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Abstract: New low-bandgap unimers, with the central thiophene-(1-thioxophosphole)-thiophene
(TPT) ring sequence and 2,2′:6′,2”-terpyridin-4′-yl (tpy) end groups connected to the central unit via
conjugated linkers of different size, are prepared and assembled with Zn(II) and Fe(II) ions to metallo-
supramolecular polymers (MSPs) that are studied regarding their properties. The most interesting
feature of Zn-MSPs is the luminescence extended deep into the NIR region. Fe-MSPs not only show
the metal-to-ligand charge transfer (MLCT) manifested by the MLCT band (an expected feature)
but also an as-yet-undescribed remarkable phenomenon: specific damping of the bands of the TPT
sequence in the resonance Raman spectra taken from solid Fe-MSPs using the excitation to the MLCT
band (532 nm). The damping is highly reversible at the low laser power of 0.1 mW but gradually
becomes irreversible as the power reaches ca. 5 mW. The revealed phenomenon is not shown
by the same Fe-MSPs in solutions, nor by Fe-MSPs containing no phosphole units. A hypothesis
is proposed that explains this phenomenon and its dependence on the irradiation intensity as a
result of the interplay of three factors: (i) enhancement of the MLCT process by excitation radiation,
(ii) the electron-acceptor character of the 1-thioxophosphole ring, and (iii) morphological changes of
the lattice and their dependence on the population of new structures in the lattice.

Keywords: coordination polymer; intramolecular charge transfer; iron(II) metallo-supramolecular
polymer; metal-to-ligand charge transfer; MLCT; phosphole; terpyridine

1. Introduction

Soft semiconducting organic and organic/inorganic materials for applications in photo-
voltaics, optoelectronics, and molecular electronics are of permanently high interest [1–6]. In
the last decades, the variety of these materials has grown to include metallo-supramolecular
polymers (MSPs). Molecules of these materials are composed of properly designed, mostly
organic low-molar-mass building blocks with chelate end-groups (referred to as unimers [7])
and metal ions in an alternating arrangement. Since MSPs are typically formed by the
spontaneous self-assembly of the mentioned species through reversible metal–ligand co-
ordination, their stability is effectively controlled by thermodynamics. As a result, the
MSP chains can spontaneously partially or completely disassemble at elevated temper-
atures or in a solution; in this state, they exchange ions and/or unimer units with the
environment and reassemble into structurally the same or a different MSP after cooling
and/or drying. Therefore, these polymers are called constitutional dynamic polymers, or
dynamers [8]. Structural dynamics make MSPs promising materials for the development
of functional self-organized architectures, with their tunable properties, self-healing capa-
bility, and environmental adaptability. In addition, the incorporation of metal complex
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linkages into polymer chains has opened new approaches for tuning their magnetic, redox,
electrochromic, and optical properties [3–6,9–15].

The dynamics and stability of MSP chains are basically tuned by varying the combi-
nations of metal–unimer end groups. The optoelectronic and other properties are further
tuned by varying the structure of the unimer’s central parts, which should enable the trans-
fer of charge and/or energy. Of course, coordination linkers also contribute significantly to
these properties. The tridentate 2,2′:6′,2”-terpyridin-4-yl group (tpy) is an attractive chelate
end-group for conjugated MSPs, because it forms well-defined octahedral complexes with a
wide range of transition metal ions through dπ–pπ* bonding, which allows electronic com-
munication between the complexed units [2,16]. The kinetic stability of [M(tpy)2]2+ links
(M stands for metal(II) ions) ranges from labile (e.g., M = Zn2+ or Cu2+) to almost stable
(e.g., Fe2+ and Ru2+) [17]. The kinetic stability is often referred to as constitutional dynam-
ics [8], e.g., fast for [Zn(tpy)2]2+ and slow for [Fe(tpy)2]2+ links [8,18,19]. The [M(tpy)2]2+

links are also of high importance for the luminescence of conjugated MSPs, which can be
strong for those ones with, e.g., [Zn(tpy)2]2+ links but practically quenched for those with
[Fe(tpy)2]2+ links.

A high variety of linear-conjugated MSPs have been prepared by assembling Ru2+,
Fe2+, Zn2+, Co2+, and other ions with α,ω-bis(tpy) (het)arylene and oligo(het)arylene
unimers containing main-chain phenylene- [16,20–24], fluorene- [20,25–27], and thiophene-
based [13,28–32] constitutional units. These units are, however, composed of σ-bonded
highly aromatic rings, which do not enable an efficient delocalization of π-electrons owing
to the rather high autonomy of aromatic systems. Therefore, the incorporation of suf-
ficiently stable units with lowered aromaticity into unimers had become desirable, and
the phosphole ring has been found to be a good candidate for this purpose [33–38]. The
phosphorus atom in a P-substituted ring acquires pyramidal geometry in which its lone
electron pair hardly interacts with the endocyclic diene π-electrons [35,37,38]. Therefore,
the delocalization of electrons in the phosphole ring stems from the so-called σ–π hyper-
conjugation involving the exocyclic P-R σ-bond and the endocyclic diene π-system [35,37].
As a result, phosphole is less aromatic compared to pyrrole and thiophene [37,39,40]. Mixed
phosphole–thiophene derivatives are widely investigated phosphole-based π-conjugated
systems with low band-gap energies and a high potential of structural variations, by
the choice of the P-atom substituent R and the oxidation of the ring P-atom to P = S or
P = O [36,41–44]. We recently reported a new α,ω-bis(tpy) unimer (TPT) containing a
central unit composed of a 1-thioxophosphole- -2,5-diyl central ring surrounded by two
thiophene-2,5-diyl rings and showed that the band-gap energy of this new unimer is sig-
nificantly lower compared to the energy of α,ω-bis(tpy)terthiophene [19]. This proved
that replacing the central thiophene-2,5-diyl unit with a low-aromaticity phosphole unit
significantly increased the delocalization of the electrons in the unimer as well as in
its MSPs, compared to the corresponding bis(tpy)terthiophene unimers and their MSPs
(1-thioxophosphole unit caused a red shift relative to bis(tpy)terthiophene unimers of almost
100 nm). In the present paper, we report the preparation and characterization of a series of
new conjugated low-bandgap bis(tpy) unimers with a TPT-type central unit and different
linkers connecting tpy end-groups to this unit (see Scheme 1), assembly of these unimers
with Fe2+ and Zn2+ ions into corresponding metallo-supramolecular polymers (Fe-MSP
and Zn-MSP), and characterization of these MSPs. Finally, we report an as-yet-unknown
and remarkable phenomenon that exhibited all new Fe-MSPs derived from unimers with
a 1-thioxophosphole unit: reversible photoinduced selective attenuation of the Raman
bands of the central TPT-type central unit in the resonance Raman spectra excited to the
metal-to-ligand charge transfer band (MLCT band).
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Scheme 1. Structures of the prepared new unimers (abbreviations derived from the names of linkers 
conneting tpy groups to the central unit) and the reference TPT unimer. (Adapted from ref. [19]). 
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ride (Pd(PPh3)2Cl2, tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), titanium(IV) 
isopropoxide, sulphur, zinc(II) perchlorate hexahydrate, iron(II) perchlorate hydrate (all 
Aldrich), potassium carbonate, magnesium sulphate (VWR), 4′-(4-bromophenyl)-
2,2′:6′,2″-terpyridine, and 4′-bromo-2,2′:6′,2″-terpyridine (TCI) were used as received. P,P-
dichlorophenylphosphine (Aldrich) was distilled trap-to-trap before use. Hexane (Lach-
ner) and acetonitrile (ACN) (Aldrich) were stored over molecular sieve; tetrahydrofurane 
(Aldrich) was distilled from LiAlH4 or sodium/benzophenone before use or obtained from 
the MBraun drying solvents system (SPS-800); toluene (Lachner) was distilled from so-
dium/benzophenone before use; methanol was bubbled with Argon before use; diethy-
lether, pentane, dichloromethane, chloroform (Lachner), and acetonitrile (ACN) were 
used as obtained. 

