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A B S T R A C T 

Ho ̌ra va gra vity has been proposed as a renormalizable, higher deri v ati ve, Lorentz-violating quantum gravity model without 
ghost problems. A Ho ̌ra va gra vity-based dark ener gy (HDE) model for dynamical dark ener gy has also been proposed earlier 
by identifying all the extra (gra vitational) contrib utions from the Lorentz-violating terms as an ef fective ener gy–momentum 

tensor in Einstein equation. We consider a complete cosmic microwave background, baryon acoustic oscillation (BAO), and 

supernova Ia data test of the HDE model by considering general perturbations o v er the background perfect HDE fluid. Except 
from BAO, we obtain the preference of non-flat universes for all other data set combinations. We obtain a positive result on 

the cosmic tensions between the Hubble constant H 0 and the cosmic shear S 8 , because we have a shift of H 0 towards a higher 
value, though not enough for resolving the H 0 tension, but the value of S 8 is unaltered. This is in contrast to a rather decreasing 

H 0 but increasing S 8 in a non-flat Lambda cold dark matter (LCDM). For all other parameters, like �m 

and �� 

, we obtain 

quite comparable results with those of LCDM for all data sets, especially with BAO, so that our results are close to a cosmic 
concordance between the data sets, contrary to the standard non-flat LCDM. We also obtain some undesirable features, like an 

almost null result on �k , which gives back the flat LCDM, if we do not predetermine the sign of �k , but we propose several 
promising ways for impro v ements by generalizing our analysis. 

Key words: cosmic background radiation – cosmological parameters – dark energy – cosmology: theory. 
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 I N T RO D U C T I O N  

n 2009, Ho ̌rava proposed a renormalizable, higher deri v ati ve,
orentz-violating quantum gravity model without the ghost problem, 
ue to anisotropic scaling dimensions for space and time ̀a la Lifshitz
nd DeWitt (Lifshitz 1941 ; DeWitt 1967 ; Horava 2009 ). In the last
2 yr, there have been a lot of work on its various aspects [see Wang
 2017 ) for a brief re vie w and e xtensiv e literature]. In particular, Park
 2009 ) interpreted the dark energy as an effective energy–momentum 

n Einstein equation due to the extra contributions from the Lorentz- 
iolating terms. 
The Ho ̌rava gravity-based dark energy (HDE) model explains 

aturally the non-interacting nature of the dark energy sector, except 
he gravitational interactions since it was originally a part of the 
ravity sector, with the ordinary matter sector. Furthermore, it also 
redicts dynamical dark energy behaviour in the cosmic evolution, 
epending on the purported Ho ̌rava gravity action, which may 
ontain various spatially higher deri v ati ve ultraviolet (UV) Lorentz- 
iolating terms [up to sixth order or z = 3 in (3 + 1) dimensions for
enormalizability (Horava 2009 )] and infrared (IR) Lorentz-violating 
erms. A peculiar property of HDE is that a spatially non-flat universe
ay be more ‘natural’ due to genuine contributions from higher 

patial deri v ati v es (P ark 2009 ) since, for a spatially flat universe, the
sual Friedmann–Lemaitre–Robertson–Walker (FLRW) background 
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osmology (Friedman 1922 ; Lemaitre 1927 ) is the same as in general
elativity (GR). In other words, Ho ̌rava gravity can be a ‘natural
aboratory’ for the test of a non-flat universe in the standard Lambda
old dark matter (LCDM) cosmology. 

On the other hand, with the increased precision of cosmological 
ata, some cosmic tensions between different data sets are becoming 
learer (Di Valentino et al. 2021b , c ; Shah, Lemos & Lahav 2021 ;
bdalla et al. 2022 ) within the standard LCDM paradigm and its

omplete resolution is a challenging problem in current cosmology. 
n particular, there have been various proposals (Knox & Millea 
020 ; Di Valentino et al. 2021a ; Jedamzik, Pogosian & Zhao 2021 ;
amionkowski & Riess 2022 ; Perivolaropoulos & Skara 2022 ) 

rying to address the tensions involving the Hubble constant H 0 

Verde, Treu & Riess 2019 ; Riess et al. 2022 ) and S 8 ≡ σ8 
√ 

�m 

/ 0 . 3 ,
easured by cosmic shear experiments (Asgari et al. 2021 ; Abbott

t al. 2022b ), between cosmic microwave background (CMB) data 
nd local measurements at lower redshifts, which corresponds to the 
ismatches between the early and late universe , but a resolution at

he fundamental level is still missing. Moreo v er, when the possibility
f a closed universe is considered (Di Valentino, Melchiorri & 

ilk 2019 ; Di Valentino et al. 2021d , f ; Handley 2021 ; Semenaite
t al. 2022 ; Yang et al. 2022 ), the tensions become worse, due to a
ecreasing H 0 but increasing S 8 , and a new problem appears, called
he discordance problem, which means ‘the lack of concordance – in 
ther words, the lack of consistency – with other observations’; for 
xample, the closed universe preferred by Planck predicts �m 

∼ 0.5 
nd consequently �� 

∼ 0 . 5, in sharp contrast to the conventional 
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alue �m 

∼ 0.3 and �� 

∼ 0 . 7 for the local measurements or flat
CDM. 
This moti v ated Nilsson & Park ( 2022 ) to analyse current cosmo-

ogical data, including baryon acoustic oscillations (BAOs), for the
tandard (background) FLRW cosmology with the HDE model and
hey found some improvements of the Hubble constant tension with a
reference of a ‘closed’ universe but without the problems of too large
m 

and too small �� 

in a non-flat LCDM, i.e. improving the dis-
ordance problem. Ho we ver, the pre vious analysis was not complete
n two aspects. First, due to the lack of perturbations of matter and
ark energy, one cannot spell out the S 8 tension from the amplitude
8 of matter density fluctuations on scales of 8 Mpc h −1 . Secondly,
ue to the algorithmic limitation of the Metropolis–Hastings algo-
ithm (Robert 2015 ), the convergent χ2 statistics for separate data
ets was not possible. From this second limitation, �m 

and �� 

were
btained only for all the data sets whose reasonable value seems to
upport the lack of the discordance problem for separate data sets,
ut its explicit confirmation in each data set is still absent. 

In this paper, in order to fill the gap, we extend the background
nalysis by considering dark-energy perturbations and using the
ull CMB data via CAMB / COSMOMC . In Section 2 , we consider the
heoretical set-up for the cosmological perturbations of the HDE

odel on a non-flat FLRW background, based on the fluid approach
or the perturbed HDE. We compare our HDE model whose equa-
ion of state (EoS) parameter is rapidly varying or fluctuating with
he standard CPL model and show a good agreement in the comoving
ngular diameter distance, which supports the robustness of our HDE
odel in analysing observational data. We also present the implicit

ssumptions in our fluid approach and initial conditions for solving
erturbation equations. In Section 3 , we describe our methodology
or the analysis and the data sets under consideration. In Section 4 , we
resent and discuss our obtained results. In Section 5 , we conclude
y proposing several promising directions to improve our analysis. 

 T H E O R E T I C A L  SET-UP  

.1 Dynamical dark energy model in Ho ̌rava gravity: HDE 

odel 

e start by briefly re vie wing the dynamical dark energy model
n Ho ̌ra va gra vity, named HDE model (Park 2009 ). To this end,
e consider the Arnowitt–Deser–Misner (ADM; Arnowitt, Deser &
isner 2008 ) metric 

 s 2 = −N 

2 c 2 d t 2 + g ij (d x 
i + N 

i d t)(d x j + N 

j d t) (1) 

nd the (non-projectable 1 ) Ho ̌ra va gra vity action à la Lifshitz and
eWitt (HLD; Lifshitz 1941 ; DeWitt 1967 ; Horava 2009 ; Shin &
ark 2017 ), given by 
NRAS 519, 5043–5058 (2023) 

 In the projectable case (Horava 2009 ; Mukohyama 2009 ), where the lapse 
unction N is a function of time only, there exists one extra scalar graviton 
ode. But in this paper, we will not consider those cases in order to reco v er 
R at the low-energy (or IR) limit, not to mention its pathological ghost 
ehaviour (Bogdanos & Saridakis 2010 ; Koyama & Arroja 2010 ; Cerioni & 

randenberger 2011 ) that is though somewhat impro v ed in the extended 
odel with the dynamical lapse function (Blas, Pujolas & Sibiryakov 2010 ). 
ven in the non-projectable case, where N is a function of space as well 
s time generally, it has also been known to have similar problems (Blas, 
ujolas & Sibiryakov 2009 ) that have been the moti v ation for the extended 
odel in Blas et al. ( 2010 ), but it has been later found that there is no extra 

raviton mode problem in cosmological perturbations at the linear order (Gao 
t al. 2010 ; Shin & Park 2017 ). 
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 HLD = 

∫ 
d td 3 x 

√ 

g N 

[
2 

κ2 
( K ij K 

ij − λK 

2 ) − V 

]
, (2) 

− V = σ + ξR + α1 R 

2 + α2 R ij R 

ij + α3 
εijk 

√ 

g 
R il ∇ j R 

l 
k 

+ α4 ∇ i R jk ∇ 

i R 

jk + α5 ∇ i R jk ∇ 

j R 

ik + α6 ∇ i R ∇ 

i R , (3) 

hich is power-counting renormalizable without the ghost problem
n physical TT (transverse-traceless) graviton modes. Here, 

 ij = 

1 

2 N 

( ̇g ij − ∇ i N j − ∇ j N i ) (4) 

s the extrinsic curvature [the dot ( ̇) denotes the time derivative with
espect to physical time t ], ∇ i is the covariant derivative with respect
o 3-metric g ij , R ij is the Ricci tensor of a 3-geometry, K = g ij K 

ij and
 = g ij R 

ij are their traces, εijk is the Le vi–Ci vita symbol, and κ , λ, ξ ,
i , and σ are coupling constants. 
From the detailed balance condition (DBC), which was adopted

rom quantum critical phenomena in condensed matter systems (Ho-
ava 2009 ), the number of independent coupling constants reduces
o six, i.e. κ , λ, μ, ν, � W 

, and ω for a viable gravity theory in the
R (Kehagias & Sfetsos 2009 ; Park 2009 ), and the theory parameters
re given by 

σ = 

3 κ2 μ2 � 

2 
W 

8(3 λ − 1) 
, ξ = 

κ2 μ2 ( ω − � W 

) 

8(3 λ − 1) 
, α1 = 

κ2 μ2 (4 λ − 1) 

32(3 λ − 1) 
, 

α2 = −κ2 μ2 

8 
α3 = 

κ2 μ

2 ν2 
, α4 = − κ2 

82 ν4 
= −α5 = −8 α6 , (5) 

ith μ2 > 0 ( < 0) for a positiv e (ne gativ e) cosmological constant
 ∼� W 

). Here, DeWitt’s IR Lorentz violation parameter λ (DeWitt
967 ) can be arbitrary, but below we will restrict to the case λ = 1
o that our analysis agrees with the standard analysis in GR at low
nergies. The UV couplings α3 , ···, α6 do not appear explicitly in our
nalysis below, but we will discuss their interesting role in the dark
nergy perturbations in Section 5 . 

