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The 6-vertex model is a seminal model for many domains in Mathematics and Physics. The sets of configurations of the 6-vertex model can be described as the sets of paths in multigraphs. In this article the transition probability of the simple random walk on the multigraphs is computed. The unexpected point of the results is the use of continuous fractions to compute the transition probability.

Introduction

In this article we are interested in a simple random walk Y K on particular (multi)graphs G K indexed by an integer K. The set of vertices of G K is V K def = {-1, 1} K and the set E K of edges is related to the square ice model [START_REF] Lieb | Residual entropy of square ice[END_REF], which is a particular case of the 6-vertex model.

As a motivation for the study of the transition probability of Y K let us recall briefly some facts concerning the square ice model. The configuration set of the ice model can be viewed as the set of functions h on a n × K rectangular lattice called height functions. If a, b = {z ∈ Z, a ≤ z ≤ b}, and if h : 0, n × 0, K → Z, we denote the gradient of a function h by ∇h a function on the edges of the lattice such that ∇h((j ± 1, k), (j, k)) = h(j ± 1, k) -h(j, k) and ∇h((j, k ± 1), (j, k)) = h(j, k ± 1) -h(j, k) for j, k ∈ Z. A function h is called an height function if h(0, 0) = 0, and ∇h(e) = ±1 for every edge e of the lattice. Let us denote by H 0 n,K = {h : 0, n × 0, K , h(x, y) ∈ Z, h(0, 0) = 0, ∇h(e) = ±1}

the set of height functions. If h ∈ H 0 1,1 , the only possible ∇h are depicted on the figures below, where the values of the height function on the corner are written in green and ±1 is abbreviated in ±,

1 + + 2 + 0 + 1 1 + - 0 + 0 --1 1 + -0 - 0 + 1 -1 - --2 - 0 --1 -1 - + 0 - 0 + 1 -1 - + 0 + 0 --1
The six possible choices of signs on the edges are in contrast to the 16 possibilities if we don't require the existence of an height function. It explains why this model is also called a 6-vertex model.

We may also wonder, what are the condition on a, b ∈ V K , so that there exists h ∈ H 0 1,K with ∇h((0, k + 1), (0, k)) = a k , ∇h((1, k + 1), (1, k)) = b k , ∀k = 0 to K -1.

Let us take a = (1, 1, -1, -1) and b = (1, -1, 1, -1). In this case there is only one height function that can be defined on the rectangle, where we put the list of signs of the digits of a and b starting from the bottom of the rectangle as 0

- + 1 - 1 + - 2 + 2 - + 1 - 1 + + 2 + 0 + 1
One can also check that there exists no height function if you take a = (1, 1, -1, -1) and b = (-1, -1, 1, -1). The set of edges E K of G K defined rigorously later in Definition 2.2 is such that (a, b) ∈ E K if there exists at least an height function on the 1 × K rectangle with a on the left side and b on the right. It is an elementary fact that there exists at most one possibility if a = b and two if a = b that is proved in section 2.

For a n×K rectangle the existence of an height function h n,K corresponds to a unique path of length n in G K . For instance

1 + - 2 + -1 - + 2 + + 3 + ❴ ❴ ❴ • + -h n,K (n, 4) - 2 - + 1 - + 2 - -1 - + 2 - ❴ ❴ ❴ • - + h n,K (n, 3) - 1 + + 2 + + 3 + -2 - + 3 + ❴ ❴ ❴ • + + h n,K (n, 2) + 0 + 1 + 2 + 3 -2 ❴ ❴ ❴ • + h n,K (n, 1)
it is the path

a 1 = (1, 1, -1), a 2 = (1, -1, 1), a 3 = (1, -1, -1), a 4 = (-1, -1, 1), a 5 = (1, -1, 1), . . . , a n-1 = (1, -1, 1), a n = (1, -1, -1) ∈ G 3 .
A more detailed introduction to ice and 6-vertex model can be found in [START_REF] Baxter | Exactly solved models in statistical mechanics[END_REF].

Lieb in [START_REF] Lieb | Residual entropy of square ice[END_REF] counts the number of height functions with periodic boundary conditions. With our notations it means K = n and Lieb considers an height function h n on the torus T n . In statistical mechanic the uniform distribution is taken on all height functions on T n and Duminil-Copin et al. 2019 [START_REF] Duminil-Copin | Logaritmic variance for the height fonction of square-ice[END_REF] show what is called a delocalization behavior.

