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Marta Garćıa-Huidobro ∗

Departamento de Matemáticas
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and Centro de Modelamiento Matemático (CNRS IRL2807)
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Abstract. We investigate the monotonicity of the minimal period of the periodic
solutions of some quasilinear differential equations and extend results for p = 2 due to
Chow and Wang, and to Chicone, to the case of the p-Laplace operator. Our main
result is the monotonicity of the period for positive solutions of a nonlinear Euler-
Lagrange equation for a minimization problem related with a fundamental interpolation
inequality. In particular we generalize to p greater than 2 recent results of Benguria,
Depassier and Loss.

1. Introduction

In this paper we study monotonicity properties of the minimal period of positive peri-
odic solutions of (

φp(w
′)
)′

+ V ′(w) = 0 , (1)

where p ≥ 2, φp(s) = |s|p−2s, and V : R→ R is smooth. The potential function V(w) is
assumed to be non-negative for w ≥ 0, V(0) > 0, it has a minimum at w = A > 0 with
V(A) = 0 = V ′(A), and satisfies some additional conditions listed in Section 3, which
guarantee that (1) has positive periodic solutions enclosing the critical point (A, 0) in
the phase plane (w,w′).
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The energy E = 1
p
|w′|p + V(w) is conserved if w solves (1) and we are interested in

the positive periodic solutions with energy less than E∗ := V(0) which are enclosed by
the homoclinic orbit attached to (w,w′) = (0, 0). We further assume that V is such that
these solutions are uniquely determined, up to translations, by the energy level E, with
minimal period T (E).

The purpose of this paper is to study under which conditions T is an increasing function
of E in the range 0 ≤ E ≤ E∗ where E∗ is the energy level of the homoclinic orbit.
Furthermore we will consider the asymptotic behaviour of T (E) as E → 0+ and as
E → (E∗)−. Surprisingly enough, the cases p = 2 and p > 2 differ as E → 0+.

Our first result is an extension to p > 2 of a result of Chow and Wang [8, Theorem 2.1].

Theorem 1. Let p > 2 and assume that V is a C2 function on R+ such that V(A) =
0 = V ′(A) and V ′′ > 0 on (0, B) with B := min{w > A : V(w) ≥ V(0)}. If w 7→
|V ′(w)|2 − p′ V(w)V ′′(w) is a positive function, then E 7→ T (E) is increasing on (0, E∗).

Notice that w 7→ |V ′(w)|2 − p′ V(w)V ′′(w) is a positive function if and only if w 7→
V(w) |V ′(w)|−p′ is a monotone increasing function.

Our second result is also an extension to p > 2 of the monotonicity result in [7,
Theorem A] under Chicone’s condition, which is also a growth condition, but of higher
order in the derivatives.

Theorem 2. Let p > 2 and assume that V is a C3 function on R+ such that V(A) =
0 = V ′(A) and let B := min{w > A : V(w) ≥ V(0)}. If V/(V ′)2 is a convex function,
then E 7→ T (E) is increasing on (0, E∗).

A central motivation for this paper arises from the study of the minimization problem

µ(λ) := inf
f∈W1,p(S1)\{0}

‖f ′‖2Lp(S1) + λ ‖f‖2Lp(S1)
‖f‖2Lq(S1)

(2)

where q > p is an arbitrary exponent and S1 is the unit circle. The problem can also be
seen as the search for the optimal constant in the interpolation inequality

‖f ′‖2Lp(S1) + λ ‖f‖2Lp(S1) ≥ µ(λ) ‖f‖2Lq(S1) ∀ f ∈W1,p(S1) .

Testing the inequality with constant functions shows that µ(λ) ≤ µ̄(λ) := λ |S1|
2
p
− 2
q . If

p = 2, it is well known from the carré du champ method [2, 3] that equality holds if and
only if λ ≤ d/(q−2). If λ > d/(q−2), we have µ(λ) < µ̄(λ) and optimal functions are non
constant, so that symmetry breaking occurs. The minimization problem problem with
p > 2 was studied in [18]. There is an optimal function for (2) and the corresponding
Euler-Lagrange equation turns out to be the nonlinear differential equation with nonlocal
terms given by

− ‖f ′‖2−pLp(S1)

(
φp(f

′)
)′

+ λ ‖f‖2−pLp(S1) φp(f) = µ(λ) ‖f‖2−qLq(S1) φq(f) , (3)
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where we look for positive solutions on W 1,p(S1)\{0} or equivalently positive 2π-periodic
solutions on R. So far, we do not know the precise value of λ for which there is symmetry
breaking but according to [18] rigidity holds if 0 < λ < λ1 for some explicit λ1 > 0, where
rigidity means that any positive solution of (3) is a constant. In that range, we have
µ(λ) = µ̄(λ). On the contrary, one can prove that symmetry breaking occurs if λ > λ2
for some λ2 > λ1, so that µ(λ) < µ̄(λ) and (3) admits non-constant positive solutions for
any λ > λ2. Using homogeneity, scalings and a suitable change of variables, the study
of (3) is reduced in [18] to the study of positive periodic solutions on R of(

φp(w
′)
)′

+ φq(w)− φp(w) = 0 . (?)

