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A dual-stage dual-threshold evidence accumulation theory for decision-making,

motor preparation, and motor execution

Abstract

This article introduces an integrated and biologically-inspired theory of decision-making,

motor preparation, and motor execution. The theory is formalized as an extension of the

diffusion model, in which diffusive accumulated evidence from the decision-making process

is continuously conveyed to motor preparation brain areas, where it is filtered out through

a second accumulation processing stage. The resulting motor preparation variable is then

transmitted to the response-relevant muscles when it exceeds a threshold level of activation,

corresponding to the beginning of motor execution. The transmission continues until a

threshold amount of force has been produced by the muscles to issue the response. We tested

this dual-stage dual-threshold diffusion model by continuously probing the electrical activity

of response-relevant muscles through electromyography (EMG) in four choice tasks that span

a variety of domains in cognitive sciences, namely motion perception, numerical cognition,

recognition memory, and lexical knowledge. The model provided a good quantitative account

of behavioral and EMG data, and systematically outperformed previous models. This work

represents an advance in the integration of processes involved in simple decisions, and sheds

new light into the interplay between decision and motor systems.

Keywords:
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Introduction

Many of our internal choices are communicated to the world, and this communi-

cation requires an interplay between decision and motor systems. For instance, the choice

to vote for a candidate in a presidential election eventually results in the deposit of a bal-

lot in a box. Deciding who to have friendships and relationships with results in concrete

approach/avoidance behaviors. Choices about where to spend our money determine our con-

sumer behavior. Decision and motor systems are also jointly engaged in many experimental

cognitive tasks. For instance, recognition memory tasks, lexical decision tasks, perceptual

decision tasks, numerosity judgment tasks, and conflict tasks all involve a decision between

two or more options (e.g., old/new, greater/less than a quantity), each option being mapped

to a specific motor plan (e.g., manual button press, saccade towards a target, vocal response).

Decision and motor systems have each benefited from extensive research (for reviews, see

Cisek and Kalaska, 2010; Ebbesen and Brecht, 2017; Forstmann et al., 2016; Freedman

and Assad, 2016; Gold and Shadlen, 2007; Lemon, 2008; O’Connell and Kelly, 2021; Rat-

cliff and Smith, 2004; Ratcliff et al., 2016; Robinson, 1973; Schall, 2019; Schall and Paré,

2021; Summerfield and Parpart, 2022), and recent modeling efforts have sought to specify

the relationship between them (Servant et al., 2021; Servant et al., 2015; Verdonck et al.,

2020). However, as will become obvious in the next sections, current computational models

fail to capture important aspects of empirical data, either at the motor preparation or at

the motor execution processing levels. The present work aims to adress these shortcomings

by introducing an integrated computational theory of decision-making, motor preparation,

and motor execution that builds upon a dual-stage dual-threshold evidence accumulation

architecture.

The manuscript is structured as follows. We will first review traditional theoretical

conceptions regarding the relationship between decision and motor stages, and recent neu-

rophysiological data that challenge them. We will then highlight shortcomings of current

modeling approaches, and introduce the dual-stage dual-threshold evidence accumulation
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theory. The theory will be tested against behavioral and neurophysiological data from four

choice tasks that span a variety of domains in cognitive sciences, namely motion perception,

numerical cognition, recognition memory, and lexical knowledge.

Deciding and acting: traditional views and challenges

A traditional view in psychology is that the motor system is engaged when the

decision-maker has committed to an internal choice (Donders, 1969; Johnson-Laird, 1988;

Sternberg, 1969). At a computational level, decision formation has been successfully mod-

eled by an accumulation-to-threshold process, in which noisy evidence from our senses and

memory is accumulated until a threshold quantity of cumulative evidence is attained (e.g.,

Bogacz et al., 2006; Evans and Wagenmakers, 2020; Laming, 1968; Ratcliff and Smith, 2004).

Each accumulator is associated to a specific choice, and the accumulator that first reaches the

threshold determines the choice and the duration of decision formation. The mean latency

of other processing stages is represented by a residual parameter. More or less explicitely, it

is generally assumed that motor latencies are included in this residual parameter, and thus

do not play any role in decision formation. In other words, the motor system is engaged only

once the evidence accumulation variable has reached the threshold.

A growing body of neurophysiological evidence challenges this traditional view how-

ever. Electroencephalographic (EEG) studies have identified two electrical signals that ex-

hibit key signatures of the theoretical accumulation-to-threshold decision variable (for re-

views, see O’Connell and Kelly, 2021; O’Connell et al., 2018). The first signal, termed

centro-parietal positivity (CPP), reflects accumulated sensory evidence, and culminates to a

threshold voltage around the time of the response. The CPP appears whenever an individual

has to make a decision between two options, and shows the same temporal dynamics and

spatial topography regardless of sensory and response modalities. Importantly, the CPP

appears even when participants are instructed to make the decision mentally (without com-

municating the outcome through the motor system; O’Connell et al., 2012), or when the
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stimulus-response mapping is not yet known during stimulus presentation (Twomey et al.,

2016). Although the precise functional interpretation of the CPP requires additional inves-

tigations (O’Connell and Kelly, 2021), these empirical findings suggest that it may reflect a

decision about alternative categories of a stimulus, with a neural generator in the parietal

cortex. The second signal corresponds to effector-selective motor preparation EEG activities

(de Jong et al., 1988; Gratton et al., 1988; Pfurtscheller and Lopes da Silva, 1999), such as

the lateralized readiness potential or the decrease in spectral activity in the mu/beta band

over the motor cortex (in case of left/right manual responses). Similar to the CPP, effector-

selective EEG signals appear to reflect the theoretical accumulation-to-threshold decision

variable. Although ramping electrical activities of the two classes of signals overlap in time

and reach their voltage peak around the time of the response, the onset latency of effector-

selective signals occurs after the onset latency of the CPP (Kelly and O’Connell, 2013). In

addition, effector-selective EEG signals are absent when participants are instructed to make

the decision mentally, or when the stimulus-response mapping is not yet known during stim-

ulus presentation (O’Connell et al., 2012; Twomey et al., 2015). These results suggest that

when decisions are mapped onto actions, the decision variable is represented in motor areas

of the brain that prepare the response. Similar findings have been observed using magne-

toencephalography (de Lange et al., 2013; Donner et al., 2009), functional resonance imaging

(Filimon et al., 2013; Tosoni et al., 2008), transcranial magnetic stimulation (Klein-Flügge

and Bestmann, 2012), and single-unit recordings in awake monkeys (Gold and Shadlen, 2000,

2007; Gold and Shadlen, 2003; Purcell et al., 2010; Ratcliff et al., 2003; Schall, 2019).

Another source of neurophysiological evidence that speaks against strict serial dis-

crete processing between decision and motor stages comes from surface electromyographic

(EMG) studies. EMG is a non-invasive technique that measures the electrical activity of

muscles through electrodes placed on the skin surface. Recording the EMG activity of

response-relevant muscles in a reaction time (RT) task (e.g., muscles of the thenar eminence

for a button press with the thumb) allows researchers to partition each RT into two latencies:
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a premotor time (PMT, from stimulus onset to the EMG onset of the response; see Figure

1) and a motor time (MT, from EMG onset to the response; Botwinick and Thompson,

1966; Weiss, 1965). Recent studies have shown that both mean PMT and mean MT increase

as the perceptual discriminability of the stimulus decreases (Servant et al., 2021; Servant

et al., 2016; Weindel et al., 2021; see also Selen et al., 2012, for similar findings obtained

with a different EMG methodology based on reflex gains). These results demonstrate that

EMG activity reflects a quantity that scales with sensory evidence, and suggest a flow of the

decision variable down to the response-relevant muscles. The flow is not purely continuous,

because EMG bursts have a discrete onset (that occurs ∼150-180 ms on average before the

response for a button press with the thumb, with ∼900 gram-force required; see Servant

et al., 2021).

Modeling the interplay between decision and motor systems

Servant et al. (2021) proposed a dual-threshold evidence accumulation theory to

account for the aforementioned neurophysiological findings at a computational level, with a

particular focus on EMG findings (for an early development of the theory in the context of

conflict tasks, see Servant et al., 2015). The scope of the theory concerns decision-making

problems in which choices are mapped onto actions. The theory assumes that the decision

variable is transmitted to the motor structures that prepare and execute the response. Motor

execution, operationally defined by the electrical excitation of response-relevant muscles, is

thus determined by the same evidence accumulation variable that drives decision-making.

As reviewed in the previous section, studies have shown a representation of the

decision variable in motor areas of the brain that prepare the response (such as the motor

cortex for manual responses). Although several descending pathways are involved in motor

control, the most direct pathway for voluntary muscle excitation involves a direct connection

between corticospinal neurons (originating from the motor cortex) and α-motoneurons that

depolarize muscle fibers (for reviews, see Ebbesen and Brecht, 2017; Lemon, 2008), sup-
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porting the hypothesis that the evidence accumulation decision variable may be transmitted

to the muscles without undergoing significant modulations. This direct pathway appears

particularly involved in the control of distal extremities, and is thought to form the basis of

manual dexterity in primates and humans (Bortoff and Strick, 1993; Porter, 1987). Since

a subtantial proportion of research in experimental psychology involves manual responses,

these neuroanatomical observations are important to consider in theory development.

Servant et al. (2015, 2021) formalized the theory (hereafter referred to as Dual-

Threshold Diffusion Model DTDM) as an extension of the diffusion model (Ratcliff, 1978).

The accumulation process is described by the following stochastic differential equation:

dx(t) = vdt+ σdW (t), x(0) = 0, (1)

where x(t) denotes the accumulated evidence at time t and v the drift rate. The term

σdW (t) represents the stochastic part of the process (Gaussian white noise with mean zero

and variance σ2dt). For simplicity, we assume an unbiased starting point x(0), located at

zero. In the context of a two-choice task involving left versus right manual responses, x(t)

continuously flows to the motor cortex. A first pair of thresholds, referred to as EMG thresh-

olds and represented by parameter ±m, operate at the motor cortex level. EMG thresholds

do not terminate the evidence accumulation process, but simply act as a gating mechanism

that prevents x(t) from being continuously transmitted to the muscles. Specifically, x(t) is

transmitted to the muscles associated to the left manual response if x(t) ≥ m, and to the

muscles associated to the right manual response if x(t) ≤ −m. x(t) continues to evolve until

sufficient EMG activity (and thus force) has been produced to issue the response (e.g., a

button press). This is modeled by introducing another pair of thresholds, termed response

thresholds (parameter ±r, with |r| > |m|). The left response is given if x(t) ≥ r, and the

right response is given if x(t) ≤ −r. In this framework, the difference between |r| and |m| is

determined by the force required to respond: a larger force is associated with a larger differ-

ence. The predicted PMT corresponds to the latency at which x(t) hits an EMG threshold

for the last time before reaching the corresponding response threshold, and the predicted
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MT corresponds to the latency at which x(t) hits the response threshold minus PMT. In ad-

dition, predicted PMT and MT each incorporate residual processing components with mean

duration Te and Tr respectively. At minimum, Te includes stimulus encoding processes

and the corticomuscular transmission time. Tr corresponds to the electromechanical delay

(time lag between muscle excitation and a measurable change in force output). This delay

involves both electrochemical and mechanical processes (e.g., propagation of action poten-

tials, force transmission along the active and passive parts of the series elastic component;

e.g., Cavanagh and Komi, 1979; Hug et al., 2011). In its raw form (without between-trial

variability in any of the model components and with an unbiased starting point of evidence

accumulation), DTDM has five parameters: drift rate v, EMG thresholds ±m, response

thresholds ±r, mean residual latencies Te and Tr.