Theorem 1.1. There exist c, C ∈ (0, ∞) such that for every n ≥ 1 and every

u, v ∈ T n , such that u -v 1 ≥ 2, c log u -v 1 ≤ var [(h n (u) -h n (v))] ≤ C log u -v 1 , where • 1 is the L 1 distance in T n .
In Boissard et al. [START_REF] Boissard | Diffusivity of a random walk on random walks[END_REF] we consider a stationary simple random walk Y K on G K . It endows the set of paths with length n with a non uniform distribution if K > 1. In this case it has been shown in [START_REF] Boissard | Diffusivity of a random walk on random walks[END_REF] that ∀i, j ∈ {0, . . . , K},

lim n→+∞ var [h n,K (n, j) -h n,K (0, i)] n = 2 K + 2 .
Still for finite K the variance is computed in [START_REF] Espinasse | A combinatorial approach to a model of constrained random walkers[END_REF] for a periodic boundary condition in the variable between 1 and K, and in [START_REF] Lammers | Diffusivity of a walk on fractures of a hypertorus[END_REF] for other constraints.

The easiest way to describe the simple random walk on G K in the stationary regime is to state that the distribution of the pair (Y K (0), Y K (1)) is the uniform distribution on the edges E K . One aim of this article is to provide a formula for the transition probability of the simple random walk that starts from a given vertex. Surprisingly enough the formula in the Theorem 3.1 uses the continuous fraction associated to the length of the constancy blocks of the digits of the given vertex. The authors see two useful consequences of this result. The first one is the fact that the transition probability of the simple random walk will considerably make easier and faster simulations of the walk. See [START_REF] Montegut | Limite d'échelle de marche aléatoires contraintes[END_REF] for a survey of previous simulation methods, which are both memories and computationally intensive due to the difficulty to describe easily the neighbors of a given vertex in G K for large K. In [START_REF] Montegut | Limite d'échelle de marche aléatoires contraintes[END_REF] it was pretty long to obtain simulations for K > 30, whereas the simulations using the method of this article allow us to attain K = 1000 on the same computer. It opens perspectives since simulations may be useful when n = K and n large enough to have a law of large numbers. Moreover the same techniques used for Theorem 3.1 yields a formula for the degree of a given vertex in G K , which is related to a Fibonacci type sequence associated to the length of the constancy blocks of the digits of the vertex in Proposition 3.1. Another interesting consequence of Theorem 3.1 is that it can be extended to the case K = ∞. This in turns gives a sense to the decay of the variance of the height function in G ∞ . The definitions and the models are given in section 2. We think that the model for K = ∞ yields an alternative to classical theormodynamic limits that are usually used for infinite lattices. In section 3 the main theorems are written and they are proved in the following sections.

The model

Let us first construct the (multi)graph G K such that there is one to one correspondence between edges of G K and height functions with a on the left and b on the right.

Definition 2.1. For a, b ∈ V K = {-1, 1} K let
us denote by a ∼ b such that there exists an height function

h ∈ H 0 1,K with ∇h((0, k + 1), (0, k)) = a k , ∇h((1, k + 1), (1, k)) = b k .
One can first remark that if b = a there are two height functions such that a ∼ a. Namely one can take h + such that ∇h

+ ((0, k), (1, k)) = +1, ∀k = 0 to K and h -such that ∇h -((0, k), (1, k)) = -1, ∀k = 0 to K. If b = a, there is a first digit k 0 = inf{0 < k|b k = a k },
and one can check that there exists an height function h such that ∇h((0, k +1), (0, k)) = a k , ∇h((1, k+1), (1, k)) = b k , ∀k = 0 to k 0 -1. ∇h((0, k-1), (1, k-1)) = a k 0 , ∀k ≤ k 0 and ∇h((0, k 0 ), (1, k 0 )) = -a k 0 . Then, by induction, one can define

k i = inf{k i-1 < k|b k = a k }, for i ≥ 1, if k i-1 is not the last index such that b k = a k . One can also check that ∇h((0, k -1), (1, k -1)) = a k i , ∀k i-1 < k ≤ k i . This implies that for the subsequence (k i ) of indices such that a k = b k a k i = (-1) i a k 0 and b k i = (-1) i+1 a k 0 . Hence if a = b and a ∼ b there is one height function such that h ∈ H 0 1,K with ∇h((0, k + 1), (0, k)) = a k , ∇h((1, k + 1), (1, k)) = b k , ∀k = 0 to K -1.
Let us also remark that if a ∼ b, the non vanishing coordinates of the vector (b-a) ∈ {-2, 0, 2} K have alternate signs. We summarize this characterization by writing that b -a follows the alternate signs rule. Please note that by convention b -a will follow the alternate signs rule if there are 0 or 1 non-vanishing coordinates in b -a. With this convention we just proved the following Proposition. We can define the (multi) graph G K as follows.

Definition 2.2. Let V K def = {-1, 1} K , and let E K be the subset of V K × V K defined by : A pair (a, b) ∈ V K × V K such that a = b belongs to E K if non vanishing coordinates of the vector (b -a) ∈ {-2, 0, 2} K have alternate signs.
For every vertex a ∈ V K there are two edges from a to a E K denoted by (a, a) + and (a, a) -. For every

K ∈ N the (multi)graph G K def = (V K , E K ).
The motivation for the two loops at any vertex a is the existence of the two height functions h + and h -. The definition of G K is written to have a one to one correspondence between E K and height functions with a on the left and b on the right.

