb. The

sampling rate of the response device was 1000 Hz, and the force required to press each

button was ∼900 gram-force. The EMG activity of response agonists (the flexor pollicis

brevis in particular) was recorded by means of two electrodes fixed 1 cm apart on the skin

of the thenar eminence of each hand. Participants performed 12 blocks of 96 trials each,

with a short break between blocks. Within each block, trials were defined by a factorial

combination of motion direction (left versus right) and motion coherence (six levels). All

types of trials occured equally often, and were presented in a random order. Each trial

started with the presentation of the random dot motion stimulus, which remained on the

screen until the participant responded. A RT deadline was set to 5 s, and the interval

between the response to the stimulus and the next trial was 1.5 s.

Bipolar EMG signals (sampling rate = 1024 Hz) were high-pass filtered using a

10 Hz cut-off (3rd order Butterworth filter) and epoched -0.5 s to 5 s relative to stimulus

onset. For each epoch, EMG burst onsets were detected using a three-step semi-automatic

procedure (see Servant et al., 2021). Trials with a high level of noise were discarded from

analyses (7.5% of trials on average; range 0.2-24%).

Models and fit procedure

GC and GCF were coded in C, using the method and framework of Evans

(2019). The fit procedure was coded in Python. The time step was set to .001 s to pro-

vide the same granularity as the behavioral and EMG data, and the diffusion coefficient

σ (see Equation 1) was fixed at .1 to satisfy a scaling property within the models (see

general introduction). Following Servant et al. (2021), we fixed the starting point of the
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decision-making process at x0 = 0, since left and right responses were equiprobable6. Con-

sequently, we modeled incorrect/correct responses instead of left/right responses (with

negative evidence favoring the incorrect response and positive evidence favoring the cor-

rect response). In its raw form (i.e., without between-trial variability in any of the model

parameters), GCF has 6 free parameters: the slope k of the linear relationship relating

motion coherence to drift rate, gating inhibition g, response threshold r, mean residual

latencies Te and Tr, and the leak parameter λ. The raw GC has 5 free parameters (all

GCF parameters except λ), and the full GC has four additional parameters (between-trial

variability in drift rate sv, starting point sx0, and residual latencies sTe and sTr). sv

corresponds to the standard deviation of a Gaussian distribution with mean v. sx0, sTe,

and sTr correspond to the range of a uniform distribution with mean x0, Te, and Tr

respectively. These distributional assumptions are directly inherited from standard appli-

cations of the diffusion model (Boehm et al., 2018; Ratcliff and Rouder, 1998; Voss et al.,

2004; Wiecki et al., 2013). The full GCF has one additional between-trial variability

parameter, corresponding to between-trial variability in leakage (uniformly distributed

with range sλ and mean λ). A uniform distribution was chosen because we do not have

any theoretical assumption about the distributional shape of variability in leakage. All

free parameters were constrained to be ≥ 0, and were not allowed to vary between motion

coherence conditions. Parameters sx0, sTe, sTr, and sλ were further constrained to not

exceed 180% of g, Te, Tr, and λ respectively. The models were fit to each individual

dataset by minimizing the following loss function (likelihood-ratio chi-square statistic):

G2 = 2
6∑

i=1

6∑
j=1

6∑
k=1

6∑
l=1

nijkllog

(
nijkl/ni

n′
ijkl/n′

i

)
. (10)

Summations over i and j extend over the 6 motion coherence levels and the six trial types

(pureC, CC, IC, pureI, II, CI; see introduction section of this experiment) respectively.

Summations over k and l extend over the six bins bounded by PMT quantiles (.1, .3, .5, .7,

6 Relaxing this constraint did not change model selection results, and had a negligible impact on the

goodness-of-fit of the models.
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and .9) and the six bins bounded by MT quantiles (.1, .3, .5, .7, and .9) respectively7. The

variables nijkl and n′
ijkl refer to the observed and simulated number of trials in coherence

condition i, trial type j, PMT bin k, and MT bin l. Finally, the variables ni and n′
i refer

to the observed and simulated number of trials in coherence condition i, and log refers

to the natural logarithm. The G2 statistic thus characterizes the goodness-of-fit of the

model to the joint distributions of PMT and MT and to the proportion of each of the

six trial types. It was minimized using differential evolution (Storn and Price, 1997) and

20,000 simulated trials per condition. Observe that we did not incorporate the latency

of partial EMG bursts into the G2 formula, in order to mitigate the potential impact of

artifactual partial bursts on the fit quality of other aspects of the data. The latency of

partial bursts can thus be considered as out-of-sample data, and the comparison between

these data and model predictions will serve as a generalization test of the models.

Before turning to model comparison techniques, it is important to note that GC

is nested in GCF: the two models are equivalent when the leak parameter λ approaches

infinity. Consequently, a low best-fitting leak value would indicate that GCF adds to a

GC description of the data. The key question is whether this improvement in fit quality

is sufficiently important to justify the additional complexity of GCF. To answer this

question, the G2 was converted to both AIC and BIC model selection statistics:

AIC = G2 + 2m, (11)

BIC = G2 + mlog(N), (12)

where m corresponds to the number of free parameters, log corresponds to natural loga-

rithm, and N equals the number of observations used in the G2 computation. BIC and

AIC thus both penalize for model complexity, but in a different way. Since both statistics

have advantages and drawbacks (Vrieze, 2012), we report both of them, hoping for con-

sistency between model decisions. For each individual subject, the best model is the one

7 If subjects made a number of errors comprised between five and 10 in a given condition, a median

split was used to form two bins. It there were fewer than five errors, error PMTs and MTs for the

condition were excluded from the G2 calculation.
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associated with the smallest AIC or BIC. If 14 (or more) out of 18 subjects support one

model over the other in terms of AIC or BIC (two-sided binomial test), then the result

is significant.

Results

GCF was associated with lower AIC and BIC statistics compared to GC for each

of the 18 subjects of the experiment, and for both raw and full model variants (Figure

3A). The difference in AIC and BIC between raw and full models was much smaller

for GCF compared to GC, indicating that between-trial variability in GCF parameters

has a minor impact on model performance, contrary to GC. In fact, the raw GCF was

associated with lower AIC (BIC) statistics compared to the full GC for 16 (16) subjects.

This analysis provides strong evidence for the superiority of GCF.

Best-fitting parameters for the full models are shown in Table 1 (main param-

eters) and Table 2 (between-trial variability parameters). Best-fitting parameters for

the raw models are shown in Table C1 in Appendix C. As predicted, both raw and full

GCF capture the EMG data with a low level of leakage, indicating strong filtering of the

evidence accumulation variable during motor preparation (model trajectories for decision-

making and motor preparation variables computed from best-fitting parameters averaged

across subjects are illustrated in Figure 4A). Note that the amount of between-trial vari-

ability in the best-fitting full model components was higher for GC compared to GCF,

especially for residual latencies (parameters sTe and sTr).

Figure 5 displays the goodness-of-fit of the full models to several aspects of the

data. GCF predictions are displayed in red, GC predictions in green, and the data in

black. Figure 5A shows observed versus predicted mean PMT (upper plot) and mean MT

(lower plot) in correct trials averaged across subjects. Figure 5B displays observed versus

predicted quantile probability functions for both PMT (upper plot) and MT (lower plot)

distributions averaged across subjects. Quantile probability functions are constructed

by plotting PMT or MT quantiles (y-axis) of the distributions of correct and incorrect

responses for each condition against the corresponding response type proportion (x-axis).

Five quantiles (.1, .3, .5, .7, .9) were chosen to provide a summary of the shape of PMT and
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MT distributions. If PMT and MT are uniformly distributed, the temporal separation

between adjacent quantiles should be constant. If PMT and MT both exhibit a right-

skewed shape, as evidenced by Servant et al. (2021) and visible in Figure 5B, the temporal

separation between .7 and .9 quantiles should be larger than the separation between .5

and .7 quantiles, the separation between .5 and .7 quantiles should be larger than the

separation between .3 and .5 quantiles, and so on. Quantile probability functions thus

represent a concise way to examine the shape of PMT and MT distributions for correct

and incorrect responses, and how this shape varies across conditions (for a thorough

treatment of quantile probability functions, see Ratcliff and Smith, 2004). Note that the

five PMT and MT quantiles for incorrect responses in a given condition are displayed if

each subject made at least 10 errors in that condition. Figure 5C shows the observed

versus predicted proportion for each of the six trial types (pureC, CC, IC, pureI, II, CI)

averaged across subjects. Figure 5D shows the observed versus predicted proportion of

correct trials featuring at least one partial EMG burst during PMT (upper plot), and the

mean latency of the first partial EMG burst averaged across subjects (lower plot). Figure

5E displays the observed versus predicted PMT quantile-MT quantile plot (computed

from nine decile points) from correct trials averaged across subjects. Finally, Figure 5F

shows the observed versus predicted between-trial Pearson correlation coefficient between

PMT and MT in correct trials for each subject (scattered dots and crosses), as well as the

correlation averaged across subjects (horizontal lines). The data shown in the lower plot

of Figure 5D (mean latency of the first partial EMG burst in correct trials) and Figure

5F (between-trial Pearson correlation between PMT and MT) were not used to constrain

parameter estimation, and serve as a generalization test of the models.

Overall, the full GCF provides a good account of the data, though two mi-

nor discrepancies are apparent. First, the model overestimates the .9 quantile of PMT

distributions as motion coherence decreases, especially for incorrect trials. Second, the

predicted between-trial correlation between PMT and MT for each individual subject

shows less dispersion compared to observed data, but this phenomenon is likely due to

noise in EMG onset detection. In addition, GCF slightly overestimates the correlation
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Figure 3

Model selection statistics for Experiments 1-4.

Note. Panels A-D correspond to Experiments 1-4.

for the highest motion coherence level. As discussed previously (see general introduction

and Appendix D), the model predicts a positive correlation when a high drift rate is

combined with a low leakage level, especially if between-trial variability in drift rate is

incorporated.

In its raw form, GC grossly overestimates proportions of trials containing at

least one partial EMG burst during PMT, replicating the failure of the model highlighted

in the general introduction section. Since this failure was apparent in each of the four

experiments presented in this paper, the raw GC will no longer be discussed. The full GC

provides a better account of the six trial types (pureC, CC, IC, pureI, II, CI), though the

model overestimates the proportion of CC trials as motion coherence increases. The bet-

ter performance of the full GC comes from a much smaller response threshold r, but this

modulation has several negative consequences. Most importantly, the predicted mean

MT essentially corresponds to parameter Tr, which is implausible from a physiologial

perspective, and the predicted variability in MT is mostly driven by parameter sTr. The
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model thus strongly underestimates the effect of motion coherence on mean MT, and fails

to account for the right-skewed distribution of MTs (observe the constant temporal sep-

aration between adjacent MT quantiles predicted by the model in Figure 5B, diagnostic

of a uniform distribution).
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Figure 4

Trajectories of decision-making x(t) and motor preparation y(t) variables computed

from the full GCF using best-fitting parameters averaged across subjects from

Experiments 1-4.

Note. Panels A-D correspond to Experiments 1-4. For each experiment, two correct trials
(red and green trajectories) were simulated using best-fitting parameters from the full GCF
averaged across subjects, with the constraint of giving latencies between accumulation onset
and response threshold crossing in range .2-.3 s (red trajectory) and .5-.6 s (green trajectory) to
facilitate comparison between experiments. Between-trial variability parameters were set to 0,
and drift rate corresponded to condition coherence = 8% for Experiment 1, mean numerosity =
58 for Experiment 2, old words studied twice for Experiment 3, and very low frequency words
for Experiment 4. The decision-making variable (x(t), dashed line) was simulated according
to Equation 1, and the motor preparation variable (y(t), plain line) was simulated according
to Equation 3. Variations in the amount of smoothing at the motor preparation level between
tasks are due to variations in the leak parameter λ. These variations are not surprising because
parameter λ is under strategic control. a.u: arbitrary units.
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Figure 5

Data from a random dot motion task with varying levels of motion coherence (black)

plotted against predictions from the full GCF (red) and the full GC (green).

Note. Model predictions are computed from best-fitting parameters, using 100,000 simulated
trials per condition. The six panels A-F display different aspects of the data. A: Mean PMT
(y-axis, upper plot) and mean MT (y-axis, lower plot) in correct trials as a function of motion
coherence (x-axis) averaged across subjects. B: Quantile probability functions averaged across
subjects for each motion coherence condition, constructed by plotting PMT quantiles (.1, .3, .5,
.7, .9; y-axis, upper plot) and MT quantiles (.1, .3, .5, .7, .9; y-axis, lower plot) of the distri-
butions of correct and incorrect responses against the corresponding response type proportion
(x-axis). The five PMT and MT quantiles for incorrect responses in a given condition are dis-
played if each subject made at least 10 errors (coherence conditions 0, .05, and .08 fulfilled this
requirement). C: Proportion of each of the six trial types described in the introduction section
of this experiment (pureC, CC, IC, pureI, II, CI) for each condition averaged across subjects.
D: Proportion of correct trials featuring at least one partial EMG burst during PMT (y-axis,
upper plot) and mean latency of the first partial burst (y-axis, lower plot) as a function of mo-
tion coherence (x-axis) averaged across subjects. E: MT quantiles (y-axis) plotted against PMT
quantiles (x-axis) from correct trials for each condition averaged across subjects. Quantiles
are computed from nine decile points. F: Between-trial Pearson correlation coefficient between
PMT and MT in correct trials for each condition. Observed data and model predictions for
each individual subject are shown as scattered dots and crosses. Observed data and model
predictions averaged across subjects are shown as horizontal lines.
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Table 2

Between-trial variability parameters from the full GC and GCF models averaged across

subjects for Experiments 1-4.