In this equation, there are no non-local terms but the minimal period of periodic solutions
is no more given. Equation (?) enters in the framework of (1) with A = 1 and potential

V(w) = 1
q
|w|q − 1

p
|w|p −

(
1
q
− 1

p

)
, (4)

so that E∗ = 1/p− 1/q. Positive periodic solutions exist only if the energy level satisfies
the condition E < E∗. Again, let T (E) be the minimal period of such a solution.
Theorems 1 and 2 do not apply easily and we shall prove directly the following result,
which is the main contribution of this paper.

Theorem 3. Let p and q be two exponents such that 2 < p < q and consider the
positive periodic solutions of (?). Then the map E 7→ T (E) is increasing on (0, E∗) with
limE→0+ T (E) = 0 and limE→(E∗)− T (E) = +∞.

The study of (3) is motivated by rigidity and symmetry breaking results associated
with interpolation inequalities on the unit sphere Sd in one and higher dimensions, that is,
d ≥ 1. If p = 2, a precise description of the threshold value of λ is known in the framework
of Markov processes if q is not too large (see [3] for an overview with historical references
that go back to [2]) and from [5, 11, 14, 15, 16, 17, 13] using entropy methods applied to
nonlinear elliptic and parabolic equations; also see [12] for an overview and extensions to
various related variational problems.

Almost nothing is known beyond [18] if p > 2, even for d = 1. Our results are
a contribution to a better understanding of the fundamental properties of the solutions
of (1) in the simplest of the cases when p > 2. Without the Assumption that V ′(A) = 0 in
Theorems 1 and 2 (which is also satisfied in Theorem 3), it is easy to give similar results
so that E 7→ T (E) is decreasing, but in phase plane the solutions are not described
anymore by orbits enclosed by a homoclinic orbit. Some comments on this issue can be
found in Section 2.

In dimension d = 1, the bifurcation problem (3) degenerates in the limit case p = 2,
for which λ1 = λ2 = 1/(q − 2) according to [2]. We refer to [4, Section 1] for an
introduction to the minimization problem (2) with p = 2, the issue of the branches and
the monotonicity of the period problem. Proving that symmetry breaking occurs if and
only if λ > 1/(q−2) can be reduced to a proof of the monotonicity of the minimal period
using Chicone’s criterion [7, Theorem A]. The study of bifurcation problems using the
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period function goes back to [23] in case of equations with cubic non-linearities and was
later extended to various classes of Hamiltonian systems in [22, 21, 10, 9, 19].

If p′ = p/(p− 1) is the Hölder conjugate of the exponent p and

H(u, v) := V(u) + 1
p′
|v|p′ ,

Equation (1) can be rewritten as the Hamiltonian system of equations

u′ =
∂H
∂v

= φp′(v) and v′ = − ∂H
∂u

= −V ′(u)

with w = u and w′ = φp′(v). Although this Hamiltonian structure may superficially
look similar to the conditions of [22, Theorem 1], we have a definitely different set of
assumptions. In [21], a much larger set of Hamiltonian systems is considered but again
our assumptions differ, for instance for the simple reason that the function φp′ is not
of class C2. Further references on the period function can be found in [24]. There are
various other extensions of Chicone’s result [7], see for instance [6]. Also notice that there
is a computation in [6, Section 4] which turns out to be equivalent to an argument used
in the proof of our Theorem 4 (see below in Section 2), although it is stated neither in
that form nor as in Theorem 1. The Hamiltonian version of the method has interesting
applications to Lotka-Volterra systems.

The monotonicity of the minimal period as a function of the energy level is a question
of interest by itself and particularly in the model case of the potential V as in (4), even
in the case p = 2. We quote from [4] that: “It is somewhat surprising that, despite its
ubiquity, the monotonicity of the period function for [this problem] in full generality was
only established recently.” In [20], Miyamoto and Yagasaki proved the monotonicity of
the period function for p = 2 and for q an integer. In [24], Yagasaki generalized the result
to all values of q > 2. Both papers, [20, 24], rely on Chicone’s criterion which is difficult
to apply to non-integer values of q. The purpose of Benguria, Depassier and Loss in [4]
was to give a simplified proof of the monotonicity of the period of the positive solutions
of w′′ + wq−1 − w = 0 (corresponding to p = 2 in our notations).