Instrumentation. 1H and 13C spectra were recorded on a Varian UNITYINOVA 400 or 
Varian SYSTEM 300 instrument in CD2Cl2 or CDCl3 and referenced to the solvent signal: 
7.25 ppm (CDCl3) or 5.32 ppm (CD2Cl2) for 1H spectra and 77.0 ppm (CDCl3) or 53.84 ppm 
(CD2Cl2) for 13C spectra. 13C NMR spectra of unimers were recorded on Bruker AVANCE 
III (600 MHz) (Bruker Corporation, Billerica, MA, USA). Coupling constants, J (in Hz), 
were obtained by the first-order analysis. The UV/vis spectra were recorded on a Shi-
madzu UV-2401PC instrument (Shimadzu Corporation, Kyoto, Japan); photolumines-
cence spectra were recorded on a Fluorolog 3-22 Jobin Yvon Spex instrument (Horiba, 
Kyoto, Japan), using four-window quartz cuvette (1 cm) for solutions and quartz glass 
support for films. The photoluminescence absolute quantum yields were determined us-
ing an integration sphere Quanta-φ F-3029. Raman spectra were recorded on a DXR Ra-
man spectrometer (Thermo Fischer Scientific, Waltham, MA, USA) interfaced to an Olym-
pus microscope (objective 50×), using full-range gratings (3300–40 cm−1, 400 lines/mm) and 
thin films of Fe-MSPs deposited on glass slides. 

2.1. Synthesis 
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Scheme 1. Structures of the prepared new unimers (abbreviations derived from the names of linkers
conneting tpy groups to the central unit) and the reference TPT unimer. (Adapted from ref. [19]).

2. Materials and Methods

Materials. Isopropylmagnesium chloride (2.0 M solution in diethylether, concentration
checked by titration), 2-bromo-4-hexylthiophene, N-iodosuccinimide (NIS), 1,7-octadiyne, cop-
per iodide, diisopropylamine, bis(triphenylphosphine)palladium(II) dichloride (Pd(PPh3)2Cl2,
tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), titanium(IV) isopropoxide, sulphur,
zinc(II) perchlorate hexahydrate, iron(II) perchlorate hydrate (all Aldrich), potassium carbon-
ate, magnesium sulphate (VWR), 4′-(4-bromophenyl)-2,2′:6′,2”-terpyridine, and 4′-bromo-
2,2′:6′,2”-terpyridine (TCI) were used as received. P,P-dichlorophenylphosphine (Aldrich)
was distilled trap-to-trap before use. Hexane (Lachner) and acetonitrile (ACN) (Aldrich)
were stored over molecular sieve; tetrahydrofurane (Aldrich) was distilled from LiAlH4 or
sodium/benzophenone before use or obtained from the MBraun drying solvents system
(SPS-800); toluene (Lachner) was distilled from sodium/benzophenone before use; methanol
was bubbled with Argon before use; diethylether, pentane, dichloromethane, chloroform
(Lachner), and acetonitrile (ACN) were used as obtained.

Instrumentation. 1H and 13C spectra were recorded on a Varian UNITYINOVA 400 or
Varian SYSTEM 300 instrument in CD2Cl2 or CDCl3 and referenced to the solvent signal:
7.25 ppm (CDCl3) or 5.32 ppm (CD2Cl2) for 1H spectra and 77.0 ppm (CDCl3) or 53.84 ppm
(CD2Cl2) for 13C spectra. 13C NMR spectra of unimers were recorded on Bruker AVANCE
III (600 MHz) (Bruker Corporation, Billerica, MA, USA). Coupling constants, J (in Hz), were
obtained by the first-order analysis. The UV/vis spectra were recorded on a Shimadzu
UV-2401PC instrument (Shimadzu Corporation, Kyoto, Japan); photoluminescence spectra
were recorded on a Fluorolog 3-22 Jobin Yvon Spex instrument (Horiba, Kyoto, Japan),
using four-window quartz cuvette (1 cm) for solutions and quartz glass support for films.
The photoluminescence absolute quantum yields were determined using an integration
sphere Quanta-ϕ F-3029. Raman spectra were recorded on a DXR Raman spectrometer
(Thermo Fischer Scientific, Waltham, MA, USA) interfaced to an Olympus microscope
(objective 50×), using full-range gratings (3300–40 cm−1, 400 lines/mm) and thin films of
Fe-MSPs deposited on glass slides.
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2.1. Synthesis

Synthetic pathways to unimers are presented in Scheme 2. In summary, the central unit
of unimers, 2,5-bis(4-hexylthiophen-2-yl)(1-phenyl-1-thioxo)phosphole, was prepared by
using the Sato protocol [45] and procedure described earlier [19] and then iodinated using
N-iodosuccinimide. The linkers’ precursors caped by tpy group, 4′-(ethynylaryl)terpyridines,
were prepared using the procedures described in [46–48] and connected to the central unit
by the Sonogashira coupling.
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2.2. Precursors of Linkers

4′-Ethynyl-2,2:6,2-terpyridine was prepared from commercial 4′-bromo-2,2:6,2-terpyridine
by the procedure described in [46,47]. Other precursors, 4′-(ethynylaryl)-2,2:6,2-terpyridines,
were prepared by Sonogashira coupling of the corresponding bromoderivatives with (tri-
isopropylsilyl)acetylene followed by the deprotection of ethynyl group [47,48]. Briefly: 4′-
(bromoaryl)terpyridine (Equation (1)), copper iodide (2 mol %), and Pd(PPh3)2Cl2 (2 mol %)
were dissolved in THF/triethylamine (1:1 by vol.) mixed solvent, and (trimethylsilyl)acetylene
(Equation (2)) was added. The reaction mixture was heated to 60 ◦C, and the course of the
reaction was monitored by the gas chromatography. After the starting materials were consumed,
the volatiles were evaporated, the solid crude product was dissolved in diethyl ether, and the
obtained solution was filtered through basic alumina. The purified intermediate was then
dissolved in a THF/methanol mixed solvent and mixed with potassium carbonate to remove
the TMS groups protecting the ethynyl groups.

4′-(4-Ethynylphenyl)-2,2:6,2-terpyridine was prepared from commercial 4′-(4-bromophenyl)-
2,2:6,2-terpyridine. 4′-(5-Ethynylthiophen-2-yl)-2,2:6,2-terpyridine and 4′-(5-ethynyl-3-hexylthiophen-
2-yl)-2,2:6,2-terpyridine were synthesized from corresponding bromo-derivatives prepared by the
procedure described in [18,48]. The spectroscopic characteristics of the linker precursors, except for
the last one (see next paragraph), are available in the above indicated references.

4′-(5-ethynyl-3-hexylthiophen-2-yl)-2,2′:6′,2”-terpyridine was obtained as a yellow-
ish solid in the isolated yield of 55% by the above-described procedure.

1H NMR (300 MHz, CD2Cl2, δ/ppm): 8.69–8.73 (m, 2H, A6), 8.67 (d, J = 7.93 Hz, 2H, A3),
8.57 (s, 2H, B3), 7.90 (td, J = 7.00, 1.70 Hz, 2H, A4), 7.37 (ddd, J = 7.45, 4.77, 1.29 Hz, 2H, A5),
7.25 (s, 1H, thiophene), 3.49 (s, 1H, ethynyl), 2.78 (t, J = 8.10 Hz, 2H, Hex1), 1.62–1.75 (m, 2H,
Hex2), 1.48–1.50 (m, 2H, Hex3), 1.24–1.32 (m, 4H, Hex4 + Hex5), 0.82–0.87 (m, 3H, Hex6).