Because EMG activity is determined by x(t), modulations of drift rate impact both

predicted PMT and MT. Consequently, DTDM predicts an increase in mean PMT and mean

MT as the perceptual discriminability of the stimulus decreases, explaining empirical EMG

findings reported in the previous section. Servant et al. (2021) derived other preditions from

the model. First, the rising slope of rectified1 and averaged EMG bursts should reflect drift

rate, and should thus decrease as perceptual discriminability decreases. Second, for any

given drift rate, the distributions of PMT and MT should exhibit a similar right-skewed

shape, which should translate into an approximately linear PMT quantile-MT quantile plot.

Third, DTDM predicts partial EMG bursts (i.e., EMG bursts that do not generate sufficient

force to issue the response) during PMT, when x(t) oscillates around an EMG threshold,

due to accumulation of noise (see Equation 1, Figure 1, and supplementary Figure 1). The

proportion of trials containing at least one partial EMG burst during PMT and the latency

of the first partial burst should increase as drift rate decreases. Fourth, the between-trial

correlation between PMT and MT should be null, due to the Markov property of the diffusion

1 EMG rectification consists in taking the absolute value of voltages across time points (see Figure 1). The

rectified EMG amplitude scales with the level of global muscle excitation (Vigotsky et al., 2018).



DECIDING AND ACTING 10

process (given the present, the future does not depend on the past).

To test these predictions, Servant et al. (2021) recorded the EMG activity of muscles

associated with left/right manual responses in a random dot motion task. In each trial,

participants had to determine the global direction (left versus right) of moving dots, and

press the corresponding response button with their left or right thumb. The proportion p of

dots moving coherently in the left or right signal direction, termed motion coherence, was

manipulated across six levels (p = 0, .05, .08, .12, .2, .4), in order to modulate the perceptual

difficulty of the decision. The EMG data provided evidence for each prediction 2. In addition,

fits of DTDM to the joint distributions of PMT and MT in correct and incorrect trials and

to accuracy data were good, providing quantitative evidence for the model architecture.

However, Servant et al. (2021) did not attempt to fit the proportion and latency

of partial EMG bursts, nor did they examine the predictive accuracy of the model with

respect to these variables. Figure 2A shows the observed versus predicted proportion of

correct trials containing at least one partial EMG burst during PMT (upper plot) and the

mean latency of the first partial EMG burst (lower plot) averaged across subjects for each

motion coherence condition. Model predictions are computed using best-fitting parameters

from Servant et al. (2021), and 100,000 simulated trials per condition. DTDM strongly

overestimates the proportion of correct trials containing at least one partial burst during

PMT, and underestimates the average latency of the first partial burst, especially for low

coherence levels. Similar results were obtained when considering both correct and incorrect

trials, and by taking the median latency of the first partial burst. One could argue that a

proportion of partial bursts reflects artifacts such as tonic activity (caused by a lack of relax-

ation of response-relevant muscles). However, this hypothesis predicts an underestimation

2 The only apparent discrepancy concerned the between-trial correlation between PMT and MT. This

correlation was slightly positive on average in the data, and there was some variability between

participants, presumably due to the impact of noise on EMG onset detection. Additional simulations of

DTDM showed that the model could predict a small positive correlation between PMT and MT when

between-trial variability in drift rate is incorporated.
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of the proportion of partial bursts by the model. These results demonstrate that the amount

of within-trial noise predicted by DTDM is too large, causing too many oscillations around

EMG thresholds, and suggest that we have missed a processing step.

As reviewed in the previous section, EEG studies have identified two electrical sig-

nals that exhibit key signatures of the theoretical accumulation-to-threshold decision vari-

able, with important functional differences. The first signal (the CPP) appears to perform

a decision about alternative categories of a stimulus, and is fully supramodal. We refer to

this processing stage as decision-making. The second signal corresponds to effector-selective

motor preparation activities. Decision-making and motor preparation EEG signals also ex-

hibit a different sensitivity to strategic influences, as manipulations of response bias and

speed-accuracy modulate motor preparation signals but not the CPP (Kelly et al., 2021;

Steinemann et al., 2018). DTDM approximates decision-making and motor preparation by

a single evidence accumulation diffusion process, but this assumption does not capture the

lag between the two corresponding EEG signals, nor does it capture their anatomical and

functional differences. The same criticism applies to the diffusion model, or to other single-

stage evidence accumulation models such as the leaky competing accumulator (Usher and

McClelland, 2001), the linear ballistic accumulator (Brown and Heathcote, 2008), racing

diffusion models (Ratcliff et al., 2003; Tillman et al., 2020), and Poisson counter models

(Ratcliff and Smith, 2004; Vickers, 1970).

Verdonck et al. (2020) recently developped a dual-stage theory as an attempt to

reconcile evidence accumulation models with neurophysiological findings related to decision-

making and motor preparation. The theory assumes two distinct accumulation processes.

The first accumulates sensory evidence, and corresponds to the decision variable. The second

takes the decision variable as a continuous input, and corresponds to the motor preparation

variable. The response is executed when the motor preparation variable reaches a threshold

level of activation. This dual-stage architecture for decision-making and motor preparation

provides a straightforward explanation to the temporal overlap between corresponding neu-
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rophysiological activities, their rise-to-threshold morphology, and the modulation of their

respective accumulation rate by stimulus difficulty. It also allows for a specific influence of

strategic processes on each processing stage.

The theory further assumes that the decision variable is filtered during motor prepa-

ration. The filtering process increases the signal-to-noise ratio of the decision variable, at the

cost of a temporal delay between decision-making and motor preparation. The filter-related

delay contributes to the observed lag between the onset latency of the two corresponding neu-

rophysiological signals, along with a necessary transmission time between decision-making

and motor preparation brain areas. At the behavioral level, stronger filtering increases the

probability of giving a correct response, at the cost of longer RTs (and conversely). Con-

sequently, the filtering process may contribute to the speed-accuracy tradeoff phenomenon

(slower decisions are more accurate and conversely; for reviews, see Bogacz et al., 2010;

Heitz, 2014).

Verdonck et al. (2020) formalized this theory (termed "leaky integrated threshold")

as an extension of the diffusion model. Specifically, decision-making and motor preparation

are modeled by variables x(t) and y(t) respectively. x(t) is similar to Equation 1. y(t)

takes x(t) as a continuous input, and performs a leaky accumulation of x(t) according to the

following differential equation:

dy(t) = (βx(t)− λy(t))dt, y(0) = x(0), (2)

where λ(> 0) corresponds to the leak parameter and β corresponds to a scaling parameter

for the input. The response is executed when the motor preparation variable y(t) reaches one

of two thresholds. y(t) essentially acts as a smoothing filter of x(t), which can be understood

by looking at the solution for y(t):

y(t) = β
∫ t

−∞
dt′x(t′)eλ(t′−t). (3)

The value of the decision variable at t − t′ seconds before the current time t con-
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tributes for x(t′)eλ(t′−t) to the value of the motor preparation variable at time t. The motor

preparation variable y(t) thus corresponds to the weighted sum of past states x(t′) of the

decision-making variable, with weights exponentially decreasing at rate λ (the leak param-

eter). When λ approaches infinity, the weights tend to zero, and the model reduces to the

diffusion model. Conversely, as λ decreases, the number of past states of the decision-making

variable contributing to the motor preparation variable increases. This results in a reduction

of random noise (i.e., a filtering effect). Verdonck et al. (2020) further showed that for large

values of t, the mean of y(t) is delayed by λ−1 relative to the mean of x(t), corrersponding

to the filter-related delay. Although Verdonck and colleagues did not test the model against

neurophysiological data, they showed that it provides a better account of behavioral data

than the diffusion model in three datasets (a face/car discrimination task, a lexical decision

task, and a random dot motion task). Two of these datasets included a speed-accuracy

manipulation, which was better explained by a variation of leakage than the variation of

threshold separation commonly assumed in the literature (larger separation generates slower

and more accurate decisions; Bogacz et al., 2006; Ratcliff, 1978; Ratcliff and Smith, 2004).

The dual-stage model from Verdonck et al. (2020) provides a theoretical account of

decision-making and motor preparation, but fails to account for properties of motor execu-

tion. This failure stems from the single-threshold assumption of the model. If the threshold

operates at the motor preparation level, as in the original model definition, the choice is

categorically communicated to the muscles for execution, and the model cannot account

for the modulation of mean MT by stimulus discriminability and partial EMG bursts. Al-

ternatively, one may assume that the threshold operates at the motor execution level and

corresponds to the response. This hypothesis, however, would lead to a continuous activation

of response-relevant muscles, at odds with the discrete nature of EMG bursts. It follows that

the dual-stage model from Verdonck et al. (2020) should be combined with the dual-threshold

assumption from DTDM to provide a complete theoretical account of decision-making, motor

preparation, and motor execution processes. We introduce this Dual-Stage Dual-Threshold
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Diffusion Model (DSDTDM) in the next section, and show how the model can capture partial

EMG burst statistics.

The dual-stage dual-threshold diffusion model

An illustration of DSDTDM is provided in Figure 1. Decision-making and motor

preparation are modeled by x(t) (Equation 1) and y(t) (Equation 2) respectively. The

motor preparation variable y(t) is transmitted to the response-relevant muscles when |y(t)| ≥

|m|, corresponding to the beginning of motor execution. The transmission persists until a

sufficient amount of EMG activity (and thus force) has been produced to issue the response,

which formally corresponds to |y(t)| ≥ |r|. DSDTDM thus combines modeling developments

from Servant et al. (2015, 2021) and Verdonck et al. (2020) to provide an integrated and

biologically-inspired model of decision-making, motor preparation, and motor execution.

Within DSDTDM, the evidence filtering mechanism occuring at the motor prepa-

ration level should reduce the predicted proportion of partial EMG bursts, and increase their

mean latency (due to the filter-related delay). Figure 2B shows simulations of the model with

varying levels of leak λ and drift rate v. Similar to DTDM, the model predicts an increase

in the proportion of correct trials containing at least one partial EMG burst during PMT

(upper plot) and an increase in the averaged latency of the first partial burst as drift rate

decreases (lower plot). Importantly and as predicted, the former decreases and the latter

increases as the amount of leak decreases. Additional analyses of simulated data showed that

DSDTDM predicts an increase in mean PMT and mean MT as drift rate decreases for each

level of leak, and an approximately linear PMT quantile-MT quantile plot. Interestingly,

low leak levels produce a small positive between-trial correlation between PMT and MT,

especially for high drift rates (Supplementary Figure 2). This complex pattern results from

two opposite forces: the Markov property of the diffusion process on the one hand (that

predicts a null correlation between PMT and MT) and the filtering process on the other

hand (that reduces random fluctuations and positively increases the correlation). Because
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Figure 1

Architecture of the Dual-Stage Dual-Threshold Diffusion Model (DSDTDM) of

decision-making, motor preparation, and motor execution

Note. The decision variable x(t) accumulates evidence from the stimulus according to Equation
1. The motor preparation variable y(t) takes x(t) as a continuous input, and performs a leaky
accumulation of x(t) according to Equation 2. In the context of a choice task involving left versus
right manual responses, y(t) is assumed to take place at the motor cortex level. EMG and response
thresholds (parameters ±m and ±r respectively) operate on y(t). y(t) is transmitted to the muscles
associated with the left manual response if y(t) ≥ m, and to the muscles associated with the right
manual response if y(t) ≤ −m. The transmission persists until a sufficient amount of EMG activity
(and thus force) has been produced to issue the response, which formally corresponds to |y(t)| ≥ |r|.
In this example, the model predicts two partial EMG bursts in the left EMG channel before the
EMG burst associated to the left response. The predicted PMT corresponds to the latency at
which y(t) crosses an EMG threshold for the last time before reaching the corresponding response
threshold. The predicted MT corresponds to the latency at which y(t) hits the response threshold
minus PMT. In addition, PMT and MT each incorporate residual processing components with
mean duration Te and Tr respectively. At minimum, Te includes stimulus encoding processes and
the corticomuscular transmission time. Tr corresponds to the electromechanical delay.

processing components are likely variable from trial to trial (e.g., Laming, 1968; Ratcliff and

Rouder, 1998), we explored the effect of between-trial variability in DSDTDM parameters.