We point out that in many situations in the paper we will consider the equation(
φp(w

′)
)′

+ V ′(w) = 0 (5)

where V is a potential of class C2 defined on R such that

There are a, b ∈ R with a < 0 < b such that V (a) = V (b) = E∗ > 0,
V ′(a) = V (0) = V ′(0) = 0, V ′′(0) 6= 0,
and 0 < V (w) < E∗ for all w ∈ (a, 0) ∪ (0, b).

(H1)

The potential V (w) achieves its minimum on (a, b) at x = 0. The relationship of V
with V is given by V (w) = V(w+A), a = −A and b = B−A. The origin w = 0, w′ = 0
is a stationary point of (5) giving rise to a center surrounded by closed periodic orbits
with minimal period T (E), such that these periodic orbits are enclosed by a homoclinic
orbit attached to (a, 0).
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This paper is organized as follows. Section 2 is devoted to the proof of the p-Laplacian
version of results which are classical when p = 2 and are summarized in Theorems 1
and 2. We are not aware of such statements in the existing literature but they are
natural extensions of the case p = 2 and might already be known, so we do not claim
any deep originality. The result of Theorem 3 is by far more difficult. In Section 3
we start with problem (1) by making a change of variables and obtain an expression
for the minimal period following Chicone’s ideas. We also prove some properties of the
minimal period when the energy goes to zero and when it goes to the homoclinic level E∗.
In Section 4 we prove the monotonicity of the minimal period extending, in particular,
the results of [4] for p = 2 to the more general case of the one-dimensional p-Laplacian

operator w 7→
(
φp(w

′)
)′

, with p > 2. Our main result (Theorem 3) is proved in Section 5,
the proof is highly non-trivial.

2. A p-Laplacian version of some classical results

This section is devoted to the proof of Theorems 1 and 2. We also provide a slightly
more detailed statement of Theorem 1.

We begin by extending [8, Theorem 2.1] by Chow and Wang to the p-Laplacian situa-
tion when p ≥ 2.

We recall that p′ = p/(p − 1) denotes the Hölder conjugate of p. Equation (5) has a
first integral given by

1
p′
|w′|p + V (w) = E (6)

for any energy level E ∈ (0, E∗) and the minimal period is given in terms of the energy
by

T (E) =
2

p′1/p

∫ w2(E)

w1(E)

dw(
E − V (w)

)1/p (7)

where wi(E), i = 1, 2, are two roots of V (w) = E such that

a < w1(E) < 0 < w2(E) < b and V (w) < E ∀w ∈
(
w1(E), w2(E)

)
.

At this point, let us notice that the map E 7→ T (E) is a continuous function if we assume
that w V ′(w) > 0 for any w ∈ (a, 0)∪(0, b), but that it is not the case if V admits another
local minimum than w = 0 in the interval (a, b). Let us define

γ(w,E) := p′
(
E − V (w)

)
, R(w) := V ′(w)2 − p′ V (w)V ′′(w)

and notice that
∂γ

∂w
= − p′ V ′(w) and

∂γ

∂E
= p′ .

The following result is a detailed version of Theorem 1.
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Theorem 4. Let p ≥ 2 and consider Equation (5) where we assume that V satisfies (H1).
With the above notations, for any E ∈ (0, E∗), it holds that

dT

dE
(E) =

2

p′E

∫ w2(E)

w1(E)

R(w)

γ(w,E)1/p V ′(w)2
dw (8)

if the integral in the right-hand side is finite. Thus if R is positive on (a, 0)∪ (0, b), then
the minimal period is increasing.

Notice that from Assumption (H1), we know that V (a) = E∗ > 0 and V ′(a) = 0 so
that limw→a+ V (w) |V ′(w)|−p′ = +∞ and(

V

|V ′|p′
)′

=
RV ′

|V ′|p′+2

which is incompatible with R being a negative valued function in a neighbourhood of
w = a+. If we remove the assumption that V ′(a) = 0, then it makes sense to assume
that R is a negative function on (a, 0) ∪ (0, b). In this case, the minimal period is
decreasing.

Proof. The proof relies on the same strategy as for [8, Theorem 2.1]. We skip some details
and emphasize only the changes needed to cover the case p > 2. Let us set

I(E) :=

∫ w2(E)

w1(E)

γ(w,E)1/p
′
dw and J(E) :=

∫ w2(E)

w1(E)

(
γ(w,E)− p′E

)
γ(w,E)1/p

′
dw .