Exp Model sv1 sv2 sv3 sv4 sv5 σ1 η0 sx0 sTe sTr sλ

1 GC 0.134 0.085 0.286 0.168

1 GCF 0.117 0.074 0.203 0.076 29.423

2 GC 0.007 0.050 0.098 0.422 0.133

2 GCF 0.001 0.042 0.060 0.225 0.078 82.803

3 GC 0.439 0.427 0.426 0.274 0.065 0.327 0.113

3 GCF 0.335 0.313 0.263 0.163 0.052 0.204 0.065 86.538

4 GC 0.522 0.435 0.372 0.312 0.267 0.071 0.456 0.107

4 GCF 0.334 0.266 0.208 0.195 0.122 0.057 0.350 0.075 146.702

Note. Experiment 3 (recognition memory): parameters sv1 to sv4 correspond to between-trial

variability in drift rate for conditions old words studied one time, old words studied two times,

old words studied four times, and new words respectively. Experiment 4 (lexical knowledge):

parameters sv1 to sv5 correspond to between-trial variability in drift rate for conditions very

low frequency words, low frequency words, medium frequency words, high frequency words,

and pseudowords respectively.

Experiment 2: Numerical cognition

Many tasks in numeracy research involve a decision between two responses based

on the magnitude of some non symbolic stimulus. For example, subjects have to determine

which of two arrays that are spatially separated feature the larger amount of dots, or

whether an array of dots contains more blue or yellow dots. Here we use another common

task in numeracy research in which subjects have to determine whether the number of

dots (range: 31-70) randomly scattered in a 10×10 virtual array is greater or less than

a criterion quantity (50). Performance is slower and less accurate when the difference

between the number of dots and the criterion is small (e.g., 45 or 55 dots) compared to

when it is large (e.g., 31 or 70 dots). Ratcliff and colleagues have demonstrated that the

diffusion model captures RT distributions for correct and incorrect responses and accuracy
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data in this task with a variation of drift rate across numerosity conditions (e.g., Ratcliff

and Childers, 2015; Ratcliff et al., 2010). Ratcliff and McKoon (2018) further showed that

the modulation of drift rate could arise from an approximate number representation in

which numerosities are represented as Gaussian distributions, with the mean and standard

deviation of these distributions increasing linearly with numerosity (Dehaene, 2003). In

this framework, the drift rate corresponds to the difference between the number of dots

and the criterion, scaled by a free parameter (to account for interindividual differences

in discrimination performance). Consequently, both GCF and GC predict an increase

in mean MT as the number of dots approaches the criterion, resulting in an inverted U-

shaped function of numerosity (with a peak around 50). Methodological details regarding

the experiment and the modeling of the data are provided in Appendix E.

Results

Behavior and EMG

The data from 24 subjects were grouped into 8 conditions (31-35 dots; 36-40;

41-45; 46-50; 51-55; 56-60; 61-65; 66-70), represented by the mean number of dots of

each bin (33, 38, 43, 48, 53, 58, 63, 68). They were analyzed by means of quadratic

contrasts (two-sided) with numerosity as within-subjects factor and specific error terms

(as recommended for within-subjects designs; e.g., Boik, 1981). Anticipations (RTs <

150 ms; 0%) and trials in which participants failed to respond before the 4 s deadline

(0.12%) were discarded from analyses.

Accuracy data exhibited a U-shaped function of numerosity (t(23) = 31.36,

p < .001), reflecting the increased proportion of errors as numerosity approaches the

criterion. Consistent with model predictions, mean RT, mean PMT, and mean MT

showed an inverted U-shaped function of numerosity (Figure 6A; mean RT: t(23) = -

10.78, p < .001; mean PMT: t(23) = -10.75, p < .001; mean MT: t(23) = -5.37, p

< .001). Both the proportion of correct trials containing at least one partial EMG

burst and the mean latency of the first partial burst also exhibited an inverted U-shaped

function of numerosity, t(23) = -9.61, p < .001 and t(23) = -6.95, p < .001 respectively

(Figure 6D). For each condition, PMT quantile-MT quantile plots from correct trials
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had an approximately linear shape, and the between-trial Pearson correlation coefficient

between PMT and MT was positive and close to zero on average (with a slight initial

reduction followed by a more pronounced increase as numerosity increases; Figure 6F).

Overall, EMG results as a function of task difficulty are similar to those observed in the

random dot motion task (Servant et al., 2021).

Model fits

The fit procedure was identical to that used in Experiment 1, except that we

treated the starting point x0 of the decision-making process as a free parameter. We

modeled ’lesser than’ and ’greater than’ responses (with negative evidence favoring the

’lesser than’ response, and positive evidence favoring the ’greater than’ response). The

six trial types considered in the fit procedure were pureL (’lesser than’ response, no

partial EMG burst during PMT), LL (’lesser than’ response, at least one partial EMG

burst during PMT, first partial burst located in the ’lesser than’ EMG channel), GL

(’lesser than’ response, at least one at least one partial EMG burst during PMT, first

partial burst located in the ’greater than’ EMG channel), and so forth for ’greater than’

responses (pureG, GG, LG).

Similar to Experiment 1, GCF was associated with lower AIC and BIC statistics

compared to GC for each of the 24 subjects, and for both raw and full model variants

(Figure 3B). The difference in AIC and BIC between raw and full models was much

smaller for GCF compared to GC, and the raw GCF was associated with a lower AIC

(BIC) compared to the full GC for 21 (22) subjects. This analysis provides strong evidence

for the superiority of GCF.

Best-fitting parameters for the full models are shown in Table 1 (main parame-

ters) and Table 2 (between-trial variability parameters). Best-fitting parameters for the

raw models are shown in Table C1 in Appendix C. Although the best-fitting leakage (λ)

value from GCF was larger than that observed in Experiment 1, this value still implies

substantial smoothing of the evidence accumulation variable during motor preparation,

though with a reduced filter-related delay (for an illustration of model trajectories, see

Figure 4B). The amount of between-trial variability in the best-fitting full model compo-
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nents was higher for GC compared to GCF, especially for residual latencies (parameters

sTe and sTr).

Figure 6 displays the goodness-of-fit of the full models to data. Compared to

Experiment 1, the full GC provides a better account of the task difficulty effect on mean

MT, thanks to a larger response threshold. However, the model still fails to provide a

good fit to MT quantiles, because the contribution of residual motor latencies to predicted

MTs remains subtantial. In addition, the full GC systematically overestimates the rate of

correct LL and GG trials and the mean latency of the first partial EMG burst. The full

GCF captures most trends of the data. The only apparent misfit is an overestimation of

the right skew of PMT distributions for the most difficult conditions. Note that the model

provides a reasonable account of between-trial Pearson correlation coefficients between

PMT and MT across numerosity conditions, and does so with a complex combination

of three ingredients: (i) a moderate and constant level of leakage across conditions, (ii)

drift rates that follow a U-shaped function of numerosity, and (iii) a moderate amount

of variability in drift rate that slightly increases as numerosity increases (from 0.0896 to

0.0925, computed from best-fitting parameters using Equation E2 in Appendix E).

Experiment 3: Recognition memory

The diffusion model was originally developed to provide a theory of memory re-

trieval, and showed a good fit to behavioral data from different item recognition paradigms

(Ratcliff, 1978). This finding has been replicated multiple times since (e.g., Ratcliff et al.,

2004, 2010). Here we perform an EMG analysis of response-relevant muscles in a standard

study-test task. During study, participants had to memorize a list of words, each word

being presented individually at a pace of 1 s. During test, studied words were intermixed

with non-studied words, and participants had to decide whether each word was old or

new by pressing a left or right button. In this task, the drift rate represents the meeting

point between decision-making and memory systems: it is equal to the amount of match

between the test item and the memory trace. To modulate drift rate, we manipulated the

number of word repetitions during study. Specifically, each word was studied one time,

two times, or four times. The drift rate should increase as the number of repetitions (and
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Figure 6

Data from a numerosity judgment task (black) and predictions from the full GCF (red)

and the full GC (green).

Note. The structure of each panel is similar to that of Figure 5. Model predictions are computed
from best-fitting parameters, using 100,000 simulated trials per condition. Quantile probability
functions, shown in panel B, incorporate PMT and MT quantiles of incorrect responses in a
given condition if each subject made at least 10 errors (numerosity conditions 48 and 53 fulfilled
this requirement). Panel C shows the proportion of each of the six trial types (pureL, LL, GL,
pureG, GG, LG) for each numerosity condition averaged across subjects.

thus memory strength) increases. Consequently, both GC and GCF predict a decrease

in mean MT as memory strength increases.

Although early applications of the diffusion model to recognition memory data

assumed a constant between-trial variability in drift rate (parameter sv) between old and

new items, there is evidence from both memory models (e.g., Ratcliff et al., 1992; Shiffrin

and Steyvers, 1997; Wixted, 2007) and diffusion model fits (e.g., Starns and Ratcliff,

2014) that the evidence entering the decision process is more variable for old than new

items. One possible reason is that some old items are better learned than others (Wixted,

2007). Consequently, we let sv free to vary between conditions. Methodological details

regarding the experiment and the modeling of the data are provided in Appendix E.
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Results

Behavior and EMG

Twenty-four subjects completed the experiment. Anticipations (RTs < 150 ms;

0.004%) and trials in which participants failed to respond before the 4 s deadline (0.068%)

were discarded from analyses. Performance to old words was analyzed by means of linear

contrasts (two-sided) with memory strength (words studied one time, two times, or four

times) as within-subjects factor and specific error terms.

Accuracy increased as memory strength increased, t(23) = 14.14, p < .001.

Consistent with model predictions, mean RT, mean PMT, and mean MT decreased as

memory strength increased (Figure 7A; mean RT: t(23) = -5.72, p < .001; mean PMT:

t(23) = -5.50, p < .001; mean MT: t(23) = -3.11, p = .011). Note that the amplitude

of the memory strength effect on mean MT (M = 5 ms) is smaller compared to the

numerosity effect observed in Experiment 2 (M = 10 ms) and the motion coherence

effect observed in Experiment 1 (M = 35 ms). The amplitude of the memory strength

effect on mean PMT data (M = 79 ms) is also smaller compared to the numerosity effect

(M = 198 ms) and the motion coherence effect (M = 692 ms). The positive correlation

between the magnitude of difficulty effects on mean PMT and mean MT across tasks is

consistent with the hypothesis -core to GC and GCF- that PMT and MT are driven by

a similar evidence accumulation process.

Although both the proportion of correct trials containing at least one partial

EMG burst and the mean latency of the first partial burst decreased as memory strength

increased (Figure 7D), only the latter reached statistical significance (t(23) = -1.91, p

= .069 and t(23) = -3.02, p = .006 respectively). For each condition, PMT quantile-

MT quantile plots from correct trials exhibited a slight curvilinearity (Figure 7E). The

between-trial Pearson correlation coefficient between PMT and MT was close to zero on

average, and slightly decreased as memory strength increased (words studied one time:

r = .07; words studied two times: r = .04; words studied four times: r = 0; Figure 7F).

To compare performance between old and new items, we averaged the perfor-

mance to old items across memory strength levels and ran two-sided paired sample t-tests.



DECIDING AND ACTING 36

The only significant difference concerned accuracy data. The proportion of correct re-

sponses was higher for new than old items, t(23) = 5.56, p < .001.

Model fits

The fit procedure was identical to that used in the previous experiments. We

modeled ’new’ and ’old’ responses (with negative evidence favoring the ’new’ response

and positive evidence favoring the ’old’ response). The six trial types considered in the

fit procedure were pureO (’old’ response, no partial EMG burst during PMT), OO (’old’

response, at least one partial EMG burst during PMT, first partial burst located in the

’old’ EMG channel), NO (’old’ response, at least one at least one partial EMG burst

during PMT, first partial burst located in the ’new’ EMG channel), and so forth for

’new’ responses (pureN , NN , ON).

The raw GCF was associated with lower AIC and BIC statistics compared to

the raw GC for each of the 24 subjects, and the full GCF was associated with lower AIC

and BIC statistics compared to the full GC for 23 subjects (Figure 3C). The difference in

AIC and BIC between raw and full model variants was smaller for GCF compared to GC,

and the raw GCF was associated with a lower AIC (BIC) compared to the full GC for

16 (17) subjects. The pattern of model selection results is thus similar to that observed

in the previous experiments, and provides strong evidence for GCF.

Best-fitting parameters for the full models are shown in Table 1 (main parame-

ters) and Table 2 (between-trial variability parameters). Best-fitting parameters for the

raw models are shown in Table C1 in Appendix C. GCF captures the data with a moder-

ate amount of leakage (λ), though the best-fitting value for the full model is a bit larger

compared to Experiment 2 (implying reduced smoothing and filter-related delays; for an

illustration of model trajectories, see Figure 4C). The amount of between-trial variability

in the best-fitting full model components was generally higher for GC compared to GCF.