The only noticeable difference in model predictions was caused by between-trial variability
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in drift rate (normally distributed with mean v and standard deviation sv). This source of

variability produces a positive between-trial correlation between PMT and MT, especially

for low leak and high drift rate levels (Supplementary Figure 3). It also predicts a slightly

curvilinear PMT quantile-MT quantile plot (the departure from linearity increases as sv

increases).

Figure 2

Partial EMG bursts statistics in a random dot motion task with varying levels of motion

coherence and model predictions

Note. A: Proportion of correct trials containing at least one partial EMG burst during PMT (upper
plot) and mean latency of the first partial burst (lower plot) averaged across subjects as a function
of motion coherence. Observed data are shown as black dots, and DTDM predictions are shown
as red crosses. B: DSDTDM simulations, with varying levels of leak λ and drift rate v. Apart
from the leak parameter, simulations used best-fitting DTDM parameters averaged across subjects
reported by Servant et al. (2021) and 100,000 simulated trials per condition.

Given the complexity of DSDTDM, it is difficult to guarantee that these predic-

tions are robust across the whole (plausible) parameter space. In our opinion, a complete

test of the model requires three key ingredients: (i) a quantitative fit to both behavioral
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and electrophysiological data (EEG and EMG); (ii) a comparison with DTDM as a bench-

mark using model selection techniques; (iii) an evaluation of the fit quality of the model to

both electrophysiological and behavioral data from a range of choice RT tasks that tap into

different cognitive domains. The latter is important, because it will offer an assessment of

the generality of the model and delineate potential boundary conditions of application. We

aimed to incorporate the three ingredients in the present work, in order to provide the first

attempt to jointly model decision-making, motor preparation, and motor execution process-

ing stages. However, we restricted our analyses to behavioral and EMG data from choice

tasks that tap into four different cognitive domains (motion perception, numerical cognition,

recognition memory, and lexical knowledge) in order to maintain a manageable amount of

electrophysiological and modeling work. Although EEG data could supplement our assess-

ment of decision-making and motor preparation processes, the poor signal-to-noise ratio of

EEG precludes a reliable evaluation of the hypothesis that the decision variable is filtered

at the motor preparation level. EMG data offers a unique way to test this hypothesis, as

explained previously.
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Experiment 1: Motion perception

As a first step, we fit DSDTDM to the joint distributions of PMT and MT in

correct and incorrect trials and to accuracy data from the left/right random dot motion

task of Servant et al. (2021). The drift rate v was the only parameter free to vary across

motion coherence levels. We predicted a better performance (balance between fit quality

and parsimony) of DSDTDM compared to DTDM, especially with regards to partial EMG

burst statistics. Arguably, there are several ways to incorporate partial burst statistics into

the loss function quantifying the discrepancy between data and model predictions. We chose

the following scheme for its simplicity. Accuracy data was divided into six trial types: (i)

pureC (correct response, no partial EMG burst during PMT); (ii) CC (correct response,

at least one partial EMG burst during PMT, first partial burst located in the correct EMG

channel); (iii) IC (correct response, at least one partial EMG burst during PMT, first partial

burst located in the incorrect EMG channel); and so forth for incorrect responses (pureI, II,

CI ). The proportion of each of these six trial types was incorporated into the loss function.

Comparisons between DSDTDM and DTDM were performed with and without between-trial

variability in processing components, in order to examine the robustness of findings.

Method

Critical details of the experiment are presented below, but readers are directed to

Servant et al. (2021) for full details. Eighteen healthy and right-handed participants (two

men; age range: 18-32; mean age: 21.1) from the University of Franche-Comté performed a

random dot motion task with six levels of coherence (0, .05, .08, .12, .2, .4). In each trial,

participants had to determine the global direction (leftward versus rightward) of dots, and

press the corresponding response button with their left or right thumb. The force required

to press each button was ∼900 gram-force. A relatively high force level was used in order

to increase the separation between theoretical EMG and response bounds, and maximize

the probability of detecting motion coherence effects on mean MT. The EMG activity of
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response-relevant muscles (the flexor pollicis brevis in particular) was recorded by means of

two electrodes fixed 1 cm apart on the skin of the thenar eminence of each hand. Participants

performed 12 blocks of 96 trials each, with a short break between blocks. Within each block,

trials were defined by a factorial combination of motion direction (left versus right) and

motion coherence (six levels). All types of trials occured equally often, and were presented

in a random order. Each trial started with the presentation of the random dot motion

stimulus, which remained on the screen until the participant responded. A RT deadline was

set to 5 s, and the interval between the response to the stimulus and the next trial was 1.5

s.

Bipolar EMG signals (sampling rate = 1024 Hz) were high-pass filtered using a

10 Hz cut-off (3rd order Butterworth filter) and epoched -0.5 s to 5 s relative to stimulus

onset. For each epoch, EMG burst onsets were detected using a three-step semi-automatic

procedure (see Servant et al., 2021). EMG onsets could sometimes not be detected due to

high tonic muscular activity (7.5% of trials on average; range 0.2-24%), and these trials were

discarded from all analyses.

Models and fit procedure

DTDM and DSDTDM were coded in C, using the method and framework of Evans

(2019). The fit procedure was coded in Python. The time step was set to .001 s and the

diffusion coefficient σ (see Equation 1) was fixed at .1 to avoid complications arising from

the scaling property of the models (see Donkin, Brown, et al., 2009). Following Verdonck

et al. (2020), we further removed a redundant parameter in DSDTDM. Observe that the

motor preparation process y(t), the separation between EMG thresholds, and the separation

between response thresholds can be multiplied by the same factor λ
β
without changing model

predictions. Susbtituting y(t) by y′(t)β
λ
in Equation 2 gives:

dy′(t) = (λx(t)− λy′(t))dt, y′(0) = x(0). (4)
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This simple rescaling removes parameter β. In its raw form (i.e., without between-trial

variability in any of the model parameters), DSDTDM thus has 11 free parameters: one drift

rate v for each of the six motion coherence levels, EMG thresholds ±m, response thresholds

±r, mean residual latencies Te and Tr, and the leak parameter λ). Following Servant

et al. (2021), we fixed the starting point of the evidence accumulation process halfway

between EMG and response thresholds, since left and right responses were equiprobable.

Relaxing this contraint did not change model selection results, and had a negligible impact

on the goodness-of-fit of the models. The raw DTDM has 10 free parameters (all DSDTDM

parameters except λ), and the full DTDM has four additional parameters (between-trial

variability in drift rate sv, starting point sz, and mean residual latencies sTe and sTr). sv

corresponds to the standard deviation of a Gaussian distribution with mean v. sz, sTe, and

sTr correspond to the range of a uniform distribution with mean z, Te, and Tr respectively.

These distributional assumptions are directly inherited from standard applications of the

diffusion model (Boehm et al., 2018; Ratcliff and Rouder, 1998; Voss et al., 2004; Wiecki

et al., 2013). The full DSDTDM has one additional between-trial variability parameter,

corresponding to between-trial variability in leakage (uniformally distributed with range sλ

and mean λ). A uniform distribution was chosen because we do not have any theoretical

assumption about the distributional shape of variability in leakage.

The models were fit to each individual dataset by minimizing the following loss

function (likelihood-ratio chi-square statistic):

G2 = 2
6∑
i=1

6∑
j=1

6∑
k=1

6∑
l=1

nijkllog(
nijkl

pred_nijklNi

simul_Ni

). (5)

Summations over i and j extend over the 6 motion coherence levels and the six trial types

(pureC, CC, IC, pureI, II, CI; see introduction section of this experiment) respectively.

Summations over k and l extend over the six bins bounded by PMT quantiles (.1, .3, .5,

.7, and .9) and the six bins bounded by MT quantiles (.1, .3, .5, .7, and .9) respectively3.

3 If subjects made a number of errors comprised between five and 10 in a given condition, a median split
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The variables nijkl and pred_nijkl refer to the observed and predicted number of trials in

coherence condition i, trial type j, PMT bin k, and MT bin l. Finally, the variables Ni and

simul_Ni refer to the observed and simulated number of trials in coherence condition i, and

log refers to the natural logarithm. The G2 statistic thus characterizes the goodness-of-fit

of the model to the joint distributions of PMT and MT and to the proportion of each of

the six trial types. It was minimized using differential evolution (Storn and Price, 1997) and

20,000 simulated trials per condition. Observe that we did not incorporate the latency of

partial bursts into the G2 formula, in order to mitigate the potential impact of artifactual

partial bursts on the fit quality of other aspects of the data. The latency of partial bursts

can thus be considered as out-of-sample data, and the comparison between these data and

model predictions will serve as a generalization test of the models.

Before turning to model comparison techniques, it is important to remember that

DTDM is nested in DSDTDM (see general introduction): the two models are equivalent

when the leak parameter λ approaches infinity. Consequently, a low best-fitting leak value

would indicate that DSDTDM adds to a DTDM description of the data. The key question

is whether this improvement in fit quality is sufficiently important to justify the additional

complexity of the DSDTDM model. To answer this question, the G2 was converted to both

AIC and BIC model selection statistics:

AIC = G2 + 2m, (6)

BIC = G2 +mlog(N), (7)

where m corresponds to the number of free parameters, log corresponds to natural loga-

rithm, and N equals the number of observations used in the G2 computation. BIC and AIC

thus both penalize for model complexity, but in a different way. Since both statistics have

was used to form two bins. It there were fewer than five errors, error RTs for the condition were excluded

from the G2 calculation.
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advantages and drawbacks (Vrieze, 2012), we report both of them, hoping for consistency

between model decisions. For each individual subject, the best model is the one associated

with the smallest AIC or BIC. If 13 (or more) out of 18 subjects support one model over the

other in terms of AIC or BIC (two-sided binomial test), then the result is significant.

Results

DSDTDM was associated with lower AIC and BIC statistics compared to DTDM

for each of the 18 subjects of the experiment, and for both raw and full model variants

(Figure 3A). The difference in AIC and BIC between raw and full models was much smaller

for DSDTDM compared to DTDM, indicating that between-trial variability in DSDTDM

parameters has a minor impact on model performance, contrary to DTDM. In fact, the raw

DSDTDM was associated with lower AIC (BIC) statistics compared to the full DTDM for

16 (15) subjects. This analysis provides strong evidence for the superiority of DSDTDM.

Best-fitting parameters for the full models are shown in Table 1 (main parame-

ters) and Table 2 (between-trial variability parameters). Best-fitting parameters for the raw

models are shown in Supplementary Table 1. As predicted, both raw and full DSDTDM

capture the EMG data with a low level of leakage, indicating strong filtering of the evidence

accumulation variable during motor preparation (model trajectories for decision-making and

motor preparation variables computed from best-fitting parameters averaged across subjects

are illustrated in Figure 4A). Note that the amount of between-trial variability in the best-

fitting full model components was higher for DTDM compared to DSDTDM, especially for

residual latencies (parameters sTe and sTr).