By differentiating with respect to E, we obtain

dI

dE
(E) =

∫ w2(E)

w1(E)

dw

γ(w,E)1/p
=

1

2
T (E) and

dJ

dE
(E) =

∫ w2(E)

w1(E)

γ(w,E)− p′E
γ(w,E)1/p

dw ,

which implies that
dJ

dE
(E) = I(E)− p′E dI

dE
(E) . (9)

Differentiating once more with respect to E, we get

d2J

dE2
(E) = (1− p′) dI

dE
(E)− p′E d2I

dE2
(E) . (10)

On the other hand, by integrating by parts in∫ w2

w1

γ
p′+1
p′

V ′2 − V V ′′

V ′2
dw =

∫ w2

w1

γ
p′+1
p′

(
V

V ′

)′
dw = − p

′ + 1

p′

∫ w2

w1

γ
1
p′
V

V ′
∂γ

∂w
dw ,

we obtain

J(E) = − p′

p′ + 1

∫ w2(E)

w1(E)

γ(w,E)
p′+1
p′

V ′(w)2 − V (w)V ′′(w)

V ′(w)2
dw
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by definition of J and γ. See [8] for further details in the case p = 2. By differentiating
twice this expression of J(E) with respect to E, we obtain

d2J

dE2
(E) = − p′

∫ w2(E)

w1(E)

V ′(w)2 − V (w)V ′′(w)

γ(w,E)1/p V ′(w)2
dw .

Since T (E) = 2 dI
dE

(E), we learn from (10) that

p′E

2

dT

dE
(E) = p′E

d2I

dE2
(E)

= (1− p′) dI
dE

(E)− d2J

dE2
(E)

= (1− p′)
∫ w2(E)

w1(E)

dw

γ(w,E)1/p
+ p′

∫ w2(E)

w1(E)

V ′(w)2 − V (w)V ′′(w)

γ(w,E)1/p V ′(w)2
dw

=

∫ w2(E)

w1(E)

R(w)

γ(w,E)1/p V ′(w)2
dw .

This concludes the proof of (8). �

Proof of Theorem 2. Let us consider again Equation (5) with a potential V which satis-
fies (H1). We adapt the proof of [7, Theorem A] to the case p > 2. Let us consider the
function

h(w) :=
w

|w|
√
V (w) (11)

for any w ∈ (a, 0)∪ (0, b) and extend it by h(0) = 0 at w = 0. With the notations of (7),

we have h
(
w1(E)

)
= −

√
E, h

(
w2(E)

)
= +

√
E and we can reparametrize the interval(

w1(E), w2(E)
)

with some θ ∈ (−π/2, π/2) such that
√
E sin θ = h(w) . (12)

With this change of variables, the minimal period can be written as

T (E) = 2
E

1
2
− 1
p

p′
1
p

∫ π
2

−π
2

cos θ1−
2
p(

h′ ◦ h−1
)(√

E sin θ
) dθ . (13)

Its derivative with respect to E is given by

dT

dE
(E) =

(
1
2
− 1

p

) T (E)

E
− (p′E)−

1
p

∫ π
2

−π
2

h′′(w)

h′(w)3
cos θ1−

2
p sin θ dθ

where we use the short-hand notation w = h−1
(√

E sin θ
)
. After an integration by parts,

this expression becomes

dT

dE
(E) =

(
1
2
− 1

p

) T (E)

E
+ 1

2
(p′)

1
p′ E

1
2
− 1
p

∫ π
2

−π
2

3 h′′(w)2 − h′(w) h′′′(w)

h′(w)5
cos θ3−

2
p dθ

and one can show that

3 (h′′)2 − h′ h′′′ =
|V ′|4

8V 2

(
V

|V ′|2

)′′
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is positive if and only if V/(V ′)2 is a convex function. This completes the proof of
Theorem 2. �

3. Asymptotic results

As in Section 2, let V (w) = V(w + A) and recall that (5) has a first integral given
by (6) where E ≥ 0 is the energy level. In this short section, we shall assume that (H1)
holds with a = −A, define

ω :=
√
V ′′(0) =

√
V ′′(A) > 0 (14)

and make the additional hypothesis

lim inf
w→0+

|V ′(w + a)|
wp−1 = lim inf

w→0+

|V ′(w)|
wp−1 > 0 . (H2)

This assumption is satisfied in case of (4) as soon as q > p > 2 and in that case

ω =
√
V ′′(1) =

√
q − p, but the following result holds for a much larger class of potentials.

Lemma 5. Let p > 1. If V is a potential such that (H1) holds, then we have

T (E) ∼
2
√

2π Γ
(
1− 1

p

)
p′1/p ω Γ

(
3
2
− 1

p

) E 1
2
− 1
p as E → 0+

with ω defined by (14). As a consequence, we obtain

lim
E→0+

T (E) = 0 if p > 2 ,

lim
E→0+

T (E) =
2 π

ω
if p = 2 ,

lim
E→0+

T (E) = +∞ if p ∈ (1, 2) .