In this article we consider Y K the simple random walk on G K starting from the invariant probability on V K . As usual for stationary simple random walks on (multi)graphs, the uniform distribution on the set of edges E K is the same as the distribution of (Y K (0), Y K (1)). Please note that when

Y K (0) = Y K (1) we have to toss a coin independently of what happens before to choose between (Y K (0), Y K (0)) + and (Y K (0), Y K (0)) -.
Obviously the invariant probability on V K can be expressed as the ratio of the degree of any vertex divided by the cardinal of E K . But it turns out that a sequential depiction of the uniform probability on E K allows us to extend our model to K = ∞. Lemma 2.1. Let ǫ be a random variable such that P(ǫ = -1) = P(ǫ = 1) = 1 2 , let (α k ) k≥1 be an i.i.d. sequence of Bernoulli random variables with parameter 1 3 and let (β k ) k≥1 be an i.i.d. sequence of random variables such that P(β k = -1) = P(β k = 1) = 1 2 . The previous random variables are mutually independent. Let us define ∀k ≥ 2 :

γ k def = ǫ(-1) k-1 i=1 α i , with the convention that γ 1 = ǫ.
Let us also define ∀k ≥ 1 :

A k = (1 -α k )β k + α k γ k (1) 
B k = (1 -α k )β k -α k γ k . ( 2 
)
The distribution of the pair

((A k ) 1≤k≤K , (B k ) 1≤k≤K
) is the uniform distribution on E K , if we denote by (A, B) K the edge defined by :

(A, B) K def = ((A k ) 1≤k≤K , (B k ) 1≤k≤K ) if (A k ) 1≤k≤K = (B k ) 1≤k≤K ((A k ) 1≤k≤K , (B k ) 1≤k≤K ) ǫ if (A k ) 1≤k≤K = (B k ) 1≤k≤K . Then (A, B) K L = (Y K (0), Y K (1)), (A k ) 1≤k≤K L = Y K (0) and (B k ) 1≤k≤K L = Y K (0). Proof. Let us first prove that (A, B) K ∈ E K . We remark that B k -A k = -2α k γ k , then it is vanishing if α k = 0,
and the alternate signs rule is fulfilled because every time α k = 1, γ k has a different sign from γ k-1 . Let us denote by D K the cardinal of E K . A simple computation yields D 1 = 6 and by induction D K = 2 × 3 K . It is also obvious to check P((A, B) 1 = e) = 1 6 for every edge in E 1 . Let us assume that P((A, B) K = e) = 1 D K is true for every edge in E K . Let us consider u ′ , v ′ ∈ V K and denote by u ′ ± 1 the vertex in V K+1 obtained by concatenating ±1 on the right of u ′ . Then for

P((A, B) K+1 = (u ′ 1, v ′ 1)) = P((A, B) K = (u ′ , v ′ ) ∩ α K+1 = 0 ∩ β K+1 = 1) = 1 D K 2 3 1 2 = 1 D K+1 .
The same holds for (u ′ -1, v ′ -1). If the concatenated digit to u ′ is different from the one concatenated to v ′ and u ′ = v ′ there is only one possible choice which leads to a non vanishing probability depending on the last digit that differs between u ′ and v ′ . Then for this choice

P((A, B) K+1 = (u ′ ± 1, v ′ ∓ 1)) = P((A, B) K = (u ′ , v ′ ) ∩ α K+1 = 1) = 1 D K 1 3 = 1 D K+1 .
The proof is complete when we consider the case u ′ = v ′ and in this case we get also P((A, B) K+1 = (u ′ ± 1, v ′ ∓ 1)) = 1 D K+1 thanks to the distribution of ǫ. The other claims follow easily.

Results

Transition probability for finite K.

The first aim of this article is to compute the transition probability of the stationary Markov chain associated with the simple random walks on the (multi)graphs G K for K ∈ N. In the following we are conditioning the distribution of (B k ) k≤K of Lemma 2.1 with respect of events of the form (A k ) k≤K = (a k ) k≤K where (a k ) k≤K is a deterministic sequence.

Let us fix some notations for a deterministic sequence (a k ) k≤K ∈ {-1, 1} K that starts with a 1 = 1. Then, on the m-th block of constancy of a, the digits are equal to i m = (-1) m+1 (if a 1 = -1, then i m = (-1) m ). By convention we set S 0 = 0, and for m ≥ 1, we assume that the m-th block of constancy of a starts with S m-1 + 1 and stops with S m .

Let us denote for m ≥ 1, and a given (a k ) k≤K ∈ {-1, 1} K the set

A (m) = {A ∈ {-1, 1} K such that A S m-1 +1 = i m , . . . , A Sm = i m } (3) 
of sequences A which are equal to a on the m-th block of constancy of a.

Hence {A = a} = ∩ N m=1 A (m)
where N is the number of blocks of constancy of a.