Note that between-trial variability in drift rate (sv) was larger for old than new words,

consistent with previous work. It also decreased as memory strength increased, suggest-

ing that evidence variability decreases as function of learning.

Figure 7 displays the goodness-of-fit of the full models to data. The full GC
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provides a poor account of MT distributions, due to the large contribution of residual

motor latencies to predicted MTs. In addition, the full GC systematically overestimates

the proportion of correct OO and NN trials and the mean latency of the first partial EMG

burst. The full GCF provides a good fit to data used to constrain parameter estimation

(though it slightly overestimates the .9 quantile of PMT distributions for old responses as

the number of word presentations decreases), but shows a relatively poor generalization

performance. Although the model predicts the effect of memory strength on the mean

latency of the first partial EMG burst, it systematically overestimates this latency by

about 100 ms. In addition, the model overestimates the between-trial correlation between

PMT and MT, especially for old words studied two and four times during study.
Figure 7

Data from a recognition memory task (black) and predictions from the full GCF (red)

and the full GC (green).

Note. Conditions ’old 1’, ’old 2’, and ’old 4’ refer to old words studied one time, two times,
and four times respectively. The structure of each panel is similar to that of Figure 5. Model
predictions are computed from best-fitting parameters, using 100,000 simulated trials per con-
dition. Quantile probability functions, shown in panel B, incorporate PMT and MT quantiles
of incorrect responses in a given condition if each subject made at least 10 errors (condition old
words studied once fulfilled this requirement). Panel C shows the proportion of each of the six
trial types (pureO, OO, NO, pureN, NN, ON) for each condition averaged across subjects.
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Experiment 4: Lexical knowledge

The ability to recognize words is essential for reading, and the lexical decision

task has been widely used to study this process. In this task, subjects have to decide

whether strings of letters are words or non-words. A standard finding is that high-

frequency words are recognized faster and more accurately compared to low-frequency

words. Ratcliff et al. (2004) showed that the diffusion model provides a good account

of performance in this task with a decrease of drift rate as word frequency decreases.

Consequently, both GC and GCF predict an increase in mean MT as word frequency

decreases.

Later modeling work suggests that word frequency modulates other parame-

ters of the diffusion model. Both Donkin et al. (2009) and Gomez and Perea (2014)

showed a variation of mean nondecision time across word frequency levels, suggesting

that frequency modulates lexical access processes (that determine how much evidence the

stimulus provides for each response alternative). Tillman et al. (2017) recently showed

evidence for a larger between-trial variability in drift rate for words than non-words, and

for high frequency compared to low frequency words, a pattern predicted by a model of

lexical retrieval (Wagenmakers et al., 2004). Consequently, the mean residual latency

added to predicted PMT (Te), drift rate (v), and between-trial variability in drift rate

(sv) parameters were free to vary across word frequency conditions in our modeling of

the data. Methodological details regarding the experiment and the modeling of the data

are provided in Appendix E.

Results

Behavior and EMG

Twenty-four subjects completed the experiment. Anticipations (RTs < 150 ms;

0%) and trials in which participants failed to respond before the 4 s deadline (0.1%)

were discarded from analyses. Performance to word stimuli was analyzed by means of

linear contrasts (two-sided) with word frequency (very low, low, medium, high) as within-

subjects factor and specific error terms.

Accuracy decreased (t(23) = 12.54, p < .001) and mean RT increased (t(23) =
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-8.36, p < .001) as word frequency decreased, reflecting the classic word frequency effect.

Although mean PMT decreased as word frequency decreased (t(23) = -8.70, p < .001),

mean MT exhibited an unexpected inverted-U shape function of word frequency (Figure

8A). Accordingly, the planned linear contrast was not significant (t(23) = 0.53, p = .60),

while a post-hoc quadratic contrast reached significance (t(23) = -2.24, p = .04). This

inverted U-shape pattern is unlikely due to a statistical power or an EMG signal quality

issue, because (i) the sample size was identical to Experiment 3, (ii) the amplitude of

the word frequency effect on mean RT (M = 187 ms) was larger than the amplitude

of the memory strength effect on mean RT (M = 79 ms), and (iii) EMG signal quality

was approximately similar between Experiments 3 and 4, as revealed by a comparable

percentage of rejected trials on average.

Both the proportion of correct trials containing at least one partial EMG burst

during PMT and the mean latency of the first partial burst decreased as word frequency

increased (Figure 8D, t(23) = -6.13, p < .001 and t(23) = -6.39, p < .001 respectively).

For each condition, PMT quantile-MT quantile plots from correct trials exhibited an

approximately linear shape (Figure 8E), and the between-trial Pearson correlation coeffi-

cient between PMT and MT was remarkably close to zero on average, with no apparent

trend across conditions (Figure 8F).

To compare performance between word and pseudoword stimuli, we averaged

the performance to word stimuli across frequency levels and ran two-sided paired sample

t-tests. The proportion of correct responses was higher for pseudowords than words (t(23)

= -4.24, p < .001). Mean RT, mean PMT, and mean MT were slower for pseudowords

than words, t(23) = -4.40, p < .001, t(23) = -3.35, p = .003, and t(23) = -2.49, p =

.02 respectively). Finally, there was a trend for a smaller proportion of correct trials

containing at least one partial EMG burst for words than pseudowords (t(23) = -2.05,

p = .052), and the mean latency of the first partial burst was faster for words (t(23) =

-4.21, p < .001).
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Model fits

The fit procedure was identical to that used in the previous experiments. We

modeled ’pseudoword’ and ’word’ responses (with negative evidence favoring ’pseudoword’

responses and positive evidence favoring ’word’ responses). The six trial types considered

in the fit procedure were pureW (’word’ response, no partial EMG burst during PMT),

WW (’word’ response, at least one partial EMG burst during PMT, first partial burst

located in the ’word’ EMG channel), PW (’word’ response, at least one at least one

partial EMG burst during PMT, first partial burst located in the ’pseudoword’ EMG

channel), and so forth for ’pseudoword’ responses (pureP , PP , WP ).

GCF was associated with lower AIC and BIC statistics compared to GC for each

of the 24 subjects, and for both raw and full model variants (Figure 3D). The difference

in AIC and BIC between raw and full model variants was smaller for GCF compared

to GC, and the raw GCF was associated with a lower AIC (BIC) compared to the full

GC for 14 (15) subjects. The pattern of model selection results is thus similar to that

observed in the previous experiments, and provides strong evidence for GCF.

Best-fitting parameters for the full models are shown in Table 1 (main parame-

ters) and Table 2 (between-trial variability parameters). Best-fitting parameters for the

raw models are shown in Table C1 in Appendix C. GCF captures the data with a higher

level of leakage λ compared to the previous experiments (implying reduced smoothing and

filter-related delays; for an illustration of model trajectories, see Figure 4D). Consistent

with previous work (Donkin et al., 2009; Gomez and Perea, 2014), GCF and GC both

predict an increase in the mean residual latency parameter Te added to predicted PMT

as word frequency decreases. Although evidence variability (parameter sv) was generally

larger for words than pseudowords, consistent with previous work (Tillman et al., 2017;

Wagenmakers et al., 2004), it increased as word frequency decreased. The latter pat-

tern is opposite to that found by Tillman et al. (2017) using traditional diffusion model

fits. The number of words for which people do not know the definition may increase as

word frequency decreases, inflating evidence variability. More generally, the amount of

between-trial variability in the best-fitting full model components was generally higher for
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GC compared to GCF, consistent with model fits obtained in the previous experiments.

Figure 8 displays the goodness-of-fit of the full models to data. As expected,

both GCF and GC predict an increase in predicted mean MT as word frequency de-

creases, and fail to capture the observed inverted U-shaped pattern. GC systematically

underestimates the .9 quantile of PMT distributions for correct responses, and overesti-

mates the proportion of correct WW and PP trials. GCF provides a better account of

PMT distributions and the six trial types (pureW, WW, PW, pureP, PP, WP). Both

models overestimate the mean latency of the first partial EMG burst, and the between-

trial correlation between PMT and MT.

Figure 8

Data from a lexical decision task (black) and predictions from the full GCF (red) and

the full GC (green).

Note. The structure of each panel is similar to that of Figure 5. Model predictions are computed
from best-fitting parameters, using 100,000 simulated trials per condition. Quantile probability
functions, shown in panel B, incorporate PMT and MT quantiles of incorrect responses in a
given condition if each subject made at least 10 errors (condition very low frequency words
fulfilled this requirement). Panel C shows the proportion of each of the six trial types (pureW
,WW, PW, pureP, PP, WP) for each condition averaged across subjects.
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Comparison between the neural drive to muscle fibers predicted by GCF

and full-wave rectified EMG signals

As a final evaluation of GCF, we compared the predicted neural drive to muscle

fibers (variables zL(t) or zR(t); see Equation 9) with full-wave rectified EMG signals.

As mentionned in the general introduction, the full-wave rectified EMG signal can be

interpreted as a noisy approximation of the neural drive to the area of muscle over which

the electrodes are placed, and should thus scale with the predicted neural drive computed

from best-fitting parameters. We restricted this analysis to EMG data from Experiments

1 and 2, in which the effects of experimental manipulations on MT were the largest and

well-accounted for by the model.

Figures 9A and 9C show the predicted neural drive to muscle fibers associated

with the correct response averaged across correct trials and subjects for the random dot

motion task and the numerosity judgment task respectively. Model trajectories are time-

locked on tg (latency at which zL(t) or zR(t) becomes positive for the last time before

reaching the response threshold; see Figure 1). For each task, subject and condition,

1,000 correct trials were simulated using best-fitting parameters from the full GCF. In

each simulated trial, the neural drive was assumed to decay at an arbitrary linear rate

of -0.15 units/second after hitting the response threshold. Trajectories were then time-

locked on tg and averaged. For each task, the rising slope of the predicted neural drive

decreases as difficulty increases, reflecting dynamics of the underlying motor preparation

signal.

Figures 9B and 9D show full-wave rectified EMG signals from agonist muscles

associated with the correct response averaged across correct trials and subjects from the

random dot motion task and the numerosity judgment task respectively. Signals are time-

locked to the EMG onset of the response. Consistent with model predictions, the rising

slope of EMG signals decreases as difficulty increases. A linear contrast computed on

the rising slope (estimated by linear regression in the 0 to 50 ms window) in the random

dot motion task was highly significant (t(27) = 4.89, p < .001), and so was the quadratic

contrast in the numerosity judgment task (t(23) = 3.66, p < .001). This analysis provides
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additional evidence for GCF.

Figure 9

Neural drive to muscle fibers associated with the correct response predicted by GCF and

corresponding full-wave rectified EMG signals averaged across correct trials and subjects

for each condition of the random dot motion task (Experiment 1) and the numerosity

judgment task (Experiment 2)

Note. Panels A and B show model predictions and empirical EMG data respectively in the
random dot motion task. Panels C and D show model predictions and empirical EMG data
respectively in the numerosity judgment task. Insets represent the rising slope of signals in each
condition, estimated by linear regression in the 0 to 50 ms window. a.u: arbitrary units.

General discussion

To our knowledge, this work represents the first attempt to jointly model decision-

making, motor preparation, and motor execution processes in choice RT tasks. The pro-

posed GCF assumes a continuous flow of the evidence accumulation decision variable to

agonist muscles. The model further incorporates a smoothing mechanism at the motor

preparation level, and a gate which regulates the flow of information from motor prepa-

ration to muscle fibers. This architecture offers substantial flexibility to motor control

by allowing for real-time adjustments of motor commands based on incoming evidence,
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while simultaneously shielding the system against unwanted behaviors and preventing

unnecessary muscular activity. The smoothing mechanism at the motor preparation level

may also reflect an attempt to recover the decision variable from noise that can corrupt it

during the transmission process, and can be seen as an approximation of a Kalman-Bucy

filter.

We tested GCF against behavioral and EMG data from four choice tasks that

span a variety of domains in cognitive sciences, namely motion perception (Experiment

1), numerical cognition (Experiment 2), recognition memory (Experiment 3), and lexical

knowledge (Experiment 4). Each task featured a manipulation of choice difficulty to

bring additional constraints on the model. GCF was evaluated in its ability to capture

(i) the shape of PMT and MT distributions for correct and incorrect responses, (ii) the

proportion of six trial types defined by the combination of response type, presence vs.

absence of at least one partial EMG burst during PMT, and EMG channel location of the

first partial burst, (iii) the mean latency of the first partial EMG burst in correct trials,

(iv) the relationship between the shape of PMT and MT distributions in correct trials,

(v) the between-trial Pearson correlation coefficient between PMT and MT in correct

trials, (vi) the neural drive to muscle fibers, and (vii) the variation of all of the above

aspects of the data across difficulty conditions. Overall, GCF provided a good fit to data

used to constrain parameter estimation (i, ii, and iv). The only apparent discrepancy

between data and model predictions was an overestimation of the .9 quantile of PMT

distributions for the most difficult experimental conditions. One way to solve this issue

would be to incorporate an urgency signal to the model (Cisek et al., 2009; Ditterich,

2006; Evans, Hawkins, and Brown, 2020; Hawkins et al., 2015; Trueblood et al., 2021).