Additionally, if (H2) holds, then for any p > 1 we have limE→(E∗)− T (E) = +∞.

Proof. In a neighbourhood of w = 0, we can write V (w) ∼ 1
2
ω2w2, use (7) and the

change of variables w =
√

2E y/ω to obtain

T (E) ∼ 2
√

2

p′1/p ω
E

1
2
− 1
p

∫ 1

−1

dy(
1− y2

)1/p as E → 0+ .

We obtain the expression of the integral using the formulae [1, 6.2.1 & 6.2.2] for the Euler
Beta function.

Now let us consider the limit as E → (E∗)−. We learn from (H2) that

E∗ − v(w) ≥ `

p
(w − a)p

for some ` > 0 if w − a > 0 is taken small enough. We deduce from (7) that T (E)
diverges as E → (E∗)−. �
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4. The monotonicity of the minimal period

Applying the formulae of Section 2 to study the monotonicity of the minimal period for
periodic solutions of (?) leads later to very complicated expressions for our problem with
potential (4). For that reason, it is convenient to introduce a new change of variables as
follows. Let A = − a > 0 and define

h(y) := h(w) =
w

|w|
√
V (w) with y = (w + A)p (15)

for any w ∈ (a, 0) ∪ (0, b) and extend it by h(0) = 0 at w = 0. Here h is defined as in
Section 2 (proof of Theorem 1, Eq. (12)) while h is such that

h(y) = h
(
y

1
p − A

)
∀ y ∈ (0, B)

with B = (A+ b)p. We have that

h′(w) = p y
1
p′ h′(y) .

Let us make the simplifying assumption

w V ′(w) > 0 ∀w ∈ (a, 0) ∪ (0, b) . (H3)

Under this assumption, wi(E), i = 1, 2, are the two roots in (a, b) of V (w) = E, as in
Theorem 4, V (w) = E admits no other root in (a, b) for any E ∈ (0, E∗) and the map
E 7→ T (E) is continuous. Also notice that

h′(y) > 0 ∀ y ∈
(
y1(E), Ap

)
∪
(
Ap, y2(E)

)
where y1(E) :=

(
A− |w1(E)|

)p
and y2(E) :=

(
A+ w2(E)

)p
.

By the above definition of h and (13), the minimal period can now be computed as

T (E) = cpE
1
2
− 1
p

∫ π
2

−π
2

cos θ1−
2
p

y
1
p′ h′(y)

dθ with cp :=
2

p p′
1
p

(16)

using the change of variables y 7→ θ ∈ (−π/2, π/2) such that

√
E sin θ = h(y) =

y − A
|y − A|

√
V
(
y1/p − A

)
. (17)

Let us define

J :=

∫ π
2

−π
2

cos θ1−
2
p

y
1
p′ h′(y)

dθ

and notice that J is a function of E as a consequence of the change of variables (17):
y = y(E, θ) is such that

∂y

∂E
=

sin θ

2
√
E h′(y)

.
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By differentiating T (E) in (16) with respect to E, we find that

T ′(E)

T (E)
=
p− 2

2 p

1

E
+
J ′(E)

J(E)

where

J ′(E) = − 1

2
√
E

∫ π
2

−π
2

K(y) cos θ1−
2
p sin θ dθ ,

y is given by (17) and

K(y) := − 1

h′(y)

d

dy

(
1

y
1
p′ h′(y)

)
=
y2 h′′(y) + 1

p′
y h′(y)

y
2+ 1

p′
(
h′(y)

)3 . (18)

With p > 2, E 7→ T (E) is increasing if J ′(E) > 0. Here is a sufficient condition on h,
which is in fact an assumption on V .

Lemma 6. Assume that (H1) and (H3) hold. With the above notations, if the function K
is decreasing on [A,B], then J ′ > 0 on (0, E∗) and the minimal period T (E) is a monotone
increasing function of E.

Proof. With y(E, θ) defined by (17), the result is a consequence of

J ′(E) = − 1

2
√
E

∫ π
2

0

(
K
(
y(E, θ)

)
−K

(
y(E,− θ)

))
cos θ1−

2
p sin θ dθ

and y(E,− θ) < y(E, θ) if θ ∈ (0, π/2). �

We deduce from Lemma 6 a sufficient condition on h to obtain that the minimal period
is monotone increasing.

Corollary 7. Assume that (H1) and (H3) hold. If h and and 1/h′2 are convex functions,
then the minimal period T (E) is a monotone increasing function of E ∈ (0, E∗).