Remark 3.1. In the following we are conditioning the distribution of B with respect of events of the form {A = a}, where a is a deterministic sequence. Once a is given, so is the sequence S and the conditioning with respect of A (m) actually means with respect of the event {A S m-1 +1 = i m , . . . , A Sm = i m }. We will use the abuse of notation P(.|a), P(.|A (m) ) in the sequel.

The length of the m-th block of constancy of a is denoted by

M m = S m -S m-1 . (4) 
Let for 1

≤ m ≤ n ≤ N x n m def = 1 M m + 1 M m+1 + 1 ...+ 1 Mn+1 = [M m , M m+1 , . . . , M n , 1], (5) 
if n < m we set x n m) . Let (E m ) 1≤m≤N be a sequence of random variables on {1, . . . , M m } which encode the digit that is changed in

A (m) if ǫ m = 1.
One further constraint due to the alternate signs rule is that when ǫ m = 1, ǫ m+2k = 0 on the event that ǫ m+1 = 0, . . . , ǫ m+(2k-1) = 0. In other words there cannot be change of digits in two successive blocks of constancy of a that have an even difference of indexes, since the a k 's are the same on those blocks.

Let us define the subset of C n of {0, 1} n for which this constraint is fulfilled and introduce some notations.

Let e ∈ {0, 1} n and 1 ≤ m ≤ n, such that e m = 1, then either ∀1 ≤ m ′ < m, e m ′ = 0, or we can define the last index before m such that e m ′ = 1 m(e) = max{1 ≤ m ′ < m, e m ′ = 1}.

By abuse of notation we will often denote m(e) as m. The constraint of the alternate signs rule for e and m is m -m = 2k -1, for k ≥ 1. Then The computations can be split in three cases. First the initializing phase, where the distribution of ǫ 1 is computed. Second if (ǫ 1 , . . . , ǫ m-1 ) = (0, . . . , 0), i.e. when b = a up to the m -1-th block of constancy of a, we call this case the subsequent phase when previously there is no change. Third (ǫ 1 , . . . , ǫ m-1 ) = (e 1 , . . . , e m-1 ) ∈ C * m-1 , which means that there is at least one digit b m ′ = a m ′ for m ′ < m and b m = a m will respect the alternate signs rule, this last case will be called the subsequent phase when previously there is at least one change.

C n def = {e ∈ {0, 1} n , ∀m ≤ n, e m = 1 | either ∀1 ≤ m ′ < m, e m ′ = 0, or m -m = 2k -1, k ≥ 1},
The conditional probability P(Y K (1) = b|Y K (0) = a) is then described by the following Theorem that yields the distribution of the (ǫ m ) 1≤m≤N . Theorem 3.1. Let N be the number of blocks of constancy of a. The distribution of (ǫ m ) 1≤m≤N is given by :

• Initializing phase

P(ǫ 1 = 1|a) = M 1 M 1 + 1 + x N 2 . (6) 
• Subsequent phase when previously there is no change

P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ 1 = 0, a) = M m M m + 1 + x N m+1 . (7) 
• Subsequent phase when previously there is at least one change. Let us now investigate as an example the probability of loops :

P((Y K (0), Y K (1)) = (a, a) + |Y K (0) = a) = P((Y K (0), Y K (1)) = (a, a) -|Y K (0) = a) Corollary 3.1 (Loop). If ǫ m = 0 for 1 ≤ m ≤ N which is equivalent to b = a, P(((ǫ 1 , . . . , ǫ N ) = (0, . . . , 0)) = 2P((Y K (0), Y K (1)) = (a, a) + |Y K (0) = a), and 
P((Y K (0), Y K (1)) = (a, a) + |Y K (0) = a) = 1 2(M 1 + 1 + x N 2 ) N k=2 x N k . ( 9 
)
If you give yourself a ∈ V K , the list of the neighbors can be generated by induction. But, when K is large, it is time consuming. Actually the same type of arguments used for the previous theorem, yield a way to obtain this cardinal, which will be denoted by deg K a. 

p m+2 = M N -m-1 p m+1 + p m . ( 10 
)
Then deg K a = p N + p N -1 .
For instance, when a = ((-1) k ) ∈ V K , N=K, and M m = 1, ∀m ≤ N. In this case (p m ) and deg K (a) are Fibonacci sequences.

Transition probability for K = ∞

One important consequence of the previous results is the fact that the graph andE ∞ is defined with the same alternate signs rule as for finite K. The Lemma 2.1 is still true when K infinite.