Then, we may consider the gravity equations of motion for our
niverse with matter (ordinary and dark matter, and radiation) as 

 

μν = 

8 πG 

c 4 

(
T 

μν
matter + T 

μν
DE 

)
(6) 

or the Einstein tensor G 

μν = 

ˆ R 

μν − (1 / 2) ̂  g μν ˆ R with the (3 + 1)-
imensional Ricci tensor ˆ R 

μν , Ricci scalar ˆ R , and covariant deriva-
ive ˆ ∇ μ by treating all the Lorentz-violating contributions from the
LD action (equation 2 ) as an ‘ef fecti ve’ dark energy fluid with the

nergy–momentum tensor T μν
DE , including the cosmological constant

erm (Park 2009 ). This interpretation is based on the fact that the
ark energy is defined by the ‘unknown’ contributions, other than
ark matter, in our universe when described by GR. An important
irect consequence of the interpretation is the (usually assumed)
on-interacting nature of dark energy, except the gravitational
nteractions, with matter can be easily explained. 2 Moreover, from
he Bianchi identity ˆ ∇ μG 

μν = 0 and the covariant conservation law
 If there is a way to identify the dark matter as well as the dark energy from 

he gravity sector, one can also explain the non-interaction of dark matter with 
rdinary matter and radiation but with a possible interaction of dark energy 
nd dark matter (Gavela et al. 2009 ). In projectable Ho ̌rava gravity, CDM 

an be naturally introduced as an ‘integration constant’ (Mukohyama 2009 ). 
f one can realize the similar CDM behaviour in its non-projectable version 
ith ‘ a i -extended terms’ (Blas et al. 2010 ), which is related to Einstein 
ether (Jacobson & Mattingly 2004 ) or Standard-Model-Extension (SME) 
ravity at low energy (O’Neal-Ault, Bailey & Nilsson 2021 ), one can explain 



Test of dark energy models in Ho ̌rava gravity 5045 

o  

∇  

H

a

d

w  

fl
a  

e
s

w
e

ρ

p

r
o  

h

c

N  

t  

s  

fl  

e

T

a

∇
w  

∇
m

t
S
3

c
s
c
4

d
5

t
a
a
t
o
2
t
6

c
p

w

w  

fl  

t  

i  

(  

e  

w
−  

r  

s  

fl
o
p  

i

2

W

g

w  

m  

t

c

h

w
a
i

D

H  

f  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/5043/6967913 by guest on 21
f matter ˆ ∇ μT 
μν

matter = 0, one can find the conservation of dark energy
ˆ 
 μT 

μν
DE = 0 as well, even with the Lorentz-violating terms of the

LD action (equation 2 ). 3 

As a background cosmology metric, we consider the homogeneous 
nd isotropic FLRW metric (Friedman 1922 ; Lemaitre 1927 ) 

 s 2 = −c 2 d t 2 + a 2 ( t) 

[
d r 2 

1 − Kr 2 /R 

2 
0 

+ r 2 (d θ2 + sin 2 θd φ2 ) 

]
(7) 

ith the (spatial) curvature parameter K = + 1 , 0 , −1 for a closed,
at, open universe, respectively, and the current curvature radius R 0 

t a ( t 0 ) ≡ 1. Assuming the perfect fluid form of matter (background)
nergy–momentum tensor T̄ μν = diag ( −ρ, p, p, p) with energy den- 
ity ρ and pressure p , we obtain the Friedmann equations as (

ȧ 

a 

)2 

= 

8 πG 

3 c 2 
( ρmatter + ρDE ) − c 2 K 

R 

2 
0 a 

2 
, (8) 

ä 

a 
= −4 πG 

3 c 2 
[( ρmatter + ρDE ) + 3( p matter + p DE )] , (9) 

here we introduce the energy density and pressure for the dark 
nergy (HDE) 4 as 

DE = 

3 κ2 μ2 

8(3 λ − 1) 

( K 

2 

R 

4 
0 a 

4 
+ 

2 ωK 

R 

2 
0 a 

2 
+ � 

2 
W 

)
, (10) 

 DE = 

κ2 μ2 

8(3 λ − 1) 

( K 

2 

R 

4 
0 a 

4 
− 2 ωK 

R 

2 
0 a 

2 
− 3 � 

2 
W 

)
, (11) 

espectively, by defining the fundamental constants in GR, i.e. speed 
f light c , Newton’s constant G , and cosmological constant � as (we
ave set λ = 1) 5 

 

2 = 

κ4 μ2 � W 

32 
, G = 

κ2 c 2 

32 π
, � = 

3 

2 
� W 

c 2 . (12) 

ote that, for the spatially flat universe with K = 0, all the contribu-
ions from the higher deri v ati ve terms disappear and we recover the
ame background cosmology as in GR, which means a return to the
at LCDM model. On the other hand, it is important to note that the
nergy-momentum tensor of dark energy has the perfect fluid form 

6 

¯
 

μ
ν DE = diag ( −ρDE , p DE , p DE , p DE ) (13) 

nd satisfies the covariant conservation law 

¯
 μT̄ 

μν
DE = ρ̇DE + 3 H ( ρDE + p DE ) = 0 (14) 

ith the Hubble parameter H ( t) ≡ ȧ /a, consistently with ( 6 ), where
¯
 μ denotes the covariant derivative with respect to the background 
etric ( 7 ). 
he null result in direct detection of dark matter via particle interactions [see 
ection 5 , list (ii), for further discussions]. 
 One may say that HLD action ( 2 ) can couple only to the covariantly 
onserved matters ˆ ∇ μT 

μν
matter = 0, when they are minimally coupled to gravity, 

ince one can find ˆ ∇ μT 
μν

DE = 0, independently of the matter sector (Deve- 
ioglu & Park 2021 ). 
 We follow the physical convention of Ryden (Ryden 1970 ; Park 2009 ) that 
isagrees with Horava ( 2009 ); G Here = G Horava / c 2 and � Here = � Horava c 2 . 
 If we consider an arbitrary λ �= 1, ρDE also has a ( ̇a /a) 2 term proportional 
o ( λ − 1), but its effect is just to shift the o v erall factors in equations ( 10 ) 
nd ( 11 ), which corresponds to the shifts in the fundamental constraints c , G , 
nd � (Park 2009 ) [see Section 5, list (iv), for further discussions]. Moreo v er, 
here are some additional ambiguities in defining ρDE and p DE , depending 
n the definitions of c (Kehagias & Sfetsos 2009 ; Arg ̈uelles, Grandi & Park 
015 ). Ho we v er, we hav e found not much difference in the main results for 
he background analysis (Nilsson & Park, unpublished). 
 This is essentially due to the property of background FLRW metric. If we 
onsider a spatially anisotropic (Bianchi) universe, we will have anisotropic 
ressures. 

g  
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d
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t
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The EoS parameter is given by 

 DE = 

p DE 

ρDE 
= 

( K 

2 − 2 ̄ω Ka 2 − 3 ̄� 

2 
W 

a 4 

3 K 

2 + 6 ̄ω Ka 2 + 3 ̄� 

2 
W 

a 4 

)
, (15) 

here we introduce ω̄ ≡ ωR 

2 
0 , �̄ W 

= � W 

R 

2 
0 for conv enience. F or a

at universe, K = 0, we have w DE = −1, which just corresponds to
he cosmological constant. Ho we v er, for an y non-flat univ erse, EoS
nterpolates from w DE = 1/3 (i.e., radiation-like) in the UV limit
 a = 0) to w DE = −1 in the IR limit ( a = ∞ ), but other detailed
volution depends on the parameters ω̄ , K, �̄ W 

(Fig. 1 ). In other
ords, ‘any deviation from the cosmological constant case, w DE = 

1, in the observational data (see Abbott et al. 2022a for a recent
esult), is an indication of a non-flat universe in our context’. In this
ense, Ho ̌ra va gra vity can be a ‘natural laboratory’ to test a non-
at cosmology. Ho we ver, we remark that the observ ation of w DE 

nly or its derived quantities cannot uniquely determine the theory 
arameters ω̄ , K due to a de generac y between ( ̄ω , K) ↔ ( −ω̄ , −K)
n equation ( 15 ) (Park 2009 ). 

.2 Cosmological perturbations on a non-flat background 

e consider the perturbed metric as 

N = a( η)[1 + A ( η, x )] , 

N i = a 2 ( η) B i ( η, x ) , 

 ij = a 2 ( η)[ γij + h ij ( η, x )] , (16) 

here η is the conformal time, defined by d η = d t / a , and γ ij is the
etric for a non-flat three-sphere, γij = (1 + K̄ r 2 / 4) −2 δij , by which

he Latin indices ( i , j , ···) are raised with K̄ ≡ K/R 

2 
0 . 