Figure 5 displays the goodness-of-fit of the full models to several aspects of the

data. DSDTDM predictions are displayed in red, DTDM predictions in green, and the data

in black. Figure 5A shows observed versus predicted mean PMT (upper plot) and mean

MT (lower plot) in correct trials averaged across subjects. Figure 5B displays observed

versus predicted quantile probability functions for both PMT (upper plot) and MT (lower
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plot) distributions averaged across subjects. Quantile probability functions are constructed

by plotting PMT or MT quantiles (y-axis) of the distributions of correct and incorrect

responses for each condition against the corresponding response type proportion (x-axis).

Five quantiles (.1, .3, .5, .7, .9) were chosen to provide a summary of the shape of PMT

and MT distributions. If PMT and MT are uniformly distributed, the temporal separation

between adjacent quantiles should be constant. If PMT and MT both exhibit a right-skewed

shape, as evidenced in our previous work (Servant et al., 2021) and visible in Figure 5B,

the temporal separation between .7 and .9 quantiles should be larger than the separation

between .5 and .7 quantiles, the separation between .5 and .7 quantiles should be larger than

the separation between .3 and .5 quantiles, and so on. Quantile probability functions thus

represent a synthetic way to examine the shape of PMT and MT distributions for correct and

incorrect responses, and how this shape varies across conditions (for a thorough treatment

of quantile probability functions, see Ratcliff and Smith, 2004). Note that the five PMT

and MT quantiles for incorrect responses in a given condition are displayed if each subject

made at least 10 errors in that condition (the three easiest motion coherence conditions did

not fulfill this criterion). Figure 5C shows the observed versus predicted proportion for each

of the six trial types (pureC, CC, IC, pureI, II, CI) averaged across subjects. Figure 5D

shows the observed versus predicted proportion of correct trials featuring at least one partial

EMG burst during PMT (upper plot), and the mean latency of the first partial EMG burst

averaged across subjects (lower plot). Figure 5E displays the observed versus predicted PMT

quantile-MT quantile plot (computed from nine decile points) from correct trials averaged

across subjects. Finally, Figure 5F shows the observed versus predicted between-trial Pearson

correlation coefficient between PMT and MT in correct trials for each subject (scattered dots

and crosses), as well as the correlation averaged across subjects (horizontal lines). The data

shown in the lower plot of Figure 5D (mean latency of the first partial EMG burst in correct

trials) and Figure 5F (between-trial Pearson correlation between PMT and MT) were not

factored out in parameter estimation, and serve as a generalization test of the models.
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Figure 3

Model selection statistics for Experiments 1-4

Note. Panels A-D correspond to Experiments 1-4.

Overall, the full DSDTDM provides a good account of the data, though a few

minor discrepancies are apparent. First, the model overestimates the .9 quantile of PMT

distibutions as motion coherence decreases, especially for incorrect trials. Second, the model

overestimates the mean latency of the first partial EMG burst in correct trials, though this

discrepancy is reduced for low motion coherence levels, where the proportion of correct trials

containing at least one partial EMG burst is the largest. Finally, the predicted between-trial

correlation between PMT and MT for each individual subject shows less dispersion com-

pared to observed data, likely due to noise in EMG onset detection. In addition, the model

slightly overestimates the correlation for the highest motion coherence level. As discussed

previously (see general introduction and supplementary Figures 2 and 3), DSDTDM predicts

a positive correlation when a high drift rate is combined with a low leakage level, especially

if between-trial variability in drift rate is incorporated. It is difficult to determine whether
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this discrepancy is due to a problem in the DSDTDM architecture or to a misspecification of

drift rate distributions, given that the model does not incorporate representational assump-

tions specifying how these distributions arise from the random dot motion stimuli. We will

address this limitation in the next experiment.

In its raw form, DTDM grossly overestimates proportions of trials containing at

least one partial EMG burst during PMT, replicating the failure of the model highlighted in

the general introduction section. Since this failure was apparent in each of the four experi-

ments presented in this paper, the raw DTDM will no longer be discussed. The full DTDM

provides a better account of the six trial types (pureC, CC, IC, pureI, II, CI), though the

model overestimates the proportion of CC trials as motion coherence increases. The better

performance of the full DTDM comes from a smaller separation between EMG and response

bounds, but this modulation has several negative consequences. Most importantly, the pre-

dicted mean MT essentially corresponds to the mean residual latency added to predicted MT

(parameter Tr), and the predicted variability in MT is mostly driven by the between-trial

uniform variability in this latency (sTr). As a consequence, the model strongly underesti-

mates the effect of motion coherence on mean MT, and fails to account for the right-skewed

distibution of MTs (observe the constant temporal separation between adjacent MT quantiles

predicted by the model in Figure 5B, diagnostic of a uniform distribution).
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Figure 4

Trajectories of decision-making x(t) and motor preparation y(t) variables computed from

the full DSDTDM using best-fitting parameters averaged across subjects from Experiments

1-4

Note. Panels A-D correspond to Experiments 1-4. For each experiment, two trials (red and
green trajectories) were simulated using best-fitting DSDTDM parameters averaged across subjects,
with the constraint of giving decision times in range .2-.3 s (red trajectory) and .5-.6 s (green
trajectory) to facilitate comparison between experiments. Between-trial variability parameters
were set to 0, and drift rate corresponded to condition coherence = 8% for Experiment 1, mean
numerosity = 58 for Experiment 2, old two presentations for Experiment 3, and very low frequency
words for Experiment 4. The decision-making variable (x(t), dashed line) was simulated according
to Equation 1, and the motor preparation variable (y(t), plain line) was simulated according to
Equation 4.
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Figure 5

Data from a random dot motion task with varying levels of motion coherence (black) plotted

against predictions from the full DSDTDM (red) and the full DTDM (green)

Note. Model predictions are computed from best-fitting parameters, using 100,000 simulated trials
per condition. The six panels A-F display different aspects of the data. A: Mean PMT (y-axis,
upper plot) and mean MT (y-axis, lower plot) in correct trials as a function of motion coherence
(x-axis) averaged across subjects. B: Quantile probability functions averaged across subjects for
each motion coherence condition, constructed by plotting PMT quantiles (.1, .3, .5, .7, .9; y-axis,
upper plot) and MT quantiles (.1, .3, .5, .7, .9; y-axis, lower plot) of the distributions of correct and
incorrect responses against the corresponding response type proportion (x-axis). The five PMT
and MT quantiles for incorrect responses in a given condition are displayed if each subject made
at least 10 errors in that condition. C: Proportion of each of the six trial types described in the
introduction section of this experiment (pureC, CC, IC, pureI, II, CI) for each motion coherence
condition averaged across subjects. D: Proportion of correct trials featuring at least one partial
EMG burst during PMT (y-axis, upper plot) and mean latency of the first partial burst (y-axis,
lower plot) as a function of motion coherence (x-axis) averaged across subjects. E: MT quantiles (y-
axis) plotted against PMT quantiles (x-axis) from correct trials for each condition averaged across
subjects. Quantiles are computed from nine decile points. F: Between-trial Pearson correlation
coefficient between PMT and MT in correct trials for each motion coherence condition. Observed
data and model predictions for each individual subject are shown as scattered black points and red
crosses respectively. Observed data and model predictions averaged across subjects are shown as
black and red horizontal lines respectively.
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Table 2

Between-trial variability parameters from the full DTDM and DSDTDM models averaged

across subjects for Experiments 1-4.

Exp Model sv1 sv2 sv3 sv4 sv5 σ1 η0 sz sTe sTr sλ

1 DTDM 0.161 0.116 0.357 0.157

1 DSDTDM 0.158 0.094 0.216 0.073 33.507

2 DTDM 0.007 0.050 0.098 0.422 0.133

2 DSDTDM 0.001 0.042 0.060 0.225 0.078 82.803

3 DTDM 0.439 0.427 0.426 0.274 0.065 0.327 0.113

3 DSDTDM 0.335 0.313 0.263 0.163 0.052 0.204 0.065 86.538

4 DTDM 0.522 0.435 0.372 0.312 0.267 0.071 0.456 0.107

4 DSDTDM 0.334 0.266 0.208 0.195 0.122 0.057 0.350 0.075 146.702

Note. Experiment 3 (recognition memory): parameters sv1 to sv4 correspond to between-trial
variability in drift rate for conditions old one presentation, old two presentations, old four
presentations, and new respectively. Experiment 4 (lexical knowledge): parameters sv1 to sv5
correspond to between-trial variability in drift rate for conditions very low frequency words, low
frequency words, medium frequency words, high frequency words, and pseudowords respectively.
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Experiment 2: Numerical cognition

Many tasks in numeracy research involve a decision between two responses based

on the magnitude of some non symbolic stimulus. For example, subjects have to determine

which of two arrays that are spatially separated feature the larger amount of dots, or whether

an array of dots contains more blue or yellow dots. Here we use another common task

in numeracy research in which subjects have to determine whether the number of dots

randomly scattered in a 10×10 virtual array is greater or less than a criterion quantity (50).

Performance is slower and less accurate when the difference between the number of dots and

the criterion is small (e.g., 45 or 55 dots) compared to when it is large (e.g., 30 or 70 dots).

Ratcliff and colleagues have demonstrated that the diffusion model captures RT distributions

for correct and incorrect responses and accuracy data in this task with a variation of drift

rate across numerosity conditions (e.g., Ratcliff and Childers, 2015; Ratcliff et al., 2010).

Ratcliff and McKoon (2018) further showed that the modulation of drift rate could arise from

an approximate number representation in which numerosities are represented as Gaussian

distributions, with the mean and standard deviation of these distributions increasing linearly

with numerosity (Dehaene, 2003). In this framework, the drift rate corresponds to the

difference between the number of dots and the criterion, scaled by a free parameter (to

account for interindividual differences in discrimination performance). Consequently, both

DTDM and DSDTDM predict an increase in mean MT as the number of dots approaches

the criterion, resulting in an inverted U-shaped function of numerosity (with a peak around

50). The models were fit to data and compared using the same procedure as in Experiment

1.

Method

Participants

Manipulations of numerosity produce smaller modulations of mean RT compared

to motion coherence manipulations. Consequently, we increased the sample size from 18
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to 24 subjects in order to maintain a reasonable amount of statistical power while keeping

electrophysiologial and modeling work in manageable proportions.

Twenty-four students (five men; mean age: 20.6) from the University of Franche-

Comté took part in the experiment in exchange for course credits or as volunteers. All

subjects met the following criteria: being 18 to 30 years old, being right-handed, having

a normal or corrected vision, and having no history of motor, psychiatric or neurological

disorder. Subjects were not aware of the purpose of the experiment and provided written

consent to participate. This study was approved by the ethical committee for research of

the University (agreement n°CERUBFC-2022-01-18-002).

Appartus

The experiment took place in a dimly lit room. Subjects sat on a comfortable

chair at a distance of 75 cm from a 34.7 × 19.5 cm LCD monitor (resolution: 1920 ×

1080; framerate: 60 Hz). The experiment was programmed in python, using functions from

the PsychoPy library (Peirce et al., 2019). Response buttons were identical to those used

in Experiment 1. Subjects’ hands were faced palm-down, resting on a supportive cushion

placed on their laps in order to minimize tonic muscular activity and maximize comfort.

Stimuli

For each trial, between 31 and 70 black dots were displayed on a grey background

screen, in random positions within a 10 x 10 virtual grid. Each dot was 0.24° in diameter.