G K is defined for K = ∞. Let us be more precise. When K = ∞, V ∞ def = {-1, 1} N ,
Please note that the law of large number implies that lim

K→∞ 1 K K k=1 (1 -α k )β k = 0. Moreover K k=1 α k γ k = ±1. Hence lim K→∞ 1 K K k=1 A k = 0 and the se- quence (A k ) k≤K is not constant for k big enough almost surely. It means that if K = ∞, N = ∞ almost surely.
When K = ∞ the continuous fraction in ( 5) is converging when n → ∞ toward an irrational number that will be denoted by x ∞ m . When K = ∞, Lemma 2.1 still yields the distribution (A, B) of the "uniform "measure on E ∞ . "Uniform "is between quotes, since a has an infinite number of neighbors. In this case P(A = a) = 0, ∀a ∈ V ∞ , but the distribution of B conditioned on A is properly defined. Moreover the previous Theorem still has a generalization when we consider that the number of constancy blocks of a is almost surely infinite and use the definition of the continuous fraction as a limit. The next theorem, which is mutatis mutandis the theorem when K finite, yields for a ∈ V ∞ a regular version of the conditional distribution of B conditioned on A = a. Theorem 3.2. The distribution of (ǫ m ) 1≤m is given by :

• Initializing phase

P(ǫ 1 = 1|a) = M 1 M 1 + 1 + x ∞ 2 .
(11)

• Subsequent phase when previously there is no change

P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ 1 = 0, a) = M m M m + 1 + x ∞ m+1 . (12) 
• Subsequent phase when previously there is at least one change. For all e ∈ C * m-1 such that ē = (e 1 , . . . , e m-1 , 1)

∈ C m P(ǫ m = 1|(ǫ 1 , . . . , ǫ m-1 ) = e, a) = M m x ∞ m . ( 13 
)
∀m ≥ 1 the distribution of the E m 's is uniform on {1, . . . , M m } conditionally to the event ǫ m = 1.

Remark 3.3. Please note that the probability of a loop in G ∞ is vanishing.

Let us illustrate the Theorem with an example. If a = ((-1) k ) ∈ V ∞ , we can better understand what is P(|a). In this case ∀m ≥ 1, M m = 1 and

x ∞ m = 1 1 + x ∞ m+1 , ∀m ≥ 1. Hence ∀m ≥ 1, x ∞ m = -1 + √ 5 2
.

The depiction of P(|a) is easier in this case because x ∞ m does not depend on m and we will write p = -1+ √ 5 2

. The initializing phase yields

P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ 1 = 0, a) = 1 -p.
Let T be the index of the first digit of B which is different from the digit in A, the distribution of T conditioned on A = a has a geometric distribution with parameter p.

The distribution of the digits of B conditioned on A = a for the indices after T are given by the subsequent phase when previously there is at least one change. The easy part is to get P(B t+1 = A t+1 |a, T = t) = p. Then we will derive from an independent sequence (η m ) m≥1 of Bernoulli variables with parameter p a sequence (ǫ m ) m≥1 of random variables which almost surely satisfy the alternate signs rule. The heuristic is to substitute to every η = 0 two 0's in ǫ. More precisely let (η m ) m≥1 be a sequence of independent Bernoulli random variables with parameter p, define the following sequence (ǫ m ) m≥1 of random variables by induction as follows : if η 1 = 1, ǫ1 = 1. If η 1 = 0, ǫ1 = 0, ǫ2 = 0. Then suppose (ǫ m ) 1≤m≤M has been defined using n η's. If η n+1 = 1, ǫM+1 = 1. If η n+1 = 0, ǫM+1 = 0, ǫM+2 = 0. Please remark that almost surely (ǫ m ) 1≤m≤M ∈ C M . Then equation (13) shows that the distribution of (B k+T ) k≥1 conditionally to a and T is the distribution of (-1) k+ǫ k .

Proofs of the result 4.1 Conditional independence

Let us now introduce the conditional independence with respect of γ k , which is an important tool for our computations. Let us denote by

σ i l def = σ(A k , B k , l ≤ k ≤ i), for 2 ≤ l ≤ i. By convention σ i 1 def = σ(A k , B k , 1 ≤ k ≤ i, ǫ). Lemma 4.1. For every 1 ≤ l ≤ i < j σ i l is independent of σ j i+1 conditionally to γ i+1 .
The proof of this Lemma comes from the definitions of Lemma 2.1. For every m ≤ n, let us define

u n m def = P(γ S m-1 +1 = i m ∩ A (m) ∩ . . . ∩ A (n) ) and v n m def = P(γ S m-1 +1 = -i m ∩ A (m) ∩ . . . ∩ A (n) ).
With the help of Lemma 4.1 we can compute u n m , v n m , by induction starting from u n n , v n n , and we get the following result. for 1 ≤ m ≤ n ≤ N, where x n m is the continued fraction defined in [START_REF] Lammers | Diffusivity of a walk on fractures of a hypertorus[END_REF]. Proof. By conditioning and Lemma 4.1 we may write

u n m = P(γ S m-1 +1 = i m , A (m) |γ Sm+1 = i m ) × P(γ Sm+1 = -i m+1 , A (m+1) ∩ . . . ∩ A (n) ) + P(γ S m-1 +1 = i m , A (m) |γ Sm+1 = -i m ) × P(γ Sm+1 = i m+1 , A (m+1) ∩ . . . ∩ A (n) ).
This equation yields

u n m = P(γ S m-1 +1 = i m ∩ A (m) |γ Sm+1 = i m )v n m+1 ( 16 
) + P(γ S m-1 +1 = i m ∩ A (m) |γ Sm+1 = -i m )u n m+1 .
Observe that