HRMS found m/z 423.5725 [M + H+], and C27H26N3S requires 423.58.
FT-IR (cm−1): 3217 (m), 3172 (s), 3072 (m), 3062 (m), 3049 (m), 3013 (m), 2954 (s), 2931 (s),

2868 (m), 2854 (s), 1602 (s), 1585 (s), 1568 (s), 1557 (s), 1539 (s), 1466 (s), 1435 (m), 1394 (s),
1378 (m), 1267 (m), 1124 (m), 1096 (w), 1089 (m), 1073 (m), 1026 (m), 989 (m), 964 (w), 894 (m),
853 (m), 793 (s), 777 (s), 751 (s), 742 (s), 676 (s), 658 (m), 617 (s), 587 (m), 549.61 (w), 403 (w).
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2.3. Precursor of the Central Unit

2,5-bis(4-hexylthiophen-2-yl)(1-phenyl-1-thioxo)phosphole (1) was prepared by us-
ing the Sato protocol [45] and a modified procedure described earlier for the compound
without hexyl groups [19]. A solution of 2,2′-(octa-1,7-diyne-1,8-diyl)bis[4-hexylthiophene]
(0.55 g, 1.25 mmol) in diethyl ether was tempered to−50 ◦C, and 1.1 equivalent of Ti(OiPr)4
(0.4 mL, 1.375 mmol) and 2.1 equivalent of iPrMgCl (1.4 mL; 2.62 mmol) were added. The
mixture kept at −50 ◦C for 2 h and changed its color from yellow to dark orange. Then,
PhPCl2 (0.18 mL, 1.3 mmol) was added to in situ formed titanocene; the mixture was kept
at −50 ◦C for next 20 min, then at 0 ◦C for 1 h, and finally at room temperature monitored
by 31P NMR. After PhPCl2 was consumed and intermediates were absent, all volatiles
were evaporated, and orange fluorescent solid was diluted in DCM and filtrated over
basic alumina under inert atmosphere. Then, purity of product was checked by NMR,
and phosphole was immediately oxidized by addition of sulfur. Oxidation was followed
also by 31P NMR, where incorporation of sulfur causes the up-field shift from 12 to ca
52 ppm. Resulting product was purified by column chromatography using silica gel and
heptane/DCM (4/1 by vol) as a mobile phase and isolated as a yellow-orange solid with a
yield of 73% (0.53 g, 0.92 mmol).

1H NMR (400 MHz, CD2Cl2) δ 7.88 (ddd, J = 14.0, 8.3, 1.5 Hz, 2H, σPh), 7.48 (ddd,
J = 7.0, 5.3, 1.8 Hz, 1H, pph), 7.42 (ddd, J = 8.5, 6.5, 3.0 Hz, 2H, mph), 7.21 (s, 2H, th5), 6.95
(t, J = 1.3 Hz, 2H, th3), 2.97–2.84 (m, 4H, C-CH2-CH2), 2.51 (t, J = 7.6 Hz, 4H, hex1), 1.87
(dq, J = 5.1, 2.6 Hz, 4H, C-CH2 CH2), 1.50 (t, J = 7.4 Hz, 4H, hex2), 1.26 (qd, J = 6.1, 5.5,
2.3 Hz, 12H, hex3-5), 0.92–0.83 (m, 6H, hex6).

13C NMR (101 MHz, CD2Cl2) δ 145.9 (d, J = 21.3 Hz), 144.1, 135 (d, J = 17.1 Hz), 132.5
(d, J = 3.0 Hz), 131.2 (d, J = 11.6 Hz), 130.2, 129.5 (d, J = 5.6 Hz), 129.3 (d, J = 12.7 Hz), 128.4,
122.4, 32.2, 31.2, 30.8 (d, J = 15.5 Hz), 29.7 (d, J = 13.3 Hz), 29.4, 23.1 (d, J = 16.6 Hz), 14.4.

31P NMR (162 MHz, CD2Cl2, δ/ppm): 51.77.
FT-IR (cm−1): 3073 (w), 3062 (w), 2963 (m), 2870 (w), 1455 (w), 1435 (w), 1422 (w),

1416 (m), 1308 (w), 1292 (w), 1261 (s), 1228 (m), 1185 (m), 1094 (s), 1019 (s), 936 (w), 921 (w),
908 (m), 863.47 (m), 799 (s), 749 (m), 740 (m), 696 (m), 667 (m), 641 (w), 626 (m), 606 (w),
579 (w), 565 (m), 540(m), 517 (m), 509 (m), 478 (m), 460 (w), 437 (w), 402 (m).

HRMS found m/z [M + H+] 579.234, and C34H44PS3 requires 579.896.
2,5-bis(4-hexyl-5-iodothiophen-2-yl)(1-phenyl-1-thioxo)phosphole (2): 1 was iodi-

nated using N-iodosuccinimide. A solution of 1 (0.345 g, 0.6 mmol) in DCM (20 mL) was
cooled to −78 ◦C, and a solution of N -iodosuccinimide (0.284 g, 1.25 mmol) in ACN
(1 mL) was added dropwise. The reaction mixture was stirred at −78 ◦C for 15 min and
then allowed to warm to room temperature, at which point it was kept in the dark for
18 h. Then, volatiles were removed, and the solid red crude product was dissolved in
DCM, washed with saturated Na2S203 solution and then three times with water, and finally
purified by column chromatography (silica gel, heptane/DCM (4/1 v/v). 2 was isolated as
a red powder (yield 0.339 g, 0.408 mmol, 68%).

1H NMR (400 MHz, CD2Cl2, δ/ppm): 7.84 (ddd, J = 14.1, 8.3, 1.4 Hz, 2H, σph),
7.50 (td, J = 7.1, 1.8 Hz, 1H, pph), 7.42 (td, J = 7.5, 3.1 Hz, 2H, mph), 7.00 (s, 2H, th), 2.84
(tt, J = 5.9, 2.8 Hz, 4H, C-CH2-CH2), 2.44 (td, J = 7.4, 3.1 Hz, 4H, Hex1), 1.87 (dt, J = 6.9, 3.4 Hz,
4H, C-CH2-CH2), 1.43 (p, J = 7.4 Hz, 4H, Hex2), 1.33–1.17 (m, 12H, Hex3 + Hex4 + Hex5),
0.94–0.81 (m, 6H, Hex6).

31P NMR (162 MHz, CD2Cl2, δ/ppm): 51.36.
13C NMR (101 MHz, CD2Cl2, δ/ppm): 148.1, 146.5 (d, J = 20.9 Hz), 139.9 (d, J = 17.2 Hz),

132.8 (d, J = 3.1 Hz), 131.1 (d, J = 11.9 Hz), 129.7, 129.5 (d, J = 12.5 Hz), 129 (d, J = 1.7 Hz), 128.8
(d, J = 6.0 Hz), 128.2, 77.9, 32.3 (d, J = 35.8 Hz), 29.6 (d, J = 13.0 Hz), 29.2, 23 (d, J = 29.7 Hz), 14.4.

FT-IR (cm−1): 2948 (s), 2925 (s), 2866 (m), 2853 (s), 1464 (w), 1452 (w), 1439 (m),
1412 (m), 1298 (m), 1101 (s), 1016 (w), 846 (w), 836 (w), 825 (w), 749 (m), 719 (s), 692 (w),
666 (s), 603 (w), 522 (m).

HRMS found m/z [M + Na+] 853.009, and C34H41I2NaPS3 requires 853.657.
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2.4. Coupling of Precursors to Unimers

General procedure. The chosen linker-tpy derivative (Equation (2)) and the diiodo-
derivative 2 (Equation (1)) were dissolved in THF, catalytic amounts (2%) of Pd(PPh3)4
and diisopropylamine were added, and the reaction mixture was kept at 80 ◦C for 48 h
(conversion was monitored by TLC). Then, volatiles were evaporated, and the obtained red
solid was dissolved in DCM and washed with brine and water. The crude product was
purified by washing with pentane and diethylether to remove the isomeric phospholene
derivative (this byproduct is formed by base-catalyzed isomerization of phosphole ring in
which one phosphole C=C bond is shifted to the exo position, changing cyclohexane into
cyclohexene ring [38]), and by column chromatography (alumina and DCM or hexane/THF
or toluene/acetone mobile phase). Purification was the most difficult job. Products were
isolated as a dark red–violet powders in yields around 10% due to high losses during
purification. For 1H NMR and 13C NMR spectra of unimers, see the Supporting Information
(Figures S1 and S2).