The horizontal and vertical separation between two adjacent dots (from center to center)

was 1.15°.

Procedure

Participants were instructed to press the left button with their left thumb if they

judged the number of dots displayed was less than or equal to 50, and the right button

with their right thumb if they judged it was greater. Left responses to 31-50 dots and right
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responses to 51-70 dots were counted as correct. Participants were told not to count the dots

but instead provide a global and rapid estimation of their number. Dots remained on the

screen until the participant responded. A RT deadline was set to 4 s. If participants failed

to respond by then, the message “Too late! Please respond faster.” was displayed for 1.5 s.

The intertrial interval was 1.5 s. Participants first completed a pratice block of 40 trials,

containing each of the 40 numerosity conditions presented in a random order. A feedback on

performance ("Correct response" or "Incorrect response") was displayed for 1.5 s after each

response. Practice trials were not considered in the analyses. Subjects then completed 30

blocs of 40 trials with a similar structure, except that no feedback was provided after each

response. Blocks were separated by self-paced breaks. The experiment lasted about an hour.

EMG recordings and signal processing

The procedure used for EMG recordings and signal processing was similar to Ex-

periment 1, except that EMG signals were epoched -0.5 s to 4 s relative to stimulus onset.

Trials with high tonic muscular activity were discarded from analyses (2.7% of trials on

average; range 0-11.7%).

Models and fit procedure

The data was grouped into 8 conditions (31-35 dots; 36-40; 41-45; 46-50; 51-55;

56-60; 61-65; 66-70), represented by the mean number of dots N of each bin (33, 38, 43, 48,

53, 58, 63, 68). Following Ratcliff and McKoon (2018), we assumed that the drift rate v of

DTDM and DSDTDM is a linear function of N and the criterion (50):

v = dc+ v1(N − 50), (8)

where v1 accounts for interindividual differences in discrimination performance and dc (drift

criterion) accounts for interindividual variations in the representation of the criterion. Between-

trial variability in drift rate sv was defined as:

sv = η0 + σ1
√
N2 + 502. (9)



DECIDING AND ACTING 33

All parameters were fixed across numerosity conditions. We treated the starting point z of

the evidence accumulation process as a free parameter, resulting in seven (12) free parameters

for the raw (full) DTDM and eight (14) free parameters for the raw (full) DSDTDM4. The fit

procedure was identical to that used in Experiment 1, except that we modeled ’lesser than’

and ’greater than’ responses (instead of incorrect/correct responses, due to the starting

point of the evidence accumulation process being free to vary), corresponding to lower and

upper response bounds respectively. As a consequence, the six trial types considered in the

fit procedure were pureL (’lesser than’ response, no partial EMG burst during PMT), LL

(’lesser than’ response, at least one partial EMG burst during PMT, first partial burst located

in the ’lesser than’ EMG channel), GL (’lesser than’ response, at least one at least one partial

EMG burst during PMT, first partial burst located in the ’greater than’ EMG channel), and

so forth for ’greater than’ responses (pureG, GG, LG). Model selection statistics (AIC and

BIC) were computed using Equations 6 and 7. By a two-sided binomial test, if 17 out of 24

subjects support one model over the other, then the result is significant.

Results

Behavior and EMG

Anticipations (RTs < 150 ms; 0%) and trials in which participants failed to respond

before the 4 s deadline (0.12%) were discarded from analyses. The data were analyzed

by means of quadratic contrasts (two-sided) with numerosity as within-subjects factor and

specific error terms (as recommended for within-subjects designs; e.g., Boik, 1981). Accuracy

data exhibited a U-shaped function of numerosity (t(23) = 31.36, p < .001), reflecting the

increased proportion of errors as numerosity approaches the criterion. Consistent with model

predictions, mean RT, mean PMT, and mean MT showed an inverted U-shaped function of

4 Ratcliff and McKoon (2018) also evaluated a model variant in which subjects solve the task by comparing

the number of dots to the number of blank spaces, and found similar fits. We also found similar fits for this

DTDM and DSDTDM variant.
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numerosity (Figure 6A; mean RT: t(23) = -10.78, p < .001; mean PMT: t(23) = -10.75, p <

.001; mean MT: t(23) = -5.37, p < .001). Both the proportion of correct trials containing at

least one partial EMG burst and the mean latency of the first partial burst also exhibited

an inverted U-shaped function of numerosity, t(23) = -9.61, p < .001 and t(23) = -6.95, p

< .001 respectively (Figure 6D). For each condition, PMT quantile-MT quantile plots from

correct trials had an approximately linear shape, and the between-trial Pearson correlation

coefficient between PMT and MT was positive and close to zero on average (with a slight

initial reduction followed by a more pronouced increase as numerosity increases; Figure 6F).

Overall, EMG results as a function of task difficulty are similar to those observed in the

random dot motion task (Servant et al., 2021).

Model fits

Similar to Experiment 1, DSDTDM was associated with lower AIC and BIC statis-

tics compared to DTDM for each of the 24 subjects, and for both raw and full model variants

(Figure 3B). The difference in AIC and BIC between raw and full models was much smaller

for DSDTDM compared to DTDM, and the raw DSDTDM was associated with a lower

AIC (BIC) compared to the full DTDM for 22 (21) subjects. This analysis provides strong

evidence for the superiority of DSDTDM.

Best-fitting parameters for the full models are shown in Table 1 (main parameters)

and Table 2 (between-trial variability parameters). Best-fitting parameters for the raw mod-

els are shown in Supplementary Table 1. Although the best-fitting leakage (λ) value from

DSDTDM was approximately twice larger than that observed in Experiment 1, this value

still implies subtantial filtering of the evidence accumulation variable during motor prepara-

tion, though with a reduced filter-related delay (for an illustration of model trajectories, see

Figure 4B). The amount of between-trial variability in the best-fitting full model components

was higher for DTDM compared to DSDTDM, especially for residual latencies (parameters

sTe and sTr).
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Figure 6 displays the goodness-of-fit of the full models to data. Compared to

Experiment 1, the full DTDM provides a better account of the task difficulty effect on

mean MT, thanks to a larger separation between EMG and response bounds. However,

the model still fails to provide a good fit to MT quantiles, because the contribution of

residual motor latencies to predicted MTs remains subtantial. In addition, the full DTDM

systematically overestimates the rate of correct LL and GG trials and the mean latency of

the first partial EMG burst. The full DSDTDM captures most trends of the data. The only

apparent misfit is an overestimation of the right skew of PMT distributions for the most

difficult conditions. Note that the model provides a reasonable account of between-trial

Pearson correlation coefficients between PMT and MT across numerosity conditions, and

does so with a complex combination of three ingredients: (i) a moderate and constant level

of leakage across conditions, (ii) drift rates that follow a U-shaped function of numerosity,

and (iii) a moderate amount of variability in drift rate that slightly increases as numerosity

increases (from 0.0896 to 0.0925, computed from best-fitting parameters using Equation 9).
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Figure 6

Data from a numerosity judgment task (black) and predictions from the full DSDTDM

(red) and the full DTDM (green)

Note. The structure of each panel is similar to that of Figure 5. Model predictions are computed
from best-fitting parameters, using 100,000 simulated trials per condition. Quantile probability
functions, shown in panel B, incorporate distributions of errors if each subject made at least 10
errors in corresponding conditions. Panel C shows the proportion of each of the six trial types
(pureL, LL, GL, pureG, GG, LG) for each numerosity condition averaged across subjects.
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Experiment 3: Recognition memory

The diffusion model was originally developped to provide a theory of memory re-

trieval, and showed a good fit to behavioral data from different item recognition paradigms

(Ratcliff, 1978). This finding has been replicated multiple times since (e.g., Ratcliff et al.,

2004, 2010). Here we perform an EMG analysis of response-relevant muscles in a standard

study-test task. During study, participants had to memorize a list of 21 words, each word

being presented individually at a pace of 1 s. During test, participants were presented with

42 words (21 old and 21 new), and had to decide whether each word was old or new by press-

ing a left or right button. In this task, the drift rate represents the meeting point between

decision-making and memory systems: it is equal to the amount of match between the test

item and the memory trace. To modulate drift rate, we manipulated the number of word

presentations during study (one vs. two vs. four presentations). Specifically, the drift rate

should increase as the number of word presentations (and thus memory strength) increases.

Consequently, both DTDM and DSDTDM predict a decrease in mean MT as the number of

word presentations increases.

Although early applications of the diffusion model to recognition memory data

assumed a constant between-trial variability in drift rate (parameter sv) between old and

new items, there is evidence from both memory models (e.g.,Ratcliff et al., 1992; Shiffrin

and Steyvers, 1997; Wixted, 2007) and diffusion model fits (e.g., Starns and Ratcliff, 2014)

that the evidence entering the decision process is more variable for old than new items.

One possible reason is that some old items are better learned than others (Wixted, 2007).

Consequently, we let sv free to vary between conditions.

Method

Participants

Twenty-four students (six men; mean age: 19.78) from the University of Franche-

Comté took part in the experiment in exchange for course credits or as volunteers. All
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participants met the same inclusion criteria as for Experiment 2. Subjects were not aware of

the purpose of the experiment and provided written consent to participate. This study was

approved by the ethical committee for research of the University (agreement n°CERUBFC-

2022-01-18-002).

Apparatus

The apparatus was identical to Experiment 2.

Stimuli

We selected a set of 1058 french words (number of letters ranging from five to eight;

M = 6.50; SD = 1.12) from the Lexique database (New et al., 2004). Word frequency ranged

from one to six occurences per million (M = 2.96, SD = 1.14). Words were presented in

black against a grey background (font: Consolas), at the center of the screen. The height of

the letters was 0.76°.

Procedure

The experiment consisted of 23 blocks (one training block with a feedback on accu-

racy after each trial and 22 experimental blocks without feedback), separated by self-paced

breaks. Each block consisted of a study phase and a test phase. During study, participants

were instructed to learn a set of 53 words made of 25 unique words. The first two words

served as fillers to control for primacy effects, and the last two words served as fillers to

control for recency effects. Among the 21 remaining words, seven were presented one time,

seven were presented two times, and seven were presented four times. Words were presented

in a random order, at a pace of 1 s. The test phase occured right after the study phase, and

consisted of 42 words (21 old words and 21 new words, presented in a random order). Par-

ticipants were instructed to press the left or the right button with their left or right thumb

depending on whether the word was old or new (stimulus-response mapping balanced across

participants). Each test word remained on screen until the participant responded, or until
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a 4 s RT deadline. If participants failed to respond by then, the message “Too late! Please

respond faster.” was displayed for 1.5 s. The intertrial interval was 1.5 s. Words presented in

a block never appeared in another block (participants were made aware of this during task

instructions). In addition, the assignment of words to blocks and conditions was randomly

determined. The experiment lasted about an hour and a half.

EMG recording and signal processing

The procedure used for EMG recordings and signal processing was similar to Ex-

periment 2. Trials with high tonic muscular activity were discarded from analyses (12.4% of

trials on average; range 1.6-25%).

DTDM and DSDTDM fit procedure

Drift rate and between-trial variability in drift rate were the only parameters free

to vary between conditions. Similar to Experiment 2, we treated the starting point z of

the evidence accumulation process as a free parameter, resulting in nine (16) parameters

for the raw (full) DTDM, and 10 (18) parameters for the raw (full) DSDTDM. The fit

procedure was identical to that used in the previous experiments. We modeled ’new’ and

’old’ responses, corresponding to lower and upper response bounds respectively. The six

trial types considered in the fit procedure were pureO (’old’ response, no partial EMG burst

during PMT), OO (’old’ response, at least one partial EMG burst during PMT, first partial

burst located in the ’old’ EMG channel), NO (’old’ response, at least one at least one partial

EMG burst during PMT, first partial burst located in the ’new’ EMG channel), and so forth

for ’new’ responses (pureN , NN , ON).