{γ S m-1 +1 = i m ∩ A (m) ∩ γ Sm+1 = i m } = {α l = 0, β l = i m for S m-1 + 1 ≤ l ≤ S m } ∩ {γ S m-1 +1 = i m }. ( 17 
)
The two events on the right hand side are independent and the probability of the first one is 1 3 Mm . Therefore

P(γ S m-1 +1 = i m ∩ A (m) |γ Sm+1 = i m ) = P(γ S m-1 +1 = i m ∩ A (m) ∩ γ Sm+1 = i m ) P(γ Sm+1 = i m ) . Hence P(γ S m-1 +1 = i m ∩ A (m) |γ Sm+1 = i m ) = 1 3 Mm . ( 18 
)
With a similar argument we get

P(γ S m-1 +1 = i m ∩ A (m) |γ Sm+1 = -i m ) = M m 3 Mm . (19) 
Moreover

v n m = P(γ S m-1 +1 = -i m ∩ A (m) |γ Sm+1 = -i m ) × P(γ Sm+1 = i m+1 ∩ A (m+1) ∩ . . . ∩ A (n) ) + P(γ S m-1 +1 = -i m ∩ A (m) |γ Sm+1 = i m ) × P(γ Sm+1 = -i m+1 ∩ A (m+1) ∩ . . . ∩ A (n) ).
Note that P(γ S m-1 +1 = -i m ∩ A (m) ∩ γ Sm+1 = i m ) = 0, since, on this event, the value -i m of γ S m-1 +1 does not fit the value of a l 's on A (m) . Hence all the α l = 0 and γ Sm+1 = γ S m-1 +1 . It follows that

v n m = P(γ S m-1 +1 = -i m ∩ A (m) |γ Sm+1 = -i m )u n m+1 . (20) 
The equation ( 14) is the consequence of equations ( 16), (20), ( 18), (19). 

(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ N n=1 A (n) ) for N > m ≥ 2.
The numerator of the conditional probability is

P(ǫ m = 1, ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ N n=1 A (n) ) = P(ǫ m = 1, ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ N n=1 A (n) , γ Sm+1 = i m+1 ) = 2P(ǫ m = 1, ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ m n=1 A (n) ) × P(γ Sm+1 = i m+1 , ∩ N n=m+1 A (n) ) = 4P(ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ m-1 n=1 A (n) , γ S m-1 +1 = i m ) × P(ǫ m = 1, A (m) )u N m+1 ,
where the last two equalities come from conditional independence with respect to γ taken at the convenient index. For the denominator of the conditional probability of the title of the section, the same kind of manipulations yield

P(ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ N n=1 A (n) ) = 2P(ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ m-1 n=1 A (n) )P(γ S m-1 +1 = i m , ∩ N n=m A (n) ) = 2P(ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ m-1 n=1 A (n) )u N m .
Then

P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ N n=1 A (n) ) = 2P(ǫ m = 1, A (m) ) u N m+1 u N m and P(ǫ m = 1, A (m) ) = 1 2 M m 3 Mm yield P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ N n=1 A (n) ) = M m 3 Mm u N m+1 1 3 Mm (M m u N m+1 + v N m+1 )
, If we consider the numerator of the conditional probability of the second line we get :

P(ǫ m = 1, ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∀1 ≤ i ≤ m -2k, ǫ i = e i , a)
is also equal to

P(ǫ m = 1, ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, γ S m-2k +1 = i m-(2k-1) , ∀1 ≤ i ≤ m -2k, ǫ i = e i , a).
Then by conditioning by γ S m-2k +1 = i m-(2k-1) it is also equal to

P(ǫ m = 1, ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∩ i≥m-(2k-1) A (i) |γ S m-2k +1 = i m-(2k-1) ) × P(∀1 ≤ i ≤ m -2k, ǫ i = e i , ∩ m-2k i=1 A (i) |γ S m-2k +1 = i m-(2k-1) ) 2 .
But the same argument holds also for the denominator and the factor

P(∀1 ≤ i ≤ m -2k, ǫ i = e i , ∩ m-2k i=1 A (i) |γ S m-2k +1 = i m-(2k-1)
) is simplified in the conditional probability P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ m-(2k-1) = 1, ∀1 ≤ i ≤ m -2k, ǫ i = e i , a), which yields equation (31). The previous argument works for m < N, but it can be generalized to m = N and also to the case K = ∞. Then P(γ 1 = ν, ǫ m-1 = 0, . . . , ǫ 1 = 0, ∩ N n=1 A (n) ) = 2P(γ 1 = ν, ǫ 1 = 0, A (1) )P(ǫ m-1 = 0, . . . , ǫ 2 = 0, γ S 1 +1 = ν, ∩ N n=2 A (n) ) = P(ǫ 1 = 0, A (1) )P(ǫ m-1 = 0, . . . , ǫ 2 = 0, γ S 

M m 3 Mm 1 u m m + v m m (36) = M m M m + 2 . ( 37 
)
Equations ( 33) and (37) yield [START_REF] Montegut | Limite d'échelle de marche aléatoires contraintes[END_REF] in view of the convention x n n+1 = 1.