Following the usual scalar–vector–tensor decomposition, we also 
onsider 

B i = D i B + S i , 

 ij = 2 R γij + D i D j E + D ( i F j ) + H ij , (17) 

here D i is the cov ariant deri v ati ve with respect to γ ij , and S i , F i , H ij 

re transverse vectors and transverse-traceless tensor, respectively, 
.e. 

 i S 
i = D i F 

i = H 

i 
i = D i H 

i 
j = 0 . (18) 

ere, we note that the background FLRW metric is the projectable
orm, i.e. N = N ( η) (Hora va 2009 ), b ut the perturbed metric is non-
rojectable with an arbitrary space and time dependence, N = N ( η, x ),
enerally, so that one can obtain the local Hamiltonian constraint by
arying N = N ( η, x ) (Park 2011 ; Shin & Park 2017 ). This is a crucial
ifference from the projectable model (Horava 2009 ; Mukohyama 
009 ), where just the global Hamiltonian constraint exists so that
here is an immovable gap between projectable model and GR, 
aving the local Hamiltonian constraint, and that is the origin of
heir possessing extra graviton mode. 7 
MNRAS 519, 5043–5058 (2023) 

 Of course, the local Hamiltonian constraint does not mean the symmetry 
enerator as in GR. Actually, it is the second-class constraint at the fully 
on-linear level for either the standard non-projectable HLD action ( 2 ) (De- 
 ecioglu & P ark 2021 ) or the a i -e xtended non-projectable model (Bellorin & 

estuccia 2011 ) and there are more (the second-class and the first-class) 
onstraints than GR. Ho we ver, it is important to note that, in contrast to the 
 i -extended model, there is a case (called Case A) where the physical degree 
f freedom is the same as in GR, even at the fully non-linear level for the non- 
rojectable HLD model. It is still an open problem whether our cosmology 
orresponds to that case or not. 
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M

Figure 1. Plots of w DE versus a ( t ) for (a) ω̄ 

2 > �̄ 

2 
W 

, ω̄ K < 0 (top left), (b) ω̄ 

2 = �̄ 

2 
W 

, ω̄ K < 0 (top right), (c) ω̄ 

2 < �̄ 

2 
W 

, ω̄ K < 0 (bottom left), and (d) 
ω̄ 

2 < �̄ 

2 
W 

, ω̄ K > 0 (bottom right). Here, we consider ω̄ = −2 (top left), ω̄ = −1 (top right), ω̄ = −1 / 1 . 3 , −1 / 2 , −1 / 10 (bottom left), and ω̄ = 2 , 1 , 1 / 2 
(bottom right) with K = + 1 (closed universe). Note that there is a degeneracy between ( ̄ω , K) ↔ ( −ω̄ , −K) in w DE of equation ( 15 ). 
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Now, let us consider a perfect fluid of density ρ and pressure p
ith the energy–momentum tensor 

 μν = ( ρ + p) u μu ν + pg μν (19) 

ith the four velocity of a como ving observ er, u μu μ = −1, as in
he matter and dark energy ( 13 ) for the background cosmology. The
eneral form of the perturbed energy-momentum tensor at the linear
rder can be written (Kodama & Sasaki 1984 ; Peter & Uzan 2013 ), 

T μν = ( δρ + δp) u μu ν + δpg μν + 2( ρ + p) u ( μδu ν) 

+ pδg μν + a 2 � μν, (20) 

here non-perturbed quantities u μ, g μν , p , ρ denote the background
bjects, δu 

μ = a −1 ( −A , v i ), and � μν is the anisotropic stress
ensor that represents a non-perfect fluid perturbation, � ij = T ij −
1/3) T 

k 
k γ ij , � 

i 
i = � 0 μ = 0, absorbing its trace by the pressure p . 

In component form, the perturbations read 

T 00 = a 2 ρ( δρ + 2 A ) , 

δT 0 i = −a 2 ( ρ + p)( v i + B i ) , 

δT ij = a 2 ( ph ij + γij δp + � ij ) , (21) 

here δρ ≡ δρ/ ρ is the density contrast. 
In the cosmological perturbation analysis, a proper choice of gauge

s useful, depending on the situation being studied. In Ho ̌rava gravity,
he ‘apparent’ action symmetry is the ‘foliation-preserving’ Diff
ymmetry ( Diff F 

) under the coordinate transformation δη = −f ( η),
x i = −ξ i ( η, x ), and hence not all the gauges in GR may be allowed.
n this paper, we consider the synchronous gauge, which is one of the
llowed gauges in Ho ̌ra va gra vity, where we set A = B i = 0, since A
nd B i are the Lagrange multipliers and can be integrated out in the
amiltonian-reduction (or Faddeev–Jackiw) method (Shin & Park
017 ). Actually, in Ho ̌ra va gra vity, this is a natural gauge without
uch loss of generality of Diff F 

, since the residual symmetry of the
ynchronous gauge corresponds to a Diff F 

with δη = −f ( η), δx i =
ξ i ( x ). 
In the synchronous gauge, the equations for the perturbed fluid

re given by the perturbed conservation equations, δ ˆ ∇ μT μν = 0 (in
NRAS 519, 5043–5058 (2023) 
omentum space) (Kodama & Sasaki 1984 ; Ma & Bertschinger
995 ; Hu 1998 ), 

ρ
′ = −3 H 

(
δp 

δρ
− w 

)
δρ − (1 + w) 

(
θ + 

h 

′ 

2 

)
, (22) 

′ = −H(1 − 3 w ) θ − w 

′ 

1 + w 

θ + 

δp /δρ

1 + w 

k 2 δρ − k 2 σ, (23) 

here the prime ( 
′ 
) denotes the deri v ati ve with respect to

onformal time η, H ≡ ( a ′ /a), θ ≡ ik i v i , h ≡ h 

i 
i , ≡ −( ̂ k i ̂  k j −

ij / 3) � 

i 
j / ( ρ + p), and k i is the comoving wavevector in a non-flat

pace generally, defined by 

 

i A jk ··· = ik i A jk ···, D 

i D i A jk ··· = −k 2 A jk ··· (24) 

ith k 2 ≥ | ̄K | for K̄ ≤ 0, or k 2 = l( l + 4) ̄K ( l = 0 , 1 , 2 , · · · )
or K̄ > 0 with the appropriate eigenfunctions (harmonics)
 jk ··· (Vilenkin & Smorodinskii 1964 ; Hu et al. 1998 ). 
In terms of the gauge invariant, i.e. physical, sound speed ˆ c s in the

est frame (Bardeen 1980 ; Kodama & Sasaki 1984 ; Hu 1998 ), 

δp 

δρ
= ˆ c 2 s + 

[
3 H 

(
ˆ c 2 s − w 

) + w 

′ ] ρ

δρ

θ

k 2 
, (25) 

he perturbation equations ( 22 ) and ( 23 ) reduce to 

ρ
′ = −3 H 

(
ˆ c 2 s − w 

)
δρ + 3 H 

[
3 H(1 + w) 

(
ˆ c 2 s − w 

) + w 

′ ] θ

k 2 

− (1 + w) 

(
θ + 

h 

′ 

2 

)
, (26) 

′ = −H 

(
1 − 3 ̂ c 2 s 

)
θ + 

ˆ c 2 s 
1 + w 

k 2 δρ − k 2 σ, (27) 

here we have used the definition of the ‘adiabatic’ sound speed, 

 

2 
a ≡

p 

′ 

ρ ′ = w − w 

′ 

3 H(1 + w) 
(28) 

or the adiabatic perturbations, δa p ≡ c 2 a δa ρ. Here, note that the
diabatic sound speed c a is determined by the background quantities
nly and can be infinite at w = −1, i.e. cosmological constant, unless
 

′ = 0, or ev en ne gativ e depending on w: it just represents ρ
′ = 0 for

he former, or even ρ
′ 
< 0 for the latter while p 

′ 
> 0 (or vice versa).
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Figure 2. Plots of c 2 a versus a ( t ) for ω̄ K < 0 (left) and ω̄ K > 0 (right). Here, we consider the same values of parameters as in Fig. 1 : ω̄ = 

−2 , −1 , −1 / 1 . 3 , −1 / 2 , −1 / 10 (left, bottom to top) correspond to the first three cases in Fig. 1 , whereas ω̄ = 2 , 1 , 1 / 2 (right, top to bottom) correspond 
to the last case in Fig. 1 , with K = + 1 (or ω̄ → −ω̄ with K = −1). Note that c 2 a evolves from c 2 a = 1 / 3 in the UV limit to c 2 a = −1 / 3 in the IR limit, but other 
intermediate details depend on ω̄ and K. 
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vious background analysis, but with our preferred signature of �ω < 
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So far, we have not specified any particular fluid and the equa-
ions are valid for any ‘uncoupled’ fluid. Now, by introducing dust

atter [non-relativistic baryonic matter and (non-baryonic) CDM 

ith p m = 0] and radiation (ultra-relativistic matter with p r = ρr /3),
hich satisfy the continuity equations ˆ ∇ μT 

μν
( i) = 0 ( i = m, r), we

an write the Friedmann equation ( 8 ) as (
H 

H 0 

)2 

= �r a 
−4 + �m 

a −3 + �k a 
−2 + �DE ( a) . (29) 

ere, we define the canonical density parameters at the current epoch 
 a 0 = 1) as 8 

m 

≡ β
ρ0 

m 

3 H 

2 
0 

, �r ≡ β
ρ0 

r 

3 H 

2 
0 

, �k ≡ −γ
K 

H 

2 
0 R 

2 
0 

, 

� 

≡ γ
� W 

2 H 

2 
0 

, �ω ≡ γ
ω 

2 H 

2 
0 

(30) 

ith positive parameters β ≡ κ2 /2(3 λ − 1), γ ≡ κ4 μ2 � W 

/8(3 λ − 1) 2 , 
nd introduce the (dynamical) dark-energy (HDE) component (Nils- 
on & Park 2022 ) as 

DE ( a) ≡
(

�2 
k 

4 �� 

)
a −4 −

(
�k �ω 

�� 

)
a −2 + �� 

, (31) 

hich includes the dark radiation ( ∼a −4 ) and dark curvature ( ∼a −2 )
omponents as well as the cosmological constant component �� 

. The 
riedmann equation ( 29 ) is now given by (
H 

H 0 

)2 

= 

(
�r + 

�2 
k 

4 �� 

)
a −4 + �m 

a −3 

+ 

(
1 − �ω 

�� 

)
�k a 

−2 + �� 

. (32) 

he EoS parameter ( 15 ) can be written as 

 DE ( a ) = 

−12 �2 
� 

a 4 + 4 �k �ω a 
2 + �2 

k 

12 �2 
� 

a 4 − 12 �k �ω a 2 + 3 �2 
k 

. (33) 

hen, from equation ( 28 ), the adiabatic sound speed can be obtained
s 

 

2 
a = 

K + ω̄ a 2 

3( K − ω̄ a 2 ) 
= 

−2 �ω a 
2 + �k 

6 � a 2 + 3 �
, (34) 
ω k 

 We adopt the convention �i for the current values and �i ( a ) for the fully 
ime-dependent values. 
hich goes to c 2 a = 1 / 3 in the UV limit (when K �= 0) and c 2 a = −1 / 3
n the IR limit, but the evolution details depend on ω̄ , K or �ω , �k 

Fig. 2 ). It is interesting to note that the cosmological constant parts
f w DE in equation ( 33 ) do not contribute to c a . 