Urgency can take the form of temporally collapsing boundaries, or a time-increasing gain

applied to the incoming evidence. Both mechanisms reduce the skew of predicted RT

distributions (Hawkins et al., 2015), offering a potential solution to the observed GCF

misfit. Although urgency signals remain controversial when considering behavioral data

alone (Evans, Hawkins, and Brown, 2020; Glickman and Usher, 2019; Glickman et al.,

2022; Hawkins et al., 2015; Ratcliff et al., 2016; Trueblood et al., 2021), neurophysiological
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studies have provided evidence for them at the motor preparation level in both monkeys

and humans (Churchland et al., 2008; Hanks et al., 2014; Murphy et al., 2016), even

when subjects are not under speed pressure (Kelly et al., 2021). Interestingly, urgency

signals are not observed at the decision-making level (Kelly et al., 2021; Steinemann

et al., 2018), further emphasizing the functional dissociation between decision-making

and motor preparation. Fitting GCF variants that incorporate urgency mechanisms is

beyond the scope of the present work, and should be conducted in tandem with an

electrophysiological investigation of motor preparation.

Although GCF showed a good fit to data used to constrain parameter estima-

tion, it provided a mixed predictive account of the remaining data. The model captured

the mean latency of the first partial EMG burst in Experiments 1 and 2, but systemat-

ically overestimated this latency by about 100 ms in Experiments 3 and 4. We cannot

exclude the possibility that a set of parameters could have better captured the partial

burst latency data, had we considered these data in parameter estimation. Alternatively,

variations in EMG signal quality across experiments may have contributed to this pat-

tern of results, as the percentage of rejected trials was larger on average in Experiments 3

(12.41%) and 4 (10.4%) compared to Experiments 1 (7.5%) and 2 (2.7%). Therefore, the

data from Experiments 3 and 4 might incorporate a larger amount of artifactual partial

EMG bursts.

Besides the mean latency of partial EMG bursts, GCF provided a mixed pre-

dictive account of the between-trial correlation between PMT and MT. In general, model

predictions showed more dispersion compared to observed data at the individual level,

but this phenomenon is likely explained by noise in EMG onset detection. However, the

model systematically overestimated the correlation averaged across subjects in Experi-

ments 3 and 4, and in the easiest condition of Experiment 1. One may argue that this

discrepancy between data and model predictions speaks against the model architecture,

as the filtering mechanism at the motor preparation level flattens out random fluctuations

of the evidence accumulation signal, and increases the predicted correlation between PMT

and MT at the single-trial level. Once again, we cannot exclude the possibility that a set
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of parameters could have better captured the between-trial correlation between PMT and

MT, had we considered these data in parameter estimation. Alternatively, it is important

to remember that the filtering mechanism (regulated by the leak parameter) interacts in

complex ways with drift rate and between-trial variability in drift rate (see Appendix D).

This interaction is problematic because GCF variants used in Experiments 3 and 4 do not

incorporate representational assumptions that specify how drift rate distributions arise

from the stimuli. In addition, although the linear relationship between motion coherence

and drift rate provided a good fit to data from Experiment 1 (see also Palmer et al., 2005;

Ratcliff and McKoon, 2008), a more complex representational assumption has recently

been proposed for the random dot motion task (Smith and Lilburn, 2020). Consequently,

discrepancies between data and model predictions may stem from a misspecification of

drift rate distributions.

More generally, these findings highlight the need of considering pre-decisional

processing stages when modeling post-decisional motor phenomena. This need is further

highlighted by the lexical decision data from Experiment 4. The word frequency effect

has been successfully modeled by assuming that word frequency modulates drift rate

(Ratcliff et al., 2004), mean nondecision time (Donkin et al., 2009; Gomez and Perea,

2014), and between-trial variability in drift rate (Tillman et al., 2017). Within the frame-

work of GCF, the decrease of drift rate as word frequency decreases should increase the

predicted mean MT. Contrary to this prediction, we found an inverted U-shape relation-

ship between mean MT and word frequency. Specifically, mean MT showed an initial

increase from high frequency to medium frequency words, followed by a decrease for low

and very low frequency words. At first glance, this result speaks against the architecture

of GCF. However, the model does not incorporate assumptions regarding how drift rate

is computed in this task, so the origin of the problem is unclear. It would be useful to

connect models of lexical access (e.g., Grainger, 2018; Houghton, 2018; McClelland and

Rumelhart, 1981) to GCF to shed light on this issue.

Apart from the unexpected word frequency effect on mean MT, EMG findings

were remarkably consistent across experiments, suggesting that GCF generalizes across
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cognitive domains. Both mean PMT and mean MT increased as choice difficulty in-

creased. The increase of mean MT as choice difficulty increased was caused by a decrease

in the rising slope of the neural drive, as suggested by our analysis of full-wave rectified

EMG signals. This important aspect of the data was nicely captured by GCF, because

the neural drive predicted by the model reflects evidence-dependent dynamics of the un-

derlying motor preparation signal. Partial bursts were also observed in the EMG data

of each subject of each experiment. The proportion of correct trials containing at least

one partial EMG burst during PMT and the mean latency of the first partial burst in-

creased as choice difficulty increased. Interestingly, the proportion of correct trials in

which the first partial burst was located in the same EMG channel as the response was

systematically larger than the proportion of correct trials in which the first partial burst

was located in the opposite EMG channel. Within the framework of GCF, this finding

is explained by the same mechanism that captures the relative proportion of correct and

incorrect responses. Putting aside between-trial variability in model components, errors

are produced by noise in the evidence accumulated at each time step. Although part of

this noise is flattened out during motor preparation, the predicted proportion of errors is

smaller than the proportion of correct responses, so long as the drift rate is not null.

Comparisons with GC

As predicted, GCF captured the data with a relatively low level of leakage,

indicating that the evidence accumulation variable is smoothed at the motor preparation

level. This finding suggests that the smoothing mechanism adds to a GC description of

the data. Model selection statistics (AIC and BIC) further showed that the additional

complexity of GCF was justified in light of the (large) improvement in fit quality. Both

AIC and BIC statistic favored GCF over GC for 90/90 participants (raw models) and

89/90 (full models). These findings provide decisive evidence for GCF. Interestingly, the

difference in model selection statistics between raw and full models was much larger for

GC than for GCF, suggesting that between-trial variability in GC components have a

major impact on the fit quality of the model, contrary to GCF. In fact, the AIC (BIC)

statistic favored the raw GCF over the full GC for 67(70)/90 subjects. Although between-
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trial variability in processing components is plausible, we believe that a large contribution

of between-trial variability to the fit quality of a model is problematic, as there is generally

no explanation of why this variability occurs or why it has the parametric form researchers

assume to represent it. In this view, between-trial variability essentially corresponds to

adding a random component to the model without any strong theoretical motivation

for it rather than to improve the fit quality (Evans, Tillman, and Wagenmakers, 2020).

Consequently, we consider our findings regarding between-trial variability as additional

evidence for GCF.

In its raw form, GC grossly overestimated the proportion of trials containing

at least one partial EMG burst, especially when the first partial burst was located in

the same EMG channel as the response. The full GC provided a better account of

these proportions by using a very small response bound (Experiment 1), or by combining

high drift rates with a high between-trial variability in drift rates (Experiments 2-4;

see Tables 1 and 2). However, both processing schemes resulted in predicted MTs that

were too fast compared to observed MTs. The model compensated this problem by

increasing the contribution of residual motor latencies to predicted MTs (parameters Tr

and sTr), but this compensation had two negative consequences. First, the model was

not able to capture large effects of choice difficulty on mean MT, such as those observed

in Experiment 1. Second, the model was not able to capture the right-skewed shape

of MT distributions, because between-trial variability in residual motor latencies added

to predicted MTs is uniformly distributed, an (arbitrary) assumption inherited from the

diffusion decision model (Ratcliff and Rouder, 1998).

Neurophysiological implementation, theoretical limitations, and possible model

extensions

As detailed in the general introduction, properties of motor preparation and

execution, uncovered by neurophysiological studies, are not accounted for by current

RT models such as the diffusion model (Ratcliff, 1978; Ratcliff et al., 2016), the leaky

competing accumulator (Usher and McClelland, 2001), the linear ballistic accumulator

(Brown and Heathcote, 2008), racing diffusion models (Ratcliff et al., 2003; Tillman et
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al., 2020), and Poisson counter models (Ratcliff and Smith, 2004; Vickers, 1970). In this

respect, we believe that the models proposed by Servant et al. (2015, 2021), Verdonck et

al. (2020), their development and integration through GCF constitute a major theoretical

advance in the field, as they offer a mechanistic explanation to the interplay between

decision and motor processes.

The diffusion decision process has been the object of several neurocomputational

characterizations, and has been hypothesized to arise from recurrent loops within neural

networks (Smith and McKenzie, 2011; Wang, 2002; Wong and Wang, 2006). Interest-

ingly, recurrent neural networks have also been used to approximate Kalman-Bucy filters

(Denève et al., 2007), paving the way for a joint characterization of decision and motor

preparation processes at the neural circuit level. At the systems level, we believe that

future empirical tests of GCF would benefit from a combination of EEG and EMG record-

ings. Although the application of a low-pass filter during EEG signal processing precludes

a precise test of the Kalman-Bucy filter hypothesis at the motor preparation level, aver-

aged model trajectories at decision-making and motor preparation levels computed from

best-fitting parameters could be compared to CPP and effector-selective motor prepara-

tion EEG activities respectively. Some parameters of the model could also be constrained

to match corresponding electrical signatures (Kelly et al., 2021).

Additional constraints to GCF could also arise from a more detailed analysis

of partial EMG bursts at the motor execution level. Some trials contain more than

one partial burst during PMT, and these additional bursts could be considered in the

modeling. In particular, the co-occurrence of two partial bursts in left and right EMG

channels would suggest some degree of independence between accumulators. We note,

however, that more detailed EMG analyses entail an increased sensitivity to potentially

artifactual electrical activities. In addition, partial EMG bursts might be followed by a

refractory period. Consequently, the analysis and modeling of trials with multiple partial

bursts represent an important challenge for future work.

Beyond basic mechanisms that drive the time-course of decision-making, motor

preparation, and motor execution processes, we believe that future developments of GCF



DECIDING AND ACTING 50

would benefit from model-based investigations of more complex relationships between

decision and motor processes. For example, decisions are often taken well before being

expressed behaviorally. This scenario is involved when voters have to choose a candidate.

It is currently outside the scope of GCF, as the model does not specify the relation-

ship between memory and decision/motor processes. The choice might be categorically

retrieved from memory and transmitted to the motor system. Consequently, effector-

selective motor preparation EEG activities and EMG signals should not be modulated

by the quality of evidence. However, this hypothetical processing scheme may vary as a

function of the temporal delay between decision and motor processes, and foreknowledge

of the stimulus-response mapping (Twomey et al., 2016).

Another scenario that deserves additional scrutiny concerns continuous move-

ment reports. Similar to EMG findings, reaching trajectories are modulated by percep-

tual and cognitive factors (e.g., Buc Calderon et al., 2015; Kinder et al., 2022; Song

and Nakayama, 2009; Sullivan et al., 2015). However, the application of GCF to choice

reaching tasks is not straightforward. Reaching movements engage a complex pattern of

neuromuscular activity, making EMG recordings and analyses challenging. One way to

reduce this complexity is to model reaching movements at the level of kinematic motor

primitives, hypothetical building blocks that can be combined to construct motion (for

reviews, see Flash and Hochner, 2005; Giszter, 2015; Latash, 2020). Despite their appar-

ent continuity, reaching movements appear to be composed of discrete submovements.

Friedman et al. (2013) hypothesized that an intermittent motor control process probes

the state of accumulated evidence at discrete time points to determine submovements,

and showed good fits of this model to arm movement trajectories in a variant of the ran-

dom dot motion task. The relationship between this intermittent motor control process,

motor preparation, and EMG activity remains to be elucidated.

To conclude, the present EMG investigations in choice RT tasks add to a growing

body of behavioral and neurophysiological evidence that suggests that the motor system

can have systematic effects that are computationally related to central decision processes.

These effects are important to complete the story of how our choices are reflected in our
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actions. The proposed GCF offers a new framework to understand this relationship.