Proof. By convexity of 1/h′2, we have that

0 <
1

2

d2

dy2

(
1

h′2

)
= − d

dy

(
h′′

h′3

)
and h′′

h′3
is a decreasing function. Next, from (18) written as

K(y) =
1

y
1
p′

h′′(y)(
h′(y)

)3 +
1

p′
1

y2−
1
p

1(
h′(y)

)2 if y > 0 , (19)

we observe that all the factors on the right hand of this expression are positive decreasing
functions, implying that K is a decreasing function on [A,B]. �

5. Proof of the main result

By applying Lemma 6 and Corollary 7, we prove Theorem 3. The main difficulty is to
establish that K is monotone decreasing if 1 < m < 2, which is done in Section 5.3.
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5.1. Notations. Let us consider (1) with V given by (4) and q > p ≥ 2, hence V ′(w) =
φq(w)− φp(w), and (1) is reduced to(

φp(w
′)
)′

+ φq(w)− φp(w) = 0 . (?)

In particular w = 1 is a trivial solution of this equation. All conditions of Section 1 for V
are satisfied, V (resp. V ) reaches a minimum at w = 1 (resp. w = 0) and

E∗ = q−p
p q

= V(B) = V(0) where B :=
(
q
p

) 1
q−p . (20)

In the discussion, we shall consider the three cases: m = 2, m > 2 and 1 < m < 2, where

m =
q

p
.

We have that V (w) = V(w + A) with A = 1, i.e.,

V (w) = 1
q
|w + 1|q − 1

p
|w + 1|p −

(
1
q
− 1

p

)
,

With the definitions of (15), we find that

q V (w) = ym −my − (1−m) with w = y
1
p − 1

and the change of variables y 7→ θ ∈ (−π/2, π/2) defined by (17) amounts to

√
E sin θ = h(y) =

y − 1

|y − 1|

√
1
q

(
ym −my +m− 1

)
.

It is convenient to define

γm := m
1

m−1 = B =
(
q
p

) p
q−p and W (y) := ym −my +m− 1 ∀ y ∈ [0, γm] .

With these notations, we have

0 = W (1) < W (y) < W (0) = W (γm) = m− 1 ∀ y ∈ (0, 1) ∪ (1, γm) .

As a special case, note that W (y) = (y − 1)2 and h(y) = (y − 1)/
√
q if m = 2. In that

case, the result of Theorem 3 is straightforward.

Lemma 8. If m = 2 and V given by (4), the minimal period T (E) is a monotone
increasing function of E ∈ (0, E∗) with E∗ = 1

2 p
.

Proof. The function K defined by (18) is explicitly given by K(y) = q2

p′
y−1/p hence

monotone decreasing and Lemma 6 applies. �

5.2. The case m > 2. We obtain the following result.

Lemma 9. If m > 2, h and (h′)−2 are convex.

Proof. Let z = ym−1. With 0 ≤ y ≤ γm, W (y) := ym −my + m− 1 and the function h

given by h(y) = y−1
|y−1|

√
W (y)/q, we find that the expression

4W 3/2
(√

W
)′′

= 2W W ′′ −
(
W ′)2
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has its sign given by

F (y) := −m2 + 2m (m− 1)2 ym−2 − 2m2 (m− 2) ym−1 +m (m− 2) y2m−2 .

• If y ≥ 1, then ym−2 ≥ 1, −m2 + 2m (m− 1)2 ym−2 ≥ m (m− 2) (2m− 1) and

F (y) ≥ m (m− 2) (z − 1) (z + 1− 2m) ≥ 0 .

• If y ≤ 1, then ym−2 ≤ 1, y2m−2 ≤ 1, m (m− 2) y2m−2 −m2 ≤ − 2my2m−2 and

−F (y) ≥ 2m (z − 1)
(
z + (m− 1)2

)
≥ 0 .

In both cases, we conclude that h′′ ≥ 0.

The function ((h′)−2)
′′

has the sign of

G(y) := 2 (m− 1) (m− 2)−m (2m− 1) y

+ 2 (m− 1) (2m− 1) ym−1 − 2 (m− 2) (2m− 1) ym + (m− 2) y2m−1 .

Since G(1) = G′(1) = 0 and

G′′(y) = 2 (m− 1) (m− 2) (2m− 1)W (y) ≥ 0 ,

we conclude that g ≥ 0 and ((h′)−2)
′′ ≥ 0. �

This proves Theorem 3 as a consequence of Corollary 7 and Lemma 9 if m > 2.

5.3. The case 1 < m < 2. We cannot apply Corollary 7 and we have to directly rely on
Lemma 6. We recall that m = q/p. Let us start by computing K ′.