.3 Comparison to Chevallier–Polarski–Linder (CPL) type 
arametrization 

ur dark energy model described by w DE ( 15 ) may have very rapid
volution or fluctuations with a phantom crossing at w DE = −1 as
an be seen in Fig. 3 . This might raise some questions on the relation
f our dynamical dark energy model to the Che v allier–Polarski–
inder (CPL) type parametrization (Che v allier & Polarski 2001 ;
inder 2003 ), 

( a) = w 0 + w a (1 − a) + w b (1 − a) 2 + · · · , (35) 

hich is smoothly evolving but provides an excellent fit (at about
 . 1 per cent level in observables). 
To that end, we consider the comoving angular-diameter distance 

d c A ( z ) = 

c 

H 0 

1 √ 

�k 

Sinh 

[√ 

�k 

∫ z 

0 

d z ′ 

H ( z ′ ) /H 0 

]
(36) 
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M

Figure 4. Comparison of the comoving angular-diameter distance d c A ( z) between our dark energy model for the preferred case in Fig. 3 and the corresponding 
CPL model with w 0 = −1.002, w a = −0.004. The top plot shows the distances for the two cases with quite a good fit (the two curves are almost coincident). 
The bottom plots show the ratio of our preferred case versus the CPL model that provides the robustness of our dynamical dark energy model, even up to the 
CMB distance. 
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9 This circumstance is quite similar to the vacuum metamorphosis (VM) 
model (Di Valentino, Linder & Melchiorri 2018 , 2020b ). In fact, even the 
asymptotic values of its EoS at UV and IR are the same and its rapidly 
ev olving beha viour is quite similar. Understanding the physical rele v ance of 
the VM model to our dark energy model would be interesting. 
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or the redshift z = −1 + 1/ a . Here, the Hubble parameter H ( z) can
e written as (
H ( z) 

H 0 

)2 

= �r ( z + 1) 4 + �m 

( z + 1) 3 + �k ( z + 1) 2 

+ �DE · exp 

(
3 
∫ z 

0 

1 + w DE ( z ′ ) 
1 + z ′ 

d z ′ 
)

(37) 

rom the Friedmann equation ( 29 ) and the dark energy density
arameter that solves the background conservation law (14), 

DE ( z) = �DE · exp 

[
3 
∫ z 

0 

1 + w DE ( z ′ ) 
1 + z ′ 

d z ′ 
]

= �DE · exp 

[
3(1 + w 0 + w a ) z( z + 2) − 3 w a z 

z + 1 

+ 3 w b 

(
ln ( z + 1) − z( z + 2) 

2( z + 1) 2 

)
+ · · ·

]
(38) 

n the CPL-type parametrization ( 35 ). Now, in order to see the
oodness of the standard CPL model with the first two parameters
 0 , w a , we compare the comoving angular-diameter distance ( 36 )
etween our model with the full w DE ( 15 ) and the CPL model with 

w 0 = 

−12 �2 
� 

+ 4 �k �ω + �2 
k 

3 
(
4 �2 

� 

− 4 �k �ω + �2 
k 

) , 

 a = 

16 �k 

(
4 �ω �

2 
� 

− 4 �k �
2 
� 

+ �2 
k �ω 

)
3 
(
4 �2 

� 

− 4 �k �� 

+ �2 
k 

)2 , (39) 

hich can be obtained by expanding ( 15 ) near the current epoch a =
. Our result in Fig. 4 shows that, even for the rapidly evolving case
f dark energy in Fig. 3 , the agreement is better than 0 . 03 per cent at
ll redshifts (0 . 006 per cent at the CMB distance z ≈ 1100), which
s sufficient for the current precision of data. From the fact that
he comoving angular-diameter distance enters the CMB distance to
he surface of last scattering, BAO, and SN observations, our result
NRAS 519, 5043–5058 (2023) 
upports the robustness of our dynamical dark energy model (HDE)
n comparison to the standard CPL model. 9 

.4 Assumptions and initial conditions 

e have introduced the dark energy fluid that is not interacting with
ther matter and radiation, by its purely gravitational origin. Their
erturbation equations are very general and includes anisotropic
tress σ , time-varying w DE , and arbitrary rest-frame sound speed ˆ c s .
n the fluid approach, we have identified the background quantities
 

μν b ut ha ve not specified other details about the perturbed quantities
T 

μν , coming from the Lorentz-violating higher deri v ati ve terms in
o ̌ra va gra vity. The only model dependence enters in the background
 

μν or the EoS parameter w DE and all the other perturbation
nalysis can be very general, i.e. model independent. Ho we ver,
rom equation (6), it might have its own limitation of validity by
eglecting the genuine UV, i.e. deep subhorizon ( k � H), effects
t the primordial universe: (6) assumes implicitly the same order
f the second-order deri v ati ves of gravitational perturbations δG 

μν

s the fluid perturbations δT 

μν , which contains the higher order
eri v ati ves of gravitational perturbations δT μν

DE in addition to the
onventional matter perturbations δT μν

matter in our Ho ̌rava gravity
odel. Actually, equation (6) corresponds to a coarse-graining of

he arbitrary perturbations and selects the spatially slowly varying
nd smooth gravity perturbations, while the background T 

μν may
llow ‘rapidly varying’ w DE due to the UV effect in a non-flat 
niverse. 
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Table 1. Flat priors adopted on the free parameters of the HDE model 
explored here. 

Parameter Prior 

�b h 2 [0.005,0.1] 
�c h 2 [0.001,0.99] 
100 θMC [0.5,10] 
τ [0.01,0.8] 
n s [0.8, 1.2] 
log [10 10 A s ] [1.61,3.91] 
�k [ −0.3, 0.3] 
�ω [ −100, 100] 

Figure 5. The CMB temperature power spectrum for different values of �ω , 
while all the other parameters are fixed to a slightly closed universe with 
�k = −0.001. Given the symmetry for positive and ne gativ e values of �ω 

and �k that we discuss in the text, we show only positive �ω . By increasing 
this parameter, we see a shift of the peaks towards lower multipoles, and an 
increase of the low- � plateau. 
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The physical sound speed of dark-energy perturbations ˆ c s can 
e arbitrary, but for the data analysis in the following sections, 
e will consider a constant ˆ c s as a free parameter for simplicity; 
o we ver, from the perturbation equations (26) and (27), ˆ c 2 s cannot 
e arbitrarily large for the stability of perturbations. Moreo v er, the
 M

able 2. Parameter constraints at 68 per cent CL for an open universe on the indep
ith the best-fitting χ2 and its difference from the flat LCDM model. 

Planck Planck 
arameters + Lensing 

b h 2 0.02255 ± 0.00017 0.02248 ± 0.00016 

c h 2 0.1085 ± 0.0048 0.1155 ± 0.0034 
00 θMC 1.04130 ± 0.00037 1.04112 ± 0.00034 

0.0517 ± 0.0084 0.0517 ± 0.0081 
n(10 10 A s ) 3.032 ± 0.018 3.034 ± 0.017 
 s 0.9729 ± 0.0054 0.9696 ± 0.0050 

k 0 . 00089 + 0 . 00029 
−0 . 00034 0 . 00056 + 0 . 00018 

−0 . 00047 

ω > 56.1 40 + 20 
−30 

� 0.7146 ± 0.0077 0.7012 ± 0.0043 

m 0.2845 ± 0.0079 0.2983 ± 0.0044 

8 0 . 857 + 0 . 019 
−0 . 014 0.823 ± 0.010 

 8 0.834 ± 0.011 0.8210 ± 0.0090 
 0 (km s −1 Mpc −1 ) 68.04 ± 0.44 68.18 ± 0.43 
 drag 147.29 ± 0.31 147.30 ± 0.32 

2 
bestfit 2755.4 2771.4 
χ2 

bestfit −10.4 −3.2 

 

nisotropic stress σ is an important parameter that characterizes the 
erturbations (Hu 1998 ) but constraining it seems to be difficult with
he current precision (Yang et al. 2020 ). Therefore, we assume the
bsence of anisotropic stress σ in the following analysis. 

For the initial conditions of dark energy perturbations in the 
arly universe, i.e. during the radiation-dominated era where the 
erturbations are outside the (Hubble) horizon, we will consider the 
diabatic initial perturbations of dark energy as (Koivisto & Mota 
006 ), 

DE = 

(
1 + w γ

1 + w DE 

)
δγ , θDE = θγ , (40) 

here δγ , θγ are the initial perturbations of photons with w γ =
/3. Here, the velocity condition θDE = θγ is strictly valid for the
diabatic dark energy fluid, i.e. ˆ c 2 s = c 2 a = 1 / 3, at UV. Ho we ver,
ven for ˆ c 2 s �= c 2 a = 1 / 3, we will take the same initial condition in
he following analysis since the late-time evolution is not (much) 
ffected as far as ˆ c 2 s is inside some reasonable region (Koivisto &
ota 2006 ). 
Finally, for the dynamical dark energy with a ‘phantom crossing,’ 

.e. w DE = −1, the perturbation equation (27) looks divergent, i.e.
nstable, for any non-vanishing ˆ c s . But it just means the vanishing
ensity perturbation δDE = 0 at the instant and the equation (26)
hows that later evolution may generate δDE again for w 

′ 
DE θ > 0. In

ther words, the perturbation equations can be well-defined even at 
 phantom crossing. 