2.5. Unimer E

This unimer was successfully purified by liquid chromatography using DCM and basic
alumina. Product was obtained as dark red solid with a yield of 11% (23 mg, 0.02 mmol).

1H NMR (400 MHz, CD2Cl2, δ/ppm): 8.78–8.71 (m, 4H, A6), 8.67 (d, J = 8.0 Hz, 4H,
A3), 8.56 (s, 4H, B3), 8.01–7.89 (m, 6H, σph + A4), 7.64–7.48 (m, 3H, mph + pph), 7.41 (ddd,
J = 7.6, 4.8, 1.3 Hz, 4H, A5), 7.32 (s, 2H, thiophene), 3.02 (s, 4H, C-CH2-CH2), 2.77 (q, J = 6.6,
5.8 Hz, 4H, Hex1), 1.98 (s, 4H, C-CH2-CH2), 1.61 (d, J = 15.9 Hz, 10H, Hex2 + water),
1.33 (dd, J = 9.2, 4.2 Hz, 12H, Hex 3-5), 0.98–0.82 (m, 6H, Hex6).

31P NMR (121 MHz, CD2Cl2, δ/ppm): 51.28.
13C NMR (101 MHz CD2Cl2, δ/ppm): 156.2, 156.1, 150.2, 149.8, 147.6 (d, J = 19.9 Hz),

137.4, 136.8 (d, J = 17.5 Hz), 133.5 (d, J = 3 Hz), 131.2 (d, J = 11.9 Hz), 130.9, 129.6
(d, J = 3.7 Hz), 129.6 (d, J = 12 Hz), 129.2 (d, J = 5 Hz), 128.8, 124.6, 122.5, 121.6, 119.6,
96.9, 87.2, 32.2, 31.2, 30.6, 30, 29.3, 23.2, 22.8, 14.5.

FT-IR (cm−1): 3058 (w), 3011 (w), 2950 (w), 2926 (m), 2857 (w), 2193 (m), 1598 (m),
1581.82 (s), 1566 (s), 1541 (w), 1466 (m), 1432 (w), 1391 (m), 1265 (w), 1116 (w), 1103 (w),
1093 (w), 1069 (w), 996 (w), 986 (w), 892 (w), 793 (s), 744 (m), 720 (w), 690 (w), 661 (m),
617 (w), 523 (w).

HRMS found m/z 1089.393 [M + H+], and C68H62N6PS3 requires 1090.428.

2.6. Unimer EPh

This unimer was successfully purified by liquid chromatography using basic alumina
and toluene/acetone (gradient 0–2% of acetone). Product was isolated as a dark red solid
with a yield of 6.5% (12 mg, 0.01 mmol).

1H NMR (300 MHz, CD2Cl2, δ/ppm): 8.80 (s, 4H, B3), 8.77–8.68 (m, 8H, A6+A3),
7.99–7.88 (m, 10H, A4+σph + ph), 7.66 (d, J = 8.4 Hz, 4H, ph), 7.57–7.45 (m, 3H, mph + pph),
7.40 (ddd, J = 7.5, 4.8, 1.2 Hz, 4H, A5), 7.27 (s, 2H, thio), 2.98 (s, 4H, C-CH2-CH2), 2.70
(t, J = 7.5 Hz, 4H, Hex1), 1.94 (s, 4H, C-CH2-CH2), 1.59 (m, 4H, Hex2), 1.31 (d, J = 3.9 Hz,
12H, Hex 3-5), 0.95–0.87 (m, 6H, Hex6).

31P NMR (121 MHz, CD2Cl2, δ/ppm): 51.23.
13C NMR (151 MHz, CD2Cl2, δ/ppm): 156.8 (s), 156.6 (s), 149.8 (s), 149.8 (s), 149.1 (s),

147.2 (d, J = 21 Hz), 139 (s), 137.5 (s), 135.8 (d, J = 17.7 Hz), 132.8 (s), 132.3 (s), 131.2
(d, J = 12.2 Hz), 129.6 (d, J = 6.6 Hz), 129.6 (d, J = 12.2 Hz), 129.4 (s), 128.8 (s), 127.9 (s),
124.6 (s), 124.5 (s), 121.7 (s), 120.4 (s), 119. (s), 98.1 (s), 84.5 (s), 32.2 (s), 30.6 (s), 29.9 (s),
29.9 (s), 29.3 (s), 23.29 (s), 22.9 (s), 14.5 (d, J = 5 Hz).

FT-IR (cm−1): 3051 (w), 2949 (m), 2929 (m), 2856 (w), 2191 (w), 1979 (w), 1970 (w),
1958 (w), 1940 (w), 1603 (m), 1584 (s), 1566 (m), 1523 (w), 1508 (w), 1466 (m), 1441 (m),
1412 (w), 1388 (m), 1097 (w), 1038 (w), 989 (w), 832 (m), 791 (s), 745 (m), 737 (w), 718 (m),
692 (w), 668 (w), 661 (w), 621 (w), 52 1(w).

HRMS found m/z 1241.4556 [M + H+], and C80H70N6PS3 requires 1242.6128.
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2.7. Unimer ET

This unimer was successfully purified by using chromatography on basic alumina,
first with the hexane/THF solvent system of increasing gradient polarity from 4/1 to 1/1
by volume and then second with DCM/1% methanol mobile phase. Product was obtained
as a red–violet solid with a yield of 3% (4 mg, 0.004 mol).

1H NMR (600 MHz, CD2Cl2, δ/ppm): 8.73 (d, J = 4.4 Hz, 4H, A6), 8.69 (s, 4H, B3), 8.65
(d, J = 8.1 Hz, 4H, A3), 7.87–7.93 (m, 6H, A4+ σph), 7.71 (d, J = 3.9 Hz, 2H, C3), 7.50–7.54 (m,
2H, mph), 7.44–7.48 (m, 1H, pph), 7.40 (ddd, J = 7.5, 4.7, 1.2 Hz, 4H, A5), 7.33 (d, J = 3.9 Hz,
2H, C4), 7.27 (s, 2H, D3), 2.97 (br. s, 4H, C-CH2-CH2), 2.69 (t, J = 7.5 Hz, 4H, Hex1), 1.90–1.95
(m, 4H, C-CH2-CH2), 1.25–1.32 (m, 16H, Hex2-5), 0.87–0.92 (m, 6H, Hex6).

31P NMR (121 MHz, CD2Cl2, δ/ppm): 51.22 (s, 1P).
13C NMR (151 MHz, CD2Cl2, δ/ppm): 156.8, 156.2, 149.7, 149.5, 147.4 (d, J = 19.9 Hz),

144, 143.1, 137.6, 136.3 (d, J = 16.6 Hz), 133.7, 132.9 (d, J = 3.0 Hz), 131.2 (d, J = 11.1 Hz),
129.7 (d, J = 5.5 Hz), 129.6 (d, J = 13.10 Hz), 129.4, 128.9, 126.6, 125.1, 124.7, 121.7, 119.8,
117.4, 91.3, 88.5, 32.2, 30.5, 30.3, 30.1, 29.3, 23.1, 22.9, 14.5.

FT-IR (cm−1): 3054 (w), 2964 (m), 2932 (m), 2909 (m), 2853 (w), 2180 (w), 1600 (m),
1584 (m), 1262 (s), 1096 (s), 1020 (s), 865 (m), 799 (s), 743 (m), 731 (w), 717.87 (m), 683 (w),
666 (m), 659 (w), 621 (w), 514 (w).