Results

Behavior and EMG

Anticipations (RTs < 150 ms; 0.004%) and trials in which participants failed to

respond before the 4 s deadline (0.068%) were discarded from analyses. Performance to
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old words was analyzed by means of linear contrasts (two-sided) with the number of word

presentations as within-subjects factor and specific error terms. Accuracy increased as the

number of word presentations increased, t(23) = 14.14, p < .001. Consistent with model

predictions, mean RT, mean PMT, and mean MT decreased as word presentations increased

(Figure 7A; mean RT: t(23) = -5.72, p < .001; mean PMT: t(23) = -5.50, p < .001; mean

MT: t(23) = -3.11, p = .011). Note that the amplitude of the word presentation effect on

mean MT (M = 5 ms) is smaller compared to the numerosity effect observed in Experiment

2 (M = 10 ms) and the motion coherence effect observed in Experiment 1 (M = 35 ms). The

amplitude of the word presentation effect on mean PMT data (M = 79 ms) is also smaller

compared to the numerosity effect (M = 198 ms) and the motion coherence effect (M =

692 ms). The positive correlation between the magnitude of difficulty effects on mean PMT

and mean MT across tasks is consistent with the hypothesis -core to DTDM and DSDTDM-

that PMT and MT are driven by a similar evidence accumulation process.

Although both the proportion of correct trials containing at least one partial EMG

burst and the mean latency of the first partial burst decreased as word presentations increased

(Figure 7D), only the latter reached statistical significance (t(23) = -1.91, p = .069 and t(23)

= -3.02, p = .006 respectively). For each condition, PMT quantile-MT quantile plots from

correct trials exhibited a slight curvilinearity (Figure ‘7E), and the between-trial Pearson

correlation coefficient between PMT and MT was close to zero on average, with a slight

decrease as word presentations increase (one presentation: r = .07; two presentations: r =

.04; four presentations: r = 0; Figure 7F).

To compare performance between old and new items, we averaged the performance

to old items across word presentation levels and ran two-sided paired sample t-tests. The

only significant difference concerned accuracy data. The proportion of correct responses was

higher for new than old items, t(23) = 5.56, p < .001.
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Model fits

The raw DSDTDM was associated with lower AIC and BIC statistics compared

to the raw DTDM for each of the 24 subjects, and the full DSDTDM was associated with

lower AIC and BIC statistics compared to the full DTDM for 23 subjects (Figure 3C). The

difference in AIC and BIC between raw and full model variants was smaller for DSDTDM

compared to DTDM, and the raw DSDTDM was associated with a lower AIC (BIC) com-

pared to the full DTDM for 17 (16) subjects. The pattern of model selection results is

thus similar to that observed in the previous experiments, and provides strong evidence for

DSDTDM.

Best-fitting parameters for the full models are shown in Table 1 (main parame-

ters) and Table 2 (between-trial variability parameters). Best-fitting parameters for the raw

models are shown in Supplementary Table 1. DSDTDM captures the data with a moderate

amount of leakage (λ), though the best-fitting value for the full model is a bit larger compared

to Experiment 2 (implying reduced filtering and filter-related delays; for an illustration of

model trajectories, see Figure 4C). The amount of between-trial variability in the best-fitting

full model components was generally higher for DTDM compared to DSDTDM. Note that

between-trial variability in drift rate (sv) was larger for old than new words, consistent with

previous work. It also decreased as the number of word presentations increases, suggesting

that evidence variability decreases as function of learning.

Figure 7 displays the goodness-of-fit of the full models to data. The full DTDM

provides a poor account of MT distributions, due to the large contribution of residual motor

latencies to predicted MTs. In addition, the full DTDM systematically overestimates the

proportion of correct OO and NN trials and the mean latency of the first partial EMG

burst. The full DSDTDM provides a good fit to data factored out in parameter estimation

(though it slightly overestimates the .9 quantile of PMT distributions for old responses

as the number of word presentations decreases), but shows a relatively poor generalization

performance. Although the model predicts the effect of word repetitions on the mean latency
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of the first partial EMG burst, it systematically overestimates this latency by about 100 ms.

In addition, the model overestimates the between-trial correlation between PMT and MT,

especially for old words presented two and four times during study.

Figure 7

Data from a recognition memory task (black) and predictions from the full DSDTDM (red)

and the full DTDM (green)

Note. The structure of each panel is similar to that of Figure 5. Model predictions are computed
from best-fitting parameters, using 100,000 simulated trials per condition. Quantile probability
functions, shown in panel B, incorporate distributions of errors if each subject made at least 10
errors in corresponding conditions. Panel C shows the proportion of each of the six trial types
(pureO, OO, NO, pureN, NN, ON) for each condition averaged across subjects.



DECIDING AND ACTING 43

Experiment 4: Lexical knowledge

The ability to recognize words is essential for reading, and the lexical decision task

has been widely used to study this process. In this task, subjects have to decide whether

strings of letters are words or non-words. A standard finding is that high-frequency words

are recognized faster and more accurately compared to low-frequency words. Ratcliff et al.

(2004) showed that the diffusion model provides a good account of performance in this task

with a decrease of drift rate as word frequency decreases. Consequently, both DTDM and

DSDTDM predict an increase in mean MT as word frequency decreases.

Later modeling work suggests that word frequency modulates other parameters of

the diffusion model. Both Donkin, Brown, et al. (2009) and Gomez and Perea (2014) showed

a variation of mean nondecision time across word frequency levels, suggesting that frequency

modulates lexical access processes (that determine how much evidence the stimulus pro-

vides for each response alternative). Tillman et al. (2017) recently showed evidence for a

larger between-trial variability in drift rate for words than non-words, and for high frequency

compared to low frequency words, a pattern predicted by a model of lexical retrieval (Wa-

genmakers et al., 2004). Consequently, the mean residual latency added to predicted PMT

(Te), drift rate (v), and between-trial variability in drift rate (sv) parameters were free to

vary across word frequency conditions in our modeling of the data.

Method

Participants

Twenty-four students (four men; mean age: 21.00) from the University of Franche-

Comté took part in the experiment in exchange for course credits or as volunteers. All

participants met the same criteria as for Experiments 2 and 3. Subjects were not aware of

the purpose of the experiment and provided written consent to participate. This study was

approved by the ethical committee for research of the University (agreement n°CERUBFC-

2022-01-18-002).
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Appartus

The apparatus was identical to Experiments 2 and 3.

Stimuli

Four lists of french words (five to 12 letters) of differing frequencies (high frequency:

range 10-2736 occurences per million; medium frequency: range 2-5; low frequency: range

0.5-1; very low frequency: range 0.01-0.1) were created using the Lexique database (New

et al., 2004). To obtain the stimuli used in the present experiment, the lists underwent

the following steps. First, all plural and feminine agreements were removed. Second, low

and very-low frequency words were screened by two students, and any words they did not

know were eliminated. Third, a pool of 408 words was pseudo-randomly selected from each

list, with the constraint of obtaining an homogeneous number of letters across pools. For

each pool, 204 words were randomly selected to become pseudowords (i.e., pronounceable

non-words), created with the mulitlingual pseudoword generator Wuggy (Keuleers and Brys-

baert, 2010). Pseudowords were screened by two other students to ensure that they were

pronounceable and did not correspond to an existing word. This procedure resulted in four

lists, each list comprising 204 words (four for practice and 200 for the experiment) and 204

pseudowords (four for practice and 200 for the experiment). The four students recruited

for screening stimuli did not participate in the experiment. Statistics relative to frequency

and number of letters for the final sample of words used in the experiment are provided in

supplementary Table 2). Words were presented in black against a grey background (font:

Consolas), at the center of the screen. The height of the letters was 0.76°.

Procedure

Participants were instructed to press the left or the right button with their left or

right thumb depending on whether the stimulus was a french word or not (stimulus-response

mapping balanced across participants). Participants first performed a pratice block of 32



DECIDING AND ACTING 45

trials (four words in each frequency level and 16 pseudowords) during which a feedback on

accuracy after each trial was provided, and worked through 10 blocks of 160 trials (20 words

in each frequency level and 80 pseudowords) with no feedback on accuracy. Blocks were

separated by self-paced breaks. Each stimulus appeared once in the experiment. Participants

were thus exposed to the same word and pseudoword stimuli. Stimuli were randomly assigned

to blocks, and presented in a random order within blocks. Each trial started with the

presentation of the stimulus until the participant responded, or until a 4 s RT deadline. If

participants failed to respond by then, the message “Too late! Please respond faster.” was

displayed for 1.5 s. The intertrial interval was 1.5 s. Overall, the experiment lasted about

an hour.

EMG recording and signal processing

The procedure used for EMG recordings and signal processing was similar to Ex-

periments 2 and 3. Trials with high tonic muscular activity were discarded from analyses

(10.4% of trials on average; range 0.06-27.3%).

DTDM and DSDTDM fit procedure

Drift rate (v), between-trial variability in drift rate (sv), and mean residual time

added to predicted PMT (Te) were the only parameters free to vary between conditions.

We treated the starting point z of the evidence accumulation process as a free parameter,

resulting in 14 (22) parameters for the raw (full) DTDM, and 15 (24) parameters for the raw

(full) DSDTDM. The fit procedure was identical to that used in the previous experiments.

We modeled ’pseudoword’ and ’word’ responses, corresponding to lower and upper response

bounds respectively. The six trial types considered in the fit procedure were pureW (’word’

response, no partial EMG burst during PMT), WW (’word’ response, at least one partial

EMG burst during PMT, first partial burst located in the ’word’ EMG channel), PW (’word’

response, at least one at least one partial EMG burst during PMT, first partial burst located

in the ’pseudoword’ EMG channel), and so forth for ’pseudoword’ responses (pureP , PP ,
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WP ).

Results

Behavior and EMG

Anticipations (RTs < 150 ms; 0%) and trials in which participants failed to respond

before the 4 s deadline (0.1%) were discarded from analyses. Performance to word stimuli was

analyzed by means of linear contrasts (two-sided) with word frequency as within-subjects

factor and specific error terms. Accuracy decreased (t(23) = 12.54, p < .001) and mean

RT increased (t(23) = -8.36, p < .001) as word frequency decreased, reflecting the classic

word frequency effect. Although mean PMT decreased as word frequency decreased (t(23)

= -8.70, p < .001), mean MT exhibited an unexpected inverted-U shape function of word

frequency (Figure 8A). Accordingly, the planned linear contrast was not significant (t(23) =

0.53, p = .60), while a post-hoc quadratic contrast reached significance (t(23) = -2.24, p =

.04). This inverted U-shape pattern is unlikely due to a statistical power or an EMG signal

quality issue, because (i) the sample size was identical to Experiment 3, (ii) the amplitude

of the word frequency effect on mean RT (M = 187 ms) was larger than the amplitude of

the word presentation effect on mean RT (M = 79 ms), and (iii) EMG signal quality was

approximately similar between Experiments 3 and 4, as revealed by a comparable percentage

of rejected trials on average.

Both the proportion of correct trials containing at least one partial EMG burst

during PMT and the mean latency of the first partial burst decreased as word frequency

increased (Figure 8D, t(23) = -6.13, p < .001 and t(23) = -6.39, p < .001 respectively).