DECIDING AND ACTING 52

References

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Krypotos,

A.-M., Lerche, V., Logan, G. D., Palmeri, T. J., van Ravenzwaaij, D., Servant, M.,

Singmann, H., Starns, J. J., Voss, A., Wiecki, T. V., Matzke, D., & Wagenmak-

ers, E.-J. (2018). Estimating across-trial variability parameters of the Diffusion

Decision Model: Expert advice and recommendations. Journal of Mathematical

Psychology, 87, 46–75. https://doi.org/10.1016/j.jmp.2018.09.004

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics

of optimal decision making: A formal analysis of models of performance in two-

alternative forced-choice tasks. Psychological Review, 113 (4), 700–765. https://

doi.org/10.1037/0033-295X.113.4.700

Boik, R. J. (1981). A priori tests in repeated measures designs: Effects of nonsphericity

[Place: Germany Publisher: Springer]. Psychometrika, 46 (3), 241–255. https://

doi.org/10.1007/BF02293733

Botwinick, J., & Thompson, L. W. (1966). Premotor and motor components of reaction

time. Journal of Experimental Psychology, 71 (1), 9–15. https://doi.org/10.1037/

h0022634

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response

time: Linear ballistic accumulation. Cognitive Psychology, 57 (3), 153–178. https:

//doi.org/10.1016/j.cogpsych.2007.12.002

Buc Calderon, C., Verguts, T., & Gevers, W. (2015). Losing the boundary: Cognition

biases action well after action selection [Place: US Publisher: American Psycho-

logical Association]. Journal of Experimental Psychology: General, 144, 737–743.

https://doi.org/10.1037/xge0000087

Calderón, J. C., Bolaños, P., & Caputo, C. (2014). The excitation–contraction coupling

mechanism in skeletal muscle. Biophysical Reviews, 6 (1), 133–160. https://doi.

org/10.1007/s12551-013-0135-x

Cavanagh, P. R., & Komi, P. V. (1979). Electromechanical delay in human skeletal muscle

under concentric and eccentric contractions. European Journal of Applied Phys-

https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1007/BF02293733
https://doi.org/10.1007/BF02293733
https://doi.org/10.1037/h0022634
https://doi.org/10.1037/h0022634
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1037/xge0000087
https://doi.org/10.1007/s12551-013-0135-x
https://doi.org/10.1007/s12551-013-0135-x


DECIDING AND ACTING 53

iology and Occupational Physiology, 42 (3), 159–163. https://doi.org/10.1007/

BF00431022

Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple

alternatives. Nature neuroscience, 11 (6), 693–702. https://doi.org/10.1038/nn.

2123

Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition

hypothesis. Philosophical Transactions of the Royal Society of London. Series B,

Biological Sciences, 362 (1485), 1585–1599. https://doi.org/10.1098/rstb.2007.

2054

Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full

of action choices. Annual Review of Neuroscience, 33, 269–298. https://doi.org/

10.1146/annurev.neuro.051508.135409

Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: The

urgency-gating model. The Journal of Neuroscience: The Official Journal of the

Society for Neuroscience, 29 (37), 11560–11571. https://doi.org/10.1523/JNEUROSCI.

1844-09.2009

Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985).

A psychophysiological investigation of the continuous flow model of human in-

formation processing [Place: US Publisher: American Psychological Association].

Journal of Experimental Psychology: Human Perception and Performance, 11 (5),

529–553. https://doi.org/10.1037/0096-1523.11.5.529

Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental

number line. Trends in Cognitive Sciences, 7 (4), 145–147. https://doi.org/10.

1016/s1364-6613(03)00055-x

de Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. (1988). Use of partial stimulus

information in response processing [Place: US Publisher: American Psychological

Association]. Journal of Experimental Psychology: Human Perception and Perfor-

mance, 14 (4), 682–692. https://doi.org/10.1037/0096-1523.14.4.682

https://doi.org/10.1007/BF00431022
https://doi.org/10.1007/BF00431022
https://doi.org/10.1038/nn.2123
https://doi.org/10.1038/nn.2123
https://doi.org/10.1098/rstb.2007.2054
https://doi.org/10.1098/rstb.2007.2054
https://doi.org/10.1146/annurev.neuro.051508.135409
https://doi.org/10.1146/annurev.neuro.051508.135409
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
https://doi.org/10.1037/0096-1523.11.5.529
https://doi.org/10.1016/s1364-6613(03)00055-x
https://doi.org/10.1016/s1364-6613(03)00055-x
https://doi.org/10.1037/0096-1523.14.4.682


DECIDING AND ACTING 54

de Lange, F. P., Rahnev, D. A., Donner, T. H., & Lau, H. (2013). Prestimulus oscillatory

activity over motor cortex reflects perceptual expectations. The Journal of Neu-

roscience: The Official Journal of the Society for Neuroscience, 33 (4), 1400–1410.

https://doi.org/10.1523/JNEUROSCI.1094-12.2013

Denève, S., Duhamel, J.-R., & Pouget, A. (2007). Optimal sensorimotor integration in

recurrent cortical networks: A neural implementation of Kalman filters. The Jour-

nal of Neuroscience: The Official Journal of the Society for Neuroscience, 27 (21),

5744–5756. https://doi.org/10.1523/JNEUROSCI.3985-06.2007

Dideriksen, J. L., & Farina, D. (2019). Amplitude cancellation influences the association

between frequency components in the neural drive to muscle and the rectified

EMG signal [Publisher: Public Library of Science]. PLOS Computational Biology,

15 (5), e1006985. https://doi.org/10.1371/journal.pcbi.1006985

Ditterich, J. (2006). Stochastic models of decisions about motion direction: Behavior and

physiology. Neural Networks: The Official Journal of the International Neural

Network Society, 19 (8), 981–1012. https://doi.org/10.1016/j.neunet.2006.05.042

Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431.

https://doi.org/10.1016/0001-6918(69)90065-1

Donkin, C., Brown, S., Heathcote, A., & Andrews, S. (2009). Non-Decision Time Effects

in the Lexical Decision Task. Proceedings of the Annual Meeting of the Cognitive

Science Society, 31. Retrieved August 4, 2022, from https://escholarship.org/uc/

item/07q9n3tq

Donner, T. H., Siegel, M., Fries, P., & Engel, A. K. (2009). Buildup of choice-predictive

activity in human motor cortex during perceptual decision making. Current biol-

ogy: CB, 19 (18), 1581–1585. https://doi.org/10.1016/j.cub.2009.07.066

Ebbesen, C. L., & Brecht, M. (2017). Motor cortex — to act or not to act? [Number:

11 Publisher: Nature Publishing Group]. Nature Reviews Neuroscience, 18 (11),

694–705. https://doi.org/10.1038/nrn.2017.119

https://doi.org/10.1523/JNEUROSCI.1094-12.2013
https://doi.org/10.1523/JNEUROSCI.3985-06.2007
https://doi.org/10.1371/journal.pcbi.1006985
https://doi.org/10.1016/j.neunet.2006.05.042
https://doi.org/10.1016/0001-6918(69)90065-1
https://escholarship.org/uc/item/07q9n3tq
https://escholarship.org/uc/item/07q9n3tq
https://doi.org/10.1016/j.cub.2009.07.066
https://doi.org/10.1038/nrn.2017.119


DECIDING AND ACTING 55

Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A

continuous flow conception and experimental results. Perception & Psychophysics,

25 (4), 249–263. https://doi.org/10.3758/bf03198804

Evans, N. J. (2019). A method, framework, and tutorial for efficiently simulating models

of decision-making. Behavior Research Methods, 51 (5), 2390–2404. https://doi.

org/10.3758/s13428-019-01219-z

Evans, N. J., Hawkins, G. E., & Brown, S. D. (2020). The role of passing time in decision-

making [Place: US Publisher: American Psychological Association]. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 46, 316–326. https:

//doi.org/10.1037/xlm0000725

Evans, N. J., Tillman, G., & Wagenmakers, E.-J. (2020). Systematic and random sources

of variability in perceptual decision-making: Comment on Ratcliff, Voskuilen, and

McKoon (2018). Psychological Review, 127 (5), 932–944. https://doi.org/10.1037/

rev0000192

Evans, N. J., & Wagenmakers, E.-J. (2020). Evidence accumulation models: Current

limitations and future directions. The Quantitative Methods for Psychology, 16,

73–90.

Farina, D., Holobar, A., Merletti, R., & Enoka, R. M. (2010). Decoding the neural drive to

muscles from the surface electromyogram. Clinical Neurophysiology: Official Jour-

nal of the International Federation of Clinical Neurophysiology, 121 (10), 1616–

1623. https://doi.org/10.1016/j.clinph.2009.10.040

Filimon, F., Philiastides, M. G., Nelson, J. D., Kloosterman, N. A., & Heekeren, H. R.

(2013). How Embodied Is Perceptual Decision Making? Evidence for Separate Pro-

cessing of Perceptual and Motor Decisions. The Journal of Neuroscience, 33 (5),

2121–2136. https://doi.org/10.1523/JNEUROSCI.2334-12.2013

Flash, T., & Hochner, B. (2005). Motor primitives in vertebrates and invertebrates. Cur-

rent Opinion in Neurobiology, 15 (6), 660–666. https://doi.org/10.1016/j.conb.

2005.10.011

https://doi.org/10.3758/bf03198804
https://doi.org/10.3758/s13428-019-01219-z
https://doi.org/10.3758/s13428-019-01219-z
https://doi.org/10.1037/xlm0000725
https://doi.org/10.1037/xlm0000725
https://doi.org/10.1037/rev0000192
https://doi.org/10.1037/rev0000192
https://doi.org/10.1016/j.clinph.2009.10.040
https://doi.org/10.1523/JNEUROSCI.2334-12.2013
https://doi.org/10.1016/j.conb.2005.10.011
https://doi.org/10.1016/j.conb.2005.10.011


DECIDING AND ACTING 56

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential Sampling Mod-

els in Cognitive Neuroscience: Advantages, Applications, and Extensions. Annual

Review of Psychology, 67, 641–666. https ://doi .org/10 .1146/annurev- psych-

122414-033645

Frank, M. J. (2011). Computational models of motivated action selection in corticostriatal

circuits. Current Opinion in Neurobiology, 21 (3), 381–386. https://doi.org/10.

1016/j.conb.2011.02.013

Freedman, D. J., & Assad, J. A. (2016). Neuronal Mechanisms of Visual Categorization:

An Abstract View on Decision Making. Annual Review of Neuroscience, 39, 129–

147. https://doi.org/10.1146/annurev-neuro-071714-033919

Friedman, J., Brown, S., & Finkbeiner, M. (2013). Linking cognitive and reaching tra-

jectories via intermittent movement control. Journal of Mathematical Psychology,

57 (3), 140–151. https://doi.org/10.1016/j.jmp.2013.06.005

Giszter, S. F. (2015). Motor primitives–new data and future questions. Current Opinion

in Neurobiology, 33, 156–165. https://doi.org/10.1016/j.conb.2015.04.004

Glickman, M., Moran, R., & Usher, M. (2022). Evidence integration and decision con-

fidence are modulated by stimulus consistency. Nature Human Behaviour, 6 (7),

988–999. https://doi.org/10.1038/s41562-022-01318-6

Glickman, M., & Usher, M. (2019). Integration to boundary in decisions between numer-

ical sequences. Cognition, 193, 104022. https://doi.org/10.1016/j.cognition.2019.

104022

Gold, J. I., & Shadlen, M. N. (2000). Representation of a perceptual decision in developing

oculomotor commands. Nature, 404 (6776), 390–394. https://doi.org/10.1038/

35006062

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review

of Neuroscience, 30, 535–574. https://doi.org/10.1146/annurev.neuro.29.051605.

113038

Gold, J. I., & Shadlen, M. N. (2003). The Influence of Behavioral Context on the Repre-

sentation of a Perceptual Decision in Developing Oculomotor Commands [Pub-

https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1016/j.conb.2011.02.013
https://doi.org/10.1016/j.conb.2011.02.013
https://doi.org/10.1146/annurev-neuro-071714-033919
https://doi.org/10.1016/j.jmp.2013.06.005
https://doi.org/10.1016/j.conb.2015.04.004
https://doi.org/10.1038/s41562-022-01318-6
https://doi.org/10.1016/j.cognition.2019.104022
https://doi.org/10.1016/j.cognition.2019.104022
https://doi.org/10.1038/35006062
https://doi.org/10.1038/35006062
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038


DECIDING AND ACTING 57

lisher: Society for Neuroscience Section: ARTICLE]. Journal of Neuroscience,

23 (2), 632–651. https://doi.org/10.1523/JNEUROSCI.23-02-00632.2003

Gomez, P., & Perea, M. (2014). Decomposing encoding and decisional components in

visual-word recognition: A diffusion model analysis. Quarterly Journal of Experi-

mental Psychology (2006), 67 (12), 2455–2466. https://doi.org/10.1080/17470218.

2014.937447

Grainger, J. (2018). Orthographic processing: A ’mid-level’ vision of reading: The 44th Sir

Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology (2006),

71 (2), 335–359. https://doi.org/10.1080/17470218.2017.1314515

Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre-

and poststimulus activation of response channels: A psychophysiological analysis.

Journal of Experimental Psychology. Human Perception and Performance, 14 (3),

331–344. https://doi.org/10.1037//0096-1523.14.3.331

Hanks, T., Kiani, R., & Shadlen, M. N. (2014). A neural mechanism of speed-accuracy

tradeoff in macaque area LIP. eLife, 3, e02260. https://doi.org/10.7554/eLife.

02260

Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R., & Brown, S. D.