HRMS found m/z 1253.3685 [M + H+] C76H66N6PS5 requires 1254.6683.

2.8. Unimer ET6

This unimer was successfully purified by using the chromatography on basic alumina
first with the hexane/THF (3/2 by volume) mixed mobile phase and obtained as a dark
violet solid with a yield of 10% (10 mg, 0.007 mmol).

2,5-bis{4-hexyl-5-[4′-(5-ethynyl-3-hexylthiophen-2-yl)tpy]- thiophen-2-yl} 1-phenyl-1-
thioxophosphole (ET6).

Column chromatography on basic alumina, using hexane/THF (3/2 by volume) mixed
mobile phase. Fractions containing product were collected and evaporated, washed with
diethyl ether/pentane (1/1, v/v) and gained as dark violet solid (10 mg, 10%).

1H NMR (600 MHz, CD2Cl2, δ/ppm): 8.71 (d, J = 4.04 Hz, 4H, A6), 8.67 (d, J = 8.07 Hz,
4H, A3) 8.58 (s, 4H, B3), 7.86–7.93 (m, 6H, A4 + σph), 7.50–7.55 (m, 1H, pph), 7.44–7.49 (m,
2H, mph), 7.38 (ddd, J = 6.7, 5.4, 1.1 Hz, 4H, A5), 7.24 (s, 2H, C4), 7.21 (s, 2H, D3), 2.95 (br. s.,
4H, C-CH2-CH2), 2.81(t, J = 7.5 Hz, 4H, C-Hex1), 2.66 (t, J = 7.4 Hz, 4H, D-Hex1), 1.92 (br. s.,
4H, C-CH2-CH2), 1.65–1.78 (m, 4H, C-Hex2), 1.35–1.44 (m, 4H, D-Hex2), 1.24–1.33 (m, 20H,
C-Hex3-5, D-Hex3-5), 0.80–0.93 (m, 12H, C-Hex6, D-Hex6).

31P NMR (121 MHz, CD2Cl2, δ/ppm): 51.20 (s, 1 P).
13C NMR (151 MHz, CD2Cl2, δ/ppm): 156.5 (s), 156.3 (s), 149.8 (s), 149.1 (s), 147.2 (d,

J = 19.9 Hz), 143.9 (s), 142.2 (s), 138.2 (s), 137.4 (s), 136 (d, J = 17.70 Hz), 135.5 (s), 132.8 (d,
J = 3.3 Hz), 131.1 (d, J = 11.1 Hz), 129.6 (s), 129.6 (s), 129.5 (d, J = 5.50 Hz), 129.3–129.3 (m),
129.1 (s), 128.8 (s), 124.6 (s), 123 (s), 121.6 (s), 120.9 (s), 120(s), 91.4 (s), 87.6 (s), 32.2 (s),
31.4 (s), 30.5 (s), 29.9 (s), 29.9 (d, J = 12.2 Hz), 29.6 (s), 29.6 (s), 29.3 (s), 23.2 (d, J = 2.21 Hz),
22.9 (s), 14.5 (s), 14.4 (s).

FT-IR (cm−1): 3176 (w), 3059 (w), 3014 (w), 2953 (m), 2930 (m), 2854 (w), 2181 (w),
1600 (w), 1583 (s), 1568 (m), 1558 (m), 1549 (w), 1532 (w), 1465 (m), 1445 (w), 1435 (w),
1395 (m), 1373 (w), 1266 (w), 1125 (w), 1097 (w), 1073 (w), 1022 (w), 989 (w), 893 (w), 888 (w),
844 (w), 839 (w), 793 (m), 743 (m), 718 (w), 687 (w), 667 (w), 659 (w), 622 (w), 616 (w).

HRMS found m/z 1421.5563 [M + H+], and C88H90N6PS5 requires 1421.9872.
Assembly of Zn-MSPs and Fe-MSPs and its monitoring in solution. For monitor-

ing the progress in the assembly, we used the procedure described in [18,28,29]. Briefly,
a measured volume of a solution of Zn2+ or Fe2+ perchlorate (2 × 10−3 M) in chloro-
form/acetonitrile mixed solvent (1/1, v/v) was added into a unimer (U) solution (2 × 10−5 M)
in the same solvent by using a Hamilton syringe. The metal to unimer (M2+/U) mole ratio r
(r = M2+/U) varied from 0 to 3. The UV/vis absorption and the photoluminescence emission
spectra of the solutions were measured at room temperature one day after preparation. Films
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of solid MSPs for spectral measurements were prepared by mixing equimolar amounts of
chosen unimer and metal salt in solution (r = 1), followed by the drop casting of the solution
on a quartz substrate and drying the wet film. Polymers are further denoted by symbols
composed of the metal symbol and the unimer abbreviation; for example, ZnET stands for
the MSP formed from Zn2+ ions and unimer ET, and FeEPh stands for the MSP prepared
from ions Fe2+ and unimer EPh.

3. Results
3.1. Characteristics of Phosphole Unimers and Their Polymers

The UV/vis spectral changes accompanying assembly of polymers ZnET and FeET
are shown in Figure 1, and similar figures for the assembly of the other MSPs are available
in Figure S3 in Supplementary Information. For clarity, each spectral set is divided into
two parts: the set for the ions (M) to unimer (U) mole ratios r = M/U from 0 to ca 0.5 (left)
and the set for r > 0.5 (right). The main spectral changes are the following: (i) development
of a new band at ca 330 nm, (ii) red shift of the HOMO–LUMO band of the unimer, (iii)
slight narrowing but practically no change in the intensity of the band at 285 nm, and (iv)
development of a new band at around 600 nm in the systems with Fe2+ ions. The stable
band at 285 nm is mainly contributed to by transitions in the pyridine rings [30], and it
can advantageously be used to normalize the spectra of solid MSPs (vide infra). The new
bimodal UV/vis band at around 350 nm is associated with transitions within coordinated
tpy groups that have pyridine rings in the syn conformation (unlike their conformation anti
in free tpy groups). Essential bimodality of this band is of vibrational origin [46,49,50]. The
red shift of the HOMO–LUMO band proves an increase in the delocalization of electrons
upon binding unimer molecules into MSP chains. The band at around 600 nm is associated
with electronic transitions relating to the metal-to-ligand charge transfer (MLCT) that is
typical of [Fe(tpy)2]2+-type species [2–7,16,21,22,49–51].
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Figure 1. The UV/vis spectral changes accompanying assembly of Zn2+ (up) and Fe2+ (down) ions
with unimer ET at mole ratios r from 0 to ca 0.5 (left) and at r > 0.5 (right).
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As can be seen, the UV/vis spectral sets for the M2+/U systems of the mole ratios r
from 0 to 0.5 (Figure 1, left column) showed a few isosbestic points (IP), whereas the sets for
higher ratios r (Figure 1, right columns) did not. The presence of IPs generally indicates that
defined initial species are transformed into other defined ones. Therefore, the occurrence of
IPs in the spectral sets for r ratios up to 0.5 indicates that the new species are “butterfly”
dimers U-M2+-U. The IP at ca 310 nm has been observed in almost all spectral sets for
assembling of terpyridine and its 4′-derivatives with Zn2+ and Fe2+ ions [18,29,46,51,52].
The absence of IPs in the spectral sets for ratios r > 0.5 is consistent with the consecutive
stepwise assembly of the preformed U-M2+-U species and M2+ ions to form [-M2+-U-]n
chains of various lengths, i.e., more than one defined species. This difference between the
two assembly stages proves that the tpy end-groups of semi-bounded unimeric units are less
reactive than the tpy end-groups of free unimer molecules, which indicates that there is an
efficient electron density transfer along the MSP chains derived from conjugated unimers.

