Collision Avoidance and Fairness Issues in Metropolitan Bus-Based Optical Access Networks
Résumé
Packet-based optical ring becomes the standard access medium in metropolitan networks. Its performance depends mainly on how optical resource sharing, among different competing access nodes, takes place. This network architecture has mostly been explored in regard to synchronous transmission. However, in the present paper, we focus on the performance of asynchronous transmission-based metropolitan networks with variable packet sizes. Analytical models are presented in an attempt to provide explicit formulas that express the mean access delay of each node of the bus-based optical access network. In addition, we prove that in such a network, fairness problems are likely to arise between upstream and downstream nodes sharing a common data channel. Furthermore, we show that sharing the available bandwidth fairly and arbitrarily between access nodes, as in slotted WDM rings, does not resolve the fairness problem in asynchronous system. A basic rule, in order to achieve fairness, consists in avoiding random division of the available bandwidth caused by the arbitrary transmission of the upstream nodes.