(2015). Revisiting the evidence for collapsing boundaries and urgency signals in

perceptual decision-making. The Journal of Neuroscience: The Official Journal

of the Society for Neuroscience, 35 (6), 2476–2484. https : //doi . org/10 . 1523/

JNEUROSCI.2410-14.2015

Hikosaka, O. (2007). GABAergic output of the basal ganglia. Progress in Brain Research,

160, 209–226. https://doi.org/10.1016/S0079-6123(06)60012-5

Houghton, G. (2018). Action and perception in literacy: A common-code for spelling

and reading. Psychological Review, 125 (1), 83–116. https ://doi .org/10 .1037/

rev0000084

Kalman, R. E., & Bucy, R. S. (1961). New Results in Linear Filtering and Prediction

Theory. Journal of Basic Engineering, 83 (1), 95–108. https://doi.org/10.1115/1.

3658902

https://doi.org/10.1523/JNEUROSCI.23-02-00632.2003
https://doi.org/10.1080/17470218.2014.937447
https://doi.org/10.1080/17470218.2014.937447
https://doi.org/10.1080/17470218.2017.1314515
https://doi.org/10.1037//0096-1523.14.3.331
https://doi.org/10.7554/eLife.02260
https://doi.org/10.7554/eLife.02260
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
https://doi.org/10.1016/S0079-6123(06)60012-5
https://doi.org/10.1037/rev0000084
https://doi.org/10.1037/rev0000084
https://doi.org/10.1115/1.3658902
https://doi.org/10.1115/1.3658902


DECIDING AND ACTING 58

Kelly, S. P., Corbett, E. A., & O’Connell, R. G. (2021). Neurocomputational mecha-

nisms of prior-informed perceptual decision-making in humans. Nature Human

Behaviour, 5 (4), 467–481. https://doi.org/10.1038/s41562-020-00967-9

Kelly, S. P., & O’Connell, R. G. (2013). Internal and External Influences on the Rate

of Sensory Evidence Accumulation in the Human Brain. Journal of Neuroscience,

33 (50), 19434–19441. https://doi.org/10.1523/JNEUROSCI.3355-13.2013

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator

[Place: US Publisher: Psychonomic Society]. Behavior Research Methods, 42 (3),

627–633. https://doi.org/10.3758/BRM.42.3.627

Kinder, K. T., Buss, A. T., & Tas, A. C. (2022). Tracking flanker task dynamics: Evi-

dence for continuous attentional selectivity. Journal of Experimental Psychology.

Human Perception and Performance, 48 (7), 771–781. https://doi.org/10.1037/

xhp0001023

Klein-Flügge, M. C., & Bestmann, S. (2012). Time-dependent changes in human cor-

ticospinal excitability reveal value-based competition for action during decision

processing. The Journal of Neuroscience: The Official Journal of the Society for

Neuroscience, 32 (24), 8373–8382. https://doi.org/10.1523/JNEUROSCI.0270-

12.2012

Laming, D. (1968). Information theory of choice-reaction times. Academic Press.

Latash, M. L. (2020). On Primitives in Motor Control. Motor Control, 24 (2), 318–346.

https://doi.org/10.1123/mc.2019-0099

Lemon, R. N. (2008). Descending pathways in motor control. Annual Review of Neuro-

science, 31, 195–218. https://doi.org/10.1146/annurev.neuro.31.060407.125547

Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A

theory of an act of control [Place: US Publisher: American Psychological Asso-

ciation]. Psychological Review, 91 (3), 295–327. https://doi.org/10.1037/0033-

295X.91.3.295

Marr, D. (1982). Vision: A computational investigation into the human representation

and processing of visual information. W.H. Freeman.

https://doi.org/10.1038/s41562-020-00967-9
https://doi.org/10.1523/JNEUROSCI.3355-13.2013
https://doi.org/10.3758/BRM.42.3.627
https://doi.org/10.1037/xhp0001023
https://doi.org/10.1037/xhp0001023
https://doi.org/10.1523/JNEUROSCI.0270-12.2012
https://doi.org/10.1523/JNEUROSCI.0270-12.2012
https://doi.org/10.1123/mc.2019-0099
https://doi.org/10.1146/annurev.neuro.31.060407.125547
https://doi.org/10.1037/0033-295X.91.3.295
https://doi.org/10.1037/0033-295X.91.3.295


DECIDING AND ACTING 59

McClelland, J. L. (1979). On the time relations of mental processes: An examination

of systems of processes in cascade [Place: US Publisher: American Psychological

Association]. Psychological Review, 86 (4), 287–330. https://doi.org/10.1037/0033-

295X.86.4.287

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context

effects in letter perception: I. An account of basic findings [Place: US Publisher:

American Psychological Association]. Psychological Review, 88, 375–407. https :

//doi.org/10.1037/0033-295X.88.5.375

Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing

motor programs. Progress in Neurobiology, 50 (4), 381–425. https://doi.org/10.

1016/s0301-0082(96)00042-1

Murphy, P. R., Boonstra, E., & Nieuwenhuis, S. (2016). Global gain modulation generates

time-dependent urgency during perceptual choice in humans. Nature Communi-

cations, 7, 13526. https://doi.org/10.1038/ncomms13526

Nakayama, K., Moher, J., & Song, J.-H. (2023). Rethinking Vision and Action [_eprint:

https://doi.org/10.1146/annurev-psych-021422-043229]. Annual Review of Psychol-

ogy, 74 (1), 59–86. https://doi.org/10.1146/annurev-psych-021422-043229

New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexi-

cal database. Behavior Research Methods, Instruments, & Computers: A Journal

of the Psychonomic Society, Inc, 36 (3), 516–524. https : / / doi . org / 10 . 3758 /

bf03195598

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-

to-bound signal that determines perceptual decisions in humans. Nature Neuro-

science, 15 (12), 1729–1735. https://doi.org/10.1038/nn.3248

O’Connell, R. G., & Kelly, S. P. (2021). Neurophysiology of Human Perceptual Decision-

Making. Annual Review of Neuroscience, 44, 495–516. https://doi.org/10.1146/

annurev-neuro-092019-100200

https://doi.org/10.1037/0033-295X.86.4.287
https://doi.org/10.1037/0033-295X.86.4.287
https://doi.org/10.1037/0033-295X.88.5.375
https://doi.org/10.1037/0033-295X.88.5.375
https://doi.org/10.1016/s0301-0082(96)00042-1
https://doi.org/10.1016/s0301-0082(96)00042-1
https://doi.org/10.1038/ncomms13526
https://doi.org/10.1146/annurev-psych-021422-043229
https://doi.org/10.3758/bf03195598
https://doi.org/10.3758/bf03195598
https://doi.org/10.1038/nn.3248
https://doi.org/10.1146/annurev-neuro-092019-100200
https://doi.org/10.1146/annurev-neuro-092019-100200


DECIDING AND ACTING 60

O’Connell, R. G., Shadlen, M. N., Wong-Lin, K., & Kelly, S. P. (2018). Bridging Neural

and Computational Viewpoints on Perceptual Decision-Making. Trends in Neuro-

sciences, 41 (11), 838–852. https://doi.org/10.1016/j.tins.2018.06.005

Øksendal, B. (2003). Stochastic Differential Equations. Springer. https ://doi .org/10.

1007/978-3-642-14394-6

Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the

speed and accuracy of a perceptual decision. Journal of Vision, 5 (5), 376–404.

https://doi.org/10.1167/5.5.1

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman,

E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy.

Behavior Research Methods, 51 (1), 195–203. https://doi.org/10.3758/s13428-018-

01193-y

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchro-

nization and desynchronization: Basic principles. Clinical Neurophysiology: Offi-

cial Journal of the International Federation of Clinical Neurophysiology, 110 (11),

1842–1857. https://doi.org/10.1016/s1388-2457(99)00141-8

Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri,

T. J. (2010). Neurally constrained modeling of perceptual decision making [Place:

US Publisher: American Psychological Association]. Psychological Review, 117 (4),

1113–1143. https://doi.org/10.1037/a0020311

Ratcliff, R., Sheu, C. F., & Gronlund, S. D. (1992). Testing global memory models using

ROC curves. Psychological Review, 99 (3), 518–535. https://doi.org/10.1037/0033-

295x.99.3.518

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev, 85 (2), 59–108.

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of macaque behavior

and superior colliculus neuronal activity to predictions from models of two-choice

decisions. Journal of Neurophysiology, 90 (3), 1392–1407. https://doi.org/10.1152/

jn.01049.2002

https://doi.org/10.1016/j.tins.2018.06.005
https://doi.org/10.1007/978-3-642-14394-6
https://doi.org/10.1007/978-3-642-14394-6
https://doi.org/10.1167/5.5.1
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1016/s1388-2457(99)00141-8
https://doi.org/10.1037/a0020311
https://doi.org/10.1037/0033-295x.99.3.518
https://doi.org/10.1037/0033-295x.99.3.518
https://doi.org/10.1152/jn.01049.2002
https://doi.org/10.1152/jn.01049.2002


DECIDING AND ACTING 61

Ratcliff, R., & Childers, R. (2015). Individual Differences and Fitting Methods for the

Two-Choice Diffusion Model of Decision Making. Decision (Washington, D.C.),

2015. https://doi.org/10.1037/dec0000030

Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for

Two-Choice Decision Tasks. Neural computation, 20 (4), 873–922. https://doi.org/

10.1162/neco.2008.12-06-420

Ratcliff, R., & McKoon, G. (2018). Modeling numerosity representation with an inte-

grated diffusion model. Psychological Review, 125 (2), 183–217. https://doi.org/

10.1037/rev0000085

Ratcliff, R., & Rouder, J. N. (1998). Modeling Response Times for Two-Choice Decisions.

Psychological Science, 9 (5), 347–356. Retrieved September 27, 2019, from https:

//www.jstor.org/stable/40063319

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-

choice reaction time. Psychological Review, 111 (2), 333–367. https://doi.org/10.

1037/0033-295X.111.2.333

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model:

Current Issues and History. Trends in Cognitive Sciences, 20 (4), 260–281. https:

//doi.org/10.1016/j.tics.2016.01.007

Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model analysis of the effects

of aging on recognition memory [Place: Netherlands Publisher: Elsevier Science].

Journal of Memory and Language, 50 (4), 408–424. https://doi.org/10.1016/j.jml.

2003.11.002

Ratcliff, R., Thapar, A., & McKoon, G. (2010). Individual differences, aging, and IQ in

two-choice tasks. Cognitive Psychology, 60 (3), 127–157. https://doi.org/10.1016/

j.cogpsych.2009.09.001

Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind

in decision-making. Nature, 461 (7261), 263–266. https : / / doi . org / 10 . 1038 /

nature08275

https://doi.org/10.1037/dec0000030
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1037/rev0000085
https://doi.org/10.1037/rev0000085
https://www.jstor.org/stable/40063319
https://www.jstor.org/stable/40063319
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.jml.2003.11.002
https://doi.org/10.1016/j.jml.2003.11.002
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1038/nature08275
https://doi.org/10.1038/nature08275


DECIDING AND ACTING 62

Robinson, D. A. (1973). Models of the saccadic eye movement control system. Kybernetik,

14 (2), 71–83. https://doi.org/10.1007/BF00288906

Schall, J. D. (2019). Accumulators, Neurons, and Response Time. Trends in neuro-

sciences, 42 (12), 848–860. https://doi.org/10.1016/j.tins.2019.10.001

Schall, J. D., & Paré, M. (2021). The unknown but knowable relationship between Presac-

cadic Accumulation of activity and Saccade initiation. Journal of Computational

Neuroscience, 49 (3), 213–228. https://doi.org/10.1007/s10827-021-00784-7

Selen, L. P. J., Shadlen, M. N., & Wolpert, D. M. (2012). Deliberation in the motor

system: Reflex gains track evolving evidence leading to a decision. The Journal of

Neuroscience: The Official Journal of the Society for Neuroscience, 32 (7), 2276–

2286. https://doi.org/10.1523/JNEUROSCI.5273-11.2012

Servant, M., Logan, G. D., Gajdos, T., & Evans, N. J. (2021). An integrated theory of

deciding and acting. Journal of Experimental Psychology. General. https://doi.

org/10.1037/xge0001063

Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using Covert Response Acti-

vation to Test Latent Assumptions of Formal Decision-Making Models in Humans.

The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,

35 (28), 10371–10385. https://doi.org/10.1523/JNEUROSCI.0078-15.2015

Shadlen, M. N., & Kiani, R. (2013). Decision making as a window on cognition. Neuron,

80 (3), 791–806. https://doi.org/10.1016/j.neuron.2013.10.047

Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization.