The effects of linker structure on the UV/vis spectral characteristics of the unimer and
MSPs are shown in Figure 2. As can be seen expected, the λUV of the unimer noticeably
red-shifted, and its molar absorption coefficient substantially increased with the increasing
size of the π-conjugated linker. The same λUV values of ET and ET6 indicate practically the
same band-gap energy of these unimers, despite the steric hindrances caused by the hexyl
groups in ET6. However, these hindrances are clearly manifested by the reduced value
of εUV for ET6. The εUV values of the unimers showed a similar trend with the increasing
linker size, with λUV up to the dominant value for ET, followed by a drop of about ca.
30% to the already-justified value for ET6. Interestingly, the agreement of the εUV of EPh
and ET6 indicates that the steric hindrance of the hexyl side group in ET6 quantitatively
cancels the positive effect of replacing the benzene ring with a thiophene ring (the difference
between ET and EPh is just canceled).

Polymers 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

As can be seen, the UV/vis spectral sets for the M2+/U systems of the mole ratios r 
from 0 to 0.5 (Figure 1, left column) showed a few isosbestic points (IP), whereas the sets 
for higher ratios r (Figure 1, right columns) did not. The presence of IPs generally indicates 
that defined initial species are transformed into other defined ones. Therefore, the occur-
rence of IPs in the spectral sets for r ratios up to 0.5 indicates that the new species are 
“butterfly” dimers U-M2+-U. The IP at ca 310 nm has been observed in almost all spectral 
sets for assembling of terpyridine and its 4′-derivatives with Zn2+ and Fe2+ ions 
[18,29,46,51,52]. The absence of IPs in the spectral sets for ratios r > 0.5 is consistent with 
the consecutive stepwise assembly of the preformed U-M2+-U species and M2+ ions to form 
[-M2+-U-]n chains of various lengths, i.e., more than one defined species. This difference 
between the two assembly stages proves that the tpy end-groups of semi-bounded uni-
meric units are less reactive than the tpy end-groups of free unimer molecules, which in-
dicates that there is an efficient electron density transfer along the MSP chains derived 
from conjugated unimers. 

The effects of linker structure on the UV/vis spectral characteristics of the unimer and 
MSPs are shown in Figure 2. As can be seen expected, the λUV of the unimer noticeably 
red-shifted, and its molar absorption coefficient substantially increased with the increas-
ing size of the π-conjugated linker. The same λUV values of ET and ET6 indicate practically 
the same band-gap energy of these unimers, despite the steric hindrances caused by the 
hexyl groups in ET6. However, these hindrances are clearly manifested by the reduced 
value of εUV for ET6. The εUV values of the unimers showed a similar trend with the in-
creasing linker size, with λUV up to the dominant value for ET, followed by a drop of about 
ca. 30% to the already-justified value for ET6. Interestingly, the agreement of the εUV of 
EPh and ET6 indicates that the steric hindrance of the hexyl side group in ET6 quantita-
tively cancels the positive effect of replacing the benzene ring with a thiophene ring (the 
difference between ET and EPh is just canceled). 

  

  

 

 

no linker   -C≡C-   -C≡C-Ph-  -C≡C-Th-  -C≡C-Thhex  

460

490

520

TP
T

Zn
TP

T
Fe

TP
T E

Zn
E

Fe
E

EP
h

Zn
EP

h
Fe

EP
h ET

Zn
ET

Fe
ET ET

6
Zn

ET
6

Fe
ET

6

λUV solution / nm

550

575

600

625

Fe
TP

T
Fe

E
Fe

EP
h

Fe
ET

Fe
ET

6

λMLCT /nm

0

20

40

60

TP
T

Zn
TP

T
Fe

TP
T E

Zn
E

Fe
E

EP
h

Zn
EP

h
Fe

EP
h ET

Zn
ET

Fe
ET ET

6
Zn

ET
6

Fe
ET

6

εUV / m3mol−1cm-1

0
20
40
60
80

100

Fe
TP

T
Fe

E
Fe

EP
h

Fe
ET

Fe
ET

6

εMLCT / m3mol−1cm−1

475

500

525

550

TP
T

Zn
TP

T
Fe

TP
T E

Zn
E

Fe
E

EP
h

Zn
EP

h
Fe

EP
h ET

Zn
ET

Fe
ET ET

6
Zn

ET
6

Fe
ET

6

λUV film / nm

Figure 2. Effect of the linker structure on the UV/vis characteristics of unimers and MSPs.
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In contrast to the unimers, Zn-MSPs showed an alternating (red-shift/blue-shift)
dependence of both λUV and εUV, with an increasing linker size. Surprisingly, the highest
λUV value showed ZnE (not ZnET), which, however, showed a much lower value of εUV
compared to ZnET. Unlike Zn-MSPs, Fe-MSPs showed a dependence on the linker size
that was similar to that of free unimers: a continuous growth of λUV and a growth of εUV
up to FeET, followed by a drop of about ca. 25% to the value for FeET6. As for the MLCT
bands, unlike the λUV values, the λMLCT values of Fe-MSPs showed a decrease with the
increasing linker size, with an exceptionally low value for FeEPh. However, the εMLCT
values of Fe-MSPs qualitatively showed the same trend as the εUV values.

As for the linker-size dependences of the λUV, the data for the solid unimers and
MSPs significantly differed from those for their solutions (Figure 2). As can be seen in
Table 1, the λMLCT values of the solid samples are red-shifted by up to 39 nm (unimer
ET) compared to the values for the solution. This red-shift is a measure of the extent of
conformational changes (planarization increasing the overlaps of π-orbitals) of solvated
molecules accompanying their packing into solid-state lattices [53], which is highly variable.
For example, these red shifts observed for Zn-MSPs varied from 2 nm (ZnTPT), via 15 and
10 nm for ZnE and ZnEPh, to 20 nm for ZnET and 27 nm for ZnET6 (see Table 1). A detailed
analysis of these shifts is beyond the scope of this paper. The red shifts found for Fe-MSPs
range from 3 nm (FeE) to 32 nm (FeET6). Note that the planes of near-neighboring tpy–
unimer units in an MSP chain are ideally perpendicular to each other due to the octahedral
coordination of the tpy groups to metal ions. The whole UV/vis spectra of Fe-MSP films
are shown in Figure 3, where the wavelengths of the laser beams used to excite the Raman
spectra, λexc, are also indicated. In summary, the considerable variability of the linker
effects on the spectral characteristics is indicative of the complexity of their origin.

Luminescence spectra of free unimers and their Zn-MSPs are shown in Figures S4
and S5 in ESI, and the spectral characteristics determined are summarized in Table 1.
The emission bands are very broad with broad, flat maxima, indicating the simultaneous
presence of many different chromophores in the emitting layers. The emission band of
ZnET films also showed a normalized intensity of 0.8 up to about 750 nm and an intense
tail extending deep into the NIR region. Notably, the solution spectra of Zn-MSPs range
deeply into the NIR region. The Stokes shifts of unimers and Zn-MSPs range from ca. 4000
to 5000 cm−1 (Table 1). They are roughly about 1000 to 2000 cm−1 larger than the shifts
observed for the Zn-MSPs derived from unimers with oligophenylene main-chains and
EPh linkers to tpy end-groups [26].

Table 1. Electronic spectral data of unimers and MSPs (r = 1/1); λUV, λMLCT, and λF are the wavelengths
of maxima of the respective absorption and luminescence bands; ε is the molar absorption coefficient
(m3mol−1cm−1); Φ is the luminescence quantum yield; and ∆νS (=1/λUV − 1/λF) is the Stokes shift.