Distribution of the E m 's

To conclude the proof of Theorem 3.1 and 3.2, let us prove that ∀m ≥ 1 the distribution of the E m 's is uniform on {1, . . . , M m } conditionally to the event ǫ m = 1. Let us fix m 0 such that 2 ≤ m 0 ≤ N. We have to show that ∀j 0 ∈ {1, . . . , M m 0 } P(E m 0 = j 0 |a, ǫ m 0 = 1)

does not depend on j 0 . We have P(E m 0 = j 0 , ∩ N m=1 A (m) , ǫ m 0 = 1) = P(E m 0 = j 0 , ǫ m 0 = 1, γ S m 0 -1 +1 = i m 0 , γ Sm 0 +1 = i m 0 +1 , ∩ N m=1 A (m) )

which is also equal to 2P(∩ m 0 -1 m=1 A (m) , γ S m 0 -1 +1 = i m 0 ) × P(E m 0 = j 0 , ǫ m 0 = 1, γ S m 0 -1 +1 = i m 0 , γ Sm 0 +1 = i m 0 +1 , ∩ N m=m 0 +1 A (m) ) and = 4P(∩ m 0 -1 m=1 A (m) , γ S m 0 -1 +1 = i m 0 ) × P(E m 0 = j 0 , ǫ m 0 = 1, A (m 0 ) )P(γ S m 0 -1 +1 = i m 0 +1 , ∩ N m=m 0 +1 A (m) ) thanks to the conditional independence when γ is given. Furthermore P(E m 0 = j 0 , A (m 0 ) , ǫ m 0 = 1) = P(α j 0 = 1, ∀i = j 0 , α i = 0, A (m 0 ) )

does not depend on j 0 and consequently P(E m 0 = j 0 , A (m 0 ) , ǫ m 0 = 1) does not depend on j 0 . It is also the case for P(E m 0 = j 0 , ∩ N m=1 A (m) , ǫ m 0 = 1|a, ǫ m 0 = 1) since P(∩ N m=1 A (m) , ǫ m 0 = 1) does not depend on j 0 . The proof is easier when m 0 = 1.

Proposition 2 . 1 (

 21 Alternate signs rule). If a, b ∈ V K a ∼ b ⇔ b -a follows the alternate signs rule.

  convention. Let us now describe when Y K (0) = a and Y K (1) = b the sequence of the digits of b by comparison with those of a. Please remark that at most one digit b k of b is different of a k in any block of constancy A (m) of a, because of the alternate signs rule. Let (ǫ m ) 1≤m≤N be {0, 1}-valued random variables such that ǫ m = 1 if and only if there is one change of digit between a and b in the m-th block of constancy A (

  and C * n def = C n \ {e ∈ {0, 1} n |∀1 ≤ m ≤ n, e m = 0}. Let us remark that if e ∈ C n and n ′ ≤ n, (e 1 , . . . , e n ′ ) ∈ C n ′ . The definition of C n yields that if e / ∈ C n , P((ǫ 1 , . . . , ǫ n ) = e) = 0. Moreover if e ∈ C m-1 and ē = (e 1 , . . . , e m-1 , 1) / ∈ C m , it means that P((ǫ 1 , . . . , ǫ m ) = ē) = 0. Therefore we only have to compute P(ǫ m = 1|(ǫ 1 , . . . , ǫ m-1 ) ∈ C m-1 ) when (ǫ 1 , . . . , ǫ m ) ∈ C m .

1 . 3 . 2 .

 132 For all e ∈ C * m-1 such that ē = (e 1 , . . . , e m-1 , 1) ∈ C m P(ǫ m = 1|(ǫ 1 , . . . , ǫ m-1 ) = e, a) = M m x N m . (8) ∀1 ≤ m ≤ N the distribution of the E m 's is uniform on {1, . . . , M m } conditionally to the event ǫ m = Remark Equations (8) implies roughly that the law of ǫ m , conditioned to a and to the fact that there has been a change in digits of a before the index m, is independent of the last time a change has been made and what happens before, if it is of positive probability. It is a consequence of the fact that the right hand side of (8) does depend neither on the last time a change has been made nor on e ∈ C * m-1 . Theorem 3.1 allows us to compute for any b ∼ a, the P(Y K (1) = b|Y K (0) = a). Any pair (a, b) ∈ E K yields a sequence e ∈ {0, 1} N , where e m = 1 if and only if there is one digit b k in A (m) such that b k = a k . Because of the alternate signs rule e ∈ C N and the probability P((ǫ 1 , . . . , ǫ N ) = e) is a product of the probabilities given in Theorem 3.1 by applying successive conditioning.