Current Opinion in Neurobiology, 4 (4), 569–579. https://doi.org/10.1016/0959-

4388(94)90059-0

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—retrieving

effectively from memory [Place: US Publisher: Psychonomic Society]. Psychonomic

Bulletin & Review, 4 (2), 145–166. https://doi.org/10.3758/BF03209391

Smith, P. L., & Lilburn, S. D. (2020). Vision for the blind: Visual psychophysics and

blinded inference for decision models. Psychonomic Bulletin & Review. https :

//doi.org/10.3758/s13423-020-01742-7

https://doi.org/10.1007/BF00288906
https://doi.org/10.1016/j.tins.2019.10.001
https://doi.org/10.1007/s10827-021-00784-7
https://doi.org/10.1523/JNEUROSCI.5273-11.2012
https://doi.org/10.1037/xge0001063
https://doi.org/10.1037/xge0001063
https://doi.org/10.1523/JNEUROSCI.0078-15.2015
https://doi.org/10.1016/j.neuron.2013.10.047
https://doi.org/10.1016/0959-4388(94)90059-0
https://doi.org/10.1016/0959-4388(94)90059-0
https://doi.org/10.3758/BF03209391
https://doi.org/10.3758/s13423-020-01742-7
https://doi.org/10.3758/s13423-020-01742-7


DECIDING AND ACTING 63

Smith, P. L., & McKenzie, C. R. L. (2011). Diffusive Information Accumulation by Min-

imal Recurrent Neural Models of Decision Making. Neural Computation, 23 (8),

2000–2031. https://doi.org/10.1162/NECO_a_00150

Song, J.-H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching

tasks. Trends in Cognitive Sciences, 13 (8), 360–366. https://doi.org/10.1016/j.

tics.2009.04.009

Starns, J. J., & Ratcliff, R. (2014). Validating the unequal-variance assumption in recog-

nition memory using response time distributions instead of ROC functions: A

diffusion model analysis. Journal of Memory and Language, 70, 36–52. https :

//doi.org/10.1016/j.jml.2013.09.005

Steinemann, N. A., O’Connell, R. G., & Kelly, S. P. (2018). Decisions are expedited

through multiple neural adjustments spanning the sensorimotor hierarchy. Nature

Communications, 9 (1), 3627. https://doi.org/10.1038/s41467-018-06117-0

Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method.

Acta Psychologica, 30, 276–315. https://doi.org/10.1016/0001-6918(69)90055-9

Stone, C., Mattingley, J. B., & Rangelov, D. (2022). On second thoughts: Changes of

mind in decision-making. Trends in Cognitive Sciences, 26 (5), 419–431. https :

//doi.org/10.1016/j.tics.2022.02.004

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic

for global Optimization over Continuous Spaces. Journal of Global Optimization,

11 (4), 341–359. https://doi.org/10.1023/A:1008202821328

Sullivan, N., Hutcherson, C., Harris, A., & Rangel, A. (2015). Dietary self-control is

related to the speed with which attributes of healthfulness and tastiness are

processed. Psychological Science, 26 (2), 122–134. https : / / doi . org / 10 . 1177 /

0956797614559543

Summerfield, C., & Parpart, P. (2022). Normative Principles for Decision-Making in Nat-

ural Environments. Annual Review of Psychology, 73, 53–77. https://doi.org/10.

1146/annurev-psych-020821-104057

https://doi.org/10.1162/NECO_a_00150
https://doi.org/10.1016/j.tics.2009.04.009
https://doi.org/10.1016/j.tics.2009.04.009
https://doi.org/10.1016/j.jml.2013.09.005
https://doi.org/10.1016/j.jml.2013.09.005
https://doi.org/10.1038/s41467-018-06117-0
https://doi.org/10.1016/0001-6918(69)90055-9
https://doi.org/10.1016/j.tics.2022.02.004
https://doi.org/10.1016/j.tics.2022.02.004
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1177/0956797614559543
https://doi.org/10.1177/0956797614559543
https://doi.org/10.1146/annurev-psych-020821-104057
https://doi.org/10.1146/annurev-psych-020821-104057


DECIDING AND ACTING 64

Tillman, G., Osth, A. F., van Ravenzwaaij, D., & Heathcote, A. (2017). A diffusion deci-

sion model analysis of evidence variability in the lexical decision task. Psychonomic

Bulletin & Review, 24 (6), 1949–1956. https://doi.org/10.3758/s13423-017-1259-y

Tillman, G., Van Zandt, T., & Logan, G. D. (2020). Sequential sampling models without

random between-trial variability: The racing diffusion model of speeded decision

making. Psychonomic Bulletin & Review, 27 (5), 911–936. https://doi.org/10.

3758/s13423-020-01719-6

Tosoni, A., Galati, G., Romani, G. L., & Corbetta, M. (2008). Sensory-motor mechanisms

in human parietal cortex underlie arbitrary visual decisions [Number: 12 Publisher:

Nature Publishing Group]. Nature Neuroscience, 11 (12), 1446–1453. https://doi.

org/10.1038/nn.2221

Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leak-

age, and the relative nature of information processing in decision-making [Place:

US Publisher: American Psychological Association]. Psychological Review, 128 (1),

160–186. https://doi.org/10.1037/rev0000255

Twomey, D. M., Kelly, S. P., & O’Connell, R. G. (2016). Abstract and Effector-Selective

Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Percep-

tual Reports. The Journal of Neuroscience: The Official Journal of the Society for

Neuroscience, 36 (28), 7346–7352. https://doi.org/10.1523/JNEUROSCI.4162-

15.2016

Twomey, D. M., Murphy, P. R., Kelly, S. P., & O’Connell, R. G. (2015). The classic P300

encodes a build-to-threshold decision variable. The European Journal of Neuro-

science, 42 (1), 1636–1643. https://doi.org/10.1111/ejn.12936

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky,

competing accumulator model. Psychological Review, 108 (3), 550–592. https://

doi.org/10.1037/0033-295x.108.3.550

Verdonck, S., Loossens, T., & Philiastides, M. G. (2020). The Leaky Integrating Threshold

and its impact on evidence accumulation models of choice response time (RT).

Psychological Review. https://doi.org/10.1037/rev0000258

https://doi.org/10.3758/s13423-017-1259-y
https://doi.org/10.3758/s13423-020-01719-6
https://doi.org/10.3758/s13423-020-01719-6
https://doi.org/10.1038/nn.2221
https://doi.org/10.1038/nn.2221
https://doi.org/10.1037/rev0000255
https://doi.org/10.1523/JNEUROSCI.4162-15.2016
https://doi.org/10.1523/JNEUROSCI.4162-15.2016
https://doi.org/10.1111/ejn.12936
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1037/rev0000258


DECIDING AND ACTING 65

Vickers, D. (1970). Evidence for an accumulator model of psychophysical discrimination.

Ergonomics, 13 (1), 37–58. https://doi.org/10.1080/00140137008931117

Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S., & Vieira, T. M. (2018).

Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and

Rehabilitation Sciences [Publisher: Frontiers]. Frontiers in Physiology, 8. https:

//doi.org/10.3389/fphys.2017.00985

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion

model: An empirical validation. Memory & Cognition, 32 (7), 1206–1220. https:

//doi.org/10.3758/BF03196893

Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differ-

ences between the Akaike information criterion (AIC) and the Bayesian informa-

tion criterion (BIC) [Place: US Publisher: American Psychological Association].

Psychological Methods, 17 (2), 228–243. https://doi.org/10.1037/a0027127

Wagenmakers, E.-J., Steyvers, M., Raaijmakers, J. G. W., Shiffrin, R. M., van Rijn, H.,

& Zeelenberg, R. (2004). A model for evidence accumulation in the lexical decision

task. Cognitive Psychology, 48 (3), 332–367. https://doi.org/10.1016/j.cogpsych.

2003.08.001

Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical cir-

cuits. Neuron, 36 (5), 955–968. https://doi.org/10.1016/s0896-6273(02)01092-9

Weindel, G., Anders, R., Alario, F.-X., & Burle, B. (2021). Assessing model-based infer-

ences in decision making with single-trial response time decomposition. Journal

of Experimental Psychology. General. https://doi.org/10.1037/xge0001010

Weiss, A. D. (1965). THE LOCUS OF REACTION TIME CHANGE WITH SET, MO-

TIVATION, AND AGE. Journal of Gerontology, 20, 60–64. https://doi.org/10.

1093/geronj/20.1.60

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation

of the Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 7, 14. https:

//doi.org/10.3389/fninf.2013.00014

https://doi.org/10.1080/00140137008931117
https://doi.org/10.3389/fphys.2017.00985
https://doi.org/10.3389/fphys.2017.00985
https://doi.org/10.3758/BF03196893
https://doi.org/10.3758/BF03196893
https://doi.org/10.1037/a0027127
https://doi.org/10.1016/j.cogpsych.2003.08.001
https://doi.org/10.1016/j.cogpsych.2003.08.001
https://doi.org/10.1016/s0896-6273(02)01092-9
https://doi.org/10.1037/xge0001010
https://doi.org/10.1093/geronj/20.1.60
https://doi.org/10.1093/geronj/20.1.60
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.3389/fninf.2013.00014


DECIDING AND ACTING 66

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition

memory. Psychological Review, 114 (1), 152–176. https://doi.org/10.1037/0033-

295X.114.1.152

Wong, K.-F., & Wang, X.-J. (2006). A recurrent network mechanism of time integra-

tion in perceptual decisions. The Journal of Neuroscience: The Official Journal

of the Society for Neuroscience, 26 (4), 1314–1328. https : //doi . org/10 . 1523/

JNEUROSCI.3733-05.2006

https://doi.org/10.1037/0033-295X.114.1.152
https://doi.org/10.1037/0033-295X.114.1.152
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1523/JNEUROSCI.3733-05.2006


DECIDING AND ACTING 67

Appendix A

Partial EMG bursts

Figure A1

Empirical illustrations of trials containing at least one partial EMG burst during PMT.

Note. Panels A, B, C and D show trials that contain one partial EMG burst in the same EMG
channel as the response. Panel E shows a trial with a partial EMG burst in the opposite EMG
channel as the response. Panel F shows a trial with two partial EMG bursts in the same EMG
channel as the response.
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Appendix B

Mathematical details

Derivation of the Kalman-Bucy filter at the motor preparation level (Equation

6)

Definitions of the decision variable x(t) and its noisy variant x̃(t) received by the

motor preparation system are provided in the main text by Equations 1 and 5 respectively.

In order to have a tractable mathematical representation of the problem, it is better to

write it down in terms of differential equations. This is already the case for x(t). However,

we cannot differentiate x̃(t) as it stands, because we cannot differentiate a white noise.

We thus introduce a new process q(t), defined as q(t) =
∫ t

0 x̃(s)ds. We have:

dq(t) = x(t)dt + ξdV (t), q(0) = x0, (B1)

where V (t) is a Brownian motion, independent of W (t). Note that processes q(t) and

x̃(t) contain the exact same information.

The Kalman-Bucy filtered motor preparation process ỹ(t) satisifes the following

differential equation (Øksendal, 2003):

dỹ(t) =
(

v − S(t)
ξ2 ỹ(t)

)
dt + S(t)

ξ2 dqt, ỹ(0) = x0, (B2)

where S(t) = E [(x(t) − ỹ(t))2], and satisfies the Riccati equation:

dS

dt
= −S2

ξ2 + σ2, S(0) = 0. (B3)

The solution to the Riccati equation is:

S(t) = −ξσ + ξσe
2σ
ξ

t

1 + e
2σ
ξ

t

= ξσ tanh
(

σ

ξ
t

)
.

(B4)

Substituting S(t) in Equation B2, we obtain:

dỹ(t) = σ

ξ
tanh

(
σ

ξ
t

)
(dq(t) − ỹ(t)dt) + vdt, ỹ(0) = x0. (B5)

Finally, from the definition of q(t), we have dq(t) = x̃(t)dt, which leads to:

dỹ(t) = σ

ξ
tanh

(
σ

ξ
t

)
(x̃(t) − ỹ(t))dt + vdt, ỹ(0) = x0. (B6)
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Relationship between Equation 3 and Equation 8

In the main text, we noted that Equation 3 and Equation 8 differ with respect to

the input to motor preparation. This difference can be further characterized by solving

each equation, and replacing parameter λ′ by λ in Equation 8:

y(t) = λ
∫ t

0
eλ(s−t)x(s)ds

ỹ(t) = λ
∫ t

0
eλ(s−t)x̃(s)ds.

(B7)

Since x̃(s)ds = dq(s) = x(s)ds + ξdV (s), we obtain:

ỹ(t) = λ
∫ t

0
eλ(s−t)(x(s)ds + ξdV (s))

= λ
∫ t

0
eλ(s−t)x(s)ds + λξ

∫ t

0
eλ(s−t)dV (s)

= y(t) + λξ
∫ t

0
eλ(s−t)dV (s).

(B8)

Using Itô isometry, we see that ỹ(t) is equal to y(t) plus a Gaussian noise with mean

0 and variance φ = λξ2 1−e−2λt

2 . This Gaussian noise is independent from y (because V

and W are independent). Note that φ < λξ2

2 , and ỹ(t) converges towards y(t) as the

amplitude of transmission noise ξ approaches 0.
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Appendix C

Fits of a GCF variant that uses variable ỹ(t) to model motor preparation

We compared the fit performance of GCF with a model variant that uses ỹ(t) com-

puted using Equation 7. We refer to this model variant as GCKB, in hommage to Rudolf

E. Kalman and Richard S. Bucy. Based on our mathematical analysis, we expected a

comparable fit performance between the two models. GCKB was fit to behavioral and

EMG data from the four choice tasks using a methodology identical to that described in

the main text. To avoid complications arising from between-trial variability in processing

components, we restricted this analysis to raw models. GCKB has one more free param-

eter than GCF (the amplitude of transmission noise ξ).

Figure C1 displays model comparison statistics (AIC and BIC) for each task. The

plot shows a considerable degree of overlap between GCF and GCKB, diagnostic of a

similar performance. The AIC (BIC) favors GCKB over GCF for 7 (7) subjects for the

RDK task, 12 (10) subjects for the numerosity judgment task, 14 (14) subjects for the

recognition memory task, and 11 (10) subjects for the lexical decision task. Each of these

differences fails to reach statistical significance (two-sided binomial test).