 M E T H O D O L O G Y  A N D  DATA  SETS  

In this section, we list the current cosmological data sets used to
onstrain the HDE model: 

(i) Planck : We make use of the full CMB temperature and polar-
zation angular power spectra plikTTTEEE + lowl + lowE as released
y Planck 2018 and used in Aghanim et al. ( 2020a , b ). 
(ii) Lensing : We consider the CMB lensing reconstruction likeli- 

ood from Planck 2018 (Aghanim et al. 2020c ). 
(iii) BAO : We add the BAO distance measurements from dif- 

erent astronomical surv e ys: 6dFGS (Beutler et al. 2011 ), SDSS-
GS (Ross et al. 2015 ), and BOSS DR12 (Alam et al. 2017 ). 
MNRAS 519, 5043–5058 (2023) 

endent (abo v e the line) and dependent (below the line) parameters, together 

Planck Planck Planck + Lensing 
+ BAO + Pantheon + BAO + Pantheon 

0.02239 ± 0.00015 0.02251 ± 0.00016 0.02240 ± 0.00015 
0.1191 ± 0.0021 0.1105 ± 0.0044 0.1190 ± 0.0021 

1.04100 ± 0.00032 1.04124 ± 0.00034 1.04100 ± 0.00031 
0.0551 ± 0.0080 0 . 0525 + 0 . 0081 

−0 . 0073 0.0545 ± 0.0076 
3.044 ± 0.016 3.035 ± 0.017 3.043 ± 0.015 

0.9668 ± 0.0045 0.9716 ± 0.0051 0.9670 ± 0.0044 
< 0.000501 0 . 00081 + 0 . 00029 

−0 . 00037 < 0.000464 

23 ± 30 61 + 30 
−20 27 + 20 

−30 

0 . 6966 + 0 . 0023 
−0 . 0026 0.7112 ± 0.0069 0 . 6965 + 0 . 0021 

−0 . 0023 

0 . 3030 + 0 . 0028 
−0 . 0024 0.2880 ± 0.0071 0 . 3031 + 0 . 0025 

−0 . 0022 

0 . 820 + 0 . 012 
−0 . 014 0 . 852 + 0 . 018 

−0 . 015 0.8189 ± 0.0092 
0.824 ± 0.012 0.834 ± 0.011 0.8231 ± 0.0088 
68.49 ± 0.39 68.13 ± 0.43 68.45 ± 0.36 

147.13 ± 0.31 147.26 ± 0.31 147.15 ± 0.30 

2770.5 3792.4 3815.4 
−1.4 −8.7 −1.6 
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Figure 6. Triangular plot showing 2D contours at 68 per cent and 95 per cent CL and 1D posterior distributions of a few key parameters in an open HDE 

universe. 
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(iv) P antheon : W e include the Pantheon (Scolnic et al. 2018 )
ample of 1048 Type Ia SNe. 

The parameter constraints are computed by means of MCMC sam-
ling with our modified version of the publicly available packages
AMB (Lewis, Challinor & Lasenby 2000 ) and COSMOMC (Lewis &
ridle 2002 ). 10 The convergence diagnostic follows the Gelman
nd Rubin prescription (Gelman & Rubin 1992 ), which is already
mplemented in the Planck 2018 likelihood (Aghanim et al. 2020a ). 
NRAS 519, 5043–5058 (2023) 

0 http:// cosmologist.info/cosmomc/ 

i

a  

p  
In Table 1 , we show the flat priors adopted in the data analysis.
hese are the physical density of baryons �b h 2 , the physical density
f CDM �c h 2 , the ratio of sound horizon to the angular diameter
istance at recombination θMC , the reionization optical depth τ , the
calar spectral index n s , and the amplitude A s of the primordial scalar
ower spectrum, the curvature of the universe �k , and the HDE
arameter �ω . In particular, we analyse three cases: a closed universe
here we restrict the �k prior to [ −0.3, 0], an open universe with �k 

n [0,0.3], and the full range listed in Table 1 . 
In Fig. 5 , we show how variations in the HDE parameter �ω 

ffect the CMB temperature power spectrum, while all the other
arameters are fixed to a slightly closed universe with �k = −0.001.
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Table 3. Parameter constraints at 68 per cent CL for a closed universe on the independent (abo v e the line) and dependent (below the line) parameters, together 
with the best-fitting χ2 and its difference from the flat LCDM. 

Planck Planck Planck Planck Planck + Lensing 
Parameters + Lensing + BAO + Pantheon + BAO + Pantheon 

�b h 2 0.02256 ± 0.00017 0.02248 ± 0.00016 0.02239 ± 0.00015 0.02253 ± 0.00017 0.02240 ± 0.00015 
�c h 2 0.1091 ± 0.0047 0.1160 ± 0.0033 0.1195 ± 0.0021 0.1108 ± 0.0042 0.1194 ± 0.0021 
100 θMC 1.04132 ± 0.00037 1.04111 ± 0.00033 1.04101 ± 0.00032 1.04127 ± 0.00036 1.04100 ± 0.00031 
τ 0.0520 ± 0.0080 0.0519 ± 0.0080 0 . 0549 + 0 . 0072 

−0 . 0081 0.0523 ± 0.0079 0.0546 ± 0.0075 

ln(10 10 A s ) 3.032 ± 0.017 3 . 034 + 0 . 018 
−0 . 016 3 . 044 + 0 . 015 

−0 . 017 3.034 ± 0.017 3.043 ± 0.015 
n s 0.9729 ± 0.0054 0.9695 ± 0.0049 0.9721 ± 0.0053 0.9716 ± 0.0051 0.9669 ± 0.0044 
�k −0 . 00090 + 0 . 00034 

−0 . 00029 −0 . 00053 + 0 . 00046 
−0 . 00016 > −0.000504 −0 . 00083 + 0 . 00037 

−0 . 00027 > −0.000471 

�ω < −56.1 −41 + 34 
−25 −23 ± 34 −62 + 16 

−33 −22 ± 35 

�� 

0.7150 ± 0.0078 0 . 7011 + 0 . 0041 
−0 . 0047 0 . 6966 + 0 . 0023 

−0 . 0026 0.7118 ± 0.0068 0.6964 ± 0.0023 

�m 

0.2859 ± 0.0076 0 . 2994 + 0 . 0045 
−0 . 0040 0 . 3038 + 0 . 0025 

−0 . 0022 0.2891 ± 0.0066 0.3040 ± 0.0022 

σ 8 0 . 858 + 0 . 018 
−0 . 014 0.8232 ± 0.0098 0 . 820 + 0 . 012 

−0 . 014 0 . 852 + 0 . 018 
−0 . 014 0.8184 ± 0.0094 

S 8 0.837 ± 0.011 0.8223 ± 0.0092 0.826 ± 0.012 0.836 ± 0.011 0.8239 ± 0.0090 
H 0 (km s −1 Mpc −1 ) 68.02 ± 0.44 68.17 ± 0.43 68.49 ± 0.38 68.09 ± 0.44 68.46 ± 0.37 
r drag 147.29 ± 0.31 147.31 ± 0.31 147.13 ± 0.30 147.27 ± 0.31 147.15 ± 0.29 

χ2 
bestfit 2755.6 2771.5 2770.5 3792.5 3815.4 

�χ2 
bestfit −10.4 −3.2 −1.4 −8.6 −1.6 
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11 A similar behaviour for �k is expected if the positive and ne gativ e values 
of �ω are considered separately. 
12 The required condition may be written as �ω ( �ω − 2 �� 

) > 0 (Arg ̈uelles 
et al. 2015 ). If we rule out the possibility of �ω > 0 , �ω > 2 �� 

in our case 
(see Fig. 6 ), we have only the choice of �ω < 0 from �� 

> 0. 
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e can see that by increasing the value of �ω we obtain a shift of
he peaks towards lower multipoles, and an increase of the low- �
lateau. 

 RESULTS  

n this section, we present the results we obtained for the HDE
odel in the three different cases: an open universe in Table 2 and
ig. 6 , a closed universe in Table 3 and Fig. 7 , and the full range for
ositiv e and ne gativ e values of the curvature in Table 4 and Fig. 8 .
or completeness, we test in Appendix A what happens with a ˆ c 2 s 
ree to vary as an additional parameter. Moreo v er, for comparison,
e include similar Tables A2 and A3 with the same data sets

ombination for the flat and non-flat LCDM models, respectively, 
n Appendix B . In each table, we present the constraints on the
osmological parameters at 68 per cent confidence level (CL), and 
n the last two rows, we report the best fit, i.e. minimum, χ2 and
ts difference from the flat LCDM model as described abo v e. Our
oticeable results are as follows: 

(i) Regarding �k in Tables 2 and 3 , we see, for Planck alone
r Planck + Pantheon, a preference for an open (closed) universe at
ore than 95 per cent CL (see also Figs 6 and 7 ). Ho we ver, when
e include the lensing likelihood we see that the preference for an
pen (closed) universe is about just 1 σ . Moreo v er, when we add the
AO data, the lower bound of �k is constrained to be close to zero
nd it can be consistent with a flat universe. We also note that the
onstraints on �k are not Gaussian. The preference for a non-flat 
niverse for Planck alone is similar to the standard non-flat LCDM
see Table A3 in Appendix B ). But, contrary to the preference of
 closed universe in the LCDM scenario (Aghanim et al. 2020b ;
i Valentino et al. 2019 , 2021f ; Handley 2021 ; Yang et al. 2022 ;
emenaite et al. 2022 ), the two separate cases with positive and
e gativ e curvature are almost symmetric and moreo v er, as we can
otice from the best-fitting χ2 , they are equally probable so that there
s no preference of one case o v er the other. This will be the reason
hy the full case shown in Table 4 gives for the �k the average of the

wo separate cases, preferring therefore an almost null value �k ≈ 0, 
hich gives back the flat LCDM, with an accumulated uncertainty 
hich is very small but enough to nullify the average value, though
ven better with BAO. 

(ii) �ω is a newly introduced parameter in our model with no a
riori known constraints (cf. Nilsson & Park 2022 ). Our results show
n intimate relation of �ω ∝ �k and the properties for �k still apply
o �ω also, e.g. for Planck alone or Planck + Pantheon, a preference
or �ω > 0 ( �ω < 0) in an open (closed) universe, while �ω is more
oorly constrained than �k . Actually, one can easily notice that 2D
ontours for the cut of �ω > 0 in Fig. 6 (or �ω < 0 in Fig. 7 ) can
e mapped on to the corresponding 2D contours for �k , while the
ther contours for �ω < 0 (or �ω > 0) rapidly decays to zero 11 and
re believed to be numerical errors. This property will explain the
imilarities between 2D contours involving �k and �ω for the full 

k case shown in Fig. 8 . Moreo v er, within our results alone, there
s no preference of �ω < 0 o v er �ω > 0 or vice versa, just as for

k . This is the reason why we find �ω unconstrained for Planck and
lanck + Pantheon data, while it is constrained to be close to zero
or all the remaining data set combinations. Ho we ver, if we choose
ω < 0 from astrophysical arguments – the absence of a complex 
etric inside a black hole with a positive cosmological constant �
 0 (Arg ̈uelles et al. 2015 ), 12 the abo v e relation �ω ∝ �k makes us

hoose a closed universe, i.e. �k < 0, consistently with our preferred
esult in the earlier work (Nilsson & Park 2022 ). 