Proposition 3 . 1 .

 31 If a ∈ V K , corresponds to N blocks of constancy of lengths M 1 , . . . , M N , we can define by induction a sequence (p m ) 0≤m≤N such that p 0 = 1, p 1 = M N + 1, and ∀ 0 ≤ m ≤ N -2,

Lemma 4 . 2 .

 42 For every m < n,

. 4 . 3 . 1 P

 431 The equation (14) yields for m + 1 ≤ n, (ǫ m = 1|(ǫ 1 , . . . , ǫ m-1 ) = e, a) For all e ∈ C * m-1 such that ē = (e 1 , . . . , e m-1 , 1) ∈ C m m(e) = m-(2k-1) for a k depending on e. Let us first compute P

4. 3 . 2 P+1 ν=- 1 P(γ 1 =

 3211 (ǫ m = 1|ǫ m-1 = 0, . . . , ǫ 1 = 0, ∩ N n=1 A (n) ) Let us start with the denominator and assume until further notice that N > m ≥ 2,P(ǫ m-1 = 0, . . . , ǫ 1 = 0, ∩ N n=1 A (n) ) = ν, ǫ m-1 = 0, . . . , ǫ 1 = 0, ∩ N n=1 A (n) ).

1

 1 +1 = ν, ∩ N n=2 A (n) n = 0, A (n) )P(γ S m-1 +1 = ν, ∩ N n=m A (n) ). P(ǫ m = 1|ǫ m-1 = 0, . . . , ǫ 1 = 0, ∩ m n=1 A (n) ) = P(ǫ m = 1, A (m) )
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Moreover

u n n = P(γ S n-1 +1 = i n , a j = i n , S n-1 + 1 ≤ j ≤ S n )

= P(γ S n-1 +1 = i n , β j = i n , α j = 0, S n-1 + 1 ≤ j ≤ S n ) + Sn j=S n-1 +1

P(γ S n-1 +1 = i n , ∀j = j 0 β j = i n , α j = 0, and α j 0 = 1) = 1 2

which yields (15).

Remark 4.1. Please note that we can use the induction of Lemma 4.2 even if K = ∞. We recall that, when n → ∞, x n m is converging to the irrational number that we will denote by x ∞ m .

Initializing phase

In this part we will compute the conditional probability given a that there is a digit b j = a j in the first block of constancy of a namely A (1) . Hence when K is finite if a has N blocks of constancy we are aiming for P(ǫ 1 = 1|∩ N m=1 A (m) ). When K is infinite we want to compute the limit of the previous probability when N → ∞. For N ≥ n ≥ 2, we start by computing

.

Since P(γ S 1 +1 = ±1) = 1 2 and P(ǫ 1 = 0, A (1) , γ S 1 +1 = ±1) = P(ǫ 1 = 0, A (1) , ǫ = ±1);

this yields

which can be written

Similarly

Since P(γ

) = 0, by summing the previous probabilities, we obtain

and

Equation ( 25) yields equation ( 6) and becomes

when K is infinite by letting n → ∞. When N = 1, x N 2 is not defined but we may compute P(ǫ 1 = 1|A (1) ) as follows. If N = 1 it means that the vertex a has a single block of constancy. Hence A (1) = {a}, and the vertex a has M 1 neighbors in the graph which are different from a and there are two edges that starts from a and ends at a. Hence, when N = 1, equation (25) becomes

which is coherent with the convention x 1 2 = 1.

When K is infinite, we can let N → ∞ to obtain

When m = N, we have to change the computation of the numerator. Actually in this case

Since

we get

Because of ( 23)

Hence equation ( 28) is always verified. Let us recall that for all e ∈ C * m-1 such that ē = (e 1 , . . . , e m-1 , 1) ∈ C m m(e) = m-(2k -1) for a k depending on e. Let us now add the conditioning by what happens before m -(2k -1) for all k such that 2k -1 < m, and all sequences (e i ) 1≤i≤m-2k ∈ C m-2k we will prove that

The previous formula is also true for m = N. Moreover

for N > m. Hence

We have used again

M m 3 Mm and Lemma 4.2 in the previous computations. When K = ∞ we let N → ∞ in (33) and we get

When m = N, 

Then

.

If we recall x N N = 1 M N +1 and x N N +1 = 1 it yields equation (9).

Proof of the proposition 3.1

Let us first recall that there are two loops in E K with base point a ∈ V K : (a, a) + , (a, a) -. So a is counted twice in the cardinal of the set of the neighbors of a, which is the degree of a. Then by definition x 

which is a consequence of (6,8). Then

Hence deg K (a) = p N + p N -1 .

The proof of Proposition 3.1 can be made directly without using Theorem 3.1. It is for the sake of brevity that we view it as a Corollary of Theorem 3.1.