For each condition, PMT quantile-MT quantile plots from correct trials exhibited an ap-

proximately linear shape (Figure 8E), and the between-trial Pearson correlation coefficient

between PMT and MT was remarkably close to zero on average, with no apparent trend

across conditions (Figure 8F).

To compare performance between word and pseudoword stimuli, we averaged the
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performance to word stimuli across frequency levels and ran two-sided paired sample t-tests.

The proportion of correct responses was higher for pseudowords than words (t(23) = -4.24,

p < .001). Mean RT, mean PMT, and mean MT were slower for pseudowords than words,

t(23) = -4.40, p < .001, t(23) = -3.35, p = .003, and t(23) = -2.49, p = .02 respectively).

Finally, there was a trend for a smaller proportion of correct trials containing at least one

partial EMG burst for words than pseudowords (t(23) = -2.05, p = .052), and the mean

latency of the first partial burst was faster for words (t(23) = -4.21, p < .001).

Model fits

DSDTDMwas associated with lower AIC and BIC statistics compared to DTDM for

each of the 24 subjects, and for both raw and full model variants (Figure 3D). The difference

in AIC and BIC between raw and full model variants was smaller for DSDTDM compared

to DTDM, and the raw DSDTDM was associated with a lower AIC (BIC) compared to the

full DTDM for 15 (14) subjects. The pattern of model selection results is thus similar to

that observed in the previous experiments, and provides strong evidence for DSDTDM.

Best-fitting parameters for the full models are shown in Table 1 (main parameters)

and Table 2 (between-trial variability parameters). Best-fitting parameters for the raw mod-

els are shown in Supplementary Table 1. DSDTDM captures the data with a higher level of

leakage λ compared to the previous experiments (implying reduced filtering and filter-related

delays; for an illustration of model trajectories, see Figure 4D). Consistent with previous work

(Donkin, Brown, et al., 2009; Gomez and Perea, 2014), DSDTDM and DTDM both predict

an increase in the mean residual latency parameter Te added to predicted PMT as word

frequency decreases. Although evidence variability (parameter sv) was generally larger for

words than pseudowords, consistent with previous work (Tillman et al., 2017; Wagenmakers

et al., 2004), it increased as word frequency decreased. The latter pattern is opposite to

that found by Tillman et al. (2017) using traditional diffusion model fits. The number of

words for which people do not know the definition may increase as word frequency decreases,
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inflating evidence variability. More generally, the amount of between-trial variability in the

best-fitting full model components was generally higher for DTDM compared to DSDTDM,

consistent with model fits obtained in the previous experiments.

Figure 8 displays the goodness-of-fit of the full models to data. As expected, both

DSDTDM and DTDM predict an increase in predicted mean MT as word frequency de-

creases, and fail to capture the observed inverted U-shaped pattern. DTDM systematically

underestimates the .9 quantile of PMT distributions for correct responses, and overestimates

the proportion of correct WW and PP trials. DSDTDM provides a better account of PMT

distributions and the six trial types (pureW, WW, PW, pureP, PP, WP). Both models over-

estimate the mean latency of the first partial EMG burst, and the between-trial correlation

between PMT and MT.
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Figure 8

Data from a lexical decision task (black) and predictions from the full DSDTDM (red) and

the full DTDM (green)

Note. The structure of each panel is similar to that of Figure 5. Model predictions are computed
from best-fitting parameters, using 100,000 simulated trials per condition. Quantile probability
functions, shown in panel B, incorporate distributions of errors if each subject made at least 10
errors in corresponding conditions. Panel C shows the proportion of each of the six trial types
(pureW ,WW, PW, pureP, PP, WP) for each condition averaged across subjects.
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General discussion

To our knowledge, this work represents the first attempt to jointly model decision-

making, motor preparation, and motor execution processes in choice RT tasks. DTDM,

proposed by Servant et al. (2015, 2021), offers a theoretical account of decision-making

and motor execution, but neglects processing properties of motor preparation. The leaky

integrated threshold model, proposed by Verdonck et al. (2020), offers a theoretical account

of decision-making and motor preparation, but neglects properties of motor execution. In

the present work, we sought to combine DTDM and the leaky integrated threshold model

to provide a complete account of the interplay between decision and motor processes. The

proposed DSDTDM assumes that evidence from our senses and memory accumulates through

a decision-making stage. The purpose of this stage is to perform a decision about alternative

categories of a stimulus (e.g., decide whether a traffic light is red or green). When decisions

are mapped onto actions (e.g., press the brake pedal if the traffic light is red), accumulated

evidence from the decision stage is continuously conveyed to motor preparation brain areas,

where it is filtered out through a second accumulation processing stage. The resulting motor

preparation variable is then transmitted to the response-relevant muscles when it exceeds

a threshold level of activation, corresponding to the beginning of motor execution. The

transmission continues until a threshold amount of force has been produced by the muscles

to issue the response.

We tested DSDTDM against behavioral and EMG data from four choice tasks

that span a variety of domains in cognitive sciences, namely motion perception (Experiment

1), numerical cognition (Experiment 2), recognition memory (Experiment 3), and lexical

knowledge (Experiment 4). Each task featured a manipulation of choice difficulty to bring

additional constraints on the model. DSDTDM was evaluated in its ability to capture (i) the

shape of PMT and MT distributions for correct and incorrect responses, (ii) the proportion

of six trial types defined by the combination of response type (correct vs. incorrect in

Experiment 1, less than vs. greater than in Experiment 2, old vs. new in Experiment 3, word
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vs. pseudoword in Experiment 4), presence vs. absence of at least one partial EMG burst

during PMT, and EMG channel location of the first partial burst, (iii) the mean latency of

the first partial EMG burst in correct trials, (iv) the relationship between the shape of PMT

and MT distributions in correct trials, (v) the between-trial Pearson correlation coefficient

between PMT and MT in correct trials, and (vi) the variation of all of the above aspects of

the data across difficulty conditions. Overall, DSDTDM provided a good fit to data factored

out in parameter estimation (i, ii, iv, and v). The only apparent discrepancy between data

and model predictions was an overestimation of the .9 quantile of PMT distributions for the

most difficult experimental conditions. One way to solve this issue would be to incorporate

an urgency signal to the model (Cisek et al., 2009; Ditterich, 2006; Evans, Hawkins, et al.,

2020; Hawkins et al., 2015; Trueblood et al., 2021). Urgency can take the form of temporally

collapsing boundaries, or a time-increasing gain applied to the incoming evidence. Both

mechanisms reduce the skew of predicted RT distributions (Hawkins et al., 2015), offering

a potential solution to the observed DSDTDM misfit. Although urgency signals remain

controversial when considering behavioral data alone (Evans, Hawkins, et al., 2020; Hawkins

et al., 2015; Ratcliff et al., 2016; Trueblood et al., 2021), neurophysiological studies have

provided evidence for them at the motor preparation level in both monkeys and humans

(Churchland et al., 2008; Hanks et al., 2014; Murphy et al., 2016; Steinemann et al., 2018),

even when subjects are not under speed pressure (Kelly et al., 2021). Interestingly, urgency

signals are not observed at the decision-making level (Kelly et al., 2021; Steinemann et al.,

2018), further emphasizing the functional dissociation between decision-making and motor

preparation. Fitting DSDTDM variants that incorporate urgency mechanisms is beyond the

scope of the present work, and should be conducted in tandem with an electrophysiological

investigation of motor preparation.

Although DSDTDM showed a good fit to data factored out in parameter estimation,

it provided a mixed predictive account of the remaining data. The model captured the

mean latency of the first partial EMG burst in Experiments 1 and 2, but systematically
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overestimated this latency by about 100 ms in Experiments 3 and 4. We cannot exclude

the possibility that a set of parameters could have better captured the partial burst latency

data, had we considered these data in parameter estimation. Alternatively, variations in

EMG signal quality across experiments may have contributed to this pattern of results, as

the percentage of rejected trials (i.e., trials in which EMG onsets could not be detected due to

high tonic muscular activity) was larger on average in Experiments 3 (12.41%) and 4 (10.4%)

compared to Experiments 1 (7.5%) and 2 (2.7%). Therefore, the data from Experiments 3

and 4 might incorporate a larger amount of artifactual partial EMG bursts, caused by residual

tension in response-relevant muscles.

Besides the mean latency of partial EMG bursts, DSDTDM provided a mixed

predictive account of the between-trial correlation between PMT and MT. In general, model

predictions showed more dispersion compared to observed data at the individual level, but

this phenomenon is likely explained by noise in EMG onset detection. However, the model

systematically overestimated the correlation averaged across subjects in Experiments 3 and

4, and in the easiest condition of Experiment 1. One may argue that this discrepancy between

data and model predictions speaks against the model architecture, as the filtering mechanism

at the motor preparation level flattens out random fluctuations of the evidence accumulation

signal, and increases the predicted correlation between PMT and MT at the single-trial level.

Once again, we cannot exclude the possibility that a set of parameters could have better

captured the between-trial correlation between PMT and MT, had we considered these

data in parameter estimation. Alternatively, it is important to remember that the filtering

mechanism (regulated by the leak parameter) interacts in complex ways with drift rate and

between-trial variability in drift rate (see supplementary Figures 2 and 3). This interaction

is problematic because the model does not incorporate representational assumptions that

specify how drift rate distributions arise from the stimuli (the same criticism applies to

DTDM and the standard diffusion model). Consequently, the discrepancy between data and

model predictions may stem from a misspecification of drift rate distributions.
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To shed light on this problem, we incorporated representational assumptions in our

modeling of the numerosity judgment data from Experiment 2. Specifically, we incorporated

a front-end to the model developped by Ratcliff and McKoon (2018) that specifies how drift

rate distributions arise from an approximate number representation in which numerosities

are represented as Gaussian distributions, with the mean and standard deviation of these dis-

tributions increasing linearly with numerosity. This tightly constrained DSDTDM provided

a good predictive account of the between-trial correlation between PMT and MT across

numerosity conditions, suggesting that discrepancies between data and model predictions in

the other experiments may stem from a misspecification of drift rate distributions. More

generally, this finding highlights the need of considering pre-decisional processing stages

when modeling post-decisional motor phenomena. This need is further highlighted by the

lexical decision data from Experiment 4. The word frequency effect has been successfully

modeled by assuming that word frequency modulates drift rate (Ratcliff et al., 2004), mean

nondecision time (Donkin, Brown, et al., 2009; Gomez and Perea, 2014), and between-trial

variability in drift rate (Tillman et al., 2017). Within the framework of DSDTDM, the

decrease of drift rate as word frequency decreases should increase the predicted mean MT.

Contrary to this prediction, we found an inverted U-shape relationship between mean MT

and word frequency. Specifically, mean MT showed an initial increase from high frequency

to medium frequency words, followed by a decrease for low and very low frequency words.

At first glance, this result speaks against the architecture of DSDTDM. However, the model

does not incorporate assumptions regarding how drift rate is computed in this task, so the

origin of the problem is unclear. It would be useful to connect models of lexical access (e.g.,

Grainger, 2018; Houghton, 2018; McClelland and Rumelhart, 1981) to DSDTDM to better

understand the origin of the problem.

Apart from the unexpected word frequency effect on mean MT, EMG findings were

remarkably consistent across experiments, suggesting that DSDTM generalizes across cog-

nitive domains. Both mean PMT and mean MT decreased as choice difficulty increased. In
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addition, partial bursts were observed in the EMG data of each subject of each experiment.