(iii) Regarding the cosmic tensions involving the Hubble constant 
 0 and cosmic shear parameter S 8 , we obtain a positive result because
e can break the correlation between them: we have a shift of
 0 towards a higher value by 1 σ , though not enough to solve the
ubble constant tension, leaving the value of the cosmic shear S 8 
naltered (see for comparison the flat and non-flat LCDM cases in
ables A2 and A3 ). This is in contrast to the exacerbated tension
or a non-flat LCDM, where H 0 = 54 . 4 + 3 . 3 

−4 . 0 km s −1 Mpc −1 , S 8 =
 . 981 ± 0 . 049 (see Table A3 ) for Planck alone, with a decreasing H 0 
MNRAS 519, 5043–5058 (2023) 
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ut increasing S 8 , as well as other models for improving H 0 (Knox &
illea 2020 ; Jedamzik et al. 2021 ; Di Valentino et al. 2021a ;

erivolaropoulos & Skara 2022 ), because in the HDE case we do
ot see the noticeable correlation between �k and H 0 (or S 8 ) (see
igs 6 and 7 ) that is present in the non-flat LCDM case. Moreo v er,
ur results for different data sets show that S 8 has a shift towards
 lower value, in agreement with the non-flat LCDM case, when
e add the BAO in the data set combinations, while H 0 has a
 σ shift towards a higher v alue. Ho we ver, we can see the usual
ositive correlation between H 0 and S 8 in each data set, so that S 8 
s increased as H is increased. On the other hand, as we can notice
NRAS 519, 5043–5058 (2023) 

0 
n our results (Tables 2 –4 ), this behaviour does not depend on the
urvature. 

(iv) For all other parameters, there are some significant shifts,
specially the matter density �m 

and the dark energy density �� 

ith respect to a flat LCDM for all data set combinations. Ho we ver,
ur results are more similar to the conventional value �m 

∼ 0.3
nd �� 

∼ 0 . 7, contrary to the standard non-flat LCDM result that
hows �m ∼ 0.5 and �� 

∼ 0 . 5 for Planck alone (Aghanim et al.
020b ; Di Valentino et al. 2019 , 2021f ; Handley 2021 ; Yang et al.
022 ). For the other parameters, like �b h 2 , �c h 2 , θMC , τ , A s , n s ,
nd r drag that are not shown in Figs 6 –8 , there are a few shifts
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Table 4. Parameter constraints at 68 per cent CL for a full �k universe on the independent (abo v e the line) and dependent (below the line) parameters, together 
with the best-fitting χ2 and its difference from the flat LCDM. 

Planck Planck Planck Planck Planck + Lensing 
Parameters + Lensing + BAO + Pantheon + BAO + Pantheon 

�b h 2 0.02254 ± 0.00017 0.02248 ± 0.00016 0.02239 ± 0.00015 0.02254 ± 0.00017 0.02241 ± 0.00015 
�c h 2 0.1092 ± 0.0048 0.1157 ± 0.0033 0.1193 ± 0.0022 0.1104 ± 0.0043 0.1191 ± 0.0022 
100 θMC 1.04130 ± 0.00036 1.04112 ± 0.00033 1.04100 ± 0.00032 1.04125 ± 0.00035 1.04100 ± 0.00031 
τ 0.0522 ± 0.0077 0.0517 ± 0.0080 0.0552 ± 0.0080 0.0530 ± 0.0079 0.0548 ± 0.0074 
ln(10 10 A s ) 3.033 ± 0.018 3.034 ± 0.017 3.044 ± 0.017 3.035 ± 0.017 3.043 ± 0.015 
n s 0.9727 ± 0.0053 0.9698 ± 0.0050 0.9668 ± 0.0046 0.9723 ± 0.0051 0.9670 ± 0.0044 
�k 0.00000 ± 0.00095 −0.00001 ± 0.00068 −0.00001 ± 0.00054 −0.00002 ± 0.00090 −0.00001 ± 0.00053 
�ω Unconstrained −1 ± 48 −2 ± 43 Unconstrained −2 ± 42 

�� 

0.7143 ± 0.0078 0.7013 ± 0.0043 0 . 6966 + 0 . 0023 
−0 . 0027 0.7118 ± 0.0068 0 . 6965 + 0 . 0020 

−0 . 0023 

�m 

0.2857 ± 0.0079 0.2987 ± 0.0043 0 . 3034 + 0 . 0028 
−0 . 0023 0.2882 ± 0.0068 0 . 3035 + 0 . 0024 

−0 . 0022 

σ 8 0 . 857 + 0 . 019 
−0 . 015 0.824 ± 0.010 0 . 821 + 0 . 012 

−0 . 014 0 . 852 + 0 . 018 
−0 . 014 0.8185 ± 0.0092 

S 8 0.836 ± 0.011 0.8218 ± 0.0090 0.825 ± 0.012 0.835 ± 0.011 0.8232 ± 0.0088 
H 0 (km s −1 Mpc −1 ) 68.06 ± 0.44 68.17 ± 0.42 68.49 ± 0.39 68.07 ± 0.43 68.43 ± 0.37 
r drag 147.28 ± 0.31 147.31 ± 0.31 147.12 ± 0.30 147.28 ± 0.30 147.17 ± 0.29 

χ2 
bestfit 2755.6 2771.5 2770.5 3792.7 3815.4 

�χ2 
bestfit −10.2 −3.1 −1.4 −8.4 −1.6 
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or Planck, Planck + Pantheon, or Planck + Lensing, but once BAO
ata are included and the parameter degeneracies are broken, the 
DE values are very similar to the LCDM ones. This may give a
ositive indication for our HDE model against a non-flat LCDM, 
ven though there are no important impro v ements in the best-fitting
2 (see Table A3 ), but there are against the LCDM case, as shown

n the difference of the best-fitting χ2 from the flat LCDM (see 
ables 2 –4 ). An exception is the Planck + Pantheon case, where HDE
erforms significantly better than both LCDM and non-flat LCDM. 
ence, even if our model is assuming curvature in the universe, 

he results are close to cosmic concordance , i.e. consistency with 
ifferent cosmic observations (see Figs 6 , 7 , and 9 ) and they do not
epend on the curvature. 

 C O N C L U D I N G  R E M A R K S  

n conclusion, we have tested the perturbed dynamical dark en- 
rgy model in Ho ̌rava gravity (HDE) due to an effective energy–
omentum tensor from the extra Lorentz-violating terms. By treating 

he dark energy perturbations o v er the background perfect fluid 
DE as general fluid perturbations, we perform the full CMB 

ata analysis via CAMB / COSMOMC as well as BAO and supernovae
SNe) Ia data. Except for the BAO case, we have obtained the
reference for a non-flat universe, though the sign of the curvature 
arameter is not determined unless we use additional arguments. 
hus, regarding the curvature parameter �k , BAO is not consistent 
ith other observations and this could indicate some flat biases of
AO data points used in our analysis (Glanville, Howlett & Davis 
022 ). On the other hand, we obtain some positive results that seem
o indicate that we are in the right direction towards a resolution of
osmic tensions. First, we obtained a positive result on the internal 
osmic tension between the Hubble constant H 0 and cosmic shear 
arameter S 8 , since we have a shift of H 0 towards a higher value
y 1 σ , though not enough for resolving H 0 tension, but the value of
he cosmic shear S 8 is unaltered. This is in contrast to a decreasing
 0 but increasing S 8 in non-flat LCDM (Aghanim et al. 2020b ; Di
alentino et al. 2019 ; 2021d , f ; Handley 2021 ). Secondly, for all
ther parameters, we obtain comparable results to those of LCDM 

specially with BAO, e.g. �m 

∼ 0.3 and �� 

∼ 0 . 7, so that our
esults are close to a cosmic concordance , contrary to a recent non-
at LCDM result. Ho we ver, our results sho w also some undesirable
eatures compared to our previous background analysis with the 
MB distance priors (Nilsson & Park 2022 ), like less improvement
f the H 0 tension itself, de generac y between ( ̄ω , K) ↔ ( −ω̄ , −K),
nd the resulting almost null results on ω̄ , K or equi v alently �ω ,
k if we do not restrict to K �= 0. Several promising directions for

mproving our analysis are as follows: 

(i) The de generac y between ( ̄ω , K) ↔ ( −ω̄ , −K) is the character-
stic feature of �DE for the Ho ̌rava cosmology background and there
re some remnants in our previous background analysis (model B) 
s well (Nilsson & Park 2022 ), though not quite as strong as in the
urrent analysis. Ho we ver, in another HDE model (model A), which
as a parameter � N eff representing a possible excess in the standard
f fecti ve number of relativistic species N eff = 3.044, the de generac y
s remo v ed and we have obtained (a) non-null results on �ω , �k 

ith the preference of a closed universe and (b) a more impro v ed H 0 

ension. So, extending our present analysis with � N eff as in the dark
nergy model A (Nilsson & Park 2022 ) and/or varying N eff can be a
romising way to impro v e our results. 
(ii) There is still no direct observational evidence for the inter- 

ction between dark matter and dark energy. Ho we ver, it seems
hat a hypothetical dark energy model with the interaction, which 
s called the ‘interacting dark energy (IDE) model’ may provide 
nother appealing solution to H 0 and S 8 tensions (Di Valentino et al.
020a , 2021e ). Actually, in our Ho ̌rava gravity set-up, the interaction
ould be natural if we can introduce CDM from the gravity sector
lso, as proposed in footnote 2. So, extending our analysis with
he phenomenological interaction parameter for dark matter and 
nergy, e ven without kno wing the detailed mechanism, can also be
n interesting way to impro v e our results. 