Unimer λUV, nm λMLCT, nm λF, nm (Φ, %) ∆νS, cm–1

Polymer Solution Film Solution Film Solution Film Solution Film

TPT [19] 482 (ε = 29) 520 - - 603 (19%) 685 (0.7%) 4160 4630
ZnTPT 507 (ε = 39) 509 - - 634 641 (0.5%) 3950 4100
FeTPT 491 (ε = 22) 499 625 (ε = 50) 626 - - - -

E 497 (ε = 33) 511 - - 623 (9%) 705 (0.2%) 4070 5390
ZnE 518 (ε = 43) 533 - - 642 702 (7%) 3730 4520
FeE 508 (ε = 29) 511 609 (ε = 66) 616 - - - -
EPh 500 (ε = 42) 526 - - 635(15%) 669 (0.3%) 4250 4060

ZnEPh 505 (ε = 51) 515 - - 649 673 (4%) 4350 4560
FeEPh 510 (ε = 51) 518 580 (ε = 74) 590 - - - -

ET 506 (ε = 60) 545 - - 641 (22%) 730 (0.3%) 4160 4650
ZnET 513 (ε = 66) 533 - - 680 723 (3%) 4710 4950
FeET 518 (ε = 62) 538 601 (ε = 99) 615 - - - -
ET6 505 (ε = 43) 538 - - 642 (8%) 700 (0.2%) 4230 4300

ZnET6 508 (ε = 45) 535 - - 674 692 (5%) 4850 4490
FeET6 518 (ε = 45) 540 584 (ε = 61) 592 - - - -
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Figure 3. (Left): UV/vis spectra of Fe-MSP films. (Right): UV/vis spectra of films of the ET unimer
and FeET polymer with the marked positions of the laser-beam wavelengths used for the excitation
of Raman spectra.

3.2. Time Changes in Raman Spectra of Films of Fe-MSPs with Phosphole Units

Fe-MSPs derived from tpy-type unimers generally show such weak luminescence that
their Raman spectra (RS) are well-measurable. The strong luminescence of Zn-MSPs makes
measuring their RS impossible. The resonance RS (RRS) were excited at wavelengths λexc
of 445, 532, and 633 nm (see Figure 3b), currently using the laser power at the sample
of 0.1 mW. The off-resonance RS (λexc = 780 nm) were collected with 50 times stronger
excitation (5 mW). One of us noticed that with a longer acquisition time of the RRS of
Fe-MSP, the spectral pattern visibly changes during the acquisition. To verify this, a set
of consecutive RS was measured for each Fe-MSP sample, each with an acquisition time
of 15 s, until spectral changes were evident (5–10 min). Examples of these sets obtained
for with different λexc are shown in Figure 4 (for other examples, see Figure S6 in ESI).
The spectra were primarily analyzed by the subtraction method. The spectra collected in
the first and last 15 s of exposure are labeled F and L, respectively. The difference spectra
(DS) obtained by subtracting L from F identify changes in the spectral pattern caused
by the total radiation load of the sample. As can be seen, the off-resonance RS (780 nm)
gave a structureless DS, indicating only the attenuation of the luminescence background.
In contrast, the resonance RS gave DS with well-resolved bands, indicating that the radiation
induced some structural changes in Fe-MSP films.

The richest and strongest DS provided the RRS taken with λexc = 532 nm, though
this line is much further from λMLCT of FeET (615 nm) than λexc = 633 nm. However, the
MLCT bands of conjugated Fe-MSPs are significantly contributed to, with transitions in
the central parts of unimer units, shifting λMLCT to longer wavelengths [19,28]. However,
λexc of 532 nm is near to the λMLCT = 552 nm of [Fe(H-tpy)2]2+ (H-tpy stands for unsubsti-
tuted terpyridine) [46,50]. This indicates that the first step of the revealed photo-induced
phenomenon is the excitation of [Fe(tpy)2]2+ links. The DS obtained with λexc = 532 nm are
analyzed in detail in the following sections.
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RS (F); red—last measured RS (L); blue (D = F − L)—difference spectrum. Accumulation time 15 s; total
time 6–9 min; laser power at the sample: 0.1 mW for 532 and 633 nm and 5 mW for 445 and 780 nm.

3.3. Analyses of the Spectral Changes

Identification of stable and unstable spectral components. The simplest way to
obtain the spectral components that changed or did not change during some process is
by the method of weighed subtraction of representative spectra, which mostly is a part of
the spectrometer operating software. In this procedure, the first difference spectrum (D) is
obtained by subtracting the last measured spectrum (L) from the first measured spectrum
(F) of the given series:

D = F − aL (1)

Here, a is the subtraction coefficient obtained iteratively by observing the changes
caused by the subtraction, such that no negative peaks occur in the D spectrum. Since F
includes all initial bands, while L includes only the bands that survived, D represents the
spectral component disappearing under the excitation radiation. Accordingly, the second
difference spectrum (S) is calculated using the formula:

S = F − bD (2)

represents the spectral component that remained intact by the excitation radiation. (The
subtraction coefficient b is obtained similarly as coefficient a). The source spectra F and L,
together with the obtained spectral components, are shown in the upper section of Figure 5.
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Figure 5. Comparison of relevant RS: (Top): the first (F) and last (L) RS of the FeET (532 nm) series
and RSs of the disappearing (D) and stable (S) components obtained by the subtraction method;
(Middle): pure spectral components obtained by factor analysis (FA) of the whole spectral set;
(Bottom):off-resonance RS of the precursor central unit and RRS of [Fe(T-tpy)2]SO4 complex (T-tpy
stands for 4′-(2-thienyl)terpyridine).

The whole spectral sets were more accurately processed by the ‘factor analysis’ method.
All spectra in the set were first baseline-corrected by the method of orthogonal differences
(see Figures S7 and S8 for the reliability of this correction), and the resulting set was
subjected to the factor analysis using the ‘singular value decomposition’ algorithm [54].
This method generally provides two or more subspectra and a set of coefficients from
which any spectrum of the set can be reconstructed (for details see ESI). The analyses
showed that any spectrum of a given set can be reconstructed with sufficient accuracy
from just two subspectra. Linear combinations of the two subspectra, which showed
no negative band, gave the subspectra of pure spectral components (DFA and SFA) that
agreed well with the spectra (D and S) obtained by the subtraction method. The structures
lying behind the pure spectral components were estimated by comparing the spectral
components with the spectra of related compounds, which are shown at the bottom of
Figure 5. The disappearing component (D; DFA) closely resembles the RS of 2,5-di(2-
thienyl)-1-thioxophospholes [41,43,44] and of the diiodo precursor of new unimers. This
spectral component can, therefore, be assigned to the TPT-type central parts of unimeric
units. The stable spectral component (S; SFA) agrees well with the RRS of [Fe(T-tpy)2]SO4
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and other [Fe(R-tpy)2] complexes, so it can be assigned to the tpy units in octahedral
bis(tpy)Fe linkages.

Kinetics and reversibility of the changes. The baseline-corrected spectra of the whole
set were deconvolved to the contributions of individual bands (Figure 6), and the time
dependences of the integral band intensities were plotted (Figure 7). The plots clearly di-
vided the bands into stable ones, marked with *, which evidently belong to the coordinated
tpy units, and the disappearing ones, which showed a narrow range of mean lifetimes
(44 ± 3 s), confirming that they belong to the same constitutional unit: the central TPT-type
unit. (See also Figures S9 and S10 with similar data for FeEPh).
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The reversibility of spectral changes was examined by measuring RS from the same
sample site, after a time delay during which the sample was not irradiated. The stability of
the sample position in the spectrometer was checked with an optical microscope before and
after each pause. Representative results of the recovery experiments are shown in Figure 8.
Spectrum recovery was observed for all MSPs with a thioxophosphole unit. Notably, the
RS of FeTPT were recovering significantly faster than the spectra of new Fe-MSPs with
linkers to tpy groups.
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time 6 min.