Lemma 10. The function y 7→ −K ′(y) has the sign of p2 y2 f(a,m, y, z) where z = ym−1,
the parameters (a,m) are admissible in the sense that

a =
1

p
∈
(
0, 1

2

)
, m =

q

p
∈ (1, 2) ,

and

f(a,m, y, z) = − 3my (z − 1)2 (mz − 1)

+ 2 (m− 1−my + y z)
(
2 + (1− 6m+m2) z + 2m2 z2

)
+ a

(
3my (z − 1)3 − 6 (z − 1) (mz − 1) (m− 1−my + y z)

)
+ a2

(
2 (z − 1)2 (m− 1−my + y z)

)
.

Proof. We set y = xp so that x = y1/p and dx
dy

= 1
p
y−1/p

′
. Let

Φ(x) := W (y) = xmp −mxp +m− 1 ∀x ∈
[
0, γ1/pm

]
,

where W and h are as in Section 5.1, so that∣∣√q h′(y)
∣∣2 =

∣∣∣∣∣ Φ′(x)

2 p y1/p′
√

Φ(x)

∣∣∣∣∣
2

|x=y1/p

,
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that is, 4mp3
∣∣y1/p′ h′(y)

∣∣2 = (Φ′(x))2/Φ(x) and K as in (18) can be rewritten as

K(y) = − 1

2
y1/p

′ d

dy

(
1

y2/p′ h′(y)2

)
= − 2mp3

d

dx

(
Φ(x)

|Φ′(x)|2

)
.

Hence −K ′ has the sign of d2

dx2 (Φ(x) |Φ′(x)|−2), i.e., of 6 Φ |Φ′′|2 − 2 Φ Φ′Φ′′′ − 3 |Φ′|2 Φ′′

and the detailed computation shows that

x4

q2
|Φ′(x)|4 d2

dx2

(
Φ(x)

|Φ′(x)|2

)
= p2 y2 f(a,m, y, z),

ending the proof of the lemma. �

Lemma 11. With V given by (4) and 2 < p < q < 2 p, K defined by (18) is monotone
decreasing.

Proof. Keeping the notations of Lemma 10, our goal is to prove that y 7→ f (a,m, y, ym−1)
is nonnegative for any y ∈ (0, γm) whenever the parameters (a,m) are admissible.

Let us start by considering its value at some remarkable points.
• At (y, z) = (0, 0), we have f(a,m, 0, 0) = 2 (1− a) (2− a) (m− 1) > 0.
• At (y, z) = (1, 1), we have f(a,m, 1, 1) = 0 but a Taylor expansion shows that

f
(
a,m, y, ym−1

)
=

1

12
(m− 1)3 cm,a (y − 1)4 +O

(
(y − 1)5

)
as y → 1 (21)

for any a ∈ (0, 1/2), where

cm,a = 12ma (a−m− 1) +m
(
2m2 + 7m+ 2

)
≥ cm,1/2 = m (m+ 1) (2m− 1) > 0 .

This proves that y 7→ f (a,m, y, ym−1) is positive for any y ∈ (1 − ε, 1) ∪ (1, 1 + ε) for
some ε = ε(a,m) > 0 whenever the parameters (a,m) are admissible.
• At (y, z) = (γm,m), we have

f(a,m, γm,m) = (m−1)3 cm,a , cm,a = 2 a2−3 a (2m+2−mγm)+2
(
2m2 + 5m+ 2

)
.

Using infm∈(1,2)
3
4

(2m + 2 −mγm) = limm→1+
3
4

(2m + 2 −mγm) = 3 (1 − e/4) > 1/2,
we have

cm,a > cm,1/2 = (4− 3 γm)m2 +
(
7− 3

2
γm
)
m+ 3

2

> lim
m→1+

(
(4− 3 γm)m2 +

(
7− 3

2
γm
)
m+ 3

2

)
= 1

2
(25− 9 e) > 0 .

In the limit as m→ 2, we have y = z and

f(a, 2, y, z) = 2 (1− a) (2− a) (z − 1)4 . (22)

Hence f (a, 2, y, ym−1) is positive unless y = 1. We are now going to take a given a ∈
(0, 1/2) and consider m ∈ (1, 2) as a parameter. Let us prove that for some m∗ ∈ (1, 2),
we have f (a,m, y, ym−1) ≥ 0 for any (m, y) such that m∗ < m < 2 and 0 ≤ y ≤ γm.
We assume by contradiction that there are two sequences (mk)k∈N and (yk)k∈N such that
1 < mk < 2 for any k ∈ N, limk→+∞mk = 2, 0 ≤ yk ≤ γmk

and f
(
a,mk, yk, y

mk−1
k

)
< 0
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for any k ∈ N. Up to the extraction of a subsequence, (yk)k∈N converges to some limit
y∞ ∈ [0, 2] and by continuity of f we know that f (a, 2, y∞, y∞) ≤ 0: the only possibility
is y∞ = 1 by (22). Since f

(
a,mk, yk, y

mk−1
k

)
< 0 = f(a,mk, 1, 1), we learn that yk 6= 1.