The proportion of correct trials containing at least one partial EMG burst during PMT and

the mean latency of the first partial burst increased as choice difficulty increased. Interest-

ingly, the proportion of correct trials in which the first partial EMG burst was located in the

same EMG channel as the response was systematically larger than the proportion of correct

trials in which the first partial EMG burst was located in the opposite EMG channel. Within

the framework of DSDTDM, this finding is explained by the same mechanism that captures

the relative proportion of correct and incorrect responses. Putting aside betwen-trial vari-

ability in model components, errors are produced by noise in the evidence accumulated at

each time step. Although part of this noise is filtered out during motor preparation, the

predicted proportion of errors is smaller than the proportion of correct responses, so long as

the drift rate is not null.

Comparisons with DTDM

As predicted, DSDTDM captured the data with a relatively low level of leakage,

indicating that the evidence accumulation variable is filtered at the motor preparation level.

This finding suggests that the motor preparation processing stage adds to a single-stage

DTDM description of the data. Model selection statistics (AIC and BIC) further showed

that the additional complexity of DSDTDM was justified in light of the (large) improvement

in fit quality. The AIC statistic systematically favored DSDTDM over DTDM for each

of the 90 subjects that participated in the experiments, and for both raw and full model

variants. The more conservative BIC statistic systematically favored DSDTDM over DTDM

for 90/90 participants (raw models) and 89/90 (full models). These findings provide decisive

evidence for DSDTM. Interestingly, the difference in model selection statistics between raw

and full models was much larger for DTDM than for DSDTDM, suggesting that between-

trial variability in DTDM components have a major impact on the fit quality of the model,

contrary to DSDTM. In fact, the AIC (BIC) statistic favored the raw DSDTM over the full
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DTDM for 70(66)/90 subjects. Although between-trial variability in processing components

is plausible, we believe that a large contribution of between-trial variability to the fit quality

of a model is problematic, as there is generally no explanation of why this variability occurs

or why it has the parametric form researchers assume to represent it (see the modeling of

Experiment 2 for an exception regarding between-trial variability in drift rate that arises

from theoretical properties of the approximate number system). In this view, between-trial

variability essentially corresponds to adding a random component to the model without any

strong theoretical motivation for it rather than to improve the fit quality (Evans, Tillman,

et al., 2020). Consequently, we consider our findings regarding between-trial variability as

additional evidence for DSDTDM.

In its raw form, DTDM grossly overestimates the proportion of trials containing

at least one partial EMG burst, especially when the first partial burst is located in the

same EMG channel as the response. The full DTDM provides a better account of these

proportions by placing EMG bounds very close to response bounds (Experiment 1), or by

combining high drift rates with a high between-trial variability in drift rates (Experiments

2-4; see tables 1 and 2). Both processing schemes result in predicted MTs that are too fast

compared to observed MTs. The model compensates this problem by increasing the con-

tribution of residual motor latencies to predicted MTs (parameters Tr and sTr), but this

compensation has three negative consequences. First, the model cannot capture large effects

of choice difficulty on mean MT, such as those observed in Experiment 1. Second, the model

cannot capture the right-skewed shape of MT distributions, because between-trial variability

in residual motor latencies added to predicted MTs is uniformly distributed, an (arbitrary)

assumption inherited from the diffusion model (Ratcliff and Rouder, 1998). Third, residual

latencies added to predicted MTs are assumed to reflect the electromechanical delay (time

lag between muscle excitation and force generation; see general introduction). This delay

has been proposed to be in the range 30-100 ms (Cavanagh and Komi, 1979), but best-fitting

full DTDM parameters show longer predicted delays (parameter Tr ranges 133-163 ms on
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average across experiments). Although delays predicted by the full DSDTDM are shorter

(90-109 ms), they are still located in the vicinity of the upper limit. Empirical estimates of

the electromechanical delay must be taken with caution though, because there is substantial

variability across studies. In fact, empirical estimates are strongly influenced by character-

istics of the apparatus used to collect the data, the muscle under investigation, the task

being performed, and signal processing techniques (Corcos et al., 1992; Yavuz et al., 2010).

Consequently, we refrain from drawing strong conclusions based on the electromechanical

delay.

Neurophysiological implementation, theoretical limitations, and possible model

extensions

As detailed in the general introduction, properties of motor preparation and execu-

tion, uncovered by neurophysiological studies, are not accounted for by current single-stage

evidence accumulation models such as the diffusion model (Ratcliff, 1978; Ratcliff et al.,

2016), the leaky competing accumulator (Usher and McClelland, 2001), the linear ballistic

accumulator (Brown and Heathcote, 2008), racing diffusion models (Ratcliff et al., 2003;

Tillman et al., 2020), and Poisson counter models (Ratcliff and Smith, 2004; Vickers, 1970).

In this respect, we believe that the models proposed by Servant et al. (2015, 2021), Ver-

donck et al. (2020), and their integration through DSDTDM constitute a major theoretical

advance in the field, as they offer a mecanistic explanation to the interplay between decision

and motor processes.

EEG studies have greatly contributed to our current understanding of decision-

making and motor preparation in humans, as the good temporal resolution of EEG allows

researchers to track evidence accumulation mechanisms at the systems level (O’Connell and

Kelly, 2021). Consequently, a natural development of the present line of work would be to

combine EMG and EEG recordings to supplement the assessment of hypothetical compu-

tations at decision-making and motor preparation levels. The supramodal decision-making
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process of DSDTDM could be identified with the CPP, and the motor preparation process

with effector-selective motor preparation activities. DSDTDM could be fit to behavioral and

EMG data, and model trajectories computed from best-fitting parameters could be compared

to CPP and motor preparation EEG activities in a variety of choice tasks and experimental

conditions. Alternatively, EEG signals could be incorporated into the fit procedure, and

some parameters could be constrained to match corresponding electrical signatures. Both

methodologies would bring additional contraints to DSDTDM, and foster theoretical devel-

opments. For instance, separate accumulators could be used for each response alternative,

and researchers could test for urgency signals, feedforward inhibition between inputs, in-

dependent race and lateral inhibition between accumulators, at both decision and motor

preparation levels (Bogacz et al., 2006; Purcell et al., 2010; Servant et al., 2019). Kelly et al.

(2021) have recently used EEG data to inform the construction and evaluation of evidence

accumulation models in the context of prior-informed decisions. Although this work repre-

sents a major advance in the field, it only considered a single-stage evidence accumulation

model, which does not capture anatomical, functional and temporal dissociations between

decision-making and motor preparation. Additional constraints to DSDTDM could also arise

from a more detailed analysis of partial EMG bursts at the motor execution level. Some

trials contain more than one partial EMG burst during PMT, and these additional bursts

could be considered in the modeling. In particular, the co-ocurrence of two partial bursts in

left and right EMG channels would suggest some degree of independence between accumu-

lators. We note, however, that more detailed EMG analyses entail an increased sensitivity

to artifactual electrical activities.

A potential criticism of DSDTDM concerns the strategic adjustment of the leak

parameter λ, as hypothesized by Verdonck et al. (2020) and suggested by the substantial

variation of λ between experiments in the present work. One may argue that leakage is a

structural property of neurons, and thus cannot be under strategic control. As reviewed by

Usher and McClelland (2001), excitatory currents to a neuron decay with a time constant
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of 5-10 ms. This time constant is too short to support evidence accumulation, and is likely

counteracted by a recurrent excitation mechanism. Therefore, best-fitting leakage values in

single-stage evidence accumulation models result from the combined influence of leakage and

recurrent excitation, and the later could very well be under strategic control. In addition,

it should be noted that the leak parameter in DSDTDM is quite different that the leak

parameter in single-stage evidence accumulation models, as it regulates the amount of past

states of the decision-making process that contribute to the motor preparation process. This

regulation could be under strategic control.

Beyond basic mechanisms that drive the time-course of decision-making, motor

preparation, and motor execution processes, we believe that future developments of DS-

DTDMwould benefit from model-based investigations of more complex relationships between

decision and motor processes. For example, decisions are often taken well before being ex-

pressed behaviorally. This scenario is involved when voters have to choose a candidate. It

is currently outside the scope of DSDTDM, as the model does not specify the relationship

between memory and decision/motor processes. The choice might be categorically retrieved

from memory and transmitted to the motor system. Consequently, effector-selective motor

preparation EEG activities and EMG signals should not be modulated by the quality of

evidence. However, this hypothetical processing sheme may vary as a function of the tempo-

ral delay between decision and motor processes, and foreknowledge of the stimulus-response

mapping (Twomey et al., 2016).

Another scenario that deserves additional scutiny concerns continuous movement

reports. Similar to EMG findings, reaching trajectories are modulated by perceptual and

cognitive factors (e.g., Buc Calderon et al., 2015; Kinder et al., 2022; Song and Nakayama,

2009; Sullivan et al., 2015). However, the application of DSDTDM to choice reaching tasks is

not straightforward. Reaching movements engage a complex pattern of neuromuscular activ-

ity, making EMG recordings and analyses challenging. One way to reduce this complexity is

to model reaching movements at the level of kinematic motor primitives, hypothetical build-
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ing blocks that can be combined to construct motion (for reviews, see Flash and Hochner,

2005; Giszter, 2015; Latash, 2020). Despite their apparent continuity, reaching movements

appear to be composed of discrete submovements. Friedman et al. (2013) hypothesized that

an intermittent motor control process probes the state of accumulated evidence at discrete

time points to determine submovements, and showed good fits of this model to arm move-

ment trajectories in a variant of the random dot motion task. The relationship between

this intermittent motor control process, motor preparation, and EMG activity remains to be

elucidated.

To conclude, the present EMG investigations in choice RT tasks add to a growing

body of behavioral and neurophysiological evidence that suggests that the motor system

can have systematic effects that are computationally related to central decision processes.

These effects are important to complete the story of how our choices are reflected in our

actions. The proposed dual-stage dual-threshold evidence accumulation theory offers a new

framework to understand this relationship.
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Supplementary Figure 1

Empirical illustrations of trials containing at least one partial EMG burst during PMT

Note. Panels A, B, C and D show trials that contain one partial EMG burst in the same EMG
channel as the response. Panel E shows a trial with a partial EMG burst in the opposite EMG
channel as the response. Panel F shows a trial with two partial EMG bursts in the same EMG
channel as the response.
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Supplementary Figure 2

Additional predictions from DSDTDM with varying levels of leak λ and drift rate v.

Note. Apart from the leak parameter, simulations used best-fitting DTDM parameters averaged
across subjects reported by Servant et al. (2021) and 100,000 simulated trials per condition. A)
Predicted mean PMT and mean MT in correct trials. B) Predicted between-trial correlation between
PMT and MT in correct trials. C) Predicted PMT quantile-MT quantile plot in correct trials.
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Supplementary Figure 3

Predictions from DSDTDM with varying levels of leak λ and drift rate v, and with between-
trial variability in drift rate (normally distributed with mean v and standard deviation sv)

Note. Apart from the leak parameter, simulations used best-fitting DTDM parameters averaged
across subjects reported by Servant et al. (2021) and 100,000 simulated trials per condition. sv was
fixed at .2. A) Predicted mean PMT and mean MT in correct trials. B) Predicted between-trial
correlation between PMT and MT in correct trials. C) Predicted PMT quantile-MT quantile plot
in correct trials.
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Table 2

Statistics relative to frequency and number of letters for the sample of words used in
Experiment 4

Occurences per million Letters
Mean SD Mean SD

High frequency words 77.26 142.37 7.05 1.70
Medium frequency words 3.32 0.89 7.03 1.66

Low frequency words 0.72 0.15 7.05 1.70
Very low frequency words 0.04 0.03 7.05 1.69
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