The effect of the excitation beam intensity on the reversibility of spectral changes was
also tested. The reversibility of spectral changes was found to decrease until it disappears
with increasing intensity of the excitation beam. The Fe-MSPs behaved differently than
the Fe2+ complexes of monotopic tpy ligands. The images of films of various samples
treated with an intense laser beam (5 mW) are shown in Figure 9. The FeET and FeTPT
films showed stable greenish-yellow traces of illuminated sites, while the [Fe(H-tpy)2]SO4
complex was partially ablated and partially carbonized.
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4. Discussion
4.1. Structures Responsible for the Spectral Changes

The obvious participation of [Fe(tpy)2]2+ groups raised the question of whether or not
the found spectral changes originate from them. We did not notice such spectral changes in
earlier studies of conjugated Fe-MSPs derived fromα,ω-bis(tpy) unimers [18,25,28–30,55–57].
However, to be sure, we checked the behavior of related simple Fe complexes with mono-
topic tpy ligands and FeTt MSP from our recent study [15] (Figure 10). No change in spectral
pattern, only a decrease in the spectral intensity due to ablation, was recorded (especially
for complexes with monotopic tpy ligands). Thus, it is clear that Fe(tpy)2 groups alone do
not cause the revealed spectral changes and that the presence of 1-thioxophosphole or a
related unit in the active structure is the second necessary condition. (See also Figure S11).
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4.2. Mechanistic Considerations

Mere warming of the measured MSP can be ruled out as the cause of the revealed
changes, because, in general, it only non-specifically increases the spectral background and
broadens Raman bands [58,59]. The phosphole-to-phospholene ring isomerization consisting
in the shift of one double bond from the phosphole ring into the exo position yielding a
cyclohexene ring has also been considered. However, this isomerization is known to be
irreversible [35,37,38], which contradicts the reversibility observed. This isomerization
can be, thus, also ruled out as the cause of the observed phenomenon. The spin-crossover
process (low-spin to high-spin state transition) of Fe ions that consists in the transition of
two electrons from the bonding to antibonding orbitals was also excluded, though it might
occur even at room temperature [60–62]. Such transition distorts the central octahedron
by mainly extending the metal-to-ligand bonds with vibrations that lie at low frequencies
(due to the high mass of Fe ions) [63]. However, all significant spectral changes occurred at
much higher frequencies and relate exclusively to the bands of 1-thioxophosphole units,
not tpy units. Moreover, this process in iron complexes is known to have specific steric
requirements and ligands such as those by pyrazole or tetrazole rings [64]. Thus, the
spin-crossover process can be also ruled out as the cause being sought.

Photoinduced oxidation of Fe(II) ions seems to be the most probable cause of the ob-
served changes. The mere existence of the long-time stable MLCT band associated with the
[Fe(tpy)2]2+ units proves a reversible partial transfer of electrons from Fe2+ ions into tpy
ligands, i.e., reversible partial oxidation of these ions even in daylight. Therefore, excitation
into this band can be expected to enhance this transfer. If the transferred electrons are
not consumed in a ligand modification, the overall photo-enhanced MLCT should remain
reversible. Simple [Fe(tpy)2]2+ complexes and Fe-MSPs without thioxophosphole rings
behaved this way, but Fe-MSPs with these rings did not. The strongly electron-withdrawing
group P = S can be considered the reactive center responsible for this exceptional behavior.
This group has already been proposed as the cause of the intramolecular charge transfer
from a thiophene ring into the adjacent thioxophosphole ring [43]. Moreover, DFT calcu-
lations [19,43,44] showed that the electron density of the LUMO of the TPT structures is
mainly localized on the thioxophosphole ring. Thus, the most likely scenario is the reduc-
tion of the P atom by the transferred electron to form a sulfide anion, which compensates
for the increased charge of the iron ion (Scheme 3).
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Scheme 3. Probable chemical nature of the observed phenomenon. ∼∼ indicating continuation of
polymer chain.

However, it should still be explained why this transformation is considerably re-
versible at low exposure but irreversible at intense exposure. The following factors have to
be considered:

(a) The motion of an electron in a solid lattice is associated with the lattice deformation,
mostly acting against this motion [53,65].

(b) Repeating units with newly formed ions Fe3+ and S− represent “structure islands”,
with the distribution of localized charges significantly differing from the original
distribution in the surrounding intact domains, which introduces instability into the
lattice. The greater the number of new ions in the original lattice, the less stable this
lattice is.

(c) Stabilization of the disrupted lattice requires either restoring its original structure
or creating a new structure by conformational changes and displacements of mobile
counterions, which is not easy in a solid.

The above points can be summarized in the mechanism shown in Scheme 4.
At low-intensity excitation, the frequency of electron transfers from Fe2+ ions to

unimeric units will be low, and, thus, the lattice disturbance will also be small. In such
a case, the dominant original structure will successfully counteract the transformations
that are unfavorable to it, and the electron transfer process should be essentially reversible.
The increase in excitation intensity will increase the population of new ions in the lattice,
until the disruption of its original structure becomes so large that the transition to a new
structure optimal for the presence of new ions stabilizes the lattice and the photo-enhanced
MLCT process becomes irreversible.
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5. Conclusions

While the replacement of the central thiophene ring with a phosphole ring in a
molecule of the α,ω-bis(tpy)terthiophene unimer caused a substantial red-shift of the
unimer optical band (∆λUV = 75 nm) [19] but no increase in the molar absorption coeffi-
cient ε, the incorporation of conjugated linkers between the TPT-type central unit and tpy
end-groups caused only a small red shift of λUV (+15 to 25 nm) but a substantial increase
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in the unimer ε value up to a more than twofold value, depending on the linker structure.
Moreover, the linkers also significantly extended the unimer luminescence emission into the
NIR region, but they did not improve the luminescence quantum efficiency. The closeness
of the λUV values and the difference in the ε values also remained reduced, to an extent, in
Zn- and Fe-MSPs. Quite remarkable is the fact that the highest λMLCT value exhibited the
Fe-MSP without linkers, FeTPT, which nevertheless also showed the lowest ε value.

The most remarkable part of this article is undoubtedly the discovery of the reversible
disappearance of the bands of the central phosphole unit in the resonance Raman spectra
of Fe-MSPs, since a similar phenomenon has not been described so far. The fact that the
phenomenon was exhibited exclusively by Fe-MSPs in which the MLCT process occurs
and that the phenomenon is induced by radiation with a wavelength falling within the
absorption MLCT band logically leads to the hypothesis that the phenomenon is related to
the MLCT process. We experimentally demonstrated that the mere presence of the MLCT
is a necessary but not a sufficient condition for the observed phenomenon to occur. We
also found that none of the FeMSPs exhibit this process in a solution. This suggests that
inhibited conformational changes can play a crucial role in the process. These experimental
facts became the basis of the proposed hypothesis about the mechanism of the discovered
phenomenon. We are, naturally, aware that this is a primary hypothesis, the possible proof
of which will require additional experimental data and theoretical calculations, though we
do not have the needed expertise for implementing them. Relatively large electronically
excited systems with iron ions are not at all easy to perform calculations on.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14235207/s1, Figure S1. 1H NMR spectra of prepared
unimers (measured in CD2Cl2); Figure S2. 13C NMR spectra of prepared unimers (measured in
CD2Cl2). Monitoring of Zn-MSP and Fe-MSP assembly in solution; Figure S3. Changes in absorption
spectra accompanying a stepwise assembly of MSPs; Figure S4. The UV/vis and photoluminescence
solution spectra of unimers; Figure S5. The UV/vis and photoluminescence solution spectra of MSPs;
Figure S6. The unimer luminescence quenching in response to the unimer binding to Fe2+ ions;
Figure S7. Time evolution spectral sets of the resonance (532 nm, 0.1 mW) and off-resonance (780 nm,
5 mW) Raman spectra; accumulation time 15 s; total time 6–9 min. Processing of Raman spectral sets
by Factor analysis (FA); Figure S8. Results of factor analysis of time evolution spectral set of FeET,
excitation 532 nm; Figure S9. Overlaid baseline corrected spectra of the spectral sets of indicated
compounds, normalized to the most intense spectral band; Figure S10. Raman spectral set for FeEPh
(532 nm, 0.1 mW) and the set after subtraction of fluorescence background to better see changes in
spectral pattern; Figure S11. Deconvolution of the second and next-to-the-last Raman spectrum of
FeEPh and kinetics of obtained bands.
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