Best-fitting GCKB parameters averaged across subjects are reported in Table C1.

It is worth noting that the prior λ′ on the ratio between diffusion noise σ and trans-

mission noise ξ is significantly smaller than the ratio computed from an ideal observer

perspective, resulting in a stronger smoothing of the corrupted decision variable x̃ than

actually needed. This phenomenon could be interpreted as a bias toward response accu-

racy relative to response speed (Verdonck et al., 2020). This analysis must be taken with

caution, as we suspect tradeoffs between GCKB parameters (suggested by the very short

residual latency Te added to predicted PMT in Experiment 1, or the very small prior λ′

in Experiment 3). A comprehensive assessment of these tradeoffs is beyond the scope of

the present work.
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Figure C1

Model selection statistics for Experiments 1-4, including GCKB and focusing on raw

models.

Note. Panels A-D correspond to Experiments 1-4.
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Appendix D

Additional predictions from GCF

Figure D1

Additional predictions from GCF with varying levels of leak λ and drift rate v.

Note. Apart from the leak parameter, simulations used best-fitting GC parameters averaged
across subjects reported by Servant et al. (2021) and 100,000 simulated trials per condition. A)
Predicted mean PMT and mean MT in correct trials. B) Predicted between-trial correlation
between PMT and MT in correct trials. C) Predicted PMT quantile-MT quantile plot in correct
trials.
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Figure D2

Additional predictions from GCF with varying levels of leak λ and drift rate v, and with

between-trial variability in drift rate (normally distributed with mean v and standard

deviation sv).

Note. Apart from the leak parameter, simulations used best-fitting GC parameters averaged
across subjects reported by Servant et al. (2021) and 100,000 simulated trials per condition.
sv was fixed at .2. A) Predicted mean PMT and mean MT in correct trials. B) Predicted
between-trial correlation between PMT and MT in correct trials. C) Predicted PMT quantile-
MT quantile plot in correct trials.
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Appendix E

Methods for Experiments 2-4

Experiment 2

Participants

Manipulations of numerosity produce smaller modulations of mean RT compared

to motion coherence manipulations. Consequently, we increased the sample size from 18

to 24 subjects in order to maintain a reasonable amount of statistical power while keeping

electrophysiological and modeling work in manageable proportions.

Twenty-four students (five men; mean age: 20.6) from the University of Franche-

Comté took part in the experiment in exchange for course credits or as volunteers. All

subjects met the following criteria: being 18 to 30 years old, being right-handed, having

a normal or corrected vision, and having no history of motor, psychiatric or neurological

disorder. Subjects were not aware of the purpose of the experiment and provided written

consent to participate. This study was approved by the ethical committee for research of

the University (agreement n°CERUBFC-2022-01-18-002). It was not preregistered.

Apparatus

The experiment took place in a dimly lit room. Subjects sat on a comfortable

chair at a distance of 75 cm from a 34.7 × 19.5 cm LCD monitor (resolution: 1920 ×

1080; framerate: 60 Hz). The experiment was programmed in python, using functions

from the PsychoPy library (Peirce et al., 2019). Response buttons were identical to those

used in Experiment 1. Subjects’ hands were faced palm-down, resting on a supportive

cushion placed on their laps in order to minimize tonic muscular activity and maximize

comfort.

Stimuli

For each trial, between 31 and 70 black dots were displayed on a grey background

screen, in random positions within a 10 x 10 virtual grid. Each dot was 0.24° in diameter.

The horizontal and vertical separation between two adjacent dots (from center to center)

was 1.15°.



DECIDING AND ACTING 76

Procedure

Participants were instructed to press the left button with their left thumb if they

judged the number of dots displayed was less than or equal to 50, and the right button

with their right thumb if they judged it was greater. Left responses to 31-50 dots and

right responses to 51-70 dots were counted as correct. Participants were told not to

count the dots but instead provide a global and rapid estimation of their number. Dots

remained on the screen until the participant responded. A RT deadline was set to 4 s.

If participants failed to respond by then, the message “Too late! Please respond faster.”

was displayed for 1.5 s. The intertrial interval was 1.5 s. Participants first completed a

practice block of 40 trials, containing each of the 40 numerosity conditions presented in

a random order. A feedback on performance ("Correct response" or "Incorrect response")

was displayed for 1.5 s after each response. Practice trials were not considered in the

analyses. Subjects then completed 30 blocs of 40 trials with a similar structure, except

that no feedback was provided after each response. Blocks were separated by self-paced

breaks. The experiment lasted about an hour.

EMG recordings and signal processing

The procedure used for EMG recordings and signal processing was similar to

Experiment 1, except that EMG signals were epoched -0.5 s to 4 s relative to stimulus

onset. Trials with a high level of noise were discarded from analyses (2.7% of trials on

average; range 0-11.7%).

Models and fit procedure

The data were grouped into 8 conditions represented by the mean number of dots

N of each bin (33, 38, 43, 48, 53, 58, 63, 68). Following Ratcliff and McKoon (2018), we

assumed that the drift rate v of GC and GCF is a linear function of N and the criterion

(50):

v = dc + v1(N − 50). (E1)

Parameter v1 accounts for interindividual differences in discrimination perfor-

mance. Parameter dc (drift criterion) accounts for interindividual differences in the

representation of the criterion. Without this parameter (i.e., assuming dc = 0), the
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representation of the criterion would correspond exactly to 50 dots for every subject,

which is not realistic. Between-trial variability in drift rate is assumed to be normally

distributed with mean v and standard deviation sv defined as follows:

sv = η0 + σ1
√

N2 + 502. (E2)

All parameters were fixed across numerosity conditions. We treated the starting

point x0 of the evidence accumulation process as a free parameter, resulting in seven

(12) free parameters for the raw (full) GC and eight (14) free parameters for the raw

(full) GCF8. All parameters (except dc and x0) were constrained to be ≥ 0. Between-

trial variability parameters sx0, sTe, sTr, and sλ were constrained to not exceed 180%

of g, Te, Tr, and λ respectively. Parameter sx0 was further constrained to not exceed

2 ∗ (g − |x0|). Model selection statistics (AIC and BIC) were computed using Equations

11 and 12. By a two-sided binomial test, if 18 out of 24 subjects support one model over

the other, then the result is significant.

Experiment 3

Participants

Twenty-four students (six men; mean age: 19.78) from the University of Franche-

Comté took part in the experiment in exchange for course credits or as volunteers. All

participants met the same inclusion criteria as for Experiment 2. Subjects were not

aware of the purpose of the experiment and provided written consent to participate. This

study was approved by the ethical committee for research of the University (agreement

n°CERUBFC-2022-01-18-002). It was not preregistered.

Apparatus

The apparatus was identical to Experiment 2.

8 Ratcliff and McKoon (2018) also evaluated a model variant in which subjects solve the task by

comparing the number of dots to the number of blank spaces, and found similar fits. We found similar

fits for this GC and GCF variant.
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Stimuli

We selected a set of 1058 french words (number of letters ranging from five to

eight; M = 6.50; SD = 1.12) from the Lexique database (New et al., 2004). Word

frequency ranged from one to six occurrences per million (M = 2.96, SD = 1.14). Words

were presented in black against a grey background (font: Consolas), at the center of the

screen. The height of the letters was 0.76°.

Procedure

The experiment consisted of 23 blocks (one training block with a feedback on

accuracy after each trial and 22 experimental blocks without feedback), separated by

self-paced breaks. Each block consisted of a study phase and a test phase. During

study, participants were instructed to learn 25 words. The first two words served as

fillers to control for primacy effects, and the last two words served as fillers to control

for recency effects. Among the 21 remaining words, seven were studied one time, seven

were studied two times, and seven were studied four times. Words were presented in a

random order, at a pace of 1 s. The test phase occurred right after the study phase,

and consisted of 42 words (21 old words and 21 new words, presented in a random

order). Participants were instructed to press the left or the right button with their left or

right thumb depending on whether the word was old or new (stimulus-response mapping

balanced across participants). Each test word remained on screen until the participant

responded, or until a 4 s RT deadline. If participants failed to respond by then, the

message “Too late! Please respond faster.” was displayed for 1.5 s. The intertrial interval

was 1.5 s. Words presented in a block never appeared in another block (participants were

made aware of this during task instructions). In addition, the assignment of words to

blocks and conditions was randomly determined. The experiment lasted about an hour

and a half.

EMG recording and signal processing

The procedure used for EMG recordings and signal processing was similar to

Experiment 2. Trials with a high level of noise were discarded from analyses (12.4% of

trials on average; range 1.6-25%).
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Models and fit procedure

Drift rate v and between-trial variability in drift rate sv were the only parameters

free to vary between conditions. Similar to Experiment 2, we treated the starting point x0

of the decision-making process as a free parameter, resulting in nine (16) parameters for

the raw (full) GC, and 10 (18) parameters for the raw (full) GCF. All parameters (except

drift rates and x0) were constrained to be ≥ 0. Between-trial variability parameters sx0,

sTe, sTr, and sλ were constrained to not exceed 180% of g, Te, Tr, and λ respectively.

Parameter sx0 was further constrained to not exceed 2 ∗ (g − |x0|).

Experiment 4

Participants

Twenty-four students (four men; mean age: 21.00) from the University of Franche-

Comté took part in the experiment in exchange for course credits or as volunteers. All

participants met the same criteria as for Experiments 2 and 3. Subjects were not aware

of the purpose of the experiment and provided written consent to participate. This

study was approved by the ethical committee for research of the University (agreement

n°CERUBFC-2022-01-18-002). It was not preregistered.

Apparatus

The apparatus was identical to Experiments 2 and 3.

Stimuli

Four lists of french words (five to 12 letters) of differing frequencies (high frequency:

range 10-2736 occurences per million; medium frequency: range 2-5; low frequency: range

0.5-1; very low frequency: range 0.01-0.1) were created using the Lexique database (New

et al., 2004). To obtain the stimuli used in the present experiment, the lists underwent

the following steps. First, all plural and feminine agreements were removed. Second,

low and very-low frequency words were screened by two students, and any words they

did not know were eliminated. Third, a pool of 408 words was pseudo-randomly selected

from each list, with the constraint of obtaining an homogeneous number of letters across

pools. For each pool, 204 words were randomly selected to become pseudowords (i.e.,
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pronounceable non-words), created with the multilingual pseudoword generator Wuggy

(Keuleers and Brysbaert, 2010). Pseudowords were screened by two other students to

ensure that they were pronounceable and did not correspond to an existing word. This

procedure resulted in four lists, each list comprising 204 words (four for practice and 200

for the experiment) and 204 pseudowords (four for practice and 200 for the experiment).

The four students recruited for screening stimuli did not participate in the experiment.

Statistics relative to frequency and number of letters for the final sample of words used

in the experiment are provided in Table E1). Words were presented in black against a

grey background (font: Consolas), at the center of the screen. The height of the letters

was 0.76°.

Procedure

Participants were instructed to press the left or the right button with their left

or right thumb depending on whether the stimulus was a french word or not (stimulus-

response mapping balanced across participants). Participants first performed a practice

block of 32 trials (four words in each frequency level and 16 pseudowords) during which

a feedback on accuracy after each trial was provided, and worked through 10 blocks of

160 trials (20 words in each frequency level and 80 pseudowords) with no feedback on

accuracy. Blocks were separated by self-paced breaks. Each stimulus appeared once in the

experiment. Participants were thus exposed to the same word and pseudoword stimuli.

Stimuli were randomly assigned to blocks, and presented in a random order within blocks.

Each trial started with the presentation of the stimulus until the participant responded,

or until a 4 s RT deadline. If participants failed to respond by then, the message “Too

late! Please respond faster.” was displayed for 1.5 s. The intertrial interval was 1.5 s.

Overall, the experiment lasted about an hour.

EMG recording and signal processing

The procedure used for EMG recordings and signal processing was similar to

Experiments 2 and 3. Trials with a high level of noise were discarded from analyses

(10.4% of trials on average; range 0.06-27.3%).
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Models and fit procedure

Drift rate (v), between-trial variability in drift rate (sv), and mean residual time

added to predicted PMT (Te) were the only parameters free to vary between conditions.

We treated the starting point x0 of the evidence accumulation process as a free parameter,

resulting in 14 (22) parameters for the raw (full) GC, and 15 (24) parameters for the

raw (full) GCF. All parameters (except drift rates and x0) were constrained to be ≥

0. Between-trial variability parameters sx0, sTe, sTr, and sλ were constrained to not

exceed 180% of g, Te, Tr, and λ respectively. Parameter sx0 was further constrained to

not exceed 2 ∗ (g − |x0|).

Table E1

Statistics relative to frequency and number of letters for the sample of words used in

Experiment 4

Occurrences per million Letters

Mean SD Mean SD

High frequency words 77.26 142.37 7.05 1.70

Medium frequency words 3.32 0.89 7.03 1.66

Low frequency words 0.72 0.15 7.05 1.70

Very low frequency words 0.04 0.03 7.05 1.69
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