(iii) In the cosmological perturbation around the spatially flat 
LRW background, the leading scale-invariant spectrum for the 
calar mode depends on the combination of UV parameters ˜ α4 ≡
4 + 2 α5 / 3 + 8 α6 / 3, which vanishes for the parameters from the
BC (equation 5). So, we need to relax the DBC for UV parameters

o obtain a scale-invariant scalar power spectrum and the result would 
e still valid in a non-flat universe since the non-flatness just gives
MNRAS 519, 5043–5058 (2023) 
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Figure 8. Triangular plot showing 2D contours at 68 per cent and 95 per cent CL and 1D posterior distributions of a few key parameters in the full �k universe. 
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ome subleading corrections to the flat cosmology perturbations.
o we ver, our result from CAMB / COSMOMC shows an almost scale-

nvariant matter power spectrum as usual and does not seem to depend
uch on the choice of UV parameters. This seems to be an evidence

hat we have lost some of the genuine UV effects in the dark energy
erturbations from the coarse graining in our fluid approach. The
ndesirable features in our result might be due to this problem as
ell. 
o, considering the full perturbation analysis for a non-flat universe
ith the corresponding modifications in the CAMB code would be a

hallenging way for the impro v ement. Phenomenologically, it seems
hat the general analysis may correspond to relaxing a vanishing
NRAS 519, 5043–5058 (2023) 
nisotropic stress condition σ = 0, since this condition would be
ue to some peculiar way of cancellation of arbitrary perturbations
hat would be anisotropic generally. So, considering a non-vanishing
nisotropic stress condition (Hu 1998 ) can also be an interesting way
or the impro v ement within the current fluid approach. 

(iv) In this paper, we considered λ = 1 for simplicity of our
nalysis. If we consider an arbitrary λ �= 1, as we noted in footnote
, the fundamental constants defined in the Einstein equation ( 6 ) and
he Friedmann equations ( 8 ) and ( 9 ) are different and we need to
onsider the ef fecti ve speed of light, Ne wton’s constant, and cosmo-
ogical constant c 2 eff = (8(3 λ − 1) 2 ) −1 κ4 μ2 � W 

, G eff = (16 π (3 λ −
)) −1 κ2 c 2 eff , and � eff = (3 / 2) � W 

c 2 eff , respectively. All the coupling

art/stac3824_f8.eps
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Figure 9. 1D posteriors on �m 

and �� 

for a closed universe scenario in our HDE model versus the flat and non-flat LCDM models for Planck (top panels), 
Planck + Lensing + BAO + Pantheon (bottom panels). 2D contour on �m 

versus �� 

is almost a line from �� 

≈ 1 − �m 

(see Figs 6 , 7 , and 9 ). 
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onstants λ, κ , μ, and � W 

could flow under renormalization group 
RG) so that the fundamental constants could also flow in the cosmic
volution. The fully consistent treatment of these evolving constants 
s beyond the scope of this paper, but one might estimate the amount
f RG flow from the existing cosmic tensions. For example, if we
ssume c eff = c and � eff = � as the current values and they do not RG
un but only λ can run, then one can find G eff = 2(3 λ − 1) −1 G , where
 = (32 πG ) −1 κ2 c 2 eff is the Newton’s constant in the Einstein equa-

ions ( 6 ) even for arbitrary λ and it coincides with the Newton’s con-
tant in the Friedmann equations ( 8 ) and ( 9 ) for λ = 1 (Dutta & Sari-
akis 2010 ; Frusciante et al. 2016 ; Frusciante & Benetti 2021 ). In this
imple example, G either runs or does not run depending on the run-
ing behaviours of κ and μ: (i) if κ = fixed and μ2 /(3 λ − 1) 2 = fixed,
e have G = fixed and G eff ∼ (3 λ − 1) −1 , or (ii) if μ = fixed and
4 /(3 λ − 1) 2 = fixed, we have G eff = fixed and G ∼ (3 λ − 1) −1 ; if we
hoose G as the current value and do not run as in case (i), G eff shows
he asymptotically free behaviour at λ = 1/3, which is thought to 
e a UV fixed point (Barvinsky, Herrero-Valea & Sibiryakov 2019 ), 
hereas if we choose G eff as the current value and do not run as in case

ii), G shows the asymptotically free behaviour. If we consider the 
patially flat case K = 0, and neglect the small cosmological constant 
n
erm by considering the early universe, one can find that the Hubble
arameter H ( t ) λ �= 1 has an additional factor compared to the Hubble
arameter for λ= 1 as H ( t ) λ �= 1 ≈ 2(3 λ− 1) −1 H ( t ) λ = 1 . If we consider
he RG flow of λIR = 1 → λUV = 0.9, we can obtain about 10 per cent
ncrease of the Hubble parameter H ( t ) λ �= 1 compared to what is ex-
ected for λ = 1, H ( t ) λ = 1 (see also Nilsson 2020 ). In other words, the
ubble tension might be an indication of RG flow on λ. Moreo v er, we
ould expect that all the (fundamental) perturbation equations, like 

he evolution equations for matter density contrast, are also go v erned
y the ef fecti ve constant G eff as in the background Friedmann equa-
ions so that S 8 could be also affected. It would be interesting to see
he effect of λ �= 1 in the cosmic tensions with the full data set analysis
nd observe the indication of RG flows in our cosmic evolution. 

C K N OW L E D G E M E N T S  

DV is supported by a Royal Society Dorothy Hodgkin Research 
ellowship. NAN and MIP were supported by Basic Science Re- 
earch Program through the National Research Foundation of Korea 
NRF) funded by the Ministry of Education, Science and Tech- 
ology (2020R1A2C1010372 to NAN; 2020R1A2C1010372 and 
MNRAS 519, 5043–5058 (2023) 

art/stac3824_f9.eps


5056 E. Di Valentino, N. A. Nilsson and M.-I.Park 

M

2  

f  

c  

s  

o  

t

D

T  

d

R

A
A
A
A
A
A
A
A
A
A
B
B  

B
B
B
B
B
C
C
D
D
D  

D
D  

D  

D
D
D
D
D  

D
D
F
F
F  

G  

G  

G
G
H
H
H
H  

J
J
K
K
K
K
K
K
L
L
L
L
L
M
M
N
N
O  

P
P
P
P  

R
R
R  

R  

S
S
S
S
V
V
W
Y
Y  

A
W

I  

t  

r  

p  

o  

i

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/5043/6967913 by guest on 21 April 2024
020R1A6A1A03047877 to MIP). This article is based upon work
rom COST Action CA21136 addressing observational tensions in
osmology with systematics and fundamental physics (CosmoVerse)
upported by COST (European Cooperation in Science and Technol-
gy). We acknowledge IT Services at The University of Sheffield for
he provision of services for High Performance Computing. 

ATA  AVAILABILITY  

he data sets used in this work to constrain the models are public
ata available in their respective references. 

E FERENCES  

bbott T. M. C. et al., 2022a, preprint ( arXiv:2207.05766 ) 
bbott T. M. C. et al., 2022b, Phys. Rev. D , 105, 023520 
bdalla E. et al., 2022, J. High Energy Astrophys. , 34, 49 
ghanim N. et al., 2020a, A&A , 641, A5 
ghanim N. et al., 2020b, A&A , 641, A6 
ghanim N. et al., 2020c, A&A , 641, A8 
lam S. et al., 2017, MNRAS , 470, 2617 
rg ̈uelles C., Grandi N., Park M.-I., 2015, J. High Energy Phys. , 10, 100 
rnowitt R. L., Deser S., Misner C. W., 2008, Gen. Relativ. Grav. , 40, 1997 
sgari M. et al., 2021, A&A , 645, A104 
ardeen J. M., 1980, Phys. Rev. D , 22, 1882 
arvinsky A. O., Herrero-Valea M., Sibiryakov S. M., 2019, Phys. Rev. D ,

100, 026012 
ellorin J., Restuccia A., 2011, Phys. Rev. D , 84, 104037 
eutler F. et al., 2011, MNRAS , 416, 3017 
las D., Pujolas O., Sibiryakov S., 2009, J. High Energy Phys. , 10, 029 
las D., Pujolas O., Sibiryakov S., 2010, Phys. Rev. Lett. , 104, 181302 
ogdanos C., Saridakis E. N., 2010, Class. Quantum Gravity , 27, 075005 
erioni A., Brandenberger R. H., 2011, JCAP , 08, 015 
he v allier M., Polarski D., 2001, Int. J. Mod. Phys. D , 10, 213 
evecioglu D. O., Park M.-I., 2021, preprint ( arXiv:2112.00576 ) 
eWitt B. S., 1967, Phys. Rev. , 160, 1113 
i Valentino E., Linder E. V., Melchiorri A., 2018, Phys. Rev. D , 97, 043528
i Valentino E., Melchiorri A., Silk J., 2019, Nature Astron. , 4, 196 
i Valentino E., Melchiorri A., Mena O., Vagnozzi S., 2020a, Phys. Dark

Univ. , 30, 100666 
i Valentino E., Linder E. V., Melchiorri A., 2020b, Phys. Dark Univ. , 30,

100733 
i Valentino E. et al., 2021a, Class. Quantum Gravity , 38, 153001 
i Valentino E. et al., 2021b, Astropart. Phys. , 131, 102604 
i Valentino E. et al., 2021c, Astropart. Phys. , 131, 102605 
i Valentino E. et al., 2021d, Astropart. Phys. , 131, 102607 
i Valentino E., Melchiorri A., Mena O., Pan S., Yang W., 2021e, MNRAS ,

502, L23 
i Valentino E., Melchiorri A., Silk J., 2021f, ApJ , 908, L9 
utta S., Saridakis E. N., 2010, JCAP , 05, 013 
riedman A., 1922, Z. Phys. , 10, 377 
rusciante N., Benetti M., 2021, Phys. Rev. D , 103, 104060 
rusciante N., Raveri M., Vernieri D., Hu B., Silvestri A., 2016, Phys. Dark

Univ. , 13, 7 
ao X., Wang Y., Brandenberger R., Riotto A., 2010, Phys. Rev. D , 81,

083508 
NRAS 519, 5043–5058 (2023) 
avela M. B., Hernandez D., Lopez Honorez L., Mena O., Rigolin S., 2009,
JCAP , 07, 034 

elman A., Rubin D. B., 1992, Statist. Sci. , 7, 457 
lanville A., Howlett C., Davis T. M., 2022, MNRAS , 517, 3087 
andley W., 2021, Phys. Rev. D , 103, L041301 
orava P., 2009, Phys. Rev. D , 79, 084008 
u W., 1998, ApJ , 506, 485 
u W., Seljak U., White M. J., Zaldarriaga M., 1998, Phys. Rev. D , 57,