Since limk→+∞ yk = 1, this contradicts (21) or, to be precise, |yk − 1| ≥ ε(a,mk), as the
reader is invited to check that lim infk→+∞ ε(a,mk) > 0 because f is a smooth function
of all of its arguments. If we redefine

m∗(a) := inf
{
m ∈ (1, 2) : f

(
a,m, y, ym−1

)
≥ 0 ∀ y ∈ [0, γm]

}
,

then we know that for any a ∈ (0, 1/2), we have m∗(a) < 2.

We want to prove that m∗(a) = 1. Again, let us argue by contradiction: if m∗(a) > 1,
and assume that there are two sequences (mk)k∈N and (yk)k∈N such that 1 < mk < m∗(a)
for any k ∈ N, limk→+∞mk = m∗(a), 0 ≤ yk ≤ γmk

and f
(
a,mk, yk, y

mk−1
k

)
< 0 for any

k ∈ N. Up to the extraction of a subsequence, (yk)k∈N converges to some limit y∞ ∈ [0, 2]
and by continuity of f we know that f (a,m∗(a), y∞, y

m−1
∞ ) ≤ 0. For the same reasons as

above, y∞ = 0, y∞ = 1 and y∞ = γm∗(a) are excluded. Altogether, we have proved that
for

m = m∗(a) ,

we have f (a,m, y∞, y
m−1
∞ ) = 0 for some y∞ ∈ (0, 1) ∪ (1, γm) and we also have that

f (a,m, y, ym−1) ≥ 0 for any y ∈ (0, 1) ∪ (1, γm), so that y∞ is a local minimizer of
y 7→ f (a,m, y, ym−1). As a consequence, we have shown that for m = m∗(a) > 1 and
y = y∞ 6= 1, we have

f
(
a,m, y, ym−1

)
= 0 and

∂

∂y
f
(
a,m, y, ym−1

)
= 0 . (23)

As we shall see below, this contradicts Lemma 12. Hence y 7→ f (a,m, y, ym−1) takes
nonnegative values for any admissible parameters (a,m) with 1 < m < 2. By Lemma 10,
K ′(y) ≤ 0, thus completing the proof. �

We still have to prove that (23) has no solution y ∈ (0, 1) ∪ (1, γm). Since

y
∂

∂y
f
(
a,m, y, ym−1

)
= y

∂f

∂y
(a,m, y, z) + (m− 1) z

∂f

∂z
(a,m, y, z) ,

we can relax the condition z = ym−1 and prove the slightly more general result.

Lemma 12. With the notations of Lemma 10, assume that m > 1, y ∈ (0, γm] and
z ∈ (0,m]. For any admissible parameters (a,m), if

f(a,m, y, z) = 0 , (24a)

y
∂f

∂y
(a,m, y, z) + (m− 1) z

∂f

∂z
(a,m, y, z) = 0 . (24b)

then z = 1.
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Proof. Solving the system (24a)–(24b) is an elimination problem because the function f ,
as defined in Lemma 10, is a polynomial in the variables a, y and z. Since (24a) is a first
order equation in y, we can eliminate this variable and find that

y =
n(a,m, z)

d(a,m, z)

with

n(a,m, z) := 2 (m− 1)
(
a2 (z − 1)2 − 3 a (z − 1) (mz − 1)

+ 2m2 z2 +
(
m2 − 6m+ 1

)
z + 2

)
,

d(a,m, z) := m
(
2 a2 (z − 1)2 + 3 a (z + 1)2 (z − 1) + 9 z2 + 8 z + 1

)
− 2 z

(
a2 (z − 1)2 + 3 a (z − 1) + z + 2

)
−m2 z

(
6 a (z − 1) + z2 + 8 z + 9

)
+ 2m3 z (2 z + 1) .

After replacing, solving (24b) under the condition z 6= 1 is reduced to a second order
equation in z, whose discriminant is

δ(a,m) := − 3 (a− 1)2 (m− 1)2 (a−m)2
(
5 a2 − 10 a (m+ 1)− 3m2 + 14m− 3

)
.

Since 5 a2−10 a (m+1)−3m2 +14m−3 takes only positive values for admissible (a,m),
there are no other roots than z = 1. This is the desired contradiction, which completes
the proof thanks to Lemma 6. �

Proof of Theorem 3. It is a straightforward consequence of Lemmas 6 and 11. �
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