3290 
acobson T., Mattingly D., 2004, Phys. Rev. D , 70, 024003 
edamzik K., Pogosian L., Zhao G.-B., 2021, Commun. Phys. , 4, 123 
amionkowski M., Riess A. G., 2022, preprint ( arXiv:2211.04492 ) 
ehagias A., Sfetsos K., 2009, Phys. Lett. B , 678, 123 
nox L., Millea M., 2020, Phys. Rev. D , 101, 043533 
odama H., Sasaki M., 1984, Prog. Theor. Phys. Suppl. , 78, 1 
oivisto T., Mota D. F., 2006, Phys. Rev. D , 73, 083502 
oyama K., Arroja F., 2010, J. High Energy Phys. , 03, 061 
emaitre G., 1927, Ann. Soc. Sci. Bruxelles A , 47, 49 
ewis A., Bridle S., 2002, Phys. Rev. D , 66, 103511 
ewis A., Challinor A., Lasenby A., 2000, ApJ , 538, 473 
ifshitz E., 1941, Zh. Eksp. Teor. Fiz., 11, 255 & 269 
inder E. V., 2003, Phys. Rev. Lett. , 90, 091301 
a C.-P., Bertschinger E., 1995, ApJ , 455, 7 
ukohyama S., 2009, Phys. Rev. D , 80, 064005 
ilsson N. A., 2020, Eur. Phys. J. Plus , 135, 361 
ilsson N. A., Park M.-I., 2022, Eur. Phys. J. C , 82, 873 
’Neal-Ault K., Bailey Q. G., Nilsson N. A., 2021, Phys. Rev. D , 103, 044010
ark M.-i., 2011, Class. Quantum Gravity , 28, 015004 
ark M.-I., 2009, J. High Energy Phys. , 09, 123 
erivolaropoulos L., Skara F., 2022, New Astron. Rev. , 95, 101659 
eter P., Uzan J.-P., 2013, Primordial Cosmology. Oxford Univ. Press, Oxford
iess A. G. et al., 2022, ApJ , 934, L7 
obert C. P., 2015, preprint ( arXiv:1504.01896 ) 
oss A. J., Samushia L., Howlett C., Perci v al W. J., Burden A., Manera M.,

2015, MNRAS , 449, 835 
yden B., 1970, Introduction to Cosmology. Cambridge Univ. Press, Cam-

bridge 
colnic D. M. et al., 2018, ApJ , 859, 101 
emenaite A. et al., 2022, preprint ( arXiv:2210.07304 ) 
hah P., Lemos P., Lahav O., 2021, A&AR , 29, 9 
hin S., Park M.-I., 2017, JCAP , 12, 033 
erde L., Treu T., Riess A. G., 2019, Nature Astron. , 3, 891 
ilenkin N. Y., Smorodinskii Y. A., 1964, Sov. Phys. JETP, 19, 1209 
ang A., 2017, Int. J. Mod. Phys. D , 26, 1730014 
ang W., Pan S., Mota D. F., Du M., 2020, MNRAS , 497, 879 
ang W., Giar ̀e W., Pan S., Di Valentino E., Melchiorri A., Silk J., 2022,

preprint ( arXiv:2210.09865 ) 

PPENDI X  A :  TESTING  T H E  H D E  M O D E L  

I TH  A  VA RY IN G  ˆ c 2 s 

n this appendix, we test the HDE model with a varying ˆ c 2 s in
he range [ −10,10] as an additional parameter and we report the
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Figure A1. Triangular plot showing 2D contours at 68 per cent and 95 per cent CL and 1D posterior distributions of a few key parameters for a closed universe, 
once ˆ c 2 s is free to vary in the range [ −10,10]. 
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Table A1. Parameter constraints at 68 per cent CL for a closed universe, 
once ˆ c 2 s is free to vary in the range [ −10,10], on the independent (abo v e 
the line) and dependent (below the line) parameters, together with the best- 
fitting χ2 . 

Planck Planck + Lensing 
Parameters + BAO + Pantheon 

�b h 2 0.02255 ± 0.00017 0.02239 ± 0.00015 
�c h 2 0.1094 ± 0.0046 0.1195 ± 0.0022 
100 θMC 1 . 04130 + 0 . 00034 

−0 . 00039 1.04099 ± 0.00032 
τ 0.0519 ± 0.0080 0.0548 ± 0.0077 
ln(10 10 A s ) 3.032 ± 0.011 3.043 ± 0.015 
n s 0.9729 ± 0.0055 0.9670 ± 0.0044 
�k −0 . 00090 + 0 . 00035 

−0 . 00029 > −0.00047 
�ω < −55.0 −27 + 33 

−24 

ˆ c 2 s unconstrained unconstrained 

�� 0.7145 ± 0.0075 0.6964 ± 0.0022 
�m 0.2864 ± 0.0074 0.3040 ± 0.0022 
σ 8 0 . 857 + 0 . 018 

−0 . 015 0.8190 ± 0.0092 
S 8 0.837 ± 0.011 0.8244 ± 0.0090 
H 0 (km s −1 Mpc −1 ) 68.04 ± 0.45 68.47 ± 0.37 
r drag 147.28 ± 0.31 147.15 ± 0.29 

χ2 
best fit 2755.4 3815.3 

A
A

I  

c  

T  

t

T

Table A2. Parameter constraints at 68 per cent CL for a flat LCDM universe. 

Planck Planck 
Parameters + Lensing 

�b h 2 0.02236 ± 0.00015 0.02237 ± 0.00015 
�c h 2 0.1202 ± 0.0014 0.1200 ± 0.0012 
100 θMC 1.04090 ± 0.00031 1.04092 ± 0.00031 
τ 0.0546 ± 0.0078 0.0544 ± 0.0073 
ln (10 10 A s ) 3.045 ± 0.016 3.044 ± 0.014 
n s 0.9648 ± 0.0043 0.9649 ± 0.0042 

�� 0.6834 ± 0.0085 0.6847 ± 0.0073 
�m 0.3166 ± 0.0085 0.3153 ± 0.0073 
σ 8 0.8122 ± 0.0073 0.832 ± 0.013 
S 8 0.834 ± 0.016 0.832 ± 0.013 
H 0 (km s −1 Mpc −1 ) 67.27 ± 0.61 67.36 ± 0.54 
r drag 147.05 ± 0.30 147.09 ± 0.26 

χ2 
best fit 2765.8 2774.6 

Table A3. Parameter constraints at 68 per cent CL for a non-flat LCDM universe, 

Planck Planck 
Parameters + Lensing 

�b h 2 0.02260 ± 0.00017 0.02249 ± 0.00016 
�c h 2 0.1181 ± 0.0015 0.1185 ± 0.0015 
100 θMC 1.04116 ± 0.00033 1.04107 ± 0.00032 
τ 0.0486 ± 0.0082 0 . 0497 + 0 . 0082 

−0 . 0071 

ln(10 10 A s ) 3.028 ± 0.017 3 . 030 + 0 . 017 
−0 . 015 

n s 0.9706 ± 0.0048 0.9688 ± 0.0047 
�k −0 . 044 + 0 . 018 

−0 . 015 −0.0106 ± 0.0065 

�� 0 . 560 + 0 . 050 
−0 . 043 0.659 ± 0.017 

�m 0 . 485 + 0 . 058 
−0 . 068 0.352 ± 0.023 

σ 8 0.774 ± 0.015 0.795 ± 0.011 
S 8 0.981 ± 0.049 0.860 ± 0.021 
H 0 (km s −1 Mpc −1 ) 54 . 4 + 3 . 3 −4 . 0 63 . 6 + 2 . 1 −2 . 3 

r drag 147.35 ± 0.30 147.36 ± 0.31 

χ2 
best fit 2754.5 2771.4 

�χ2 
best fit −11.3 −3.2 
PPENDI X  B:  C O M PA R I S O N  O F  T H E  FLAT  

N D  NON-FLAT  L C D M  M O D E L S  

n this appendix, we report for comparison the constraints on the
osmological parameters for the flat and non-flat LCDM models in
ables A2 and A3 for the same data set combinations explored in

his work. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
Planck Planck Planck + Lensing 
+ BAO + Pantheon + BAO + Pantheon 

0.02242 ± 0.00014 0.02239 ± 0.00014 0.02243 ± 0.00013 
0.11933 ± 0.00091 0.1199 ± 0.0013 0.11921 ± 0.00089 
1.04101 ± 0.00029 1.04094 ± 0.00031 1.04102 ± 0.00029 
0.0561 ± 0.0071 0.0550 ± 0.0078 0.0564 ± 0.0071 
3.047 ± 0.014 3.046 ± 0.016 3.047 ± 0.014 

0.9665 ± 0.0038 0.9655 ± 0.0042 0.9668 ± 0.0037 

0.6889 ± 0.0056 0.6855 ± 0.0079 0.6897 ± 0.0054 
0.3111 ± 0.0056 0.3145 ± 0.0079 0.3103 ± 0.0054 
0.8102 ± 0.0060 0.8114 ± 0.0074 0.8100 ± 0.0060 
0.825 ± 0.011 0.831 ± 0.015 0.824 ± 0.010 
67.66 ± 0.42 67.42 ± 0.57 67.72 ± 0.40 

147.21 ± 0.23 147.11 ± 0.29 147.23 ± 0.23 

2771.9 3801.1 3817.0 

together with the best-fitting χ2 and its difference from the flat LCDM. 

Planck Planck Planck + Lensing 
+ BAO + Pantheon + BAO + Pantheon 

0.02239 ± 0.00015 0.02247 ± 0.00017 0.02240 ± 0.00015 
0.1197 ± 0.0014 0.1190 ± 0.0015 0.1196 ± 0.0014 

1.04095 ± 0.00031 1.04102 ± 0.00033 1.04096 ± 0.00032 
0.0548 ± 0.0078 0.0548 ± 0.0077 0.0559 ± 0.0073 

3.044 ± 0.016 3.043 ± 0.016 3.047 ± 0.014 
0.9659 ± 0.0045 0.9677 ± 0.0047 0 . 9661 + 0 . 0042 

−0 . 0047 

0.0008 ± 0.0019 −0 . 0064 + 0 . 0061 
−0 . 0054 0.0008 ± 0.0019 

0.6894 ± 0.0061 0.670 ± 0.017 0.6901 ± 0.0059 

0.3098 ± 0.0066 0.337 ± 0.022 0.3087 ± 0.0056 
0.8109 ± 0.0084 0.8044 ± 0.0096 0.8115 ± 0.0072 
0.824 ± 0.013 0.852 ± 0.025 0.824 ± 0.010 
67.88 ± 0.68 65.1 ± 2.2 67.94 ± 0.64 

147.15 ± 0.31 147.25 ± 0.31 147.16 ± 0.29 

2771.4 3799.3 3816.9 
−0.5 −1.8 −0.1 
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